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DART_LAB	Tutorial	Section	1:
Ensemble	Data	Assimilation	Concepts	in	1D



What	is	Data	Assimilation?

…to	produce	an	analysis
(best	possible	estimate).

+

Observations	combined	with	a	Model	forecast	…
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Example:	Estimating	the	Temperature	Outside

An	observation	has	a	value	(	* ),	
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Example:	Estimating	the	Temperature	Outside

An	observation	has	a	value	(	* ),	

and	an	error	distribution	(red	curve)	that	is
associated	with	the	instrument.
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Example:	Estimating	the	Temperature	Outside

Thermometer	outside	measures	1o	C.	

Instrument	builder	says	thermometer	is
unbiased	with	+/- 0.8o	C	gaussian error.
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Example:	Estimating	the	Temperature	Outside

The	red	plot	is	P(T | T0);
probability	of	temperature	given that	To was	observed.

Thermometer	outside	measures	1o	C.	
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Example:	Estimating	the	Temperature	Outside

The	green	curve	is	P(T | C);
probability	of	temperature	given	all	available	prior	information	C.

We	also	have	a	prior	estimate	of	temperature.
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Example:	Estimating	the	Temperature	Outside

Prior	information	C can	include:

1. Observations	of	things	besides	T;

2. Model	forecast	made	using	observations	at	earlier	times;

3. a	priori physical	constraints		(	T	>	-273.15o	C	);

4. Climatological	constraints		(	-30o	C	<	T	<	40o	C	).
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Combining	the	Prior	Estimate	and	Observation

€ 

P T |To,C( ) =
P To |T,C( )P T |C( )

P To |C( )

Bayes	
Theorem:

Posterior:	Probability	of	T given	
observations	and	Prior.	Also	
called	update or	analysis.

Prior

Likelihood:	Probability	that	To is	
observed	if	T is	true	value	and	given	
prior	information	C.
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Combining	the	Prior	Estimate	and	Observation

€ 

P To |T,C( )P T |C( )
P To |C( )

=

€ 

P To |T,C( )P T |C( )
P To | x( )P x |C( )dx∫

€ 

=
P To |T,C( )P T |C( )
normalization

Rewrite	Bayes	as:

Denominator	normalizes	so	Posterior	is	PDF.
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization
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Consistent	Color	Scheme	Throughout	Tutorial

Green	=	Prior

Red	=	Observation

Blue	=	Posterior

Black	=	Truth		

(truth	available	only	for	‘perfect	model’ examples)
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization

Generally	no	analytic	solution	for	Posterior.
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Combining	the	Prior	Estimate	and	Observation

P T |T0,C( ) = P(T0 |T ,C)P(T |C)normalization

Gaussian	Prior	and	Likelihood	->	Gaussian	Posterior
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Combining	the	Prior	Estimate	and	Observation

For	Gaussian	prior	and	likelihood…

Prior

Likelihood

Then,	Posterior

With	

€ 

σ u = σ p
−2 +σ o

−2( )
−1

€ 

Tu =σ u
2 σ p

−2Tp +σ o
−2To[ ]

€ 

P T |C( ) = Normal Tp,σ p( )

€ 

P To |T,C( ) = Normal To,σ o( )

€ 

P T |To,C( ) = Normal Tu,σ u( )
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Matlab Hands-on:	gaussian_product

This	will	also	spawn	a	GUI	that	we	will	work	with.
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Matlab Hands-on:	gaussian_product

Purpose:	Explore	the	gaussian posterior	that	results	from	taking	
the	product	of	a	gaussian prior	and	a	gaussian likelihood.

1)	Set	Prior	Mean	and	
Standard	Deviation.	

2)	Set	Observation
Mean	and	Observation
Error	Standard	Deviation.	

3)	Select	Plot	Posterior	to
Update	the	items	in	blue.
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Matlab Hands-on:	gaussian_product

Explore!

• Change	the	mean	value	of	the	prior	and	the	observation.

• Change	the	standard	deviation	of	the	prior.	

• What	is	always	true	for	the	mean	of	the	posterior?

• What	is	always	true	for	the	standard	deviation	of	the	posterior?
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The	One-Dimensional	Kalman Filter

1. Suppose	we	have	a	linear	forecast	model	L

A. If	temperature	at	time	t1 = T1, then	the																				
temperature	at	t2 = t1 + Δt is		T2 = L(T1)

B. Example:	T2 = T1 + ΔtT1
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The	One-Dimensional	Kalman Filter

1. Suppose	we	have	a	linear	forecast	model	L.

A. If	temperature	at	time	t1 = T1, then	the							
temperature	at	t2 = t1 + Δt is		T2 = L(T1)

B. Example:	T2 = T1 + ΔtT1

2. If	posterior	estimate	at	time	t1 is	Normal(Tu,1, σu,1) then	the	
prior	at	t2 is	Normal(Tp,2, σp,2).

Tp,2 = Tu,1,+ ΔtTu,1

σp,2  = (Δt + 1) σu,1
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The	One-Dimensional	Kalman Filter

1. Suppose	we	have	a	linear	forecast	model	L.

A. If	temperature	at	time	t1 = T1, then	the	
temperature	at	t2 = t1 + Δt is		T2 = L(T1)

B. Example:	T2 = T1 + ΔtT1

2. If	posterior	estimate	at	time	t1 is	Normal(Tu,1, σu,1) then	the	
prior	at	t2 is	Normal(Tp,2, σp,2).

3. Given	an	observation	at	t2 with	distribution	Normal(t0, σ0) the	
likelihood	is	also	Normal(t0, σ0).
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The	One-Dimensional	Kalman Filter

1. Suppose	we	have	a	linear	forecast	model	L.

A. If	temperature	at	time	t1 = T1, then	the	
temperature	at	t2 = t1 + Δt is		T2 = L(T1)

B. Example:	T2 = T1 + ΔtT1

2. If	posterior	estimate	at	time	t1 is	Normal(Tu,1, σu,1) then	the	
prior	at	t2 is	Normal(Tp,2, σp,2).

3. Given	an	observation	at	t2 with	distribution	Normal(t0, σ0) the	
likelihood	is	also	Normal(t0, σ0).

4. The	posterior	at	t2 is	Normal(Tu,2, σu,2) where	Tu,2 and	σu,2 come	
from	page	19.
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A	One-Dimensional	Ensemble	Kalman Filter

Represent	a	prior	pdf by	a	sample	(ensemble)	of	N	values:
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A	One-Dimensional	Ensemble	Kalman Filter

Represent	a	prior	pdf by	a	sample	(ensemble)	of	N	values:

Use	sample	mean

and	sample	standard	deviation	

to	determine	a	corresponding	continuous	distribution
€ 

T = Tn N
n=1

N

∑

€ 

σT = Tn −T ( )2 N −1( )
n=1

N

∑

€ 

Normal T ,σT( )
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A	One-Dimensional	Ensemble	Kalman Filter:	
Model	Advance

If	posterior	ensemble	at	time	t1 is	T1,n,  n = 1, …, N
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A	One-Dimensional	Ensemble	Kalman Filter:	
Model	Advance

If	posterior	ensemble	at	time	t1 is	T1,n,  n = 1, …, N
advance	each	member	to	time	t2with	model,	T2,n = L(T1, n)  n = 1, …,N .
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A	One-Dimensional	Ensemble	Kalman Filter:	
Model	Advance

Same	as	advancing	continuous	pdf at	time	t1 …	
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A	One-Dimensional	Ensemble	Kalman Filter:	
Model	Advance

Same	as	advancing	continuous	pdf at	time	t1 …	
to	time	t2with	model	L.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

Fit	a	Gaussian	to	the	sample.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

Get	the	observation	likelihood.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

Compute	the	continuous	posterior	PDF.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

Use	a	deterministic	algorithm	to	‘adjust’	the	ensemble.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

First,	‘shift’ the	ensemble	to	have	the	exact	mean	of	the	posterior.
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A	One-Dimensional	Ensemble	Kalman Filter:	
Assimilating	an	Observation

First,	‘shift’ the	ensemble	to	have	the	exact	mean	of	the	posterior.
Second,	linearly	contract	to	have	the	exact	variance	of	the	posterior.
Sample	statistics	are	identical	to	Kalman filter.
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Matlab Hands-On:	oned_ensemble

This	will	also	spawn	a	GUI	that	we	will	work	with.
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Matlab Hands-On:	oned_ensemble

Purpose:	Explore	how	ensemble	filters	update	a	prior	ensemble.
1)	change	these	
if	you	want	to.

2)	Click	on															
Create	New	Ensemble

3)	Click	in	here	– a	few	times

4)	Click	outside	the	axis	on	the	
gray	(anywhere)	to	finish	
defining	the	ensemble.

Ignore	the	Inflation	and	
EAKF	menus	for	now.

5)	Click	on															
Update	Ensemble
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Matlab Hands-On:	oned_ensemble

Explorations:

1. Keep	your	ensembles	small,	less	than	10,	for																											
easy	viewing.

2. Create	a	nearly	uniformly	spaced	ensemble.																				
Examine	the	update.

3. What	happens	with	an	ensemble	that	is	confined	to	one	side	
of	the	likelihood?

4. What	happens	with	a	bimodal	ensemble	(two	clusters	of	
members	on	either	side)?

5. What	happens	with	a	single	outlier	in	the	ensemble?

Too	Many!
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Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.

Notes:
The	‘truth’ is	always	0.
Observation	noise	is	a	draw	from	N(0,1).
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Top	button	allows	
alternating	model	
advance	and	
assimilation	steps.

Or	automatically	
sequence	
advances	and	
assimilations.



Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.
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This	is	the	
equation		for	the	
model	time	
tendency.

Change	the	
ensemble	size	or	
the	model	
parameters.



Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.
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Prior	ensemble	
members	green	ticks,
Posterior	blue,	
observation	is	*.	
Truth	is	always	0.

More	on	rank	
histograms	shortly.



Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.

DART_LAB Section	1:	46 of	69

A	time	series	of	the	
assimilation.	Line	
segments	show	
forecast	evolution.	
Most	recent	prior,	
observation,	and	
posterior	are	same	as	
in	upper	right	
window	but	plotted	
with	a	vertical	axis.



Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.
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Time	series	of	error	
and	spread.	Sawtooth
pattern	because	prior	
and	posterior	values	
are	shown	for	each	
time.	

Error	is	the	absolute	
value	of	the	difference	
between	the	ensemble	
mean	and	the	truth.

Spread	is	the	
standard	deviation	
of	the	ensemble.



Matlab Hands-On:	oned_model
Purpose:
• Explore	behavior	of	a	complete	1-D	ensemble	filter	for	a	linear	system.	
• Look	at	the	behavior	of	different	ensemble	sizes.
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Kurtosis	as	function	
of	time.	Stays	
constant	here.



Matlab Hands-On:	oned_model

Explorations:

1. Step	through	a	sequence	of	advances	and	assimilations	with	

the	top	button.	Watch	the	evolution	of	the	ensemble,	the	

error	and	spread.

2. How	does	a	larger	ensemble	size	(	<	10	is	easiest	to	see)	act?

• Compare	the	error	and	spread	for	different	ensemble	sizes.

• Note	the	time	behavior	of	the	error	and	spread.

3.	 Let	the	model	run	freely	using	the	second	button.
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The	Rank	Histogram:
Evaluating	Filter	Performance

Draw	5	values	from	a	real-valued	distribution.
Call	the	first	4	‘ensemble	members’.
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The	Rank	Histogram:
Evaluating	Filter	Performance

These	4	‘ensemble	members’	partition	the	real	line	
into	5	bins.
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The	Rank	Histogram:
Evaluating	Filter	Performance

Call	the	5th	draw	the	‘truth’.
1/5	chance	that	this	is	in	any	given	bin.
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The	Rank	Histogram:
Evaluating	Filter	Performance

Rank	histogram	shows	the	frequency	of	the	truth	in	
each	bin	over	many	assimilations.

Same	figure	as	previous	slide.

rank	histogram	
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The	Rank	Histogram:
Evaluating	Filter	Performance

Rank	histogram	shows	the	frequency	of	the	truth	in	
each	bin	over	many	assimilations.

A	new	assimilation.

rank	histogram	
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The	Rank	Histogram:
Evaluating	Filter	Performance

Rank	histogram	shows	the	frequency	of	the	truth	in	
each	bin	over	many	assimilations.

A	new	assimilation.

rank	histogram	
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The	Rank	Histogram:
Evaluating	Filter	Performance

Rank	histogram	shows	the	frequency	of	the	truth	in	
each	bin	over	many	assimilations.

A	new	assimilation.

rank	histogram	
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The	Rank	Histogram:
Evaluating	Filter	Performance

Rank	histograms	for	good	ensembles	should	be	
uniform	(caveat	sampling	noise).

Want	truth	to	look	like	random	draw	from	ensemble.
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The	Rank	Histogram:
Evaluating	Filter	Performance

A	biased	ensemble	leads	to	skewed	histograms.
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The	Rank	Histogram:
Evaluating	Filter	Performance

An	ensemble	with	too	little	spread	gives	a	u-shape.
This	is	the	most	common	behavior	for	geophysics.
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The	Rank	Histogram:
Evaluating	Filter	Performance

An	ensemble	with	too	much	spread	is	
peaked	in	the	center.
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Matlab Hands-On:	oned_model
Understanding	the	Rank	Histogram
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Prior	(left)	and	
Posterior	(right)	
rank	histograms.	
Yellow	is	for	current	
time.

Truth	is	always	0.	For	
this	time,	truth	is	
between	1st and	2nd
ensemble	members;	
that’s	the	second	bin.	



Matlab Hands-On:	oned_model
Understanding	the	Rank	Histogram

Explorations:
1. Step	through	a	sequence	of	advances	and	assimilations	

with	the	top	button.	Watch	the	evolution	of	the	rank	
histogram	bins.

2. Add	some	model	bias	(less	than	1	to	start)	and	see	how	
the	filter	responds.

3. Add	some	nonlinearity	(	a<	1	)	to	the	model.	How	do	the	
different	filters	respond?

4. Can	you	break	the	filter	(find	setting	so	that	the	
ensemble	moves	away	from	zero)	with	the	options	
explored	so	far?
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Dealing	with	systematic	error:
Variance	Inflation
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Observations	+	physical	system	 ‘true’ distribution.
Model	bias	(and	other	errors)	can	shift	actual	prior.
Prior	ensemble	is	too	certain	(needs	more	spread).
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Dealing	with	systematic	error:
Variance	Inflation

Observations	+	physical	system	 ‘true’ distribution.
Model	bias	(and	other	errors)	can	shift	actual	prior.
Prior	ensemble	is	too	certain	(needs	more	spread).
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Dealing	with	systematic	error:
Variance	Inflation

Could	correct	error	if	we	knew	what	it	was.
With	large	models,	can’t	know	error	precisely.
Taking	no	action	can	cause	observations	to	be	ignored.
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Dealing	with	systematic	error:
Variance	Inflation

Naiv̈e	solution:	increase	the	spread	in	the	prior.
Give	more	weight	to	the	observation,	less	to	the	prior.
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Matlab Hands-On: oned_ensemble
exploring	prior	inflation

1)	Create	a	new	
ensemble.

3)	Set	an	inflation	
value.	

5)	The	inflated	prior	and	
posterior	shows	up	here.
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2)	Turn	inflation	on.	

4)	Do	assimilation.	



Matlab Hands-On:
exploring	prior	inflation	with	oned_ensemble

Explorations:

• See	how	increasing	inflation	(>	1)	changes	the	posterior	
mean	and	standard	deviation.

• Look	at	priors	that	are	not	shifted	but	have	small	spread	
compared	to	the	observation	error	distribution.

• Look	at	priors	that	are	shifted	from	the	observation.
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Matlab Hands-On: oned_model
using	inflation	to	deal	with	systematic	error

Note:	The	spread	is	increased	by	the	square	root	of	the	inflation.

1. Add	some	model	
bias	to	simulate	
systematic	error.

2. Run	an	assimilation	
and	observe	the	
error,	spread,	and	
rank	histograms.

3. Add	some	inflation	
(try	starting	with	
1.5)	and	observe	
how	behavior	
changes.	

4. What	happens	with	
too	much	inflation?
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Matlab Hands-On: oned_model
using	inflation	to	deal	with	systematic	error

Explorations:

• Try	a	variety	of	model	bias	and	inflation	settings.

• Try	using	inflation	with	a	nonlinear	model.
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