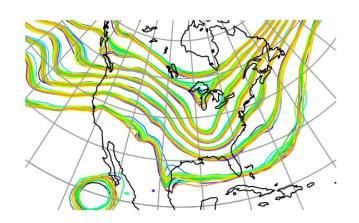


DART Tutorial Section 8: Dealing with Sampling Error



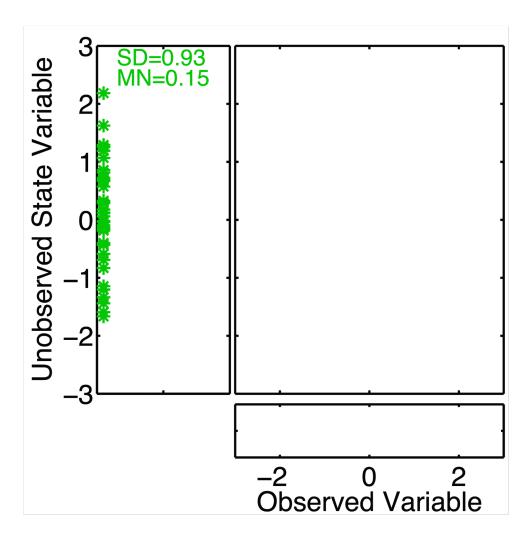
©UCAR 2014

Updating Additional Prior State Variables

Two primary error sources:

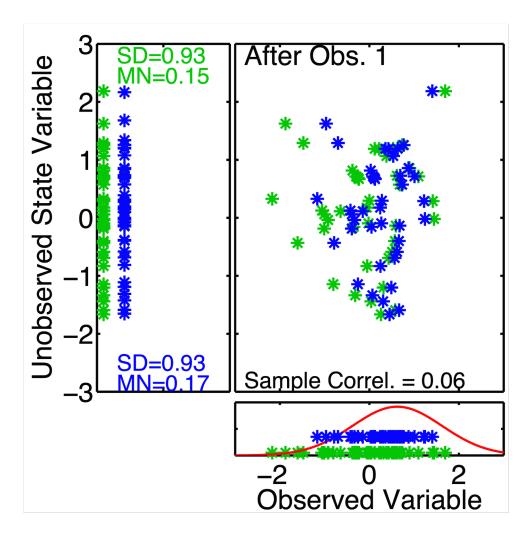
- Sampling error due to noise.
 Can occur even if there is a linear relation between variables.
 Sample regression coefficient imprecise with finite ensembles.
- 2. Linear approximation is invalid. If there is substantial nonlinearity in 'true' relation between variables over range of prior ensemble. (see section 10).

May need to address both issues for good performance.



Suppose unobserved state variable is known to be unrelated to set of observed variables.

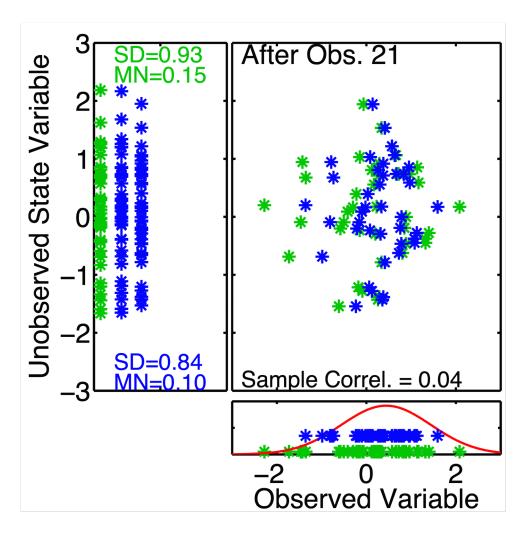
Unobserved variable should remain unchanged.



Suppose unobserved state variable is known to be unrelated to set of observed variables.

Finite samples from joint distribution will have non-zero correlation. Expected |correl| = 0.19 for 20 samples.

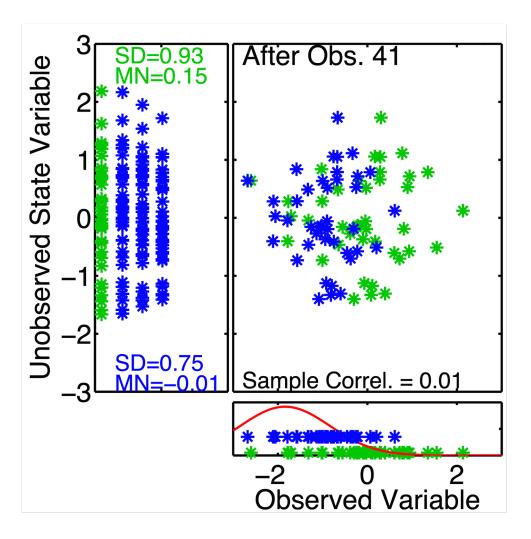
After one observation, unobserved variable mean, standard deviation change.



Suppose unobserved state variable is known to be unrelated to set of observed variables.

Unobserved variable should remain unchanged.

Unobserved mean follows a random walk as more observations are used.

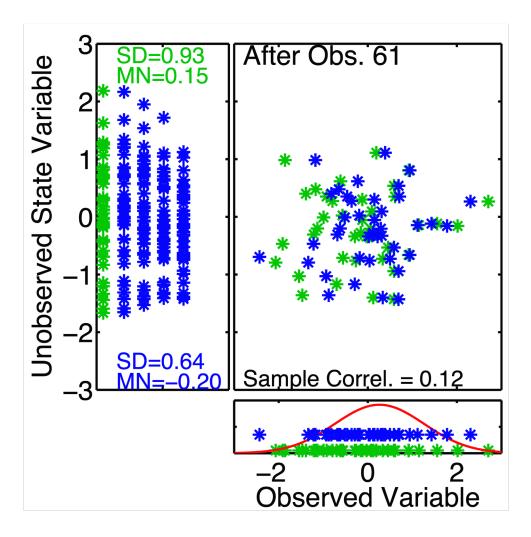


Suppose unobserved state variable is known to be unrelated to set of observed variables.

Unobserved variable should remain unchanged.

Unobserved S.D systematically decreases.

Expected change in |SD| is negative for any non-zero sample correlation.

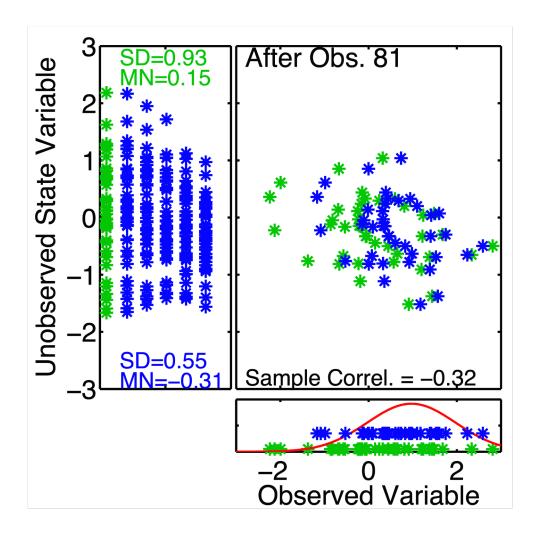


Suppose unobserved state variable is known to be unrelated to set of observed variables.

Unobserved variable should remain unchanged.

Unobserved S.D systematically decreases.

Expected change in |SD| is negative for any non-zero sample correlation.

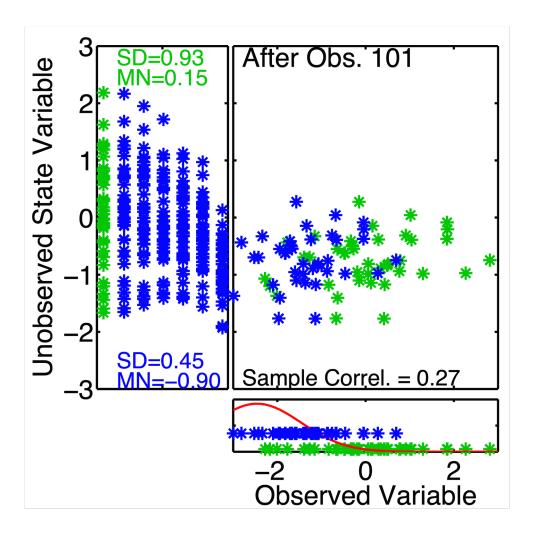


Suppose unobserved state variable is known to be unrelated to set of observed variables.

Unobserved variable should remain unchanged.

Unobserved S.D systematically decreases.

Expected change in |SD| is negative for any non-zero sample correlation.



Suppose unobserved state variable is known to be unrelated to set of observed variables.

Estimates of unobserved become too confident.

Give progressively less weight to meaningful obs.

Eventually, meaningful obs are essentially ignored.

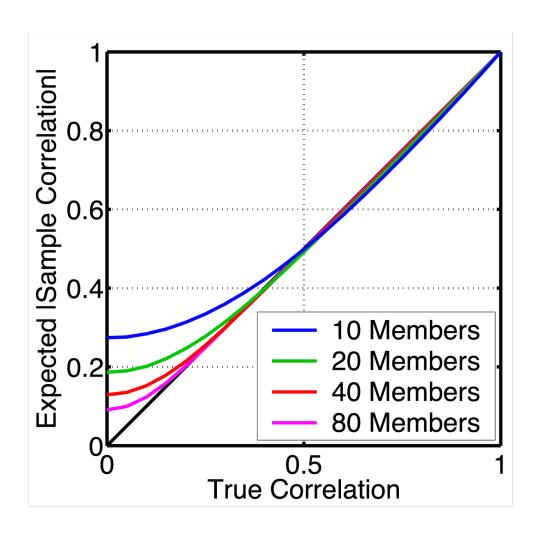
Filter Divergence

Ignoring meaningful observations due to overconfidence is a type of FILTER DIVERGENCE.

This was seen in initial Lorenz 96 (40-variable) experiment.

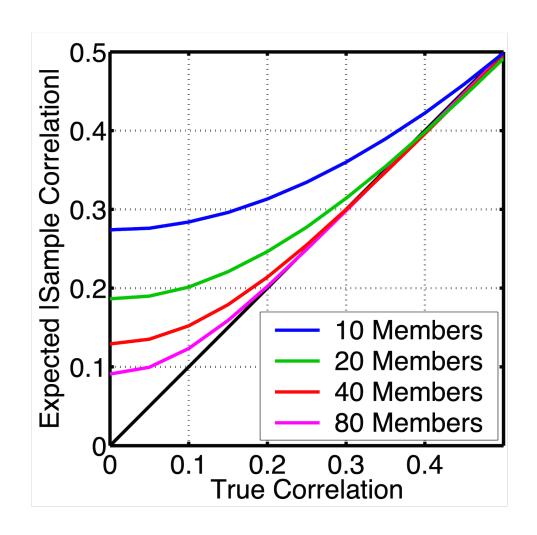
The spread became small => the filter thought it had a good estimate.

The error stayed large because good observations were ignored.



Plot shows expected absolute value of sample correlation versus true correlation.

Error decreases with sample size and for larger | real correlations |.



Plot shows expected absolute value of sample correlation versus true correlation.

For small true correlations, errors are still undesirably large even for 80 member ensembles.

- 1. Ignore it: if number of unrelated observations is small and there is some way of maintaining variance in priors.

 We did this in the 3 and 9 variable models.
- 2. Use larger ensembles to limit sampling error (test in lorenz_96). This can get expensive for big problems.
 Try modifying ens_size in &filter_nml (try 40, 80, 160).

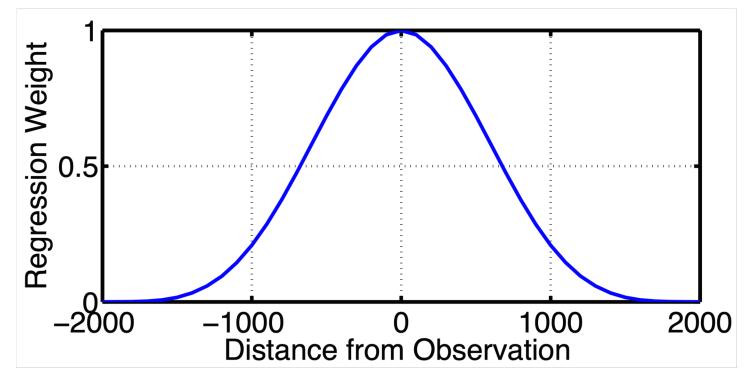
```
Note: For ensemble sizes greater than 80, set &filter_nml: perturb_from_single_instance = .true.
```

This tells DART to generate initial ensemble members using a random number generator, rather than reading them from an input file (which only contains 80 members in this directory).

- 1. Ignore it: if number of unrelated observations is small and there is some way of maintaining variance in priors.

 We did this in the 3 and 9 variable models.
- 2. Use larger ensembles to limit sampling error (test in lorenz_96). This can get expensive for big problems. Try modifying ens_size in &filter_nml (try 40, 80, 160).
- 3. Use additional a priori information about relation between observations and state variables. Don't let an observation impact state if they are known to be unrelated.
- 4. Try to determine the amount of sampling error and correct for it. There are many ways to do this; some simple, some complex.

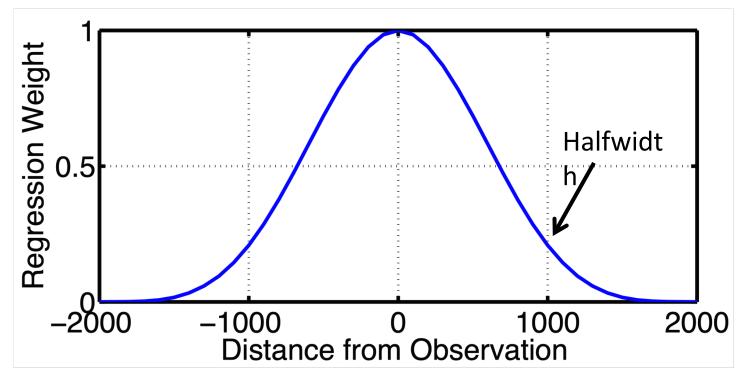
3. Use additional a priori information about relation between observations and state variables.



For atmospheric assimilation problems:

Weight regression as function of horizontal *distance* from observation. Gaspari-Cohn: 5th order compactly supported polynomial.

3. Use additional a priori information about relation between observations and state variables.



Can use other functions to weight regression.

Unclear what distance means for some obs./state variable pairs.

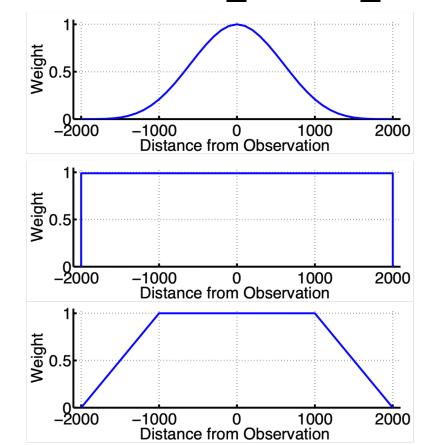
Referred to as LOCALIZATION.

DART provides several localization options

1. Different shapes for the localization function are available. Controlled by *select_localization* in &cov_cutoff_nml.

2=> Boxcar

3=> Ramped Boxcar



2. Halfwidth of localization function set by cutoff in &assim_tools_nml

Experimenting with Lorenz 96

The lorenz_96 domain is mapped to a [0, 1] periodic range.

Try a variety of half widths for a Gaspari Cohn localization by

```
&assim_tools_nml
   filter_kind = 1
   cutoff = 1000000.0

&filter_nml
   ens_size = 20
   perturb_from_single_instance = .false.
This just makes sure you start from the same conditions each time.
```

We already know that a very large localization half-width diverges.

What happens for a very small value?

What happens with intermediate values (say between 0.1 and 0.5)?

Can also try changing the shape, (best with 40 member ensemble): Try option 2 or 3 for *select_localization* in &cov_cutoff_nml.

4. Try to determine the amount of sampling error and correct for it.

Many ways to do this. DART implements one naive way:

- 1. Take set of increments from a given observation,
- 2. Suppose this observation and a state variable are not correlated,
- 3. Compute the expected decrease in spread given not correlated,
- 4. Add this amount of spread back into the state variable.

The expected decrease in spread is computed by off-line Monte Carlo. Results of off-line simulation are tabulated and applied. (This can be a very useful technique when you're analytically clueless).

```
Try this algorithm: set
&assim_tools_nml: spread_restoration = .true.
```

How does it work with 20 ensemble members, no localization?

4. Try to determine the amount of sampling error and correct for it.

Many ways to do this. DART also implements a sampling error correction algorithm that can reduce but not eliminate problems. This algorithm ALMOST ALWAYS IMPROVES large model results.

```
Try this algorithm: set
&assim_tools_nml: sampling_error_correction = .true.
```

How does it work with 20 ensemble members, no localization?

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- 10. Regression and Nonlinear Effects
- 11. Creating DART Executables
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality Control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- 17. Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)
- 25. A simple 1D advection model: Tracer Data Assimilation