

DART Tutorial Section 4:
 How should observations impact an unobserved state variable? Multivariate assimilation.

Single observed variable, single unobserved variable.

So far, have known observation likelihood for single variable.
Now, suppose prior has an additional variable.
Will examine how ensemble methods update additional variable.
Basic method generalizes to any number of additional variables.
Methods related to Kalman filter in some sense, but not done here.

Ensemble filters: Updating additional prior state variables

Assume that all we know is the prior joint distribution.
 One variable is observed.

Compute

 increments for prior ensemble members of observed variable.
Ensemble filters: Updating additional prior state variables

Assume that all we know is the prior joint distribution.
 One variable is observed.

Compute

 increments for prior ensemble members of observed variable.
Ensemble filters: Updating additional prior state variables

Assume that all we know is the prior joint distribution.
 One variable is observed.

Compute increments for prior ensemble members of observed variable.

Ensemble filters: Updating additional prior state variables

> Assume that all we know is the prior joint distribution.

> One variable is observed.

Compute increments for prior ensemble members of observed variable.

Ensemble filters: Updating additional prior state variables

> Assume that all we know is the prior joint distribution.

> One variable is observed.

Compute increments for prior ensemble members of observed variable.

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

How should the unobserved variable be impacted?
$1^{\text {st }}$ choice: least squares

Begin by finding least squares fit.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Next, regress the observed variable increments onto increments for the unobserved variable.

Equivalent to first finding image of increment in joint space.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Ensemble filters: Updating additional prior state variables

Have joint prior distribution of two variables.

Regression: Equivalent to first finding image of increment in joint space.

Then projecting from joint space onto unobserved priors.

Ensemble filters: Updating additional prior state variables

Now have an updated (posterior) ensemble for the unobserved variable.

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

Ensemble filters: Updating additional prior state variables

CRITICAL POINT:

Since impact on unobserved variable is simply a linear regression, can do this INDEPENDENTLY for any number of unobserved variables!

Anderson, J.L., 2003:
A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634-642

-2 024 Obs.

Could also do many at once using matrix algebra as in traditional Kalman Filter.

Multivariate assimilation with DART:

The basic regression code is trivial:
However, DART advanced options can obscure the code.
See assimilation_code/modules/assimilation/assim_tools_mod.f90
subroutine update_from_obs_inc

To generate output from a multivariate Lorenz_63 experiment (the value of cutoff is presumed to be large - set in Section 3):
cd models/lorenz_63/work; ./filter

Now do Matlab diagnostics (see section 1).

- Does multivariate do better?
- Be sure to record the error values for comparison.
- Can you identify any obvious performance differences?

Multivariate assimilation in Lorenz 63:

What happens if not all state variables are observed?

1. Try observing only x and y (ignore z observations from above). In models/lorenz_63/work edit input.nml
```
&filter_nml
```

async
$=0$,
adv_ens_command $=$ "./advance_model.csh",

Execute ./filter to produce new assimilation.
Look at the error statistics and time series with Matlab.
Record the error and spread values and compare to univariate case.

Multivariate assimilation in Lorenz 63:

What happens if not all state variables are observed?
2. Try observing only x (ignore y and z observations from above). In models/lorenz_63/work edit input.nml

```
&filter_nml
```

Execute ./filter to produce new assimilation.
Look at the error statistics and time series with Matlab.
Record the error and spread values and compare to univariate case.
What would happened if we made this into a univariate assimilation? \&assim_tools_nml

filter_kind	$=1$
cutoff	$=1000000.0$

Multivariate assimilation in Lorenz 63:

What happens if not all state variables are observed?
3. Try observing only z (ignore x and y observations from above). In models/lorenz_63/work edit input.nml

```
&filter_nml
```

 obs_sequence_in_name \(=\) "obs_seq.out.x"
 \&assim_tools_nml

Execute ./filter to produce new assimilation; look at the error statistics and time series with Matlab.

Record the error and spread values and compare to univariate case. Dynamics for x and y are symmetric; z can NOT distinguish them. How do we want filter to handle this?
Does it do what we want in this case?

DART Tutorial Index to Sections

1. Filtering For a One Variable System
2. The DART Directory Tree
3. DART Runtime Control and Documentation
4. How should observations of a state variable impact an unobserved state variable?

Multivariate assimilation.
5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
6. Other Updates for An Observed Variable
7. Some Additional Low-Order Models
8. Dealing with Sampling Error
9. More on Dealing with Error; Inflation
10. Regression and Nonlinear Effects
11. Creating DART Executables
12. Adaptive Inflation
13. Hierarchical Group Filters and Localization
14. Quality Control
15. DART Experiments: Control and Design
16. Diagnostic Output
17. Creating Observation Sequences
18. Lost in Phase Space: The Challenge of Not Knowing the Truth
19. DART-Compliant Models and Making Models Compliant
20. Model Parameter Estimation
21. Observation Types and Observing System Design
22. Parallel Algorithm Implementation
23. Location module design (not available)
24. Fixed lag smoother (not available)
25. A simple 1D advection model: Tracer Data Assimilation

