TIEGCM
Overview
The Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM) is developed by the NSF NCAR High Altitude Observatory (HAO).
DART-TIEGCM has been used to assimilate neutral mass density retrieved from satellite-borne accelerometers and electron density obtained from ground-based and space-based GNSS signals. Unlike other ionospheric data assimilation applications, this approach allows simultaneous assimilation of thermospheric and ionospheric parameters by taking advantage of the coupling of plasma and neutral constituents described in TIEGCM. DART/TIEGCM’s demonstrated capability to infer under-observed thermospheric parameters from abundant electron density observations has important implications for the future of upper atmosphere research.
DART is designed so that the TIEGCM source code can be used with no modifications. TIEGCM and DART run as separate executables. The TIEGCM 2.0 source code and User’s Guide is available from HAO:
DART-TIEGCM namelist options
The model_nml
namelist contains the TIEGCM specific options for DART.
model_nml
is read from the file input.nml
.
Namelists start with an ampersand ‘&’ and terminate with a slash ‘/’.
Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.
&model_nml
tiegcm_restart_file_name = 'tiegcm_restart_p.nc'
tiegcm_secondary_file_name = 'tiegcm_s.nc'
model_res = 5.0
assimilation_period_seconds = 3600
estimate_f10_7 = .false.
f10_7_file_name = 'f10_7.nc'
debug = 0
variables = 'NE', 'QTY_ELECTRON_DENSITY', '1000.0', 'NA', 'restart', 'UPDATE'
'OP', 'QTY_DENSITY_ION_OP', 'NA', 'NA', 'restart', 'UPDATE',
'TI', 'QTY_TEMPERATURE_ION', 'NA', 'NA', 'restart', 'UPDATE',
'TE', 'QTY_TEMPERATURE_ELECTRON', 'NA', 'NA', 'restart', 'UPDATE',
'OP_NM', 'QTY_DENSITY_ION_OP', 'NA', 'NA', 'restart', 'UPDATE',
'O1', 'QTY_ATOMIC_OXYGEN_MIXING_RATIO','0.00001', '0.99999', 'secondary', 'NO_COPY_BACK',
'O2', 'QTY_MOLEC_OXYGEN_MIXING_RATIO', '0.00001', '0.99999', 'secondary', 'NO_COPY_BACK',
'TN', 'QTY_TEMPERATURE', '0.0', '6000.0', 'secondary', 'NO_COPY_BACK',
'ZG', 'QTY_GEOMETRIC_HEIGHT', 'NA', 'NA', 'secondary', 'NO_COPY_BACK',
/
Namelist entry |
Type |
Description |
---|---|---|
tiegcm_restart_file_name |
character(len=256) |
The TIEGCM restart template |
tiegcm_secondary_file_name |
character(len=256) |
The TIEGCM secondary template |
model_res |
real(r8) |
TIEGCM model resolution 5.0 or 2.5 degrees |
assimilation_period_seconds |
integer |
This specifies the width of the
assimilation window. The current
model time is used as the center time
of the assimilation window. All
observations in the assimilation
window are assimilated. BEWARE: if
you put observations that occur
before the beginning of the
assimilation_period, DART will error
out because it cannot move the model
‘back in time’ to process these
observations.
|
estimate_f10_7 |
logical |
Switch to specify that the f10.7 index should be estimated by augmenting the DART state vector with a scalar. The location of the f10.7 index is taken to be longitude of local noon and latitude zero. |
f10_7_file_name |
character(len=256) |
If |
debug |
integer |
Set to 0 (zero) for minimal output. Successively larger values generate successively more output. |
variables |
character (MAX_NUM_VARIABLES * 6) |
Six strings to describe the TIEGCM variables to be used in DART. A description of the six strings is given below. |
variables = 'NAME', 'QTY', 'MIN', 'MAX', 'FILE', 'UPDATE'
NAME
The variable name in the TIEGCM netCDF file.
QTY
The DART quantity for the variable.
MIN
The minimum bound (if any) for the variable. Enter ‘NA’ for no minimum.
MAX
The a maximum bound (if any) for the variable.
FILE
The tiegcm netcdf file containing the variable. ‘restart’ or ‘secondary’
UPDATE
filter will update the variable in the TIEGCM netcdf file. Use NO_COPY_BACK
to prevent
filter from updating the variable.
Below is an example showing the namelist options necessary to add f10.7 to the DART state
&filter_nml
input_state_file_list = 'restart_p_files.txt', 'secondary_files.txt', 'f10.7.txt'
output_state_file_list = 'out_restart_p_files.txt', 'out_secondary_files.txt', 'out_f10.7.txt'
&model_nml
estimate_f10_7 = .true.
f10_7_file_name = 'f10_7.nc'
variables = 'NE', 'QTY_ELECTRON_DENSITY', '1000.0', 'NA', 'restart', 'UPDATE'
...
'ZG', 'QTY_GEOMETRIC_HEIGHT', 'NA', 'NA', 'secondary', 'NO_COPY_BACK',
'f10_7' 'QTY_1D_PARAMETER' 'NA', 'NA', 'calculate', 'UPDATE'
References
Matsuo, T., and E. A. Araujo-Pradere (2011), Role of thermosphere-ionosphere coupling in a global ionosphere specification, Radio Science, 46, RS0D23, doi:10.1029/2010RS004576
Lee, I. T., T, Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson, and M. Q. Chen (2012), Assimilation of FORMOSAT-3/COSMIC electron density profiles into thermosphere/Ionosphere coupling model by using ensemble Kalman filter, Journal of Geophysical Research, 117, A10318, doi:10.1029/2012JA017700
Matsuo, T., I. T. Lee, and J. L. Anderson (2013), Thermospheric mass density specification using an ensemble Kalman filter, Journal of Geophysical Research, 118, 1339-1350, doi:10.1002/jgra.50162
Lee, I. T., H. F. Tsai, J. Y. Liu, Matsuo, T., and L. C. Chang (2013), Modeling impact of FORMOSAT-7/COSMIC-2 mission on ionospheric space weather monitoring, Journal of Geophysical Research, 118, 6518-6523, doi:10.1002/jgra.50538
Matsuo, T. (2014), Upper atmosphere data assimilation with an ensemble Kalman filter, in Modeling the Ionosphere-Thermosphere System, Geophys. Monogr. Ser., vol. 201, edited by J. Huba, R. Schunk, and G. Khazanov, pp. 273-282, John Wiley & Sons, Ltd, Chichester, UK, doi:10.1002/9781118704417
Hsu, C.-H., T. Matsuo, W. Wang, and J. Y. Liu (2014), Effects of inferring unobserved thermospheric and ionospheric state variables by using an ensemble Kalman filter on global ionospheric specification and forecasting, Journal of Geophysical Research, 119, 9256-9267, doi:10.1002/2014JA020390
Chartier, A., T. Matsuo, J. L. Anderson, G. Lu, T. Hoar, N. Collins, A. Coster, C. Mitchell, L. Paxton, G. Bust (2015), Ionospheric Data Assimilation and Forecasting During Storms, Journal of Geophysical Research, doi:10.1002/2014JA020799