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Introduction

This series of tutorial presentations is designed to introduce both basic Ensemble Kalman 
filter theory and the Data Assimilation Research Testbed Community Facility for 
Ensemble Data Assimilation.

There is significant overlap with the DART_LAB tutorial that is also part of the DART 
subversion checkout. If you have already studied DART_LAB, feel free to skip through the 
redundant theory slides. However, doing the exercises in all sections of this tutorial is 
recommended in order to learn the best ways to use the DART system.
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A : Prior Estimate based on all previous information, C.
B : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Rule
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A : Prior Estimate based on all previous information, C.
B : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.
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p(B | x)p(x |C)dx∫

Bayes’ Rule

DART Tutorial Section 1: Slide 4



A : Prior Estimate based on all previous information, C.
B : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.
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Product (Numerator)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Rule
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A : Prior Estimate based on all previous information, C.
B : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.
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Normalization (Denom.)

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Bayes’ Rule
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Normalization (Denom.)

Posterior

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

A : Prior Estimate based on all previous information, C.
B : An additional observation.
p(A|BC) : Posterior (updated estimate) based on C and B.

Bayes’ Rule
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Green == Prior

Red == Observation

Blue == Posterior

The same color scheme is used throughout ALL Tutorial materials.

Color Scheme
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This product is closed for Gaussian distributions.
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p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Product of Two Gaussians
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This product is closed for Gaussian distributions.
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p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

Product of Two Gaussians
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N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

Product of Two Gaussians
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Product of d-dimensional normals with means and and

covariance matrices      and is normal.

Covariance:

Mean: 

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

µ = (∑1
−1+∑2

−1)−1(∑1
−1µ1 +∑2

−1µ2 )

µ1 µ2
∑1 ∑2

Product of Two Gaussians
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Product of d-dimensional normals with means and and

covariance matrices      and is normal.

Covariance:

Mean: 

Weight:

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

µ = (∑1
−1+∑2

−1)−1(∑1
−1µ1 +∑2

−1µ2 )

µ1 µ2
∑1 ∑2

We’ll ignore the weight unless noted since we immediately normalize products to be PDFs.

Product of Two Gaussians

c = 1
(2∏)d /2 ∑1 +∑2

1/2 exp − 1
2

µ2 − µ1( )T (∑1 +∑2 )
−1 µ2 − µ1( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭
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Product of d-dimensional normals with means and and

covariance matrices      and is normal.

Covariance:

Mean: 

Weight:

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

µ = (∑1
−1+∑2

−1)−1(∑1
−1µ1 +∑2

−1µ2 )

µ1 µ2
∑1 ∑2

Easy to derive for 1-D Gaussians; just do products of exponentials.

Product of Two Gaussians

c = 1
(2∏)d /2 ∑1 +∑2

1/2 exp − 1
2

µ2 − µ1( )T (∑1 +∑2 )
−1 µ2 − µ1( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭
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This product is closed for Gaussian distributions.
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There are other families of functions for which it is closed …
But, for general distributions, there’s no analytical product.

Product of Two Gaussians

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫
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p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

This product is closed for Gaussian distributions.

There are other families of functions for which it is closed …
But, for general distributions, there’s no analytical product.
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Product of Two Gaussians

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

This product is closed for Gaussian distributions.

There are other families of functions for which it is closed …
But, for general distributions, there’s no analytical product.

DART Tutorial Section 1: Slide 17



Don’t know much about properties of this sample.
May naively assume it is random draw from ‘truth’.

Ensemble filters: Prior is available as finite sample.
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Product of Two Gaussians

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫
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How can we take product of sample with continuous likelihood?

Fit a continuous (Gaussian for now) distribution to sample.
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Product of Two Gaussians

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫
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Observation likelihood usually continuous (nearly always Gaussian).

If Obs. Likelihood isn’t Gaussian, can generalize methods below. 
For instance, can fit set of Gaussian kernels to obs. likelihood. 
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Product of Two Gaussians

p A | BC( ) = p(B | AC)p(A |C)
p(B |C)

= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫
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Product of prior Gaussian fit and Obs. likelihood is Gaussian. 

Computing continuous posterior is simple. BUT, 
need to have a SAMPLE of this PDF.
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p A | BC( ) = p(B | AC)p(A |C)
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= p(B | AC)p(A |C)
p(B | x)p(x |C)dx∫

DART Tutorial Section 1: Slide 21



There are many ways to do  this.

Exact properties of different methods may be unclear. 
Trial and error still best way to see how they perform. 
Will interact with properties of prediction models, etc. 
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Ensemble Adjustment (Kalman) Filter
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Ensemble Adjustment (Kalman) Filter

Again, fit a Gaussian to sample.
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Ensemble Adjustment (Kalman) Filter

Compute posterior PDF (same as previous algorithms). 
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Ensemble Adjustment (Kalman) Filter

Use deterministic algorithm to ‘adjust’ ensemble.
1. ‘Shift’ ensemble to have exact mean of posterior.
2. Use linear contraction to have exact variance of posterior. 
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Ensemble Adjustment (Kalman) Filter
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Mean Shifted

Use deterministic algorithm to ‘adjust’ ensemble.
1. ‘Shift’ ensemble to have exact mean of posterior.
2. Use linear contraction to have exact variance of posterior. 

Sampling Posterior PDF
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Ensemble Adjustment (Kalman) Filter
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Use deterministic algorithm to ‘adjust’ ensemble.
1. ‘Shift’ ensemble to have exact mean of posterior.
2. Use linear contraction to have exact variance of posterior. 

Sampling Posterior PDF
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p is prior,
u is update (posterior),

is standard deviation,
overbar is ensemble mean.

Ensemble Adjustment (Kalman) Filter
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 xi
u = xi

p − x p( ) i σ u /σ p( ) + x u
σi = 1,..., ensemble size. 

Sampling Posterior PDF
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Ensemble Adjustment (Kalman) Filter
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Bimodality maintained, but not appropriately positioned 
or weighted. No problem with random outliers. 

Sampling Posterior PDF
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Ensemble Adjustment (Kalman) Filter
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There are a variety of other ways to deterministically adjust ensemble. 
Class of algorithms sometimes called deterministic square root filters.

Sampling Posterior PDF

DART Tutorial Section 1: Slide 31



1st look at DART Diagnostics

cd models/lorenz_63/work in your DART sandbox.
./workshop_setup.sh Does stuff you’ll learn to do later.
matlab -nodesktop 

Output from a DART assimilation in 3-variable model.
20 member ensemble.
Observations of each variable once every ‘6 hours’; error variance 8. 
Observation ONLY impacts its own state variable. 
For assimilation, looks like 3 independent single variable problems. 
Model advance between assimilations isn’t independent.

Initial ensemble members are random selection from long model run. 
Initial error should be an upper bound (random guess). 
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1st look at DART Diagnostics

Try the following Matlab commands. Each will ask you to:
Input name of ensemble trajectory file:
<cr> for preassim.nc

Just select the default file by hitting carriage return for all Matlab exercises for now.

time series of distance between prior ensemble mean 
and truth in blue; spread, average prior distance 
between ensemble members and mean, in red.
(Record total values of total error and spread for later.)

time series of truth in blue; ensemble mean prior in red.
Figure 1 is separate panel for each state variable.
Figure 2 is three-dimensional plot. 

also includes prior ensemble members in green for 
Figure 1.

plot_total_err

plot_ens_mean_time_series

plot_ens_time_series
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Simple Example: Lorenz 63
3-variable chaotic model

−20
0

20 −20
0

20
10
20
30
40

Observation in red.

Prior ensemble in green.

Observing all three state variables.

Obs. Error variance = 4.0.

Four 20-member ensembles.
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Simple Example: Lorenz 63
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Simple Example: Lorenz 63
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Simple Example: Lorenz 63
3-variable chaotic model
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Observation in red.

Prior ensemble in green.

Ensemble is passing through an
unpredictable region.
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Simple Example: Lorenz 63
3-variable chaotic model
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Observation in red.

Prior ensemble in green.

Part of the ensemble heads for one
lobe, the rest for the other..
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Simple Example: Lorenz 63
3-variable model
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Prior ensemble in green.
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Using DART Diagnostics

Using DART diagnostics from the simple Lorenz 63 assimilation:

Can you see evidence of enhanced uncertainty? 

Where does this occur? 

Does the ensemble appear to be consistent with the truth?
(Is the truth normally inside the ensemble range?) 
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1. Filtering For a One Variable System
2. The DART Directory Tree
3. DART Runtime Control and Documentation
4. How should observations of a state variable impact an unobserved state variable? 

Multivariate assimilation.
5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
6. Other Updates for An Observed Variable
7. Some Additional Low-Order Models 
8. Dealing with Sampling Error
9. More on Dealing with Error; Inflation
10. Regression and Nonlinear Effects
11. Creating DART Executables
12. Adaptive Inflation
13. Hierarchical Group Filters and Localization
14. Quality Control
15. DART Experiments: Control and Design
16. Diagnostic Output
17. Creating Observation Sequences
18. Lost in Phase Space: The Challenge of Not Knowing the Truth
19. DART-Compliant Models and Making Models Compliant
20. Model Parameter Estimation
21. Observation Types and Observing System Design
22. Parallel Algorithm Implementation
23. Location module design (not available)
24. Fixed lag smoother (not available) 
25. A simple 1D advection model: Tracer Data Assimilation 

DART Tutorial Index to Sections

DART Tutorial Section 1: Slide 42


