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DART Tutorial Section 12:
Adaptive Inflation



Variance inflation for observations: An adaptive error tolerant filter

1. For observed variable, have estimate of prior-observed inconsistency.
2. Expected (prior_mean – observation) = 

Assumes that prior and observation are supposed to be unbiased.
Is it model error or random chance?
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Variance inflation for observations: An adaptive error tolerant filter

1. For observed variable, have estimate of prior-observed inconsistency.
2. Expected (prior_mean – observation) = 
3. Inflating increases expected separation

Increases ‘apparent’ consistency between prior and observation.
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Variance inflation for observations: An adaptive error tolerant filter

Distance D from prior mean y to obs is

Prob y0 is observed given l: 
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Assume prior is Gaussian:   p λ,tk |Ytk−1( )= N λp ,σλ,p
2( )
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

We’ve assumed a 
Gaussian for prior.

Recall that 
can be evaluated
From normal PDF.

  p λ,tk |Ytk−1( )

  p yk |λ( )

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Get 
from normal PDF.

Multiply by

to get

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization

  p yk |λ= 0.75( )

  p λ= 0.75,tk |Ytk−1( )

  p λ= 0.75,tk |Ytk( )
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Get 
from normal PDF.

Multiply by

to get

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization

  p yk |λ=1.50( )

  p λ=1.50,tk |Ytk−1( )

  p λ=1.50,tk |Ytk( )
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Get 
from normal PDF.

Multiply by

to get

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization

  p yk |λ= 2.25( )

  p λ= 2.25,tk |Ytk−1( )

  p λ= 2.25,tk |Ytk( )
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Repeat for a range of 
values of l.

Now must get 
posterior in same form 
as prior (Gaussian).

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Very little information 
about l in a single 
observation.

Posterior and prior are 
very similar.

Normalized posterior 
indistinguishable from 
prior.

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

Very little information 
about l in a single 
observation.

Posterior and prior 
are very similar.

Difference shows 
slight shift to larger 
values of l.

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization
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Variance inflation for observations: An adaptive error tolerant filter
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Use Bayesian statistics to get estimate of inflation factor l.

One option is to use 
Gaussian prior for l.

Select max (mode) of 
posterior as mean of 
updated Gaussian.

Do a fit for updated 
standard deviation.

  p λ,tk |Ytk( )= p yk |λ( )p λ,tk |Ytk−1( ) / normalization
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Variance inflation for observations: An adaptive error tolerant filter

A. Computing updated inflation mean,      . 

Mode of                                         can be found analytically!

Solving                                                            leads to 6th order poly in q.

This can be reduced to a cubic equation and solved to give mode. 

New         is set to the mode.

This is relatively cheap compared to computing regressions .

 λu

  p yk |λ( )p λ,tk |Ytk−1( )

  
∂ p yk |λ( )p λ,tk |Ytk−1( )⎡
⎣⎢

⎤
⎦⎥ /∂y= 0

 λu
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Variance inflation for observations: An adaptive error tolerant filter

B. Computing updated inflation variance,          . 

1. Evaluate numerator at mean      and second point, e.g. 

2. Find          so                       goes through             and 

3. Compute as                                    where  

 σλ,u
2

 λu   λu +σλ,p

 σλ,u
2

  N λu ,σλ,u
2( )

  p λu( )   p λu +σλ,p( )

  σλ,u
2 =−σλ,p

2 / 2 ln r   r= p λu +σλ,p( ) / p λu( )
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Observation Space Computations with Adaptive Error Correction
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Observation Space Computations with Adaptive Error Correction
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1. Compute updated inflation distribution,                       .
2. Inflate ensemble using mean of updated l distribution.
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Observation Space Computations with Adaptive Error Correction
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1. Compute updated inflation distribution,                       .
2. Inflate ensemble using mean of updated l distribution.
3. Compute posterior for y using inflated prior.
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Observation Space Computations with Adaptive Error Correction
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1. Compute updated inflation distribution,                       .
2. Inflate ensemble using mean of updated l distribution.
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior ensemble.
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Adaptive Observation Space Inflation in DART

Observation space adaptive inflation is not supported in DART Manhattan release
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Potential problems with observation space adaptive inflation

1. Very heuristic.

2. Error model filter divergence (pretty hard to think about).

3. Equilibration problems, oscillations in l with time.

4. Not clear that single distribution for all observations is right.

5. Amplifying unwanted model resonances (gravity waves)

DART Tutorial Section 12: Slide 25



Adaptive State Space Inflation Algorithm

Suppose we want a global state space inflation, ls, instead.

Make same least squares assumption that is used in ensemble filter.

Inflation of ls for state variables inflates obs. priors by same amount.

Get same likelihood as before:

Compute updated distribution for ls exactly as for observation 
space.

  p yo |λ( )= 2πθ2( )−1 2 exp −D2 2θ2( )

  θ= λsσprior
2 +σobs

2
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Implementation of Adaptive State Space Inflation Algorithm

1. Apply inflation to state variables with mean of ls distribution.

2. Do following for observations at given time sequentially:
a. Compute forward operator to get prior ensemble.
b. Compute updated estimate for ls mean and variance.
c. Compute increments for prior ensemble.
d. Regress increments onto state variables.
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inf_flavor = 3,           0,
inf_initial_from_restart   = .false.,                .false.,
inf_sd_initial_from_restart = .false.,                .false.,
inf_deterministic          = .true.,                .true.,
inf_initial                = 1.00,                    1.0,
inf_sd_initial            = 0.2,                   0.0,
inf_damping               = 1.0,                   1.0,
inf_lower_bound          = 1.0,                   1.0,
inf_upper_bound          = 1000000.0, 1000000.0,
inf_sd_lower_bound        = 0.0,                0.0,

Before 
Assimilation

After 
Assimilation

Flavor: 0=> NONE
2=> varying state space
3=> constant state space

Initial inflation value
Initial standard deviation

Try this in Lorenz 96 (verify other aspects of input.nml).
Use 40 member ensemble. (set ens_size = 40 in &filter_nml).
Set red values as above for adaptive spatially-constant state space inflation.

Lower bound on s.d.

Experimenting with spatially-constant state space inflation
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Experimenting with spatially-constant state space inflation

Run the filter:
Examine performance with plot_total_err in Matlab.

Time series of inflation mean and standard deviation are in 
preassim.nc file:
• This can be viewed with ncview (more on this later).
• Inflation adjusts with time.
• Inflation standard deviation is non-increasing with time.
• This file also has time series of the ensemble.

Final values of inflation for restart are in filter_output.nc file.
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Adaptive Inflation Algorithmic Variants

1. Increase prior state variance by adding random Gaussian noise.
As opposed to ‘deterministic’ linear inflating.
Set inf_deterministic in first column to .false.
Change it back to .true. after checking this out.

2. Just have a fixed value for state space l.
Constant in space and time.
Cheap, handles blow up of state vars unconstrained by obs.
We already tried this in section 9.
Set inflate_sd_initial and inf_sd_lower_bound to 0.
Set inf_initial to desired inflation value.
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Adaptive Inflation Algorithmic Variants

3. Fix value of l standard deviation, .
Reduces cost, computation of      can sometimes be tricky.
Avoids       getting small (error model filter divergence, Yikes!).
Have to have some intuition about the value for .
This appears to be most viable option for large models.
Values of = 0.10 to 0.60 work for very broad range of 

problems.
This is a sampling error closure problem (akin to turbulence).

To fix :
Set inflate_sd_initial to fixed value, for instance 0.20,
Set inflate_sd_lower_bound to same value.

(s.d. can’t get any smaller).

Try this in Lorenz 96. Look at how the inflation varies.

 σλ
 σλ

 σλ
 σλ

 σλ

 σλ
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Adaptive Inflation Algorithmic Variants

4. Inflation damping
Inflation mean damped towards 1.0 every assimilation time.
Set by namelist entry inf_damping.
inf_damping = 0.9: 90% of the inflation difference from 1.0 is 

retained.

Can be useful in models with heterogeneous observations in time.
For instance, a well-observed hurricane crosses a model domain.
Adaptive inflation increases along hurricane trace.
After hurricane, fewer observations, no longer need so much inflation.

For large earth system models, following values may work:
inf_sd_initial = 0.6,
inf_damping = 0.9,
inf_sd_lower_bound = 0.6.
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Simulating Model Error in 40-Variable Lorenz 96 Model

Inflation can deal with all sorts of errors, including model error.

Can simulate model error in Lorenz 96 by changing forcing.
Synthetic observations are from model with forcing = 8.0.

Use forcing in model_nml to introduce model error.
Try forcing values of 7, 6, 5, 3 with and without adaptive inflation.

The F = 3 model is periodic, looks very little like F = 8.
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Simulating Model Error in 40-Variable Lorenz 96 Model

40 state variables: X1, X2,..., XN.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F;
i = 1,..., 40 with cyclic indices.
Use F = 8.0, 4th-order Runge-Kutta with dt=0.05.

Time series of 
state variable from 
free Lorenz 96 
integration 

Anderson: Ensemble Tutorial 26 12/4/07

Simulating Model Error in 40-Variable Lorenz-96 Model

40 state variables: X1, X2,..., XN
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F;
i = 1,..., 40 with cyclic indices
Use F = 8.0, 4th-order Runge-Kutta with dt=0.05
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Experimental design: Lorenz 96 Model Error Simulation 

Truth and observations comes from long run with F=8

200 randomly located (fixed in time) ‘observing locations’ 

Independent 1.0 observation error variance

Observations every hour

σλ is 0.05, mean of λ adjusts but variance is fixed 

4 groups of 20 members each (80 ensemble members total) 

Results from 10 days after 40 day spin-up

Vary assimilating model forcing: F=8, 6, 3, 0

Simulates increasing model error 
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Assimilating F=8 Truth with F=8 Ensemble 

Anderson: Ensemble Tutorial 28 12/4/07

Assimilating F=8 Truth with F=8 Ensemble
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Assimilating F=8 Truth with F=8 Ensemble
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Anderson: Ensemble Tutorial 29 12/4/07

Assimilating F=8 Truth with F=6 Ensemble
Model time series Mean value of λ
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Assimilating F=8 Truth with F=6 Ensemble
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Assimilating F=8 Truth with F=6 Ensemble
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Anderson: Ensemble Tutorial 30 12/4/07

Assimilating F=8 Truth with F=3 Ensemble
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Assimilating F=8 Truth with F=3 Ensemble
Model time series Mean value of λ

Assimilation Results

0 5 101

1.5

model time (pseudo−days)

F=3 
F=6 

F=8 

0 5 10
−5

0

5

10

model time (pseudo−days)

F=8 F=6 F=3 

0 5 10−10

0

10

True State Ensemble Mean Ensemble Members 

Anderson: Ensemble Tutorial 30 12/4/07

Assimilating F=8 Truth with F=3 Ensemble
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Anderson: Ensemble Tutorial 31 12/4/07

Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results
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Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results

Prior RMS Error, Spread, and λ Grow as Model Error Grows
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Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results

Prior RMS Error, Spread, and λ Grow as Model Error Grows
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Anderson: Ensemble Tutorial 31 12/4/07

Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results

Prior RMS Error, Spread, and λ Grow as Model Error Grows
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Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results
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Assimilating F=8 Truth with F=0 Ensemble
Model time series Mean value of λ

Assimilation Results

Prior RMS Error, Spread, and λ Grow as Model Error Grows
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Anderson: Ensemble Tutorial 32 12/4/07

Base case: 200 randomly located observations per time

Assimilating Model Forcing, F Assim. Forcing, F
(Error saturation is approximately 30.0)

Prior RMS Error, Spread, and λ Grow as Model Error Grows
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Base case: 200 randomly located observations per time 

Assimilating Model Forcing, F Assim. Forcing, F

(Error saturation is approximately 30.0)
Prior RMS Error, Spread, and λ Grow as Model Error Grows 

Inflation
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Anderson: Ensemble Tutorial 33 12/4/07

Less well observed case, 40 randomly located observations per time

Assimilating Model Forcing, F Assim. Forcing, F
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Less well observed case, 40 randomly located obs per time 

Assimilating Model Forcing, F Assim. Forcing, F
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Spatially varying adaptive inflation algorithm

Have a distribution for l for each state variable, ls,i.

Use prior correlation from ensemble to determine impact of ls,i on
prior variance for given observation.

If g is correlation between state variable i and observation then

Equation for finding mode of posterior is now full 12th order:
Analytic solution appears unlikely.

Can do Taylor expansion of q around ls,i.
Retaining linear term is normally quite accurate.
There is an analytic solution to find mode of product in this case!

  
θ= 1+γ λs,i −1( )⎡

⎣⎢
⎤
⎦⎥
2
σprior
2 +σobs

2
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inf_flavor = 2,           0,
inf_initial_from_restart   = .false.,                .false.,
inf_sd_initial_from_restart = .false.,                .false.,
inf_deterministic          = .true.,                .true.,
inf_initial                = 1.00,                    1.0,
inf_sd_initial            = 0.2,                   0.0,
inf_damping               = 1.0,                   1.0,
inf_lower_bound          = 1.0,                   1.0,
inf_upper_bound          = 1000000.0, 1000000.0,
inf_sd_lower_bound        = 0.0,                0.0,

Before 
Assimilation

After 
Assimilation

Flavor: 2=> varying state space
3=> constant state 

space
0=> NONE

Initial inflation value
Initial standard deviation

Try this in Lorenz 96 (verify other aspects of input.nml).
Use 40 member ensemble. (set ens_size = 40 in filter_nml).
Set red values as above for adaptive spatially-varying state space inflation.

Lower bound on s.d.

Experimenting with spatially-varying state space inflation
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Experimenting with spatially-varying state space inflation

Can try this with the other algorithmic variants.

Spatially-varying adaptive inflation is the most common choice 
in DART for large earth system models.
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Posterior Inflation

So far, we’ve always used the first column of the inflation namelist.
Inflation is performed after model advances but before assimilation.
Can also do posterior inflation using second column.
This does inflation after assimilation but before model advance.
Helps to increase variance in forecasts.

Can also do both prior and posterior inflation (use both columns).
Diagnostics are in same files with ‘post’ instead of ‘prior’.
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1. Filtering For a One Variable System
2. The DART Directory Tree
3. DART Runtime Control and Documentation
4. How should observations of a state variable impact an unobserved state variable? 

Multivariate assimilation.
5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
6. Other Updates for An Observed Variable
7. Some Additional Low-Order Models 
8. Dealing with Sampling Error
9. More on Dealing with Error; Inflation
10. Regression and Nonlinear Effects
11. Creating DART Executables
12. Adaptive Inflation
13. Hierarchical Group Filters and Localization
14. Quality Control
15. DART Experiments: Control and Design
16. Diagnostic Output
17. Creating Observation Sequences
18. Lost in Phase Space: The Challenge of Not Knowing the Truth
19. DART-Compliant Models and Making Models Compliant
20. Model Parameter Estimation
21. Observation Types and Observing System Design
22. Parallel Algorithm Implementation
23. Location module design (not available)
24. Fixed lag smoother (not available)
25. A simple 1D advection model: Tracer Data Assimilation 

DART Tutorial Index to Sections
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