

DART Tutorial Section 12: Adaptive Inflation

The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

NCAR | National Center for UCAR | Atmospheric Research

©UCAR

1. For observed variable, have estimate of prior-observed inconsistency.

2. Expected (prior_mean – observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$ Assumes that prior and observation are supposed to be unbiased. Is it model error or random chance?

1. For observed variable, have estimate of prior-observed inconsistency.

- 2. Expected (prior_mean observation) = $\sqrt{\sigma_{prior}^2 + \sigma_{obs}^2}$
- 3. Inflating increases expected separation Increases 'apparent' consistency between prior and observation.

Distance D from prior mean y to obs is $N\left(0, \sqrt{\lambda\sigma_{prior}^2 + \sigma_{obs}^2}\right) = N(0, \theta)$ Prob y₀ is observed given λ : $p(y_o \mid \lambda) = \left(2\pi\theta^2\right)^{-1/2} \exp\left(-D^2/2\theta^2\right)$

Variance inflation for observations: An adaptive error tolerant filter

Use Bayesian statistics to get estimate of inflation factor λ .

Assume prior is Gaussian: $p(\lambda, t_k | Y_{t_{k-1}}) = N(\overline{\lambda}_p, \sigma_{\lambda, p}^2)$

Very little information about λ in a single observation.

Posterior and prior are very similar.

Normalized posterior indistinguishable from prior.

 $p(\lambda, t_k | Y_{t_k}) = p(y_k | \lambda) p(\lambda, t_k | Y_{t_{k-1}}) / normalization$

Very little information about λ in a single observation.

Posterior and prior are very similar.

Difference shows slight shift to larger values of λ .

 $p(\lambda, t_k | Y_{t_k}) = p(y_k | \lambda) p(\lambda, t_k | Y_{t_{k-1}}) / normalization$

One option is to use Gaussian prior for λ .

Select max (mode) of posterior as mean of updated Gaussian.

Do a fit for updated standard deviation.

 $p(\lambda, t_k | Y_{t_k}) = p(y_k | \lambda) p(\lambda, t_k | Y_{t_{k-1}}) / normalization$

A. Computing updated inflation mean, $\overline{\lambda_{u}}$.

Mode of $p(y_k | \lambda) p(\lambda, t_k | Y_{t_{k-1}})$ can be found analytically!

Solving $\partial \left[p(y_k | \lambda) p(\lambda, t_k | Y_{t_{k-1}}) \right] / \partial y = 0$ leads to 6th order poly in θ .

This can be reduced to a cubic equation and solved to give mode.

New $\overline{\lambda}_u$ is set to the mode.

This is relatively cheap compared to computing regressions .

B. Computing updated inflation variance, $\sigma_{\lambda,\mu}^2$.

- 1. Evaluate numerator at mean $\overline{\lambda}_{\!_u}$ and second point, e.g. $\overline{\lambda}_{\!_u} + \sigma_{\!_{\lambda,p}}$
- 2. Find $\sigma_{\lambda,u}^2$ so $N(\overline{\lambda}_u, \sigma_{\lambda,u}^2)$ goes through $p(\overline{\lambda}_u)$ and $p(\overline{\lambda}_u + \sigma_{\lambda,p})$
- 3. Compute as $\sigma_{\lambda,u}^2 = -\sigma_{\lambda,p}^2 / 2 \ln r$ where $r = p(\overline{\lambda}_u + \sigma_{\lambda,p}) / p(\overline{\lambda}_u)$

1. Compute updated inflation distribution, $p(\lambda, t_k | Y_{t_k})$.

- 1. Compute updated inflation distribution, $p(\lambda, t_k | Y_{t_k})$.
- 2. Inflate ensemble using mean of updated λ distribution.

- 1. Compute updated inflation distribution, $p(\lambda, t_k | Y_{t_k})$.
- 2. Inflate ensemble using mean of updated λ distribution.
- 3. Compute posterior for y using inflated prior.

- 1. Compute updated inflation distribution, $p(\lambda, t_k | Y_{t_k})$.
- 2. Inflate ensemble using mean of updated λ distribution.
- 3. Compute posterior for y using inflated prior.
- 4. Compute increments from ORIGINAL prior ensemble.

Adaptive Observation Space Inflation in DART

Observation space adaptive inflation is not supported in DART Manhattan release

- 1. Very heuristic.
- 2. Error model filter divergence (pretty hard to think about).
- 3. Equilibration problems, oscillations in λ with time.
- 4. Not clear that single distribution for all observations is right.
- 5. Amplifying unwanted model resonances (gravity waves)

Suppose we want a global state space inflation, λ_s , instead.

Make same least squares assumption that is used in ensemble filter.

Inflation of λ_s for state variables inflates obs. priors by same amount.

Get same likelihood as before: $p(y_o \mid \lambda) = (2\pi\theta^2)^{-1/2} \exp(-D^2/2\theta^2)$

$$\theta = \sqrt{\lambda_s \sigma_{prior}^2 + \sigma_{obs}^2}$$

Compute updated distribution for λ_{s} exactly as for observation space.

- 1. Apply inflation to state variables with mean of λ_s distribution.
- 2. Do following for observations at given time sequentially:
 - a. Compute forward operator to get prior ensemble.
 - b. Compute updated estimate for λ_{s} mean and variance.
 - c. Compute increments for prior ensemble.
 - d. Regress increments onto state variables.

A	Before Assimilation	After Assimilatio	n	
inf_flavor inf_initial_from_restart inf_sd_initial_from_restar inf_deterministic	= 3, = .false., rt = .false., = .true.,	0, .false., .false., .true., Flavor: 0=> NONE 2=> varying state space 3=> constant state space	0=> NONE 2=> varying state space 3=> constant state space	
inf_initial inf_sd_initial inf_damping inf_lower_bound inf_upper_bound inf_sd_lower_bound	= 1.00, = 0.2, = 1.0, = 1.0, = 1000000.0, = 0.0,	 1.0, Initial inflation value 0.0, Initial standard deviation 1.0, 1.0, 1000000.0, 0.0, Lower bound on s.d. 		

posterior inflation

prior	
inflation	

Try this in Lorenz 96 (verify other aspects of *input.nml*). Use 40 member ensemble. (set *ens_size = 40* in &filter_nml). Set red values as above for adaptive spatially-constant state space inflation.

Run the filter:

Examine performance with *plot_total_err* in Matlab.

Time series of inflation mean and standard deviation are in *preassim.nc* file:

- This can be viewed with *ncview* (more on this later).
- Inflation adjusts with time.
- Inflation standard deviation is non-increasing with time.
- This file also has time series of the ensemble.

Final values of inflation for restart are in *filter_output.nc* file.

Adaptive Inflation Algorithmic Variants

- Increase prior state variance by adding random Gaussian noise. As opposed to 'deterministic' linear inflating. Set *inf_deterministic* in first column to .false. Change it back to .true. after checking this out.
- 2. Just have a fixed value for state space λ .
 - Constant in space and time.
 - Cheap, handles blow up of state vars unconstrained by obs.
 - We already tried this in section 9.
 - Set *inflate_sd_initial* and *inf_sd_lower_bound* to 0.
 - Set *inf_initial* to desired inflation value.

Adaptive Inflation Algorithmic Variants

3. Fix value of λ standard deviation, σ_{λ} .

Reduces cost, computation of σ_{λ} can sometimes be tricky. Avoids σ_{λ} getting small (error model filter divergence, Yikes!). Have to have some intuition about the value for σ_{λ} . This appears to be most viable option for large models.

Values of σ_{λ} = 0.10 to 0.60 work for very broad range of problems.

This is a sampling error closure problem (akin to turbulence).

To fix

Set inflate_sd_initial to fixed value, for instance 0.20, Set inflate_sd_lower_bound to same value. (s.d. can't get any smaller).

Try this in Lorenz 96. Look at how the inflation varies.

4. Inflation damping

Inflation mean damped towards 1.0 every assimilation time. Set by namelist entry *inf_damping*.

inf_damping = 0.9: 90% of the inflation difference from 1.0 is retained.

Can be useful in models with heterogeneous observations in time. For instance, a well-observed hurricane crosses a model domain. Adaptive inflation increases along hurricane trace. After hurricane, fewer observations, no longer need so much inflation.

For large earth system models, following values may work:

inf_sd_initial	= 0.6,
inf_damping	= 0.9,
inf_sd_lower_bound	= 0.6.

Inflation can deal with all sorts of errors, including model error.

Can simulate model error in Lorenz 96 by changing forcing. Synthetic observations are from model with forcing = 8.0.

Use *forcing* in *model_nml* to introduce model error. Try forcing values of 7, 6, 5, 3 with and without adaptive inflation.

The F = 3 model is periodic, looks very little like F = 8.

40 state variables: $X_1, X_2, ..., X_{N.}$ d X_i / dt = ($X_{i+1} - X_{i-2}$) $X_{i-1} - X_i + F$; i = 1,..., 40 with cyclic indices. Use F = 8.0, 4th-order Runge-Kutta with dt=0.05.

Time series of state variable from free Lorenz 96 integration

- Truth and observations comes from long run with F=8
- 200 randomly located (fixed in time) 'observing locations'
- Independent 1.0 observation error variance
- Observations every hour
- σ_{λ} is 0.05, mean of λ adjusts but variance is fixed
- 4 groups of 20 members each (80 ensemble members total)
- Results from 10 days after 40 day spin-up
- Vary assimilating model forcing: F=8, 6, 3, 0
- Simulates increasing model error

Model time series

Mean value of $\boldsymbol{\lambda}$

model time (pseudo-days)

model time (pseudo-days)

Assimilating F=8 Truth with F=6 Ensemble

1

Assimilating F=8 Truth with F=3 Ensemble

Assimilating F=8 Truth with F=0 Ensemble

Assimilating F=8 Truth with F=0 Ensemble

Base case: 200 randomly located observations per time

Prior RMS Error, Spread, and λ Grow as Model Error Grows

Less well observed case, 40 randomly located obs per time

Have a distribution for λ for each state variable, $\lambda_{s,i.}$

Use prior correlation from ensemble to determine impact of $\lambda_{\text{s,i}}$ on prior variance for given observation.

If γ is correlation between state variable i and observation then

$$\theta = \sqrt{\left[1 + \gamma \left(\sqrt{\lambda_{s,i}} - 1\right)\right]^2 \sigma_{prior}^2 + \sigma_{obs}^2}$$

Equation for finding mode of posterior is now full 12th order:

Analytic solution appears unlikely.

Can do Taylor expansion of θ around $\lambda_{s,i}$.

Retaining linear term is normally quite accurate.

There is an analytic solution to find mode of product in this case!

Before		
Assimilation		

inf_flavor	= 2,
inf_initial_from_restart	= .false.,
inf_sd_initial_from_restart	= .false.,
inf_deterministic	= .true.,
inf_initial	= 1.00,
inf_sd_initial	= 0.2,
inf_damping	= 1.0,
inf_lower_bound	= 1.0,
inf_upper_bound	= 100000.0,
inf_sd_lower_bound	= 0.0,

After Assimilation

0,	Flavor:	2=> varying state space			
.false.,		3=> constant state			
.false.,	space				
.true.,		0=> NONE			
1.0, Initial inflation value					
0.0, Initial standard deviation					
1.0,					
1.0,					
100000.0,					
0.0, Lo	wer bound	d on s.d.			

models/lorenz_96/work/

Try this in Lorenz 96 (verify other aspects of *input.nml*). Use 40 member ensemble. (set *ens_size = 40* in *filter_nml*). Set red values as above for adaptive spatially-varying state space inflation. Can try this with the other algorithmic variants.

Spatially-varying adaptive inflation is the most common choice in DART for large earth system models.

Posterior Inflation

So far, we've always used the first column of the inflation namelist. Inflation is performed after model advances but before assimilation. Can also do posterior inflation using second column. This does inflation after assimilation but before model advance. Helps to increase variance in forecasts.

Can also do both prior and posterior inflation (use both columns). Diagnostics are in same files with 'post' instead of 'prior'.

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- 10. Regression and Nonlinear Effects
- **11. Creating DART Executables**
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality Control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- 17. Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)
- 25. A simple 1D advection model: Tracer Data Assimilation