

DART Tutorial Section 15: DART Experiments: Control and Design

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

NCAR | National Center for UCAR | Atmospheric Research

©UCAR

Contain a *time-ordered* list of observation definitions:

- 1. Type of observation (radiosonde temperature, radar reflectivity),
- 2. Location of observation,
- 3. Time of observation,
- 4. Observation error variance,
- 5. Additional stuff for complex observation types,
- 6. Quality control values.

When driving *filter* assimilation, also contain observed values. (An observation sequence can have 0 or more values associated

with each observation; section 17).

model_mod defines a *shortest_time_between_assimilations*, Δt . Initial time of ensemble (from input file or namelist) is t_i .

Filter continues until all observations in sequence have been used. First observation can NOT be earlier than first 'window'. If a 'window' has no observations, no assimilation is done.

DART experiments are driven by input observation sequences

This capability is too limited: Would like to allow:

- 1. Dynamically adjusting model Δt for models with this capability;
- 2. Window widths that could be less than Δt ;

3. Time interpolation forward operators.

1. Can just 'restart' from single time-level after each assimilation.

This can lead to numerical instability if 'restarts' too frequent. Limit of dense observations in time, becomes forward differencing..

 Can expand definition of model state to include multiple times. State vector includes times t_i and t_{i+1} for observations with times in this interval.

This can improve performance.

Also permits easy time interpolation forward operators.

Works in current implementation if *model_mod* interface is modified.

Most models do not implement this capability.

1. Real data filtering assimilations: observations from instruments.

2. Observing System Simulation Experiments (OSSEs): Observations are synthetic. Model integration substitutes for truth. Forward operator for each observation applied to truth state. Random sample from N(0, σ_{obs}) added in. σ_{obs} from observation sequence file.

3. Observing System Experiments (OSEs): Use real observations, but withhold some with purpose. 4. Mixed OSEs/OSSEs:

Add synthetic observations to real observations. 'Truth' for synthetic comes from model integration from last assimilated state estimate.

- 5. Observation targeting:
 - Given OSE or OSSE,

Add observations in future to improve future performance, Already done operationally for weather prediction. Where should a plane fly to get most valuable observations?

<u>6. Smoothing: not currently supported in DART Manhattan</u> Use observations in future to improve state estimate, Can be turned on with &smoother_nml: num_lags.

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- **10.** Regression and Nonlinear Effects
- **11. Creating DART Executables**
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality Control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- **17.** Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)
- 25. A simple 1D advection model: Tracer Data Assimilation