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Abstract 14 

 15 

The uncertainty associated with many observed and modeled quantities of interest in Earth 16 

system prediction can be represented by mixed probability distributions that are neither 17 

discrete nor continuous. For instance, a forecast probability of precipitation can have a finite 18 

probability of zero precipitation, consistent with a discrete distribution. However, nonzero 19 

values are not discrete and are represented by a continuous distribution; the same is true for 20 

rainfall rate. Other examples include snow depth, sea ice concentration, amount of a tracer or 21 

the source rate of a tracer. Some Earth system model parameters may also have discrete or 22 

mixed distributions. Most ensemble data assimilation methods do not explicitly consider the 23 

possibility of mixed distributions. The Quantile Conserving Ensemble Filtering Framework 24 

(Anderson 2022, 2023) is extended to explicitly deal with discrete or mixed distributions. An 25 

example is given using bounded normal rank histogram probability distributions applied to 26 

observing system simulation experiments in a low-order tracer advection model. Analyses of 27 

tracer concentration and tracer source are shown to be improved when using the extended 28 

methods. A key feature of the resulting ensembles is that there can be ensemble members with 29 

duplicate values. An extension of the rank histogram diagnostic method to deal with potential 30 

duplicates shows that the ensemble distributions from the extended assimilation methods are 31 

more consistent with the truth.  32 

 33 

SIGNIFICANCE STATEMENT: Data assimilation is a statistical method that is used to combine 34 

information from computer forecasts with measurements of the Earth system. The result is a 35 

better estimate of what is occurring in the physical system. As an example, data assimilation is 36 

used for making weather predictions. Some Earth system quantities, like precipitation, have 37 

special values that can occur very frequently. For instance, zero rainfall is quite common, while 38 

any other specific amount of rainfall, say 0.42 inches, is unusual. New data assimilation tools 39 

that work well for quantities like this are introduced and should lead to better estimates and 40 

predictions of the Earth system. 41 

 42 
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 44 

1. Introduction 45 

 46 

Ensemble data assimilation methods have been widely applied across Earth system 47 

applications. The input to the assimilation method is an ensemble of forecasts that is assumed 48 

to be a random sample of the uncertainty of a model state vector. Atmospheric data 49 

assimilation for numerical weather prediction remains the most common application 50 

(Houtekamer and Zhang 2016). In this case, the uncertainty distributions for many variables like 51 

temperature, velocity components, and surface pressure are expected to be approximately 52 

normal. Many existing ensemble filter algorithms implicitly assume normality (Burgers et al. 53 

1998, Houtekamer and Mitchell 1998, Pham 2001, Anderson 2001) and are very successful for 54 

weather prediction applications.  55 

 56 

Other types of continuous distributions may be more appropriate for the uncertainty of other 57 

variables (Bocquet et al. 2010). For instance, log-normal (Fletcher and Zupanski 2006), gamma 58 

and inverse gamma distributions might be more appropriate for variables that are bounded like 59 

specific humidity (Bannister et al., 2020). Ensemble filters that can represent gamma and 60 

inverse gamma distributions have been developed (Bishop 2016). Other ensemble methods 61 

have been developed to transform distributions so that they are more normally distributed 62 

(Doron et al. 2013, Kurosawa and Poterjoy 2021), allowing normal ensemble algorithms to work 63 

better (Simon and Bertino 2012). The term Gaussian anamorphosis (Bertino et al. 2003) has 64 

been applied to some of these methods (Beal et al. 2010, Amezcua and Van Leeuwen 2014). 65 

Mixtures of standard continuous distributions like Gaussian kernels (Anderson and Anderson 66 

1999, Grooms 2022) including binormal distributions (Chan et al. 2020) have also been applied. 67 

 68 

The uncertainty for some variables is a mixed probability distribution that includes both 69 

discrete and continuous parts. As an example, the amount of precipitation that falls during a 70 

particular period (Suhaila et al. 2011) might have a discrete probability of being exactly zero in 71 
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addition to a continuous distribution of being non-zero; the precipitation rate would have a 72 

similar mixed distribution. The amount of sea ice, snow cover, chemical tracer, or water in a 73 

stream also have mixed distributions along with their source and sink rates. Quantities like the 74 

fractional coverage of ice or snow are doubly bounded, and could have a discrete probability of 75 

no cover, a discrete probability of complete coverage, and a continuous distribution for all 76 

intermediate values. A beta distribution might be appropriate for some doubly bounded 77 

quantities. 78 

 79 

Anderson (2003) described a two-step algorithm for computing a variety of ensemble Kalman 80 

filter algorithms and this methodology was extended for more general problems in Grooms 81 

(2022). The input to the first step is an ensemble of estimates of an observed quantity and the 82 

likelihood of the observation, while the output is an ensemble of increments due to the 83 

observation. The second step is a bivariate algorithm that independently computes increments 84 

for each individual model state variable given the increments from step one. 85 

 86 

The first part of this quantile conserving ensemble filter framework (QCEFF) paper sequence 87 

(Anderson 2022; A22 hereafter) describes the use of quantile conserving ensemble filters for 88 

the first step of the two-step algorithm. This allows almost any continuous probability 89 

distribution function (PDF) to be used for the computation of observation increments. The 90 

second part of the QCEFF sequence (Anderson 2023; A23 hereafter) addresses the second part 91 

of the two-step algorithm. It uses a specific variant of anamorphosis, the probit probability 92 

integral (PPI) transform (Amezcua and Van Leeuwen 2014), to make the bivariate problem 93 

more normal. Again, arbitrary continuous PDF can be used for the probability integral transform 94 

portion of the algorithm. Both QCEFF papers include a description of a particular type of nearly 95 

non-parametric distribution, the bounded normal rank histogram (BNRH) distribution that can 96 

be useful for data assimilation when the details of an appropriate parametric distribution are 97 

not known a priori. 98 

 99 
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A22 provides an example using a discrete distribution that is closely related to the particle filter 100 

(Van Leeuwen 2009, Van Leeuwen et al. 2019) and A23 mentions the possibility of using a 101 

similar distribution for the PPI transform. However, neither manuscript provides a detailed 102 

description of the implementation of the discrete distribution and neither explores mixed 103 

distributions. This third part of the QCEFF sequence begins by describing a general framework 104 

for using mixed distributions to represent uncertainty in ensemble filters in section 2. When 105 

ensemble methods are applied for mixed distributions, ensemble members with identical 106 

values for a given state variable are expected to occur. Section 3 extends the results of section 107 

2 to describe a BNRH distribution that works with ensembles with duplicate members. Section 3 108 

also describes an extension of the rank histogram diagnostic tool to ensembles with duplicate 109 

members. Section 4 describes an extension of the low-order Lorenz-96 model to include an 110 

advected tracer and a source. This model is configured to generate ensembles with duplicate 111 

members for both the tracer concentration and source ensemble estimates. Observing system 112 

simulation experiments in Section 5 compare the capabilities of several ensemble filter variants 113 

in this model. Section 6 provides discussion and conclusions. 114 

 115 

2. QCEFF for discrete and mixed probability distributions 116 

 117 

The QCEFF developed in A22 for the first part of the two-step ensemble DA algorithm requires 118 

finding an appropriate PDF and corresponding cumulative distribution function (CDF) given an 119 

ensemble. It requires multiplying the PDF times a likelihood function to get an analysis 120 

(posterior) PDF and corresponding CDF. It also requires evaluating CDFs and their inverses; this 121 

is also necessary for the probit probability integral (PPI) transforms used for QCEFF 122 

implementations of the second part of the two-step algorithm in A23. A22 includes a brief 123 

discussion of using a particle filter as the prior generalized PDF and provides an example 124 

without carefully defining the algorithm. This section begins by clarifying the application of the 125 

QCEFF for discrete probability distributions (like the particle filter), then extends that to mixed 126 

probability distributions.  127 

 128 
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Here, a discrete probability distribution consists of a set of 𝐾 real numbers, {𝑥! , 𝑖 = 1,… , 𝐾} 129 

and associated positive real probabilities 𝑝!  with  130 

∑ 𝑝! = 1"
!#$ .         (1) 131 

Suppose a discrete generalized PDF is used as the prior for an observed quantity in data 132 

assimilation and the observation likelihood is 𝐿(𝑥). The normalizing constant for the product of 133 

the prior and the likelihood is  134 

𝑆 = ∑ 𝐿(𝑥!)𝑝!"
!#$ .        (2) 135 

An analysis generalized PDF then has the same {𝑥!} with probabilities  136 

𝑝!% = 𝐿(𝑥!)𝑝!/𝑆.         (3) 137 

 138 

To use the QCEFF, it is necessary to evaluate the CDF, and its inverse, corresponding to a 139 

discrete generalized PDF. Defining the CDF as the integral from −∞ to 𝑥 of the generalized PDF 140 

leads to discrete jumps at each 𝑥!  so that the CDF is not a function. For the QCEFF, a 141 

generalized CDF, 𝐹4, that is a function is defined by making the value at 𝑥!  the midpoint of the 142 

jump,  143 

𝐹4(𝑥) =

⎩
⎪
⎨

⎪
⎧ 0																																																													𝑖𝑓𝑥 < 𝑥$
∑ 𝑝& 						𝑖𝑓	𝑥! < 𝑥 < 𝑥!'$,				𝑖 ∈ {1, … , 𝐾 − 1}!
&#$
1																																																											𝑖𝑓	𝑥 > 𝑥"
∑ 𝑝&!($
&#$ + )!

*
																																												𝑖𝑓	𝑥 = 𝑥!

    (4) 144 

A generalized inverse CDF is defined as 145 

𝐹4($(𝑦) = A
𝑥$																																																												𝑖𝑓	𝑦 ≤ 𝑝$

𝑥! 					𝑖𝑓 ∑ 𝑝& < 𝑦 ≤ ∑ 𝑝&!
&#$

!($
&#$ ,					𝑖 ∈ {2, … , 𝐾}   (5) 146 

Note that 𝑥 = 𝐹4($ D𝐹4(𝑥)E but 𝐹4 D𝐹4($(𝑦)E is not necessarily equal to 𝑦. With these definitions, 147 

it is possible to define a QCEFF that uses any discrete prior, like a particle filter, in observation 148 

space for the first part of the two-step filter and for the PPI in the regression step. 149 

 150 

As noted in the introduction, mixed distributions are relevant to many geophysical problems. 151 

The discrete part of a prior mixed distribution is represented as above except that  ∑𝑝! = 𝛼; 152 

the continuous part of the PDF is (1 − 𝛼)𝑓+(𝑥), with 0 < 𝛼 < 1. The normalizing constant for 153 

the product with a likelihood is  154 
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𝑆 = 𝛼∑ 𝐿(𝑥!)"
!#$ 𝑝! + (1 − 𝛼)∫ 𝐿(𝑥)𝑓+(𝑥)𝑑𝑥

,
(,     (6) 155 

The analysis generalized PDF has discrete part as in (3) and the continuous part 156 

(1 − 𝛼)𝑓+(𝑥)𝐿(𝑥)/𝑆.        (7) 157 

A generalized CDF corresponding to a mixed PDF is 158 

𝐹4- = (1 − 𝛼)∫ 𝑓+(𝑥)𝑑𝑥 +
.
(, 	𝛼𝐹4(𝑥)      (8) 159 

where 𝐹4  is defined in (4). The inverse is clearly defined except at the jumps from the discrete 160 

part of the mixed distribution. Define the bounds of the jumps as  161 

𝐽!( = J
(1 − 𝛼)∫ 𝑓+(𝑥)𝑑𝑥								𝑖𝑓	𝑖	 = 	1."

(,

(1 − 𝛼) ∫ 𝑓+(𝑥)𝑑𝑥	 +	∑ 𝛼!($
&#$ 𝑝& ,				𝑖 ∈ {2, … , 𝐾}

.!
(,

   (9) 162 

and  163 

𝐽!' =	 𝐽!( + 𝛼𝑝! ,				𝑖 ∈ {1, … , 𝐾}      (10)   164 

The inverse can be defined between the jump values as 165 

𝐹4-($(𝑦) = 𝑥! 					𝑓𝑜𝑟	𝐽!( ≤ 𝑦 ≤ 𝐽!'      (11) 166 

 167 

3. Tools for data assimilation with duplicate ensemble members 168 

 169 

a. Bounded normal rank histogram distribution 170 

 171 

The QCEFF described in A22 and A23 requires a CDF to compute observation increments and to 172 

do the regression of those increments onto model state variables. The bounded normal rank 173 

histogram (BNRH) distribution is an extension of the rank histogram filter distribution for 174 

observation space increments (Anderson 2010). A BNRH distribution is particularly useful when 175 

the appropriate distribution family is unknown.  176 

 177 

A23 describes the PDF, 𝑓(𝑥), associated with a BNRH when there are no duplicate ensemble 178 

members. An N-member ensemble partitions the real line into N+1 intervals. The interior 179 

intervals are bounded on both sides; the intervals on the tails can be bounded on one side only 180 

if the quantity itself is not bounded, or bounded on both sides if the quantity is bounded. The 181 

BNRH PDF assigns 1/(N+1) probability to each interval. The probability is uniformly distributed 182 
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over the range of an interior interval. For intervals on the tails, the probability density is part of 183 

a normal distribution. The DA algorithms in A22 and A23 require the CDF which is defined in the 184 

standard fashion as 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥.
(, . An example of a BNRH CDF is shown in Figure 1a 185 

(reproduced from A23) for a 5-member ensemble. 186 

 187 

The definition of the BNRH CDF is extended here for the case when there are ensemble 188 

members with duplicate values or when one or more ensemble members have the same value 189 

as the upper or lower bound of 𝑥. Suppose that possible values of 𝑥 are bounded below by 190 

𝐵/ ≥ −∞ and above by 𝐵0 ≤ ∞. Given an N-member ensemble of 𝑥 with members not 191 

necessarily unique, there is at least one ordering of the ensemble values so that 𝑥! ≤ 𝑥!'$ for 192 

𝑖 ∈ {1, … , 𝑁 − 1}. Given such an ordering, define the CDF as: 193 

𝐹(𝑥) =194 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

0																																																																						𝑖𝑓𝑥 < 𝐵/
𝐶(𝐵/) [2(𝑁 + 1)]																																					𝑖𝑓	𝑥 = 𝐵/⁄

𝐴/Φ(𝜇/ , 𝜎*; 𝑥) − 𝐴/Φ(𝜇/ , 𝜎*; 𝐵/)																	𝑖𝑓	𝐵/ < 𝑥 < 𝑥$
[𝑖 + (𝑥 − 𝑥!) (𝑥!'$ − 𝑥!)⁄ ] (𝑁 + 1)⁄ 			𝑖𝑓	𝑥! < 𝑥 < 𝑥!'$,			𝑖 ∈ {1, … , 𝑁 − 1}

𝑖 (𝑁 + 1) +⁄ [𝐶(𝑥) − 1] [2(𝑁 + 1)]	𝑓𝑜𝑟	𝑚𝑖𝑛	𝑖	𝑤𝑖𝑡ℎ	𝑥 = 𝑥! , 𝐵/ < 𝑥 < 𝐵0, 𝑖 ∈ {1, … , 𝑁}⁄
𝐴0Φ(𝜇0, 𝜎*; 𝑥) − 𝐴0Φ(𝜇0, 𝜎*; 𝐵0) + 1																		𝑖𝑓	𝑥1 < 𝑥 < 𝐵0

1 − 𝐶(𝐵0) [2(𝑁 + 1)]⁄ 																												𝑖𝑓	𝑥 = 𝐵0
1																																																																					𝑖𝑓	𝑥 > 𝐵0

    195 

(12) 196 

𝐶(𝑥) is a function with unbounded real domain and range the whole numbers less than or 197 

equal to 𝑁, defined as the number of ensemble members with value 𝑥. Φ(𝜇, 𝜎*; 𝑥) is the CDF 198 

of a normal with mean 𝜇 and variance 𝜎* evaluated at 𝑥, and 𝜎* is the sample variance of the 199 

ensemble. The means and amplitudes of the normal portions are defined as in A23 so that 200 

1/(𝑁 + 1) probability lies between the outermost ensemble member and the bounds. The 201 

means are selected so that 202 

Φ(𝜇/ , 𝜎*; 𝑥$) =
$

1'$
        (13) 203 

Φ(𝜇0, 𝜎*; 𝑥1) =
1

1'$
         (14) 204 

and the amplitudes are 205 
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𝐴/ =	
$

(1'$)[5(6#,8$;.")(5(6#,8$;:#)]
      (15) 206 

𝐴0 =	
$

(1'$)[5(6%,8$;:%)(5(6%,8$;.&)]
      (16) 207 

 208 

When there are no duplicate ensemble values, 𝐶(𝑥!) = 1	∀𝑥!, and no ensemble values equal to 209 

the bounds, 𝐶(𝐵/) = 𝐶(𝐵0) = 0, the BNRH CDF is equal to the integral from −∞ to 𝑥 of the 210 

BNRH PDF defined in appendix C of A23 and 𝐹 is invertible. However, where 𝐶(𝑥) > 1,  or if 211 

𝐶(𝐵/) > 0 or 𝐶(𝐵0) > 0, there is a discrete probability, the derivative 𝑑𝐹(𝑥) 𝑑𝑥⁄  is undefined, 212 

and 𝐹 is not invertible. It is necessary to define a generalized inverse following the procedure 213 

for mixed probability distributions in section 2 (A22 notes the need for a generalized inverse for 214 

some other distribution families in which the PDF is 0 over a bounded range of 𝑥). 215 

 216 

 217 
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 218 
 219 

Figure 1: Cumulative distribution functions (green) for a BNRH distribution for a 5-member 220 
ensemble (green asterisks) for a variable that is bounded below at zero (a) and for an 8-221 
member ensemble with duplicate values and a member with a value at the bound of zero (b). 222 
The number of duplicates is given by the integer next to asterisk. The vertical magenta lines 223 
indicate the inverse cumulative distribution function (the quantile function) used for the BNRH. 224 
Panel a is reproduced from figure C1a in A23. 225 
 226 

An example CDF for an 8-member ensemble with 𝐵/ = 𝑥$ < 𝑥* < 𝑥< = 𝑥= < 𝑥> < 𝑥? = 𝑥@ =227 

𝑥A and 𝐵0 = ∞ is shown in green in Figure 1b. The interval on the upper tail is a portion of a 228 

normal CDF. 1/(N+1) probability is uniformly distributed in each interior interval. In non-zero 229 

range interior intervals, the CDF is piecewise linear. In the case of the duplicate ensemble 230 

members, the range of the interval between them can be thought of as zero and the 231 

distribution is discrete. At the point 𝑥< where there are two ensemble members, there is 232 

1/(N+1) probability while at the point 𝑥? with three ensemble members, there is 2/(N+1) 233 

probability. Generalizing, at any point with D duplicate ensemble members, there is (D-1)/(N+1) 234 

discrete probability. Consistent with section 2 and eq. 12, the BNRH CDF at a point with 235 

duplicate ensemble members is set to the ‘midpoint’ of the discontinuous jump in the integral 236 

of the PDF. For instance, at 𝑥< the CDF is defined as  237 

𝐹(𝑥<) = _ <
(1'$)

+ =
1'$

` /2.        (17) 238 
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With this extended definition of the CDF, the quantile computed for ensemble members that 239 

share a value is the same. The inverse of the CDF is also needed for the QCEFF algorithms, and it 240 

is not uniquely defined with duplicate ensemble members. The method in section 2 leads to 241 

defining the inverse as the magenta lines in Fig. 1b. 242 

 243 

b. Rank histograms 244 

 245 

Consider a sample of 𝑁 + 1 numbers composed of an 𝑁-member ensemble estimate of a scalar 246 

quantity and an additional value, called the verification here. If there are no duplicate values in 247 

the sample, the rank of the verification is uniquely defined with an integer value in 248 

{1, 2, … , 𝑁 + 1}. Define a rank weight vector, 𝑊B,			𝑛 = 1,…𝑁 + 1 as 249 

𝑊B = b1					𝑖𝑓	𝑟𝑎𝑛𝑘(𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛) = 𝑛
0																																					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (18) 250 

Define the sum of the rank weight vector for a collection of 𝑀 ensembles with verifications as  251 

𝑆B = ∑ 𝑊B-C
-#$         (19) 252 

A histogram of the vector 𝑆, commonly called the rank histogram (Anderson 1996, Hamill 2001) 253 

is a diagnostic tool for evaluating the consistency of ensemble predictions. If the verification for 254 

each ensemble is drawn from the same distribution as the ensemble, the histogram is expected 255 

to be statistically uniform. Histograms that are not uniform can provide information about the 256 

differences between ensembles and verification. For instance, a U-shaped histogram can 257 

indicate under dispersive ensembles (Wilks 2019). 258 

 259 

For state variables in many common Earth system DA applications, the probability that the 260 

verification duplicates one or more ensemble members is very small, and most discussions of 261 

rank histograms have ignored the possibility. However, this is no longer the case for some types 262 

of bounded state variables which have mixed probability distributions like the examples 263 

discussed in Section 1. If the verification duplicates one or more ensemble members, its rank is 264 

no longer uniquely defined by (18). Suppose that 𝐷 ensemble members have the same value as 265 

the verification. When these are removed from the ensemble, the rank of the verification in the 266 

𝑁 + 1 − 𝐷 remaining numbers is uniquely defined, even if there are other duplicate values in 267 
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the remaining ensemble; let that rank be 𝑅. The actual rank in the full ensemble could range 268 

from 𝑅 to 𝑅 + 𝐷 since the order of the verification and its duplicates is not uniquely defined. 269 

Essentially, there is a 1/(𝐷 + 1) probability that the rank of the verification is any of these 270 

values. In this case, define the weight vector as 271 

𝑊B = b1/(𝐷 + 1)					𝑖𝑓	𝑅 ≤ 𝑛 ≤ 𝑅 + 𝐷
0																																			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (20) 272 

A sum of rank weight vector can be defined for a collection of ensembles as before with (19), 273 

and the histogram should be uniform if the verifications are drawn from the same distribution 274 

as the ensemble members. Another possible way to define rank histograms for duplicate values 275 

is to randomly select one of the ranks between R and R+D and give it the weight of one, 276 

however this generates unnecessary random noise compared to the solution in (20). 277 

 278 

This treatment of duplicates for rank histograms is essential for application to state variables or 279 

true observations in an OSSE like the one in section 4. When rank histograms are used for 280 

verifications that are real observed quantities, it is important to account for observational error 281 

when generating an appropriate ensemble (Anderson 1996). One way to do this is to add a 282 

random sample from an observational error distribution to each ensemble member generated 283 

by applying a forward operator to the model state. In many cases, adding in this observation 284 

error component would eliminate duplicate values like those that result from bounded state 285 

variables in state space. However, if the error distribution is also mixed, duplicates are still 286 

expected. Note that a deterministic method similar to (20) can also be developed to account for 287 

observational error in the rank histogram. 288 

 289 

4. A tracer advection extension of the Lorenz-96 Model: L96-T 290 

 291 

a. Model description 292 

 293 

A low-order model with sensitive dependence on initial conditions, low computational cost, and 294 

bounded state variables is useful for testing DA algorithms. The traditional Lorenz-96 model 295 

(Lorenz and Emanuel 1998) has been used in many ensemble DA studies including (A22). Here, 296 
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the Lorenz-96 model is extended to include two additional types of M variables that are 297 

collocated with the standard variables, 𝑥-, 𝑚 = 0, . . . , 𝑀 − 1, on the standard periodic domain. 298 

The first type, 𝑞-, represents concentrations of a dimensionless tracer. The second type, 𝑠-, 299 

represents a source rate of the tracer with units of tracer amount per time. A function of the 300 

standard 𝑥 variables is treated as a wind field that passively advects the tracer. The velocity at 301 

the model grid points at the current time is defined as 𝑣- = 𝑉o + 𝑉4𝑥- where 𝑉o  is a specified 302 

constant mean velocity, 𝑉4   is a specified multiplying constant that controls the average 303 

magnitude of wind perturbations, and 𝑉4𝑥- is an anomalous velocity at gridpoint m. Velocities 304 

are expressed with units of nondimensional distance per nondimensional time. A 305 

nondimensional location is assigned to each grid point in the model so that the distance 306 

between neighboring grid points is 1 (note that this is different from many previous Lorenz-96 307 

studies where the distance between grid points is defined as 1/M). 308 

 309 

The time evolution of the standard variables, 𝑥-, is identical to that used in the basic Lorenz-96 310 

model (Lorenz and Emanuel 1996). The time evolution of the nonnegative tracer concentration 311 

used here is: 312 

𝑞-' = 𝑚𝑎𝑥[(𝑞-%DE + 𝑠-∆𝑡)𝑒(F∆H − 𝐶∆𝑡, 0]     (21) 313 

where 𝑞-'  is the tracer concentration at grid point 𝑚 at the next time step, 𝑞-%DE is the advected 314 

concentration, 𝑠- is the source rate at grid point 𝑚 at the current time, 𝐸 is an exponential 315 

damping time, 𝐶 is a constant sink rate, and ∆𝑡 is the timestep.  316 

 317 

The advection of tracer is computed using an upstream semi-Lagrangian method. The 318 

computation of 𝑞-%DE, the advected concentration at the next time at grid point 𝑚 given the 319 

wind field at the current time, 𝑣-, and the concentrations at the current time, 𝑞-, proceeds as 320 

follows:  321 

1. A preliminary upstream target location is defined as 𝑇 = 𝑚 − 𝑣-∆𝑡, 322 

2. The fractional location of the target between the bounding grid points is 𝑝 = 𝑇 − ⌊𝑇⌋ 323 

where the brackets indicate the floor, 324 
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3. The indices of the grid points bounding the target location are computed as 𝐿 =325 

𝑚𝑜𝑑(⌊𝑇⌋,𝑀) and 𝑈 = 𝑚𝑜𝑑(𝐿 + 1,𝑀), 326 

4. The advected concentration is 𝑞-%DE = (1 − 𝑝)𝑞I + 𝑝𝑞J 327 

 328 

The specified source is a function of grid point and model time with units of amount per time. 329 

For experiments here, there is a time constant source with rate 5 at grid point 1 and all other 330 

grid points have zero source at all times 331 

𝑠- = b 5					𝑖𝑓	𝑚 = 1
0					𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 332 

 333 

b. L96-T example 334 

 335 

All results here use the standard 4th order Runge-Kutta time stepping algorithm, the 336 

nondimensional ∆𝑡 = 0.05 with an associated dimensional time step of 3600s as done in many 337 

previous studies, and 𝑀 = 40 grid points. The L96 forcing parameter 𝐹 = 8. The mean velocity 338 

𝑉o = 0 and the velocity perturbation multiplier 𝑉4 = 5, while the constant sink 𝐶 = 0.1, and the 339 

exponential sink 𝐸 = 0.25. 340 

 341 

Figure 2 shows a time series of the wind field, 𝑣-, as a function of the model grid point; since 342 

𝑉o = 0, this is just 𝑉4 = 5 times the standard L96 state variables, 𝑥-. The well-known group and 343 

phase velocity of the L96 model can be seen. 344 
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 345 
Figure 2: Wind velocity from the L96 Tracer Advection model for times between day 150 and 346 
200 in the truth run as a function of model grid point. Units are distance hr -1. 347 
 348 

Figure 3 shows the tracer concentration corresponding to the wind field. Plumes of tracer are 349 

advected away from the source at grid point 1. The velocity is positive more often than 350 

negative, so plumes extend more frequently and further to the right. However, the wind field is 351 

sometimes negative leading to shorter plumes extending to the left. The white areas in the plot 352 

have zero tracer concentration, so a mixed distribution is appropriate. It is rare for plumes to 353 

extend clear across the domain with this only happening twice in the figure. This behavior is 354 

roughly analogous to what one might see with a point source in the midlatitudes. It is possible 355 

to get a variety of other behaviors for the tracer by changing the model parameter values.  356 

 357 
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 358 
Fig. 3: As in figure 2 but for the tracer concentration (nondimensional). The red dashed lines 359 
highlight grid points with additional diagnostics presented in figures 4, 5 and 6. White areas 360 
have zero concentration. 361 
 362 

5. Data assimilation experiments 363 

 364 

The model integration described in the previous section is used as the truth run for a series of 365 

observing simulation system experiments (OSSEs). The L96-T model is first integrated for 16500 366 

hrs (5500 3-hour advances) starting from a default initial state to generate a tuning initial state. 367 

The default initial state has 𝑥$ = 1 and all other 𝑥 state variables are 0; all concentration 368 

variables are 0. The model is integrated for an additional 16500 hrs from the tuning initial state 369 

generating synthetic observations every 3 hrs. Forty randomly located observing sites are 370 

selected for the L96 standard state, and a different set of 40 randomly located sites for tracer 371 

concentration observations (see Figs 7d and 8d). Observations are taken by linearly 372 
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interpolating to the site location from the two nearest grid points. For the standard state 373 

observations error is simulated by adding a random draw from a normal distribution with mean 374 

0 and variance 10. For tracer observations error is simulated by adding a random draw from a 375 

truncated normal distribution with variance 0.1 and lower bound of 0 (A23, appendix D).  376 

 377 

Three different observing networks are explored: assimilating only standard state observations, 378 

assimilating only tracer concentration observations, and assimilating both standard and tracer 379 

observations. Two different model configurations are evaluated. In the first, every ensemble 380 

member has the true value of the tracer source variables. In the second, the tracer source 381 

variables are unknown, and every ensemble member has its own (not necessarily unique) time 382 

evolving estimate. 383 

 384 

 All assimilation experiments use the adaptive inflation algorithm of Gharamti (2018) with an 385 

inflation damping of 0.9.  All experiments also use a Gaspari Cohn localization with the same 386 

constant halfwidth for all observations. Seven halfwidth tuning assimilation experiments are 387 

done for each case, where a case is defined by the observing network, whether the source is 388 

known or unknown, and the ensemble size (20, 40, 80 or 160). As in A23, the halfwidths tested 389 

are {0.075, 0.1, 0.125, 0.175, 0.2, 0.4,∞}. These tuning assimilations start from the tuning initial 390 

condition and assimilate for 5500 3-hour intervals. Initial ensembles for the standard state 391 

variable are generated by adding a random draw from a normal distribution with mean 0 and 392 

standard deviation 0.01 to the truth value for each variable. Initial ensemble members for the 393 

tracer variables are all equal to the truth. For the case with known sources, all ensemble 394 

members for the source variables are equal to the truth. For the case with unknown sources, 395 

ensemble members for the source are set to a random draw from a normal distribution with 396 

mean 2.5 and standard deviation 2.5; if the draw is less than 0 the source is set to 0 so that the 397 

resulting ensembles are generally mixed distributions with several members that are 0. Results 398 

from the first 500 assimilation steps are discarded and the prior ensemble mean, time mean 399 

RMSE is computed for the standard state and tracer variables for the remaining 5000 steps. For 400 
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the state only observing network, the localization that minimizes the state RMSE is selected; for 401 

the other observing networks, the localization that minimizes the tracer RMSE is selected. 402 

 403 

The model truth is then integrated for an additional 16500 hours from the end of the tuning 404 

integration with synthetic observations generated in the same way. Initial conditions for 405 

ensembles are also generated in the same way as for the tuning experiments. Assimilation 406 

experiments are performed for each case using the tuned localization and assimilating every 3 407 

hours. The first 500 steps are discarded, and results are available for the final 5000 assimilation 408 

steps. The spread for all quantities appears to be spun up after fewer than 100 assimilation 409 

steps for all experiments. 410 

 411 

Four different assimilation algorithms are applied to each case using the QCEFF. As noted in 412 

A23, a complete description of a QCEFF assimilation algorithm requires information about the 413 

first step where increments are computed for observed variables and the second step where 414 

those increments are regressed onto state variables. The QCEFF uses a probit probability 415 

integral transform (PPI) before doing the regression (A23). Table 1 specifies the details of the 416 

four algorithms which are referred to as an EAKF, RHF, PQBNRH, and DUAL. Note that the 417 

normal likelihood used for the q variable in the EAKF is a normal with the same variance as the 418 

truncated normal observation error distribution for 𝑞. As noted in A23, using a normal for the 419 

PPI transform is equivalent to no transform. The BNRH CDFs all have a lower bound of 0 and no 420 

upper bound, consistent with the nature of the tracer concentration and source variables. 421 

 422 

 EAKF RHF PQBNRH DUAL 

x obs. CDF Normal RH RH Normal 

x likelihood Normal Normal Normal Normal 

x PPI CDF None None RH None 

q obs. CDF Normal BNRH BNRH BNRH 

q likelihood Normal Truncated Normal Truncated Normal Truncated Normal 

q PPI CDF None None BNRH BNRH 
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s PPI CDF None None BNRH BNRH 

 423 

Table 1: Assimilation settings for each of the four algorithms explored. For the 𝑥 and 𝑞 424 

variables, the continuous CDF and form of the likelihood used for computing observation space 425 

increments are listed with RH referring to a rank histogram distribution without bounds and 426 

BNRH referring to a bounded normal rank histogram distribution with a lower bound at zero. 427 

The continuous distribution used as part of the PPI transform used when regressing observation 428 

increments onto state variable increments is also listed. 429 

 430 

a. Known source results 431 

 432 

Unless otherwise noted, all results shown are for analysis, rather than forecast, variables. Also, 433 

results shown are for the network observing both standard state and tracer observations unless 434 

otherwise noted. Figure 4 shows a time series from the EAKF and PQBNRH algorithm 80-435 

member assimilations for tracer at grid point 14, which is highlighted by a red dashed line in Fig. 436 

3. The EAKF ensemble in Fig. 4a represents all the plumes that occur, but also represents two 437 

plumes between days 150 and 160 that are not real. The ensemble is strongly biased towards 438 

larger values at some times, in particular around days 168, 173, and 178. The PQBNRH results in 439 

Fig. 4b also capture all real plumes with smaller values for the two false plumes, but do not 440 

have the strongly biased periods.   441 

 442 

 443 
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Fig. 4: Time series of the tracer at grid point 14. Dark curve is the truth and is the same in both 444 
panels. The dark green curves are the 80 analysis ensemble members, and their mean is in 445 
yellow, for an EAKF (left) and a PQBNRH (right); the tracer is nondimensional. 446 
 447 
Figure 5 shows rank histograms over all 5000 assimilation steps for concentration at grid point 448 

14. The EAKF and RHF algorithms result in very strongly biased histograms with the truth very 449 

often less than the smallest ensemble member. The results for the PQBNRH and DUAL are 450 

radically different. Both have histograms that are nearly uniform except for the two outermost 451 

bins. The PQBNRH has more cases where the truth is larger than the largest ensemble member 452 

while the DUAL algorithm has more cases where the truth is smaller than the smallest member; 453 

however, it is difficult to evaluate whether these differences are statistically significant. 454 

 455 

 456 
 457 

 458 
 459 
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Fig. 5: Rank histograms for 80-member analysis concentration at grid point 14 for an EAKF (a), 460 
RHF (b), PQBNRH (c) and a DUAL filter with an EAKF for the wind and a BNRH for the 461 
concentration (d). Note the different vertical axes in the top and bottom rows.  462 
 463 

Fig. 6 shows time series of the EAKF and PQBNRH assimilation results for grid point 36 which is 464 

also highlighted in Fig. 3. At this grid point, plumes are less frequent, primarily arriving from the 465 

right. There are extended periods when the true concentration is 0. The EAKF represents all 466 

true plumes, however, there are several instances where the ensemble is strongly biased 467 

towards larger concentration than the truth, and several times when negative ensemble 468 

members occur; this cannot happen with the PQBNRH. The EAKF never has any ensemble 469 

members that are exactly zero and never has duplicate ensemble members. The PQBNRH also 470 

captures all real plumes and has fewer instances of false plumes. The PQBNRH has several 471 

periods when many ensemble members are exactly 0 and some periods where all members are 472 

zero, all at times when the truth is also zero. Results for the RHF are similar to those for the 473 

EAKF, and results for DUAL are similar to those for the PQBNRH in figures 4 and 6 so these are 474 

not displayed.  475 

 476 

 477 
Fig. 6: As in figure 4 but for grid point 36. 478 

 479 

Fig. 7 shows summary results for ensemble mean tracer RMSE over all 5000 assimilation steps 480 

for the four algorithms and four ensemble sizes studied. In general, the results for the PQBNRH 481 

and DUAL algorithms are statistically indistinguishable. The same is true for the EAKF and RHF 482 
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algorithms. However, in general the PQBNRH/DUAL algorithms have lower RMSE. The RMSE is 483 

largest to the left of the source at grid point 0 where the true concentration is most variable, 484 

and smaller far from the source where concentration is smaller. There are not large differences 485 

as a function of ensemble size; larger ensembles generally have only slightly smaller RMSE. It is 486 

unclear why ensemble size is not more important here.  487 

 488 

 489 

Fig. 7: Ensemble mean, time mean RMSE as a function of grid point for the analysis tracer 490 
concentration for four filter algorithms for ensemble size 20 (a), 40 (b), 80 (c) and 160 (d). The 491 
locations of the 40 observing stations are shown in (d) for state (yellow circles) and tracer 492 
concentration (blue asterisks).  493 
 494 

It is obvious that assimilating standard state observations that improve the estimate of the 495 

winds will result in improved estimates of the tracer concentrations. However, the impact of 496 

tracer observations on the standard state variables is less clear. Assimilations for the network 497 

observing only tracer produced tracer analysis estimates that have much larger RMSE than 498 
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those just discussed, although smaller than the RMSE from an unconstrained control ensemble 499 

run. The tracer only network resulted in standard variable RMSE that was only slightly smaller 500 

than the RMSE from an unconstrained control.  501 

 502 

A comparison of the standard variable RMSE from the observing network with only standard 503 

state observations to the network with both standard and tracer observations is shown in Fig. 8 504 

for the four algorithms. The RMSE for the standard observation only network has larger RMSE 505 

near grid point 30 and smaller RMSE near grid points 25 and 1. This is due to the random 506 

observing site locations (Fig. 8d). The RMSE is smaller for the PQBNRH than for any of the other 507 

algorithms; note that the EAKF and DUAL are identical for the standard observation network.  508 

 509 

When tracer observations are added in, all four algorithms produce reduced RMSE for the left 510 

part of the domain. The EAKF and RHF produce increased RMSE in the right part of the domain. 511 

The PQBNRH and DUAL produce roughly equivalent RMSE in the right part of the domain. In the 512 

left part of the domain, plumes with large spatial and temporal gradients occur near the source. 513 

These provide information about the flow field that is advecting the plume and lead to the 514 

reduced RMSE for the standard state. Because there is often very little or no tracer in the right 515 

part of the domain, observations of the tracer are expected to provide very little additional 516 

information. The increase in error in the EAKF and RHF suggests that deficiencies in these 517 

algorithms cause the use of these low information observations to degrade the ensemble 518 

estimate. 519 

 520 
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 521 

 522 

Fig 8: Ensemble mean, time mean RMSE as a function of grid point for the standard L96 state 523 
for experiments that assimilate only observations of the standard state, and experiments that 524 
also assimilate the tracer concentration, shown for an EAKF (a), RHF (b), PQBNRH (c), and a 525 
DUAL filter with an EAKF for the wind and a BNRH for the concentration (d). The locations of 526 
the 40 observing stations are shown in (d) for state (yellow asterisks) and tracer concentration 527 
(blue circles). 528 
 529 

b. Unknown source results 530 

 531 

In these experiments, the source is not known and is estimated by the assimilation algorithms. 532 

Results are only discussed for the network observing both standard state and tracer 533 

observations. There is no time tendency model for the tracer. The prior ensembles can have 534 

their spread increased by the adaptive inflation. Nevertheless, in all experiments, the spread 535 

becomes increasingly small for the source at all grid points. The source variables are only 536 

impacted by concentration observations since the source and the state field should not be 537 

meaningfully correlated. 538 

 539 

Figure 9 shows the natural logarithm of the absolute value of the error for each ensemble 540 

member and the ensemble mean error at the grid point with the nonzero source in the truth 541 

for the EAKF and the PQBNRH. Both reduce the ensemble mean error, but the reduction is 542 

much larger for the PQBNRH. Because of the collapse of spread, both algorithms eventually 543 

have strongly biased estimates and would produce corresponding rank histograms.  544 
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 545 
 546 

Fig. 9: Spatial mean of the natural logarithm of the absolute value of the error of the ensemble 547 
mean (yellow) and each of the 80 ensemble members (green) as a function of time for the 548 
source at grid point 1 which has a true value of 5 (units hr -1) for the EAKF (left) and the 549 
PQBNRH (right). 550 
 551 
Figure 10 shows the evolution of the RMSE for grid point 21 which has zero true source. The 552 

RMSE for the EAKF is smaller than it was for grid point 1. The error for the PQBNRH decreases 553 

throughout the 5000 assimilation steps. As the assimilation continues, more and more 554 

ensemble members have values of exactly zero; eventually all ensemble members are zero and 555 

the error of the ensemble mean, and all individual ensembles is zero. At both grid points 1 and 556 

21, the RMSE for the standard state and concentration variables for the PQBNRH are nearly 557 

identical to those for the known source experiments since the since the source is so accurately 558 

estimated. Results are somewhat degraded for the EAKF which has larger errors in its source 559 

estimates. 560 

 561 
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 562 
Fig. 10: As in 9 for grid point 21 which has zero true source. 563 

 564 

Figure 11 shows the RMSE for the source as a function of grid point for each of the four 565 

algorithms and all four ensemble sizes. The EAKF and RHF produce roughly comparable results 566 

that have a small dependence on ensemble size. The errors do not have a strong dependence 567 

on the grid point. The PQBNRH and DUAL are also very similar but have more dependence on 568 

both ensemble size and grid point. The smallest errors occur for grid points close to the non-569 

zero source at grid point 1. The RMSE actually increases with ensemble size in these areas. This 570 

is due to the rate at which ensemble members become exactly zero which appears to be similar 571 

across ensembles so that the fraction of nonzero members at a given time increases with 572 

ensemble size. Larger errors are found for the source point itself and for points far from the 573 

source. The estimate at point 1 varies little with ensemble size. The RMSE for points remote 574 

from the source gets smaller and less noisy with increasing ensemble size.  575 

 576 
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 577 

 578 
Fig. 11: Ensemble mean time mean RMSE as function of grid point for tracer source for four 579 
algorithms for ensemble size 20 (a), 40 (b), 80 (c) and 160 (d). Values that are not plotted for 580 
the PQBNRH and DUAL algorithms are less than 10-20 including many that are exactly zero. 581 
 582 
 583 
6. Discussion and conclusions 584 
 585 

The QCEFF has been extended to deal with model and observed variables with mixed 586 

probability distributions. This capability is especially relevant for bounded quantities like 587 

precipitation (Lien et al. 2013), tracer concentrations and sources, and areal coverage (Wieringa 588 

et al., 2023 in press; Riedel and Anderson 2023 in press). It may also be useful for estimating 589 

model parameters with data assimilation (Gharamti et al. 2016); the tracer source in the L96-T 590 

version used here is essentially equivalent to a model parameter.  591 

 592 
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The nearly non-parametric BNRH distribution has also been extended to handle duplicate 593 

ensemble members that are expected to occur for variables with mixed distributions. The rank 594 

histogram diagnostic tool was also extended to deal with duplicate ensemble members. An 595 

extension of the Lorenz-96 low-order dynamical system that includes an idealized advective 596 

tracer with local sources was developed to test the new algorithms. This L96-T model should 597 

also provide challenging tests for other data assimilation algorithms including variational 598 

methods and particle filters. 599 

 600 

Results show that the BNRH works better than the EAKF or RHF for an OSSE with the L96-T 601 

model. The RMSE is smaller for the bounded tracer concentration and source variables when 602 

they are close to the bounds as might be expected. Results are also better when these variables 603 

are not close to the bounds and for the unbounded standard state variables from L96. The RH 604 

and PQBNRH algorithms use the BNRH distribution to compute observation increments. 605 

However, the RH uses standard linear regression when updating state variables while the 606 

PQBNRH includes the PPI transform using the BNRH distribution for the probability integral 607 

transform. The RH results are similar to the EAKF results in this case, while the PQBNRH is 608 

better for all variables and locations demonstrating that the PPI is a crucial part of the improved 609 

performance. The DUAL case uses an EAKF for the L96 state which has no bounds and is 610 

expected to be approximately normal. There is some indication that the PQBNRH is slightly 611 

better than the DUAL algorithm, but differences are not quantitatively significant. This suggests 612 

a strategy of using the BNRH distribution for bounded variables but a normal distribution for 613 

other variables may be useful for large model applications. 614 

 615 

The BNRH as described allows duplicate ensemble members and the data assimilation process 616 

can create additional duplicates; this happened for both concentration and source variable 617 

ensembles in the OSSEs here. However, the assimilation process cannot eliminate duplicates. It 618 

can change the value of ensemble members that are exactly at a bound in the prior ensemble. 619 

This means that the model must eliminate duplicates if appropriate. That happens in 620 

experiments here and is most clearly seen in figure 6b where all ensemble members are zero at 621 
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some times but not at subsequent times. Further investigation into methods that would allow 622 

the assimilation to eliminate duplicates is warranted but would require making a priori 623 

assumptions about the expected errors associated with a given ensemble size. 624 

 625 

All the OSSEs here were performed using the Data Assimilation Research Testbed (DART: 626 

Anderson et al. 2009) which implements the QCEFF including the BNRH; the parallel algorithm 627 

of Anderson and Collins (2007) was used. The results here only examined the use of normal or 628 

BNRH distributions. DART software can support arbitrary distributions and currently supports 629 

gamma, inverse gamma, log-normal, beta, and particle filter distributions. Previous work on 630 

assimilation of bounded quantities has proposed using distributions like the log-normal, 631 

gamma, and inverse gamma. However, the L96-T OSSE explored here presents specific 632 

challenges for using these other distributions. The log-normal and inverse gamma distributions 633 

do not have any probability at zero. This is clearly inappropriate for the mixed distributions in 634 

the OSSE where much of the probability can be at 0 at some times. The gamma distribution can 635 

have probability at zero. However, if the likelihood is a gamma distribution, the corresponding 636 

observation error distribution is inverse gamma (Bishop 2016, A22). This means that 637 

observations of the bounded quantities would not be able to have any probability at zero. This 638 

is clearly problematic for the bounded quantities with realistic instruments. Further work on 639 

explicitly using mixed distributions, for instance a combination of a log-normal with a discrete 640 

distribution, for applications like this is beyond the scope of this report. 641 

 642 

The computational cost of the QCEFF algorithms including the BNRH is discussed in detail in 643 

A23. There is almost no additional cost associated with allowing duplicate ensemble members 644 

so the A23 analysis still applies. As noted there, the additional cost of a BNRH compared to an 645 

EAKF can be significant, especially for low-order model applications. As discussed in Anderson 646 

(2019) and A23, much of this cost is associated with the need to sort the ensemble members 647 

for each state variable. However, the sorting order often changes little between assimilation 648 

steps. Caching the sort order and then using sorts that are efficient for nearly sorted data can 649 
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potentially result in large computational cost reductions, but these methods have not yet been 650 

implemented in DART. 651 

 652 

The low-order model results here suggest that there may be significant improvements when 653 

the BNRH is used for bounded quantities in large Earth system applications. Initial tests in sea 654 

ice (Wieringa et al. 2023 in press) and chemical transport models will be investigated in 655 

subsequent work. Other types of nearly non-parametric distributions, for instance various 656 

kernels (Grooms 2022, Anderson and Anderson 1999) can also be developed in DART and 657 

should be compared to the BNRH results.  658 
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