DART
Release 9.16.0

Data Assimilation Research Section

May 16, 2022

Ensemble Data Assimilation
Organization of the documentation
Manhattan Release

Quick-start

4.1 Quick-start fordevelopers

Citing DART

References

6.1 Systemrequirements e e e
6.2 Fortran90 compiler L L oo
6.3 LocatingnetCDF library
6.4 Downloading DART
6.5 Compiling DART
6.6 Verifyinginstallation,
6.7 Introduction to ensemble data assimilation

6.8 The Lorenz 63 model and its relevance to data assimilation

6.9 Data assimilation in DART using the Lorenz 63 model
6.10 WhatisDART?.
6.11 The benefits of using DART
6.12 Abrief historyof DART
6.13 High-level data assimilation workflows in DART
6.14 DART’s design philosophy
6.15 Important capabilities of DART
6.16 Working with collaborators on porting new models
6.17 Assimilation in acomplexmodel
6.18 Message Passing Interface,
6.19 Filters.
6.20 Inflation.
6.21 Required model_mod routines
6.22 Suggestions for a “simple” model
6.23 Suggestions for a “complex” model
6.24 How to test your model_mod routines
6.25 Controlling which files are output by filter

6.26 Advice for models with multiple vertical coordinate options

6.27 Data managementin DART
6.28 Programs included with DART
6.29 Adding your observationsto DART

GETTING STARTED

................... 62

................... 70

6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37
6.38
6.39
6.40
6.41
6.42
6.43
6.44
6.45
6.46
6.47
6.48
6.49
6.50
6.51
6.52
6.53
6.54
6.55
6.56
6.57
6.58
6.59
6.60
6.61
6.62
6.63
6.64
6.65
6.66
6.67
6.68
6.69
6.70
6.71
6.72
6.73
6.74
6.75
6.76
6.77
6.78
6.79
6.80
6.81
6.82
6.83

How DART supports different types of observations: the preprocess program 79
How DART stores observations: observation sequence (obs_seq) files 81
Detailed structure of an obs_seq file e 83
Creating an obs_seq file of synthetic observations, 87
Creating an obs_seq file from real observations 90
Available observation converter programso e e e e e e e 94
Manipulating obs_seq files with the obs_sequence_tool 95
The difference between observation TYPE and QUANTITY 96
Adding support for a new observation TYPE L 0. 96
Introduction to DART’s support for RTTOV o . 96
DART Observations o o i it et e e e e e e e e e e e e e 98
CONVEITer PrOZIAMS . .« + v ¢ v v v v v v e e e et e e e e e e e e e e e e e e e 103
AIRS and AMSU e e 105
Program convert_airs_L2 e e e e e 107
Program convert_amsu_L1. e 110
AvisO+/CMEMS Observations o v it e e e e e 115
PROGRAM leveld_to_obs e e e e 117
CHAMP . . 121
PROGRAM cice_to_obs e e 121
CONAGUA . . . e 122
PROGRAM COSMOS_to_0bS i e e e e e e s e 122
PROGRAM COSMOS_development v it it it e e e e e e e e e e e e 128
PROGRAM dwl_to_obs e 133
GMI Brightness Temperatures o v v v v v it e e e e e e e e e e e e 134
NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances 136
GPSPW . . 137
GSI2ZDART e 137
GTSPP Observations o o it ittt e e e e e e e e e 140
MADIS Data Ingest System e e e e e e e e e e e 142
PROGRAM MIDAS_to_0bS e e e e e e e e e e e 144
DART observations and MODIS products. o 146
PROGRAM MOD15A2_t0_0DbS i it e e e e e e s e 146
PROGRAM MOD15A2_t0_0bS i it e e e e e e e e e e e 152
MPD . . e e 152
PROGRAMS LPRM_L3_to_obs.f90 AMSR_E_L2_to_obs.f90 152
PROGRAM prepbufr e e e e e e e e e 156
PROGRAM create_real_obs e e e 162
PROGRAM SMAP_L2_t0_0bS i e e e e e e e s e e 166
ROMS observations to DART observation sequences v v v v v v v v v v v e v v v 169
PROGRAM SIF_to_obs_netcdf 174
SSECDataCenter o ittt ittt e e e e e e e 177
PROGRAM sst_to_obs, oi_sst_to_obs 178
SSUSI F16 EDR-DSK format to observation sequence CONverters 182
WOD ODbservations« o v v v vt et e e e e e e e e e e e e e e e 184
GND GPS VTEC e e e e e e 188
GPS Observations o o e e e e e e 188
Oklahoma Mesonet MDF Data e e 199
VIIRS/AQUA Satellite Ocean Color i it ittt e e e e 200
QuikSCAT SeaWinds Data e e e e e 202
Even Sphere e e e e e e 205
ObSEIror o e e e 210
Radar observations e e e e e e e 211
PROGRAM snow_to_obs e e 212
PROGRAM text_to_0obS e e e 213

6.84 Total Precipitable Water Observations v i v v i i e e e e e e e e e 215

6.85 PROGRAM tc_to_0bs e e e e e e e e e 218
6.86 Tropical Cyclone ATCF File to DART Converter it 218
6.87 PROGRAM littler_tf dart i e e 220
6.88 PROGRAM rad_3dvar_to_dart it 224
6.89 3DVAR/4DVAR Observation CONVEIters v v v v v v v v e et e e e e e e e e e e e e 225
6.90 Checking your initial assimilation L e e e e 226
6.91 Computing filter increments L e e e e e e e e e e e e 226
6.92 Computing filter increments using a complex model 227
6.93 DART missingdatavalue 229
6.94 DART quality control field e 230
6.95 Examining the obs_seq.finalfile e 231
6.96 MATLAB® observation space diagnostics o o v i v v vt e e e e 231
6.97 DART Tutorial e e e e e e e e e 246
6.98 Conditional probability and Bayes’ theorem L0, 247
6.99 DART_LAB Tutorial e 251
6.100 CLMS-DART Tutorial e e e e e e e e e e e e e 252
6.101 WRF/DART Tutorial Materials for the Manhattan Release. 278
6.102 Supported Models L e e e e e 290
6.103 O-variable L L e e e e e e 294
6.104 AM2 . . L L e 295
6.105 bgrid_solo L L e e 296
6.106 Atmospheric Models in CESM e e e e 299
6.107 The CAM-FV DART Interface i e e e e e e e e 302
6.108 Community Earth System Model 312
6.100 CICE e e 316
6.110 CLM e 318
6.111 PROGRAM clm_to_dart @ i v it e e e e e e e e e e e 332
6.112 PROGRAM dart_to_clm e e e e e e e e e e e 337
6.113 CMI e e e e e 341
6.114 COAMPS Nest o o o e e e e e e e 348
6.115 COAMPS 348
6.116 ECHAM e e e e e e e e e e 356
6.117 FESOM e e e e e 356
6.118 GITM e e e e e e e e e e e e e 359
6.119 PROGRAM netcdf_to_gitm_blocks 364
6.120 gitm_blocks_to_netcdf™ L L oL e 367
6.121 Tkeda o L e 370
6.122 LMDZ . . . e e e e e e e e e e 377
6.123 Lorenz 05 o e e e e e e e e e e e 377
6.124 Lorenz 63 L . L e e e e e e e e e e e e e e 379
6.125 Lorenz 84 L e e e e e e e e 381
6.126 Lorenz 96 L e e e e e e e e e e e e e e 382
6.127 Lorenz 96 2-scale e e e e e e e e e e e e e e e 384
6.128 Lorenz 96 Tracer Advection o 0 i i i i i e e e e e e e 385
6.129 Forced Lorenz 96 L e e e e e e e 388
6.130 MITEEmM_0CRAN o v vt it e e e e e e e e e e e e e e e e e e 390
6.131 MPAS_ATM o e 392
6.132 PROGRAM mpas_dart_obS_preproCessS v v v v v v v it et e e e e e e e 402
6.133 MPAS OCN e e e e e e 405
6.134 PROGRAM model_to_dart for MPASOCN 422
6.135 NCOMMAS e e e 425
6.136 NOAH, NOAH-MP e 439
6.137 null_model e e e 444

6.138 PBL_ID 446

6.130 Pe2lyr e e e e e 446
6.140 POP e e 453
6.141 MODULE dart_pop_mod (POP) e 460
6.142 ROMS e e e e e e 467
6.143 ROSE e e e e e e 472
6.144 Simple advection L e e e e e e e e e e 473
6.145 SQG 475
6.146 TIEGCM o e e e e e e e e e 482
6.147 WRF-Hydro e e 495
6.148 WRF e e e e e e e e 499
6.149 PROGRAM replace_wrf_fields i e 504
6.150 PROGRAM wrf_dart_obs_preprocess o v v v i v v i it e et e e e e e e 506
6.151 MODULE model_mod e e e e e 509
6.152 MODULE model_mod e e e e e e e 521
6.153 Contributors’ guide L L e 530
6.154 Requesting features and reportingbugs Lo e 531
6.155 Mailing list e e e e e e e e e 531
6.156 DART Manhattan Differences from Lanai Release Notes 531
6.157 Forward Operatorst it i e e e e e e e 542
6.158 Approaches for Common Situations L 542
6.159 Parallelism Implementation Details 543
6.160 Other Parallelism Options i i e e e e e e e e e e e e e e e e 544
6.161 Netedf Inflation Files 0 o o e e 544
6.162 State STUCLUTE o e e e e e e e e e e e e e e e 545
6.163 Filterasyncmodes e e 547
6.164 Distributed State e e e e e e e e e e e e e e 547
6.165 MODULE location_mod (channel) 549
6.166 MODULE location_mod o e e e e 563
6.167 MODULE (1D) location_mod i e e e e e e e e e e 564
6.168 MODULE location_mod (threed_cartesian) i v it i 576
6.169 MODULE location_mod (threed_sphere) 590
6.170 program obs_seq_verify e 610
6.171 PROGRAM wakeup_filter e e e 618
6.172 PROGRAM compare_statesS v v v v v i it e et e e e e e e e e e e e 619
6.173 PROGRAM gen_sampling_err_table, 621
6.174 PROGRAM perturb_single_instance i, 623
6.175 system simulation programso Lo e e e e e e e e e e 624
6.176 PROGRAM COMPULE_EITOT . . . v v v v v o v e 625
6.177 PROGRAM PIEPIOCESS .+ v v v v v v v e 627
6.178 PROGRAM obs_impact_tool e 630
6.179 program create_fixed_network_seq L Lo L. 633
6.180 program obs_10o0p L e e e e 634
6.181 program perfect_model_obs L 636
6.182 program obs_selection i e e e e e 639
6.183 program obs_sequence_tool L e e e 642
6.184 PROGRAM integrate_model e 653
6.185 PROGRAM obs_diag (for ID observations) 654
6.186 PROGRAM obs_diag (for observations that use the threed_cartesian location module) 662
6.187 PROGRAM obs_diag (for observations that use the threed_sphere location module) 678
6.188 PROGRAM fill_inflation_restart i i v i i i i it e e 695
6.189 program obs_seq_coveraget e e e 698
6.190 PROGRAM advance_time e e 709
6.191 program model_mod_check L 710

6.192 PROGRAM closest_member_tool @ i e 717

6.193 PROGRAM filter e e e e e e e s e e 720
6.194 program obs_keep_a_few L. e e e e 725
6.195 program create_obs_sequence L. e e 726
6.196 PROGRAM obs_seq_to_netcdf e 727
6.197 program obs_common_subSet e e e e e e e e 740
6.198 MODULE ensemble_manager_ mod v i i v it et e e e e 743
6.199 MODULE random_seq_mod o o 0 i i it e e e e e e e e e e 766
6.200 MODULE mpi_utilities_mod e 772
6.201 MODULE time_manager_modttt e e e e e e 783
6.202 MODULE utilities_mod o e e e e e e e e e e 795
6.203 MODULE types_mod e e e e 808
6.204 MODULE schedule_mod e e e 812
6.205 MODULE obs_kind_mod e 815
6.206 MODULE DEFAULT obs_kind_mod, 823
6.207 MODULE obs_sequence_mod ittt e 824
6.208 MODULE smoother_mod o e e e 844
6.209 MODULE assim_model_mod e e e e 853
6.210 MODULE assim_tools_mod e e 867
6.211 MODULE cov_cutoff_ mod e e e 876
6.212 MODULE obs_model_mod e e 878
6.213 MODULE reg_factor. e e 881
6.214 MODULE adaptive_inflate_mod e e 884
6.215 MODULE quality_control_mod e e e 891
6.216 MODULE filter_mod e e e e e e e e 896
6.217 MODULE location_mod e e e e e 906
6.218 forward operator test README 907
6.219 PROGRAM PrecisionCheck @ . . . i e 909
6.220 MODULE obs_def_gps_mod @ i ittt e e e 913
6.221 MODULE obs_def_dew_point_mod e 918
6.222 MODULE obs_def_ocean_mod i e e e 919
6.223 MODULE obs_def_1d_state_mod 923
6.224 MODULE obs_def_radar_mod i 931
6.225 MODULE DEFAULT _obs_def mod it 944
6.226 MODULE obs_def_mod e 945
6.227 MODULE obs_def_rttov_mod ittt 958
6.228 Manhattan e e e e e e e e e e e e e e e e e 966
6.229 Multi-Component CESM+DART Setup oo et 974
6.230 PROGRAM create_ocean_obs i i i it ittt e e 978
6.231 PROGRAM dart_tO_NCOMMAS+ v v v v et e 980
6.232 PROGRAM ncommas_to_dart 0 i e e 983
6.233 mkmf e 985
6.234 Copyright e 991
6.235 Changelog e e e 991
6.236 404 EITOr e e e e e e e 1009

vi

DART, Release 9.16.0

The Data Assimilation Research Testbed (DART) is an open-source, freely available community facility for ensemble
data assimilation (DA).! DART is developed and maintained by the Data Assimilation Research Section (DAReS) at
the National Center for Atmospheric Research (NCAR).

1]

I Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn and A. Arellano, 2009 The Data Assimilation Research Testbed: A Community
Facility. Bulletin of the American Meteorological Society, 90, 1283-1296, doi:10.1175/2009BAMS2618.1

GETTING STARTED 1

https://dart.ucar.edu/about/
https://ncar.ucar.edu
http://dx.doi.org/10.1175/2009BAMS2618.1

DART, Release 9.16.0

2 GETTING STARTED

CHAPTER
ONE

ENSEMBLE DATA ASSIMILATION

Ensemble DA is a technique for combining observations with numerical models to estimate the state of a physical
system.

It enables modelers, observational scientists, and geophysicists to:
* Generate initial conditions for forecasts.
 Create a retrospective estimate of the state of a system, a practice known as producing a reanalysis.

* Assess the relative value of specific observations on forecast skill, a practice known as conducting an observing
system experiment (OSE).

 Estimate the value of hypothetical observations in order to inform the design of an observing system, a practice
known as conducting an observing system simulation experiment (OSSE).

* Determine a model’s systematic bias in estimating the state of a system, a practice known as diagnosing model
error.

The DART software environment makes it easy to explore a variety of data assimilation methods and observations
with different numerical models. It provides powerful, flexible DA tools that are easy to use and customize to support
efficient and reliable DA applications. While DART is primarily oriented for DA research, it has also been used in
operational settings.

DART includes:
* A comprehensive tutorial introducing the concepts of ensemble DA.
¢ Extensive documentation of its source code.

* Interfaces to a variety of models and observation sets that can be used to introduce new users or graduate students
to ensemble DA.

DART is also designed to facilitate the combination of assimilation algorithms, models, and real or synthetic observa-
tions to allow increased understanding of all three. It provides a framework for developing, testing, and distributing
advances in ensemble DA to a broad community of users by removing the implementation-specific peculiarities of
one-off DA systems.

These tools are intended for use by the full range of geosciencies community: beginners and experts; students and
teachers; national centers and university research labs.

DART, Release 9.16.0

4 Chapter 1. Ensemble Data Assimilation

CHAPTER
TWO

ORGANIZATION OF THE DOCUMENTATION

Because of DART’s extensive scope, this documentation is detailed and carefully organized, enabling you to easily find
the information you need. If you have any questions or suggestions for improvements, please contact DAReS staff by
emailing dart@ucar.edu.

The documentation is partitioned into three parts:
* auser guide that explains how to install DART and perform data assimilation
* source code documentation that provides a detailed description of the programs and modules in the repository

* a comprehensive description of data assimilation theory

mailto:dart@ucar.edu

DART, Release 9.16.0

6 Chapter 2. Organization of the documentation

CHAPTER
THREE

MANHATTAN RELEASE

DART releases are named based on the major version number. The current version, 9.x.x, is the Manhattan release.
Email dart@ucar.edu for advice if you are interested in a model which has not been converted from the previous Lanai
release.

mailto:dart@ucar.edu

DART, Release 9.16.0

8 Chapter 3. Manhattan Release

CHAPTER
FOUR

QUICK-START

DART is available through GitHub. To download the latest version of DART, use:

git clone https://github.com/NCAR/DART.git

Gointo the build_templates directory and copy over the closest mkmf. template._compiler.system_ file into mkmf .
template.

Edit it to set the NETCDF directory location if not in /usr/local or comment it out and set $NETCDF in your
environment. This NetCDF library must have been compiled with the same compiler that you use to compile DART
and must include the F90 interfaces.

Go into models/lorenz_63/work and run quickbuild.csh.

$ cd models/lorenz_63/work
$./quickbuild.csh

If it compiles, run this series of commands to do a very basic test:

$./perfect_model_obs
$§ ./filter

If that runs and you have Matlab installed on your system add DART/diagnostics/matlab to your matlab search path
and run the plot_total_err diagnostic script while in the models/lorenz_63/work directory. If the output plots
and looks reasonable (error level stays around 2 and doesn’t grow unbounded) you have successfully installed DART
and completed your first assimilation with it.

If you are planning to run one of the larger models and want to use the Lorenz 63 model as a test, run . /quickbuild.
csh -mpi. It will build filter and any other MPI-capable executables with MPI.

Important: The mpif90 command you use must have been built with the same version of the compiler as you are
using.

If any of these steps fail or you don’t know how to do them, go to the DART project web page listed above for very
detailed instructions that should get you over any bumps in the process.

https://github.com/NCAR/DART

DART, Release 9.16.0

4.1 Quick-start for developers

To create a fork of DART for your own development you will need a GitHub account.
1. fork the NCAR/DART repo on GitHub

2. clone your (new) fork to your machine - this will set up a remote named ‘origin’.

git clone https://github.com/USERNAME/DART.git

where USERNAME is your GitHub username.

3. create a remote to point back to the NCAR/DART repo. Convention dictates that this remote should be called
‘upstream’

git remote add upstream https://github.com/NCAR/DART.git

Use ‘upstream’ to keep your fork up to date with NCAR/DART. GitHub has documentation on working with forks.
4. Download one of the tar files (listed below) of ‘large’ files so you can test your DART installation.

5. If you want to contribute your work back to the DART community, create a feature branch with your work, then
issue a pull request to propose changes to NCAR/DART.

There are several large files that are needed to run some of the tests and examples but are not included in order to keep
the repository as small as possible. If you are interested in running bgrid_solo, cam-fv, or testing the NCEP/prep_bufr
observation converter, you will need these files. These files are available at:

Release Size | Filename

“Manhattan” 189M | Manhattan_large_files.tar.gz
“wrf-chem.r13172” | 141M | wrf-chem.r13172_large_files.tar.gz
“Lanai” 158M | Lanai_large_files.tar.gz

“Kodiak” 158M | Kodiak_large_files.tar.gz
“Jamaica” 32M Jamaica_large_files.tar.gz
“Hawaii” 32M Hawaii_large_files.tar.gz

Download the appropriate tar file and untar it into your DART repository. Ignore any warnings about tar: Ignoring
unknown extended header keyword.

10 Chapter 4. Quick-start

https://github.com/
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/working-with-forks
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork
https://www.image.ucar.edu/pub/DART/Release_datasets/Manhattan_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/wrf-chem.r13172_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Lanai_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Kodiak_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Jamaica_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Hawaii_large_files.tar.gz

CHAPTER
FIVE

CITING DART

Cite DART using the following text:

The Data Assimilation Research Testbed (Version X.Y.Z) [Software]. (2019). Boulder, Colorado:
UCAR/NCAR/CISL/DAReS. http://doi.org/10.5065/D6W Q0202

Update the DART version and year as appropriate.

11

http://doi.org/10.5065/D6WQ0202

DART, Release 9.16.0

12 Chapter 5. Citing DART

CHAPTER
SIX

REFERENCES

6.1 System requirements

The DART software is intended to compile and run on many different Unix/Linux operating systems with little to
no change. At this point we have no plans to port DART to Windows machines, although Windows 10 users may
be interested in the free Windows Subsystem For Linux which allows developers to “run a GNU/Linux environment —
including most command-line tools, utilities, and applications — directly on Windows, unmodified, without the overhead
of a virtual machine” (see https://docs.microsoft.com/en-us/windows/wsl/about for more details)

Note: We have tried to make the DART code as portable as possible, but we do not have access to all compilers on all
platforms, so unfortunately we cannot guarantee that the code will work correctly on your particular system.

We are genuinely interested in your experience building the system, so we welcome you to send us an email with your
experiences to dart@ucar.edu.

We will endeavor to incorporate your suggestions into future versions of this guide.

Minimally, you will need:
1. a Fortran90 compiler,
2. the netCDF libraries built with the FO0 interface,
3. perl (just about any version),
4. an environment that understands csh, tcsh, sh, and ksh
5. the long-lived Unix build tool make
6. and up to 1 Gb of disk space for the DART distribution.

History has shown that it is a very good idea to remove the stack and heap limits in your run-time environment with
the following terminal commands:

> limit stacksize unlimited
> limit datasize unlimited

Additionally, the following tools have proven to be nice (but are not required to run DART):
1. ncview: a great visual browser for netCDF files.
2. the netCDF Operators (NCO): tools to perform operations on netCDF files like concatenating, slicing, and dicing

3. Some sort of MPI environment. In other words, DART does not come with MPICH, LAM-MPI, or OpenMPI,
but many users of DART rely on these MPI distributions to run DART in a distributed-memory parallel setting.
In order to use MPI with DART, please refer to the DART MPI introduction.

13

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
mailto:dart@ucar.edu
http://www.unidata.ucar.edu/software/netcdf/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://nco.sourceforge.net/

DART, Release 9.16.0

4. If you want to use the DART diagnostic scripts, you will need a basic MATLAB® installation. No additional
toolboxes are required, and no third-party toolboxes are required.

6.2 Fortran90 compiler

The DART software is written in standard Fortran 90, with no compiler-specific extensions. It has been compiled and
run with several versions of each of the following:

* GNU Fortran Compiler (known as “gfortran”) (free)
¢ Intel Fortran Compiler for Linux and OSX
e IBM XL Fortran Compiler
¢ Portland Group Fortran Compiler
* Lahey Fortran Compiler
* NAG Fortran compiler
 PathScale Fortran compiler
Since recompiling the code is a necessity to experiment with different models, there are no DART binaries to distribute.

If you are unfamiliar with Fortran and/or wonder why we would choose this language, see the Why Fortran? discussion
for more information.

6.3 Locating netCDF library

DART uses the netCDF self-describing data format for storing the results of assimilation experiments. These files have
the extension .nc and can be read by a number of standard data analysis tools. In particular, DART also makes use of the
F90 netCDF interface which is available through the netcdf.mod and typesizes.mod modules and the 1ibnetcdf
library. Depending on the version, the 1ibnetcdff library is also often required.

If the netCDF library does not exist on your system, you must build it (as well as the F90 interface modules).

Warning: You must build netCDF with the same compiler (including version) you plan to use for compiling
DART. In practice this means that even if you have a netCDF distribution on your system, you may need to recompile
netCDF in a separate location to match the compiler you will use for DART. The library and instructions for building
the library or installing from a package manager may be found at the netCDF home page.

Important: The normal location for the netCDF Fortran modules and libraries would be in the include and 1ib
subdirectories of the netCDF installation. However, different compilers or package managers sometimes place the
modules and/or libraries into non-standard locations. It is required that both modules and the libraries be present.

Note: The location of the netCDF library, libnetcdf. a, and the locations of both netcdf.mod and typesizes.mod
will be needed later. Depending on the version of netCDF and the build options selected, the Fortran interface routines
may be in a separate library named libnetcdff.a (note the two F’s). In this case both libraries are required to build
executables.

14 Chapter 6. References

http://gcc.gnu.org/fortran
http://software.intel.com/en-us/intel-composer-xe
http://www-01.ibm.com/software/awdtools/fortran/
http://www.pgroup.com/
http://www.lahey.com/
https://www.nag.com/nag-compiler
https://en.wikipedia.org/wiki/PathScale
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/

DART, Release 9.16.0

6.4 Downloading DART

The DART source code is distributed on the GitHub repository NCAR/DART with the documentation served through
readthedocs.

Go to https://github.com/NCAR/DART and clone the repository or get the ZIP file according to your preference. See
the github help page on cloning for more information on how to clone a repository. Take note of the directory you
installed into, which is referred to as DART throughout this documentation.

To checkout the latest release of DART:

git clone https://github.com/NCAR/DART.git

If you have forked the DART repository, replace NCAR with your Github username.

Note: If you are interested in contributing to DART, see the Contributors’ guide for more information. In short, you
will need to be familiar with the GitHub workflow.

Unzip or clone the distribution in your desired directory, which we refer to as DART in this document. Compiling the
code in this tree (as is usually the case) may require a large amount of additional disk space (up to the 1 Gb required
for DART), so be aware of any disk quota restrictions before continuing.

6.4.1 Organization of the repository

The top level DART source code tree contains the following directories and files:

Directory Purpose

assimilation_code/ | assimilation tools and programs

build_templates/ Configuration files for installation

developer_tests/ regression testing

diagnostics/ routines to diagnose assimilation performance

guide/ General documentation and DART_LAB tutorials
models/ the interface routines for the models

observations/ routines for converting observations and forward operators
theory/ pedagogical material discussing data assimilation theory
Files Purpose

CHANGELOG.rst Brief summary of recent changes

copyright.rst terms of use and copyright information

README.rst Basic Information about DART

6.5 Compiling DART

Now that the DART code has been downloaded and the prerequisites have been verified, you can now begin building
and verifying the DART installation.

6.4. Downloading DART 15

https://github.com/NCAR/DART
https://github.com/NCAR/DART
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://guides.github.com/introduction/flow/

DART, Release 9.16.0

6.5.1 Customizing the build scripts — overview

DART executable programs are constructed using two tools: mkmf, and make. The make utility is a very commonly
used tool that requires a user-defined input file (a Makefile) that records dependencies between different source files.
make then performs actions to the source hierarchy, in order of dependence, when one or more of the source files is
modified. mkmf is a perl script that generates a make input file (named Makefile) and an example namelist input.
nml . <program>_default with default values.

mkmf (think “make makefile”) requires two separate input files. The first is a template file which specifies the com-
mands required for a specific Fortran90 compiler and may also contain pointers to directories containing pre- compiled
utilities required by the DART system. This template file will need to be modified to reflect your system as detailed
in the next section.

The second input file is a path_names file which is supplied by DART and can be used without modification. An mkmf
command is executed which uses the path_names file and the mkmf template file to produce a Makefile which is
subsequently used by the standard make utility.

Shell scripts that execute the mkmf command for all standard DART executables are provided with the standard DART
distribution. For more information on the mkmf tool please see the mkmf documentation.

6.5.2 Building and Customizing the ‘mkmf.template’ file

A series of templates for different compilers/architectures can be found in the DART/build_templates directory and
have names with extensions that identify the compiler, the architecture, or both. This is how you inform the build
process of the specifics of your system. Our intent is that you copy one that is similar to your system into DART/
build_templates/mkmf.template and customize it.

For the discussion that follows, knowledge of the contents of one of these templates (e.g. DART/build_templates/
mkmf.template.intel.linux)is needed. Note that only the LAST lines of the file are shown here. The first portion
of the file is a large comment block that provides valuable advice on how to customize the mkmf template file if needed.

MPIFC = mpif90®

VMPILD = mpif90

FC = ifort

LD = ifort

NETCDF = /usr/local

INCS = -I$(NETCDF)/include

LIBS = -L$(NETCDF)/lib -lnetcdf -lnetcdff
FFLAGS = -02 $(INCS)

LDFLAGS = $(FFLAGS) $(LIBS)

16 Chapter 6. References

https://github.com/NOAA-GFDL/mkmf
https://github.com/NOAA-GFDL/mkmf

DART, Release 9.16.0

FC the Fortran compiler

LD the name of the loader; typically, the same as the Fortran compiler

MPIF(C the MPI Fortran compiler; see the DART MPI introduction for more info

MPILID the MPI loader; see the DART MPI introduction for more info

NETCDthe location of your root netCDF installation, which is assumed to contain netcdf.mod and typesizes.mod
in the include subdirectory. Note that the value of the NETCDF variable will be used by the “INCS” and
“LIBS” variables.

INCS | the includes passed to the compiler during compilation. Note you may need to change this if your netCDF
includes netcdf.mod and typesizes.mod are not in the standard location under the include subdirectory of
NETCDF.

LIBS | the libraries passed to “FC” (or “MPIFC”) during compilation. Note you may need to change this if the
netCDF libraries libnetcdf and libnetcdff are not in the standard location under the “lib” subdirectory of
NETCDF.

FFLAGShe Fortran flags passed to “FC” (or “MPIFC”) during compilation. There are often flags used for optimized
code versus debugging code. See your particular compiler’s documentation for more information.

LD- | the linker flags passed to LD during compilation. See your particular linker’s documentation for more
FLAGS information.

6.5.3 Customizing the path names files

Several path_names_* files are provided in the “work” directory for each specific model. In this case, the directory of
interest is DART/models/lorenz_63/work (see the next section). Since each model comes with its own set of files,
the path_names_* files typically need no customization. However, modifying these files will be required if you wish
to add your model to DART. See How do I run DART with my model? for more information.

6.5.4 Building the Lorenz_63 DART project

In order to get started with DART, here we use the Lorenz 63 model, which is a simple ODE model with only three
variables. DART supports models with many orders of magnitude more variables than three, but if you can compile
and run the DART code for any ONE of the models, you should be able to compile and run DART for ANY of the
models. For time-dependent filtering known as cycling, where observations are iteratively assimilated at multiple time
steps, DART requires the ability to move the model state forward in time. For low-order models, this may be possible
with a Fortran function call, but for higher-order models, this is typically done outside of DART’s execution control.
However, the assimilation itself is conducted the same way for all models. For this reason, here we focus solely on the
Lorenz 63 model. If so desired, see The Lorenz 63 model: what is it and why should we care? for more information on
this simple yet surprisingly relevant model. See A high-level workflow of DA in DART for further information regarding
the DART workflow if you prefer to do so before building the code.

There are seven separate, stand-alone programs that are typically necessary for the end-to-end execution of a DART
experiment; see below or the What is DART? section for more information on these programs and their interactions.
All DART programs are compiled the same way, and each model directory has a directory called work that has the
components necessary to build the executables.

Note: some higher-order models have many more than seven programs; for example, the Weather Research and
Forecasting (WRF) model, which is run operationally around the world to predict regional weather, has 28 separate
programs. Nonetheless, each of these programs are built the same way.

The quickbuild.csh in each directory builds all seven programs necessary for Lorenz 63. Describing what the
quickbuild. csh script does is useful for understanding how to get started with DART.

6.5. Compiling DART 17

DART, Release 9.16.0

The following shell commands show how to build two of these seven programs for the lorenz_63 model: preprocess and
obs_diag. preprocess is a special program that needs to be built and run to automatically generate Fortran code that is
used by DART to support a subset of observations - which are (potentially) different for every model. Once preprocess
has been run and the required Fortran code has been generated, any of the other DART programs may be built in the
same way as obs_diag in this example. Thus, the following runs mkmf to make a Makefile for preprocess, makes the
preprocess program, runs preprocess to generate the Fortran observation code, runs mkmf to make a Makefile for
obs_diag, then makes the obs_diag program:

$ cd DART/models/lorenz_63/work
$./mkmf_preprocess

$ make

§ ./preprocess

$./mkmf_obs_diag

$ make

The remaining executables are built in the same fashion as obs_diag: run the particular mkmf script to generate a
Makefile, then execute make to build the corresponding program.

Currently, DART executables are built in a work subdirectory under the directory containing code for the given model.
The Lorenz_63 model has seven mkmf_xxxxxx files for the following programs:

Pro- Purpose

gram

prepro- creates custom source code for just the observations of interest

cess

cre- specify a (set) of observation characteristics taken by a particular (set of) instruments

ate_obs_s¢quence

cre- specify the temporal attributes of the observation sets

ate_fixed_network_seq

per- spinup and generate “true state” for synthetic observation experiments

fect_mode]_obs

filter perform data assimilation analysis

obs_diag | creates observation-space diagnostic files in netCDF format to support visualization and quantification.

obs_sequenanatiiplilates observation sequence files. This tool is not generally required (particularly for low-order
models) but can be used to combine observation sequences or convert from ASCII to binary or vice-
versa. Since this is a rather specialized routine, we will not cover its use further in this document.

As mentioned above, quickbuild. cshis a script that will build every executable in the directory. There is an optional
argument that will additionally build the MPI-enabled versions which will not be covered in this set of instructions.
See The DART MPI introduction page for more information on using DART with MPL

Running quickbuild. csh will compile all the executables mentioned above for the lorenz_63 model:

$ cd DART/models/lorenz_63/work
$./quickbuild.csh

The result (hopefully) is that seven executables now reside in your work directory.

Note: The most common problem is that the netCDF libraries and/or include files were not found in the specified
location(s). The second most common problem is that the netCDF libraries were built with a different compiler than
the one used for DART. Find (or compile) a compatible netCDF library, edit the DART/build_templates/mkmf.
template to point to the correct locations of the includes and library files, recreate the Makefiles, and try again.

18 Chapter 6. References

../assimilation_code/programs/preprocess/preprocess.html
../assimilation_code/programs/preprocess/preprocess.html
../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
../assimilation_code/programs/create_fixed_network_seq/create_fixed_network_seq.html
../assimilation_code/programs/create_fixed_network_seq/create_fixed_network_seq.html
../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../assimilation_code/programs/filter/filter.html
../assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html
../assimilation_code/programs/obs_sequence_tool/obs_sequence_tool.html

DART, Release 9.16.0

6.6 Verifying installation

Note: These verification steps require MATLAB®. UCAR Member Institutions have access to institutional licenses
for MATLAB, thus we have created verification tools using it.

The Lorenz model is notoriously sensitive to very small changes; in fact, the story of Lorenz discovering this sensitivity
is a classic in the annals of the study of chaos, which in turn was instrumental in the development of data assimilation
as a field of study. See The Lorenz 63 model: what is it and why should we care? or What is data assimilation? for
more information.

This sensitivity is of practical interest for verifying these results. The initial conditions files and observations sequences
are provided in ASCII, which is portable across systems, but there may be some machine-specific round-off error in
the conversion from ASCII to machine binary. As Lorenz 63 is such a nonlinear model, extremely small differences in
the initial conditions may eventually result in noticeably different model trajectories. Even different compiler flags may
cause tiny differences that ultimately result in large differences. Your results should start out looking VERY SIMILAR
and may diverge with time.

The simplest way to determine if the installation is successful is to run some of the functions available in DART/
diagnostics/matlab/. Usually, we launch MATLAB from the DART/models/lorenz_63/work directory and
use the MATLAB addpath command to make the DART/matlab/ functions available for execution in any working
directory.

In the case of this Lorenz model, we know the “true” (by definition) state of the model that is consistent with the
observations, which was generated by the perfect_model_obs program as described in Checking the build — running
something. The following MATLAB scripts compare the ensemble members with the truth and can calculate the error
in the assimilation:

$ cd DART/models/lorenz_63/work
$ matlab -nodesktop
(Skipping startup messages)

[matlab_prompt] addpath ../../../diagnostics/matlab
[matlab_prompt] plot_total_err
Input name of true model trajectory file;
(cr) for perfect_output.nc
perfect_output.nc
Input name of ensemble trajectory file;
(cr) for preassim.nc
preassim.nc
Comparing true_state.nc and

preassim.nc
[matlab_prompt] plot_ens_time_series
Input name of ensemble trajectory file;
(cr) for preassim.nc

Comparing true_state.nc and
preassim.nc
Using Variable state IDs 1 2 3

pinfo =

struct with fields:

(continues on next page)

6.6. Verifying installation 19

https://www.ucar.edu/who-we-are/membership-governance/member-institutions

DART, Release 9.16.0

(continued from previous page)

model:

def_var:
num_state_vars:
num_copies:
num_ens_members:
ensemble_indices:
min_state_var:
max_state_var:
def_state_vars:
fname:
truth_file:
diagn_file:
truth_time:
diagn_time:

vars:

time:
time_series_length:
var:

var_inds:

'Lorenz_63"
'state’

1

20

20

[123

1

3

[1 2 3]
'preassim.nc’
"true_state.nc'
'preassim.nc’
[1 200]

[1 200]
{'state'}
[200x1 double]
200

'state’

[1 2 3]

18 19 20]

Lorenz_63 Total Error over all 3 variables for ./Prior_Diag.nc

18 T

12r

Total Error
=
T

o
T

time-mean Ensemble Mean Total Error = 1.6681

— time-mean Ensemble Spread Total Error = 1.8827

2 J e

Iy

20 25 30
rmodel time (200 timesteps)

5

50

20

Chapter 6. References

DART, Release 9.16.0

20

50

-50

60

Lorenz_63 Variable 1 Ensemble Members of ./Prior_Diag.nc

10 15 20 25 30 35 40 45 50
model time (200 timesteps)
Lorenz_63 Variable 2 Ensemble Members of ./Prior_Diag.nc

TruggBtate
hse
Ensemble Members (20)

10 15 20 25 30 35 40 45 50
rmodel time (200 timesteps)

Lorenz_63 Variable 3 Ensemble Members of ./Prior_Diag.nc

True State

10 15 20 25 30 35 40 45 50
model time (200 timesteps)

From the above plot_ens_time_series graphic, you can see the individual green ensemble members becoming
more constrained with less spread as time evolves. If your figures look similar to these, you should feel confident that
everything is working as intended. Don’t miss the opportunity to rotate the “butterfly” plot for that classic chaos theory
experience (perhaps while saying, “life, uh, finds a way”).

Congratulations! You have now successfully configured DART and are ready to begin the next phase of your interaction
with DART. You may wish to learn more about:

What is data assimilation? — a brief introduction to ensemble data assimilation. This section includes more
information about the Lorenz 63 model and how to configure the input.nml file to play with DA experiments
in DART using the Lorenz 63 model.

What is DART? — This section includes more information about DART and a basic flow chart of the overall

DART workflow.

How do I run DART with my model?

How do I add my observations to DART?

How would I use DART for teaching students and/or myself?

How can I contribute to DART?

Note:

In the case that the above instructions had one or more issues that either did not work for you as intended or
were confusing, please contact the DART software development team at dart @ucar.edu. We value your input to make
getting started as smooth as possible for new DART users!

6.6. Verifying installation

21

mailto:dart@ucar.edu

DART, Release 9.16.0

6.7 Introduction to ensemble data assimilation

Data assimilation is a powerful and widely used computational technique that has many application areas throughout
mathematics and science. At a very high level, data assimilation refers to the process of merging prior forecasts with
new observations, creating a new analysis that is an “optimal” blending of the two by taking into account their relative
uncertainties.

The following animated graphic describes the data assimilation process at a high level:

Shown here are three ensemble members, each of which gives a different initial prediction at the time ¢;,. Moving these
predictions forward in time to ¢5; will give a new forecast distribution called a prior.

Suppose at this time there is also an observation, which will have some uncertainty due to instrument noise, etc.
Mapping each of the ensemble members to the observations with a function i and applying Bayes’ theorem will
generate an update to the prior distribution, called here the state increment. Adding the state increment to the ensemble
members will give the new analysis (also known as the posterior) at time t;1. This process can then be repeated for
each set of observations as many times as necessary. For an introduction to Bayes’ theorem, see Conditional probability
and Bayes’ theorem in the Theory section.

Expanding on this somewhat, the ith ensemble member is denoted x; at the present time step. In the above graphic,
there were three ensemble members, but in general there are usually many more, typically in the range of 20-1000
depending on the application. Each member x; can have n components which together make up the model state. Each
member contains all the variables you want to find the best fit for at a particular time. These variables are usually
physically meaningful quantities; for example, this might include the 3D values of water vapor, temperature, wind
speed, etc. for an atmospheric model. These values are expected to be advanced forward in time by a model, which is
why they are called the “model state.”

Note: In data assimilation, the “model state” is the minimum amount of information necessary to restart the model
for a new forecast.

At any particular time step there may be m observations available. These observations are assumed to relate to the
model state and provide “real world” checks against the model forecast. A “forward operator”, represented in the above
diagram by h, is a relationship that computes what an observation is most likely to be given a model state. In other
words, h maps between x; and y;, giving the “expected observation” of the jth observation given the ith ensemble
member. An observation may be of the same quantity as one found in the model state at a particular location, in which
case the h function mapping them is trivial and the comparison is simple. The vector y may also contain more complex
derived functions of the state x (for example, radar observations of precipitation), in which case the h function that
models this mapping between x (in this example precipitation) and y (in this example radar returns) may be an algorithm
that is quite complicated.

In practice, observations are never 100% reliable. The observations themselves will have some uncertainty for ex-
ample arising from instrument noise. The instrument noise error variances are typically published by the instrument
manufacturer, and these observation errors are usually assumed to be independent as true instrument “noise” should
not be correlated in time or space. Furthermore, since models have a finite resolution (i.e. they are “fuzzy”), there is
almost always an error that arises when comparing the model to the observations. This is called the representativeness
error. Put together, the potential “likelihood” of the possible values of the observation forms the observational error
distribution in the above graphic.

Finally, note that in real-world applications there are typically many fewer observations than state variables, i.e. m is
typically much much less than n. In practice this means that the observations alone cannot be relied upon to predict
the model state; the ensemble approach with Bayes’ theorem is necessary.

DART makes it easy to find the optimal solution to the above problem using an ensemble filter algorithm (the most
typically used algorithm is the Ensemble Adjustment Kalman Filter; see /mportant capabilities of DART for more

22 Chapter 6. References

DART, Release 9.16.0

information). The user specifies which state variables make up the = ensemble vectors, which observations make up
the y vector, and the observation error variances. The ensemble of model states is assumed to be representative of the
uncertainty or spread in the model state. Finally, the user tells DART how to advance the model from one forecast to the
next. Once DART has this information, it can proceed with optimally blending the observations and model forecasts
— in other words, performing data assimilation.

The spread of the ensemble informs DART of the uncertainty in the model state. This allows for as rich, complex, and
meaningful relationships as the data contained within the ensemble itself. By default, no implicit assumptions about the
relative uncertainties are required, as the data can speak for itself. Areas of large uncertainty will naturally have large
spread, as the ensemble members will contain very different values at those locations, while areas of low uncertainty
will naturally have low spread due to the ensemble having relatively similar values at those locations. Furthermore,
relationships in space and between variables can also be meaningfully derived. Of course this means that the quality
of the ensemble is crucial to the success of the DA process, as uncertainty can only be accurately quantified if the
ensemble is representative of the “true” uncertainty inherent in the system. Due to the fact that a relatively small number
of ensemble members are typically used, estimated correlations between two distant locations may become unreliable
due to sampling error. Thus, various techniques such as covariance localization may be employed to improve the
quality of estimated relationships and increase skill in prediction. Furthermore, the ensemble spread may sometimes
be deemed “too small” or “too large” by various criteria, in which case a multiplicative or additive inflation or deflation,
respectively, may be applied. In practice the ensemble method is usually far more accurate and less error-prone than
the main alternative of manually specifying uncertainty by some manually-designed algorithm, and it is certainly less
labor-intensive to develop.

This was a brief introduction to the important concepts of DA. For more information, see the DART Tutorial and the
DART _LAB Tutorial.

6.8 The Lorenz 63 model and its relevance to data assimilation

This section describes a consequential model in the development of humanity’s understanding of the limits of predicting
nature: the three-variable model of Lorenz (1963).! This model captures the essence of chaotic systems and will serve
as an example to deepen your understanding of DART and data assimilation.

In 1963, Edward Lorenz developed a simplified three-variable model to investigate atmospheric convection. By making
several simplifications to the Boussinesq approximation, the Lorenz model was derived for a single thin layer of fluid
uniformly heated from below and cooled from above. The original paper has been cited over 20,000 times. The
relatively simple, yet nonlinear, system of ordinary differential equations is:

%=J(y—x)
%Zx(T—Z)—y
%zmy—bz

Here, z is proportional to the rate of convection, y is related to the horizontal temperature variation, and z is the vertical
temperature variation.

There are three constant parameters:
o=10,r=28,b=28/3

¢ ¢ relates to the Prandtl number

* r relates to the Rayleigh number

I Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141, doi:0.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2

6.8. The Lorenz 63 model and its relevance to data assimilation 23

https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2

DART, Release 9.16.0

* b relates to the physical dimensions of the layer
Note that two of the equations have nonlinear terms: %"; has the —xz term and % has the zy term.

Lorenz 63 is a consequential model in the history of science because the numerical investigation of the chaos arising
from this system of ordinary differential equations unexpectedly launched a revolution in humanity’s understanding of
nature. These investigations lead to numerous mathematical and scientific breakthroughs.

While the chaotic nature of certain systems such as the three-body problem had been investigated previously, it was
the electronic computer, which could compute thousands of calculations per second, that allowed these ideas to be
formalized.

In particular, Lorenz’s model made it clear for the first time how an infinitesimally small change in the initial conditions
of a system could end up having a dramatic effect on the subsequent behavior of the system. Lorenz discussed the strange
behavior of this model in a popular science lecture, The Essence of Chaos”:

At one point I decided to repeat some of the computations in order to examine what was happening in
greater detail. I stopped the computer, typed in a line of numbers that it had printed out a while earlier, and
set it running again. I went down the hall for a cup of coffee and returned after about an hour, during which
the computer had simulated about two months of weather. The numbers being printed out were nothing
like the old ones. I immediately suspected a weak vacuum tube or some other computer trouble, which
was not uncommon, but before calling for service I decided to see just where the mistake had occurred,
knowing that this could speed up the servicing process. Instead of a sudden break, I found that the new
values at first repeated the old ones, but soon afterward had differed by one and then several units in the last
decimal place...The numbers I had typed in were not the exact original numbers, but were the rounded-
off values that appeared in the original printout. The initial round-off errors were the culprits; they were
steadily amplifying until they dominated the solution. In today’s terminology, there was chaos.

Lorenz discovered that even in a model with just three variables, a very small change in the initial conditions (in this
case, the numbers he typed back into the computer, which were very slightly different from the original numbers) could
cause the entire large-scale behavior to change. Lorenz’s discovery has many important practical implications:

1. If tiny changes can grow to dominate a system, it is no longer possible to find the one set of “perfect” initial
conditions and hope to allow the system to run forever with perfect forecasts. Instead, forecasting chaotic systems
must be approached statistically.

2. There is a practical limit of predictability inherent in chaotic systems. In other words, the nonlinear dynamics of
a chaotic model are inherently difficult to predict. Multiple evaluations (an ensemble) can be run with different
plausible initial conditions to quantify this error growth.

3. In order to forecast chaotic systems effectively, periodic observations of the state are required to effectively guide
the forecast and narrow the uncertainty. Since in real-world applications observations are almost always sparse
compared to the number of state variables, merging observations and forecasts (i.e. data assimilation) is required
to effectively forecast chaotic systems.

While Lorenz 63 is a simple example of a chaotic system, there are many other chaotic systems of real practical interest
in areas such as weather prediction, climate, oceanography, hydrology, ecology, biology, and many other disciplines.

In short, while the Lorenz model is a simple set of equations that can easily be run on even the most basic of computers
today, it is representative of the same problem of predictability that can be found throughout science. DART supports
the investigation of forecasting chaotic systems in any field where periodic observations can be used to constrain the
uncertainty using an ensemble.

2 Lorenz, Edward N. The Essence of Chaos. University of Washington Press, 1995.

24 Chapter 6. References

DART, Release 9.16.0

6.8.1 References
6.9 Data assimilation in DART using the Lorenz 63 model

In this section we open the “black box™ of the Lorenz model that was previously used in Compiling DART . This section
assumes you have successfully run the Lorenz 63 model with the example observation files that were distributed with
the DART repository. In this section you will learn in more detail how DART interacts with the Lorenz 63 model to
perform data assimilation.

6.9.1 The input.nml namelist

The DART/models/lorenz_63/work/input.nml file is the Lorenz model namelist, which is a standard Fortran
method for passing parameters from a text file into a program without needing to recompile. There are many sections
within this file that drive the behavior of DART while using the Lorenz 63 model for assimilation. Within input.nml,
there is a section called model_nml, which contains the model-specific parameters:

&model_nml
sigma = 10.0,
r = 28.0,
b = 2.6666666666667,
deltat = 0.01,

time_step_days = 0,
time_step_seconds = 3600,
solver = 'RK2'

/

Here, you can see the values for the parameters sigma, r, and b that were discussed in the previous section. These are
the original values Lorenz used in the 1963 paper to create the classic butterfly attractor.

6.9.2 The Lorenz 63 model code

The Lorenz 63 model code, which is under DART /models/lorenz_63/model_mod. £90, contains the lines:

subroutine comp_dt(x, dt)

real(r8), intent(in) :: x(:)
real(r8), intent(out) :: dt(:)

| compute the lorenz model dt from standard equations

dt(1l) = sigma * (x(2) - x(1))
dt(2) = -x(1)*x(3) + r*x(1) - x(2)
dt(3) = x(1)*x(2) - b*x(3)

end subroutine comp_dt

which directly translates the above ODE into Fortran.

Note that the routine comp_dt does not explicitly depend on the time variable, only on the state variables (i.e. the
Lorenz 63 model is time invariant).

6.9. Data assimilation in DART using the Lorenz 63 model 25

DART, Release 9.16.0

Note: By default, the model_mod. £90 follows the Lorenz 63 paper to use the Runge-Kutta 2 scheme (otherwise
known as RK2 or the midpoint scheme) to advance the model.

Since the Lorenz 63 model is time invariant, the RK2 code to advance the ODE in time can be written as follows, again
following the Lorenz 63 paper, for a fract fraction of a time-step (typically equal to 1):

!> does single time step advance for lorenz convective 3 variable model
!> using two step rk time step

subroutine adv_single(x, fract)

real(r8), intent(inout) :: x(:)
real (r8), intent(in) 11 fract

real(r8) :: x1(3), x2(3), dx(3)

call comp_dt(x, dx) I compute the first intermediate step
x1 = x + fract * deltat * dx

call comp_dt(x1l, dx) I compute the second intermediate step
x2 = x1 + fract * deltat * dx

! new value for x is average of original value and second intermediate
x=((x+x2) / 2.0_r8

end subroutine adv_single

Together, these two code blocks describe how the Lorenz 63 model is advanced in time. You will see how DART uses
this functionality shortly.

6.9.3 The model time step and length of the data assimilation

In the original Lorenz 63 paper, the model is run for 50 “days” using a non-dimensional time-step of 0.01, which is
reproduced in the namelist above. This time-step was assumed equal to 3600 seconds, or one hour, in dimensional
time. This is also set in the namelist above. The Lorenz 63 model observation file included with the DART repository
uses observations of all three state variables every six hours (so every six model steps) to conduct the assimilation.

If you were previously able to run the Matlab diagnostic scripts, you may have noticed that the butterfly attractor for
the included example does not look as smooth as might be desired:

26 Chapter 6. References

DART, Release 9.16.0

Lorenz_63 Attractors for preassim.nc

—True State
—— Ensemble Mean

45 —
40 —
35 —
30
N 25
20

15

20

-20 -10

20
x y

This is because the model output was only saved once every six “hours” at the observation times. As an exercise, let’s
make a nicer-looking plot using the computational power available today, which even on the most humble of computers
is many times greater than what Lorenz had in 1963. Let’s change Lorenz’s classic experiment to the following:

1.

Make the non-dimensional timestep 0.001, a factor of 10 smaller, which will correspond to a dimensional timestep
of 360 seconds (6 minutes). This smaller time-step will lead to a smoother model trajectory.

Keep the original ratio of time steps to observations included in the DART repository of assimilating observations
every six time steps, meaning we now need observations every 36 minutes.

Therefore, in order to conduct our new experiment, we will need to regenerate the DART observation sequence files.

To change the time-step, change the input.nml file in DART /models/lorenz_63/work to the following:

&model_nml
sigma = 10.0,

r
b

= 28.0,
= 2.6666666666667,

deltat = 0.001,
time_step_days = 0,
time_step_seconds = 360

/

Note:

The changes are to deltat and time_step_seconds. Additionally: you do not need to recompile the DART

6.9. Data assimilation in DART using the Lorenz 63 model 27

DART, Release 9.16.0

code as the purpose of namelist files is to pass run-time parameters to a Fortran program without recompilation.

6.9.4 Updating the observation sequence

Let’s now regenerate the DART observation files with the updated timestep and observation ratio. In a typical large-
scale application, the user will provide observations to DART in a standardized format called the Observation Sequence
file. Since there are no real observations of the Lorenz 63 system, we must create our own synthetic observations -
which may be done using create_obs_sequence, create_fixed_network_seq, and perfect_model_obs programs; each of
which we will explain below. These helpful interactive programs are included with DART to generate these observation
sequence files for typical research or education-oriented experiments. In such setups, observations (with noise added)
will be generated at regular intervals from a model “truth”. This “truth” will only be available to the experiment through
the noisy observations but can later be used for comparison purposes. The number of steps necessary for the ensemble
members to reach the true model state’s “attractor” can be investigated and, for example, compared between different
DA methods. This is an example of an “OSSE” — see High-level data assimilation workflows in DART for more
information.

The three programs used in this example to create an observation sequence again are create_obs_sequence, cre-
ate_fixed_network_seq, and perfect_model_obs. create_obs_sequence creates a template for the observations, cre-
ate_fixed_network_seq repeats that template at multiple times, and finally perfect_model_obs harvests the observation
values. These programs have many additional capabilities; if interested, see the corresponding program’s documenta-
tion.

Let’s now run the DART program create_obs_sequence to create the observation template that we will later replicate
in time:

Make sure you are in the DART/models/lorenz_63/work directory ./create_obs_sequence

The program create_obs_sequence will ask for the number of observations. Since we plan to have 3 observations at
each time step (one for each of the state variables), input 3:

set_nml_output Echo NML values to log file only

—————————————— ASSTMILATE_THESE_OBS_TYPES -~ -------—-—--
RAW_STATE_VARTABLE

Input upper bound on number of observations in sequence
3

For this experimental setup, we will not have any additional copies of the data, nor will we have any quality control
fields. So use 0 for both.

Input number of copies of data (0 for just a definition)

0

Input number of quality control values per field (0 or greater)
0

28 Chapter 6. References

DART, Release 9.16.0

We now will setup each of the three observations. The program asks to enter -1 if there are no additional observations, so
input anything else instead (1 below). Then enter -1, -2, and -3 in sequence for the state variable index (the observation
here is just the values of the state variable). Use 0 0 for the time (we will setup a regularly repeating observation after
we finish this), and 8 for the error variance for each observation.

Finally, after inputting press enter to use the default output file set_def.out.

Input your values as follows:

input a -1 if there are no more obs
1
Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...
1 RAW_STATE_VARIABLE
-1
input time in days and seconds (as integers)
00
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1
Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...
1 RAW_STATE_VARIABLE
-2
input time in days and seconds (as integers)
00
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1
Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...
1 RAW_STATE_VARIABLE
-3
input time in days and seconds (as integers)
00
Input the error variance for this observation definition
8
Input filename for sequence (<return> for set_def.out)

write_obs_seq opening formatted observation sequence file "set_def.out"
write_obs_seq closed observation sequence file "set_def.out"
create_obs_sequence Finished successfully.

6.9. Data assimilation in DART using the Lorenz 63 model 29

DART, Release 9.16.0

6.9.5 Creating a regular sequence of observations

We will now utilize another DART program that takes this set_def.out file as input. The interactive program
create_fixed_network_seq is a helper tool that can be used to generate a DART observation sequence file made
of a set of regularly repeating observations.

Make sure you are in the DART/models/lorenz_63/work directory ./create_fixed_network_seq

We want to use the default set_def.out file, so press return. We also want a regularly repeating time sequence, so
input 1.

set_nml_output Echo NML values to log file only

—————————————— ASSTIMILATE_THESE_OBS_TYPES ~-------—----
RAW_STATE_VARTABLE

Input filename for network definition sequence (<return> for set_def.out)

To input a regularly repeating time sequence enter 1
To enter an irregular list of times enter 2
1

We now will input the number of observations in the file. The purpose of this exercise is to refine the time step used
by Lorenz in 1963 by a factor of 10. Since we want to keep the ratio of six model steps per observation and run for 50
days, we will need 2000 model observations (360 seconds x 6 x 2000 = 50 days).

As we specified in set_def.out, there are 3 observations per time step, so a total of 6000 observations will be
generated.

Note: The Lorenz 63 model dimensional time-step is related to the observational time only through this mechanism.
In other words, deltat in the namelist could relate to virtually any dimensional time step time_step_seconds if the
observation times were not considered. However, DART will automatically advance the model state to the observation
times in order to conduct the data assimilation at the appropriate time, then repeat this process until no additional
observations are available, thus indirectly linking deltat to time_step_seconds.

Enter 2000 for the number of observation times. The initial time will be 0 0, and the input period will be 0 days and
2160 seconds (36 minutes).

Input number of observation times in sequence

2000

Input initial time in sequence

input time in days and seconds (as integers)

00

Input period of obs in sequence in days and seconds
® 2160

30 Chapter 6. References

DART, Release 9.16.0

The numbers 1 to 2000 will then be output by create_fixed_network_seq. Press return to accept the default output
name of obs_seq.in. The file suffix is . in as this will be the input to the next program, perfect_model_obs.

1
2
1998
1999

2000
What is output file name for sequence (<return> for obs_seq.in)

write_obs_seq opening formatted observation sequence file "obs_seq.in"
write_obs_seq closed observation sequence file "obs_seq.in"
create_fixed_network_seq Finished successfully.

6.9.6 Running perfect_model_obs

We are now ready to run perfect_model_obs, which will read in obs_seq. in and generate the observations as well as
create the “perfect” model trajectory. “Perfect” here is a synonym for the known “true” state which is used to generate
the observations. Once noise is added (to represent observational uncertainty), the output is written to obs_seq.out.

Make sure you are in the DART/models/lorenz_63/work directory
Jperfect_model_obs

The output should look like the following:

set_nml_output Echo NML values to log file only
initialize_mpi_utilities: Running single process

-------------- ASSIMILATE_THESE_OBS_TYPES —-----—-————-
RAW_STATE_VARTABLE

quality_control_mod: Will reject obs with Data QC larger than 3
quality_control_mod: No observation outlier threshold rejection will be done

perfect_main Model size = 3

perfect_read_restart: reading input state from file

perfect_main total number of obs in sequence is 6000

perfect_main number of gc values is 1

perfect_model_obs: Main evaluation loop, starting iteration 0

move_ahead Next assimilation window starts at: day= 0 sec= 0
move_ahead Next assimilation window ends at: day= 0 sec= 180
perfect_model_obs: Model does not need to run; data already at required time
perfect_model_obs: Ready to evaluate up to 3 observations

(continues on next page)

6.9. Data assimilation in DART using the Lorenz 63 model 31

DART, Release 9.16.0

(continued from previous page)

perfect_model_obs: Main evaluation loop, starting iteration 1
move_ahead Next assimilation window starts at: day= 0 sec= 1981
move_ahead Next assimilation window ends at: day= 0 sec= 2340
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to 3 observations

perfect_model_obs: Main evaluation loop, starting iteration 1999

move_ahead Next assimilation window starts at: day= 49 sec= 84061
move_ahead Next assimilation window ends at: day= 49 sec= 84420
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to 3 observations

perfect_model_obs: Main evaluation loop, starting iteration 2000
perfect_model_obs: No more obs to evaluate, exiting main loop
perfect_model_obs: End of main evaluation loop, starting cleanup
write_obs_seq opening formatted observation sequence file "obs_seq.out"
write_obs_seq closed observation sequence file "obs_seq.out"”

You can now see the files true_state.nc, a netCDF file which has the perfect model state at all 2000 observation
times; obs_seq.out, an ASCII file which contains the 6000 observations (2000 times with 3 observations each) of
the true model state with noise added in; and perfect_output.nc, a netCDF file with the final true state that could
be used to “restart” the experiment from the final time (49.75 days in this case).

We can now see the relationship between obs_seq.in and obs_seq.out: obs_seq.in contains a “template” of the
desired observation locations and types, while obs_seq.out is a list of the actual observation values, in this case
generated by the perfect_model_obs program.

Important: create_obs_seq is used for this low-order model because there are no real observations for Lorenz 63.
For systems that have real observations, DART provides a variety of observation converters available to convert from
native observation formats to the DART format. See Available observation converter programs for a list.

6.9.7 Running the filter

Now that obs_seq.out and true_state.nc have been prepared, DART can perform the actual data assimilation.
This will generate an ensemble of model states, use the ensemble to estimate the prior distribution, compare to the
“expected” observation of each member, and update the model state according to Bayes’ rule.

Make sure you are in the DART/models/lorenz_63/work directory ./filter

set_nml_output Echo NML values to log file only
initialize_mpi_utilities: Running single process

—————————————— ASSIMILATE_THESE_OBS_TYPES -------—-—-—--
RAW_STATE_VARTABLE

(continues on next page)

32 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

quality_control_mod: Will reject obs with Data QC larger than 3
quality_control_mod: No observation outlier threshold rejection will be done
assim_tools_init: Selected filter type is Ensemble Adjustment Kalman Filter (EAKF)

assim_tools_init: The cutoff namelist value is 1000000.000000
assim_tools_init: ... cutoff is the localization half-width parameter,
assim_tools_init: ... so the effective localization radius is 2000000.000000
filter_main: running with an ensemble size of 20

parse_stages_to_write: filter will write stage : preassim

parse_stages_to_write: filter will write stage : analysis

parse_stages_to_write: filter will write stage : output

set_member_file_metadata no file list given for stage "preassim” so using default names
set_member_file_metadata no file list given for stage "analysis" so using default names
Prior inflation: None

Posterior inflation: None

filter_main: Reading in initial condition/restart data for all ensemble members from,,
—file(s)

filter: Main assimilation loop, starting iteration 0

move_ahead Next assimilation window starts at: day= 0 sec= 0
move_ahead Next assimilation window ends at: day= 0 sec= 180
filter: Model does not need to run; data already at required time

filter: Ready to assimilate up to 3 observations

comp_cov_factor: Standard Gaspari Cohn localization selected

filter_assim: Processed 3 total observations

filter: Main assimilation loop, starting iteration 1

move_ahead Next assimilation window starts at: day= 0 sec= 21421
move_ahead Next assimilation window ends at: day= 0 sec= 21780
filter: Ready to run model to advance data ahead in time

filter: Ready to assimilate up to 3 observations

filter_assim: Processed 3 total observations

filter: Main assimilation loop, starting iteration 199

move_ahead Next assimilation window starts at: day= 49 sec= 64621
move_ahead Next assimilation window ends at: day= 49 sec= 64980
filter: Ready to run model to advance data ahead in time

filter: Ready to assimilate up to 3 observations

filter_assim: Processed 3 total observations

filter: Main assimilation loop, starting iteration 200

filter: No more obs to assimilate, exiting main loop

filter: End of main filter assimilation loop, starting cleanup
write_obs_seq opening formatted observation sequence file "obs_seq.final"
write_obs_seq closed observation sequence file "obs_seq.final"

Based on the default Lorenz 63 input.nml namelist for filfer included in the DART repository, the assimilation will
have three stages:

6.9. Data assimilation in DART using the Lorenz 63 model 33

DART, Release 9.16.0

1. The preassim stage, where the ensemble is updated by advancing the model. The filepreassim.nc, which
contains the pre-assimilation model trajectories for all the ensemble members, will be written.

2. The analysis stage, where the data assimilation is conducted. The post-assimilation model trajectories for all the
ensemble members will be written to analysis.nc

3. The output stage, which writes the file obs_seq.final containing the actual observations as assimilated plus
the ensemble forward-operator expected values and any quality-control values. This stage also writes the
filter_output.nc file containing the ensemble state from the final cycle, which could be used to restart the
experiment.

DART has now successfully assimilated our updated observations with a 6 minute model time step and assimilation
every 36 minutes. :tada:

6.9.8 Verifying the nicer-looking results

You can now run the verification scripts (as in the section Verifying installation) in Matlab with the following com-
mands:

>> addpath ../../../diagnostics/matlab

>> plot_ens_time_series

Some additional commands to view the attractor from the ZY plane were used:

>> set(findall(gca, “Type’, ‘Line’), ‘LineWidth’,2);
>> set(gca, ‘FontSize’,18)

>> xlabel(‘x’)

>> ylabel(‘y’)

>> zlabel(‘z’)

>> view([90 0])

We can now see the following smooth Lorenz 63 true state and ensemble mean comparison with a 6 minute model time
step and assimilation every 36 minutes:

34 Chapter 6. References

DART, Release 9.16.0

455 Lorenz_63 Attractors for preassim.nc

—True State
—— Ensemble Mean

| | [| | |
-30 -20 -10 0 10 20 30

As you can see, the ensemble mean in red matches the true state almost exactly, although it took a number of assimilation
cycles before the blue ensemble mean was able to reach the red true state “attractor.”

You should now be able to tinker with the Lorenz 63 model and other models in DART. For more detailed information
on the theory of ensemble data assimilation, see the DART Tutorial. For more concrete information regarding DART’s
algorithms and capabilities, see the next section The benefits of using DART. To add your own model to DART, see
Assimilation in a complex model. Finally, if you want to add your own observations to DART, see Adding your obser-
vations to DART .

6.10 What is DART?

The Data Assimilation Research Testbed (DART) is an open-source community facility that provides software tools
for data assimilation research, development, and education. Using DART’s carefully engineered ensemble data as-
similation algorithms and diagnostic tools, atmospheric scientists, oceanographers, hydrologists, chemists, and other
geophysicists can construct state-of-the-art data assimilation systems with unprecedented ease.

In this section we will introduce DART in further detail. This includes:
1. The benefits of using DART
2. A brief history of DART
3. High-level data assimilation workflows in DART
4. DART'’s design philosophy

6.10. What is DART? 35

DART, Release 9.16.0

5. Important capabilities of DART

6.11 The benefits of using DART

A common pitfall for graduate students and professionals alike is to look at the simplicity of data assimilation, in
particular ensemble data assimilation, and decide they can easily write their own DA system. Indeed, this is true.
After learning of the core algorithms, a talented programmer using their favorite language could write a functional DA
system in a manner of weeks if not days. However, he or she will soon find that while the core of DA systems are easy
to write, the more “real” the system needs to be, the more complex it will become. Writing a parallel DA system that
can efficiently utilize multiple cores with MPI is not straight-forward, and adding covariance localization, observation
operators, multiple models, and auxiliary tools such as quality control and pre-processing will quickly dwarf the amount
of core DA code, not to mention the headaches involved in supporting multiple computing environments, compilers,
etc.

DART employs a modular programming approach to apply an algorithm to move the underlying models toward a
state that is more consistent with information from a set of observations. Models may be swapped in and out, as can
different DA algorithms. The method requires running multiple instances of a model to generate an ensemble of states.
A forward operator appropriate for the type of observation being assimilated is applied to each of the states to generate
the model’s estimate of the observation.

DART remains the top choice for scientists, educators, and mathematicians seeking mature and robust ensemble DA
solutions without reinventing the wheel. Here are some of the many benefits of using DART:

1. DART is freely available, open source, and released under the Apache 2.0 License . In short this means that
you are granted a copyright license stating you are free to use, modify, and redistribute any derivative works
derived from the DART system provided that you maintain the license and copyright information. Of course, we
also ask that you credit DART in your publications, and kindly ask that you contribute your modifications so that
other users may benefit. See How should I cite DART? and How can I contribute to DART? for more information.

2. DART is fully parallel and carefully engineered to run on systems ranging from single-core research computers
to the top performing multicore supercomputers in the world. Writing scalable parallel code is arguably the most
difficult and time-consuming task in scientific computing today, but DART has already carefully implemented
and tested this project, and the code is available for you to use out-of-the-box. For more information on how
DART was written (and continues to be developed), see DART’s design philosophy.

3. DART contains numerous tools that accelerate getting started on both research and “real-world” problems.
Multiple rigorously tested inflation, localization, perturbation, and other auxiliary data assimilation algorithms
are available for immediate use and testing. See Important capabilities of DART for more information.

4. DART makes adding a new model straightforward. A new model only needs to implement a list of (at most)
18 core functions or use the default behavior if applicable to take advantage of DART’s mature and robust DA
algorithms. A basic data assimilation system for a large model can be built in person-weeks, and comprehensive
systems have been built in a few months. See How do I run DART with my model? for more information.

5. DART makes it easy to add new observations in order to test their potential beneficial impact. Incorporating
new observation types only requires creating a forward operator that computes the expected value of an obser-
vation given a model’s state. See How do I add my observations to DART? for more information.

6. DART can be used to test new DA algorithms. Many such algorithms have been successfully implemented,
tested, and published using DART. This is not covered in this getting started guide as this is an “advanced user”
functionality, so for this purpose it is best to first get in touch with the DART team at dart @ ucar.edu to make
the process as smooth as possible.

7. Finally, and perhaps most importantly, DART has world-class support available from the DART team at NCAR.
A talented team of dedicated software engineers and data assimilation scientists work together to continually
improve DART and support user needs. See the About page for more information about the DART team.

36 Chapter 6. References

https://www.apache.org/licenses/LICENSE-2.0
https://dart.ucar.edu/about/

DART, Release 9.16.0

6.12 A brief history of DART

The DART project was initiated in August 2001, and in 2003, the Data Assimilation Research Section (DAReS) was
officially formed at NCAR. In 2004, the first officially supported version of DART was released. Consistent version
control history is available back to 2005, making DART an extremely long-lived and well-supported software project.
Since 2004, there have been more than a dozen releases. The first release, Easter, began the trend of naming the major
releases after islands in alphabetical order in the following sequence:

Release Date Brief description

Easter 8 Mar 2004 | Initial release

Fiji 29 Apr | Enhanced portability; support for CAM and WRF
2004

Guam 12 Aug | New observation modules
2004

Pre-Hawaii 20 Dec | New filtering algorithms
2004

Hawaii 28 Feb 2005 | New filtering algorithms

DA Workshop | 13 Jun 2005 | Tutorial, observation preprocessing

2005

Pre-Iceland 20 0ct 2005 | Huge expansion of real observation capability

Iceland 23 Nov | Huge expansion of real observation capability
2005

Post-Iceland 20 Jun 2006 | Observation-space adaptive inflation

Pre-J 02 Oct2006 | Updated scalable filter algorithm

Jamaica 12 Apr | Vertical localization, extensive MPI testing
2007

Kodiak 30Jun 2011 | New obs types, new diagnostics, new utilities

Lanai 13 Dec | Support for many new models, chemistry/aerosol types, new diagnostics, new
2013 utilities

Manhattan 15 May | Native netCDF support, better scaling/performance
2017

In September 2009, DART was featured on the cover of the Bulletin of the American Meteorological Society (BAMS):

6.12. A brief history of DART

37

DART, Release 9.16.0

AIMING FOR BETTER PREDICTION
The Data Assimilation Research Testbed

To access the issue, see the September 2009 issue here. To read the DART article directly see the article here.

38 Chapter 6. References

https://journals.ametsoc.org/view/journals/bams/90/9/1520-0477-90_9_fmi.xml
https://journals.ametsoc.org/doi/full/10.1175/2009BAMS2618.1

DART, Release 9.16.0

On the Publications page there are over 40 example publications that use DART, although there are many additional
publications using DART not listed. The seminal BAMS paper has over 400 citations according to Google Scholar.
The core algorithms used in DART have also been cited many more times. For example, the core EAKF algorithm
(Anderson 2001) used in DART has over 1500 citations according to Google scholar.

6.13 High-level data assimilation workflows in DART

In this section we present two high-level data assimilation workflows that show the relevant DART programs with their
inputs and outputs. These two workflows represent two different types of DA experiments typically run.

It is possible to run DART in Observation System Simulation Experiment (OSSE) mode. In OSSE mode, a perfect
“true” model trajectory is created, and synthetic observations are generated from the “truth” with added noise. This
is useful to test the theoretical capability of DA algorithms, observations, and/or models. In this document so far, we
have conducted only OSSEs.

It is also possible to run DART in a more realistic Observation System Experiment (OSE) mode. In an OSE, there is
no perfect model truth, which is similar to real-world situations where the true values of the model state will likely never
be perfectly known. The observations (which again themselves are noisy and imperfect) are the only way to get a look
at the “truth” that is estimated by the model state. In OSE mode, the user must provide observations to DART, which
are usually from real-world observation systems (which come with all of their own idiosyncrasies and imperfections).
DART can help generate ensemble perturbations, or the user can specify their own.

The filtering aspect is the same for both OSSE and OSE experiments, and many of the same tools for data assimilation
are available in OSSE and OSE modes. The core difference, therefore, is the existence of the perfect model “truth.”

For a simple model such as Lorenz 63 investigated above, DART can typically advance the model time explicitly
through a Fortran function call, allowing the filtering to compute all necessary time steps in sequence without exiting
the DART program. However, for larger models (or those that DART cannot communicate with through Fortran), a
shell-script may be necessary to run the model and advance the time forward. For the largest models, the model state is
typically advanced in parallel over many computing nodes on a supercomputer. In this more complex case, DART only
considers one step at a time in order to combine the observations and the prior ensemble to find the posterior analysis,
which will then be used to restart the model and continue the forecast.

For efficiency reasons, data from models with large states may be written in separate files for every ensemble member at
every stage of the assimilation process. Data from models with small states may be conveniently be written as variables
inside a single netCDF file.

6.13. High-level data assimilation workflows in DART 39

https://dart.ucar.edu/publications/
http://scholar.google.com
https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2

DART, Release 9.16.0

6.13.1 Simple model workflow with an OSSE

The first example DA workflow is for a model that can be advanced by DART with all ensemble members stored in a
single file running an OSSE. Details of the executables mentioned below can be found in Programs included in DART .

40 Chapter 6. References

DART, Release 9.16.0

DART executable || State file

Legend: — —
Observation file [[Misc file
observation |_ generates
fortran code
. namelist wvalues %
input.nml »| preprocess
defines
create_obs_seq E » set_def.out
. replicates _ p
create_fixed_network_seq 2 > obs_seq.in
|

obs template

perfect_input.cdl
¥ ncgen

perfect_input.nc

init state

v

restart

perfect_model_obs » perfect_output.nc
model
traj_
> true_state.nc
obs +
noiss

obs_seq.out
|

actual obs vals

filter_input.cdl
¥ ncgen

filter_input.nc

ensemble init wvals

v
. inflation .,
—>| filter > preassim.nc

inflation .

> analysis.nc

Sore. posth filter_output.nc

—adds b} obs_seq.final

bins

v

obs_diag_output.nc

!

Matlab diagnostic scripts

obs_diag

6.13. High-level data assimilation workflows in DART 41

DART, Release 9.16.0

As shown, the program preprocess takes the input .nml namelist file and generates Fortran code for the observations.
This code, along with the namelist, is used by all subsequent programs. create_obs_seq is used to define a set of
observations in set_def.out, which can be replicated through the program create_fixed_network_seq to create a
obs_seq.in file. There are two inputs to perfect_model_obs: the obs_seq. in file and perfect_input.nc (which
here is generated by perfect_input.cdl via ncgen). obs_seq. in provides perfect_model_obs with the observation
template (i.e. the location and type of observations), while perfect_input.nc provides the initial state that will be
used to advance the model. On output, the “perfect” model state at the final time, which can be used as a restart for
running this procedure again, will be written to perfect_output.nc (i.e. perfect_output.nc could be renamed
to perfect_input.nc to extend the OSSE), while the entire state trajectory will be stored in true_state.nc. The
noisy synthetic observations and noise-free truth (for verification only) will be stored in obs_seq. out. The observation
values of obs_seq.out will be input to filfer along with the filter_input.nc (generated by filter_input.cdl
via ncgen), which contains the initial state for all the ensemble members. The output of filter is preassim.nc, which
contains the prior state for all the ensemble members just before applying DA (so including prior inflation if it is being
used); analysis.nc, which contains the posterior state for all the ensemble members after assimilation (and including
inflation if it is being used); filter_output.nc, which is the final posterior that could be used to restart the OSSE
process; and obs_seq.final, which adds the forward-calculated expected values h(x) for each observation. The
obs_seq. final file can be analyzed and binned by the obs_diag program, producing the file obs_diag_output.nc
which can be used for diagnostics.

6.13.2 Complex model workflow with an OSE

The second workflow is for a complex model with all ensemble members stored in separate files running an OSE. In
this case, DART will only operate on one model output at a time. External programs will advance the model states,
generate the observations, and call DART again. Details of DART’s internal programs, which are mentioned below,
can be found in Programs included in DART . The following diagram in shows the high-level DART flow in this case:

42 Chapter 6. References

DART, Release 9.16.0

— A

Observations \m

— . Assimilate

Fortran
namelist

Posteriors

S
—
—

model
states

Forecas advance

model
i states

updated
model
states

Within a single time step, DART will use the filter program to run the “Assimilate” portion of the above diagram and/or
the “diagnostics™ as follows:

6.13. High-level data assimilation workflows in DART 43

DART, Release 9.16.0

DART executable || State file

Legend: — —
Observation file || Misc file

observation P generates
fortran code |

. namelist values §

—' input.nml »| preprocess
outputs

user obs converter > obs_seq.out

actual obs wvals

EQ mem (fcst) k

ensemble input

L{ Ens mem (fcst) 1

\ 4 . _ I_ Ens mem (infl) k
preassim / postassim - s]

—>| filter = | Ens mem (infl) 1

Eps mem_(out) k

outgut =il
Ens mem (out) 1
2dds D01 obs_seq.final
& ;
—»! obs_diag bans »| obs_diag_output.nc

Matlab diagnostic scripts

The single time-step workflow for an OSE experiment within a single step is slightly simpler than the OSSE equivalent
as DART handles less of the process. Like the OSSE case, the namelist and preprocessed observation source files are
input to all other DART programs. In the OSE case, however, the user must provide an obs converter that will output
a obs_seq.out file. There are many DART utilities to make this process easier, but for the OSE case the obs_seq.

44 Chapter 6. References

DART, Release 9.16.0

out file is ultimately the user’s responsibility (to avoid duplicating effort, see the list of existing observation types in
Important capabilities of DART). Here, the option to run with one file for each ensemble member is demonstrated.
There are k ensemble members used as input to filter, which also outputs X members for the prior and posterior. The
obs_seq.final and obs_diag_output.nc are used in the same way as in the OSSE case. The names of the input files
and output files can be controlled by the user through the filter_input_list.txt and filter_output_list.txt
files, which can contain the user-specified list of the ensemble input or output files, respectively.

Another view of the stages of filter is shown in the following diagram:

forecast.nc
Ensemble Apply Prior
Forecasts Inflation

analysis.nc preassim.nc

Apply Posterior Assimilation
Inflation Updates State
postassim.nc

As shown here, an ensemble forecast is stored in forecast.nc , to which prior inflation can be applied and stored
in preassim.nc. Once assimilation is applied, the output can be stored in postassim.nc, and finally if posterior
inflation is applied, the final analysis can be written in analysis.nc . The model forecast will start from the analysis
to advance the model in order to start the cycle over again.

Note: The “forecast” will be the same as the “preassim” if prior inflation is not used, and the “postassim” will be the
same as the “analysis” if posterior inflation is not used. The stages_to_write variable in the “&filter_nml” section of
the input.nml namelist controls which stages are output to file. For a multi-file case, the potential stages_to_write
are “input, forecast, preassim, postassim, analysis, output” while for a single file the same stages are available with the
exception of “input.”

Note: In the above cycling diagram, there will actually be one file per member, which is not shown here in order to
simplify the process.

Important: The decision to store ensemble members as separate files and whether to run an OSSE or OSE are
independent. An OSSE can be run with multiple files and an OSE can be run with all ensemble members stored in a
single file.

6.13. High-level data assimilation workflows in DART 45

DART, Release 9.16.0

6.14 DART’s design philosophy

In this section we cover DART’s design philosophy. Understanding this philosophy will make it easier to get started
with DART, as you will quickly be able to predict how and where to find a particular feature of DART.

The main design goals of DART are to:

1. Create a system that is coherent and easy to understand. DART is carefully engineered to have self-contained
programs that each do one job and do it well. Likewise, DART just does DA, and does it well.

2. Release source code that is as compatible as possible with the widest possible number of systems. The code
is written in Fortran 90, which is one of the lowest possible common denominators available on virtually all
systems. See the section Why Fortran? if this seems like a questionable decision to you in this modern world of
Matlab, C++, Java, Python, Go, etc.

3. Strive to limit library dependencies. There is only one required dependency of DART: netCDF. Many modern
systems have 10s or 100s of dependencies, each of which introduces complexity and the potential for bugs, lack
of support, broken backwards compatibility, etc. If you’ve ever been frustrated struggling to debug relationships
to packages you’ve never even heard of, you are likely to appreciate this DART design goal. Of course, there is
nothing to stop you from using whatever dependencies you require, for example, to collect observations for the
obs_seq.out in an OSE case, but DART by design will remain separate from that dependency for you and all
other users.

4. Only compile the code you need. If you are only using a single model for your experiments, there is no reason
to compile or even touch code for another model you never plan to use. Likewise, if you are not using a particular
observation operator in your experiment, there is also no need to compile it or let it cause you headaches. DART
recognizes this fact, and through the use of the mkmf utility and the preprocess program, only what you need
will ever be compiled.

5. Use explicit interfaces to enforce contract programming. In practice this means that it is easy to add new models,
observations operators, data assimilation algorithms, etc. as long as they can implement the required interface.
This approach allows all of the benefits of object-oriented programming without the added complexity for the end
user.

6. Provide results that are reliable and meaningful. The DART algorithms are carefully tested and maintained in
order to be quickly published along with appropriate analysis. In a world of chaos, being able to quantify and
shrink forecast uncertainty via data assimilation in a reliable way is a valuable tool for research and operations
and everything in between.

In short, DART is designed at each step to make it as easy as possible for users to get up and running with their models,
observations, and possibly even data assimilation algorithm advances.

6.14.1 Why Fortran?

Many users new to scientific computing such as graduate students raise their eyebrows when they first hear that a
program uses Fortran for active development. Fortran is considered by many outside (and some inside) of the scientific
computing community to be a dinosaur, old and decrepit, and not worthy of serious attention. However, this view is
short-sighted. There is a Chinese idiom , which means “to love the new and loathe the old,” indicating that just because
something is old does not automatically make it bad.

While Fortran does have some outdated features that are far removed from the mainstream of software engineering
(such as implicit typing by first initial of the variable), these can all be disabled, and the stylistic rules for easy-to-read,
modern Fortran are always followed by DART. On the other hand, Fortran has many other attractive features that make
it a top choice for modern scientific computing. In particular, Fortran offers vectorization of matrices that make it
possible to operate on entire elements of an array at once or perform linear algebra operations on multi-dimensional
arrays. With or without the use of the colon operator (:), Fortran multi-dimensional array support makes mathematical
algorithms easier to read than the equivalent code written in many other languages. This highly intuitive Fortran syntax

46 Chapter 6. References

DART, Release 9.16.0

was adopted by Matlab, NumPy, and other languages. Furthermore, for parallel programs using distributed memory in
MPI, Fortran remains a top choice along with C and C++ when considering performance. Python code, for example,
remains difficult to parallelize via MPI, not to mention the difficulties in supporting Python 2, Python 3, pip, anaconda,
virtualeny, ...

Altogether, for large mathematically-oriented programs that need to be parallel, Fortran remains a top choice, especially
considering the needs of DART:

1. DART does data assimilation, which is primarily mathematically-oriented operations on large data sets.
2. DART needs to be parallel with MPI to run on modern supercomputers.

3. Many users of DART are not software development professionals and appreciate straightforward and easily un-
derstandable code.

4. DART source distributions should be easy to compile and run reliably on many different systems. In practice
this means avoiding software features that might not be supported on all compilers or systems.

With these considerations in mind, the choice of Fortran for DART development is clear. DART remains highly suc-
cessful by keeping things simple and not fixing what is not broken even if it isn’t shiny and new.

6.15 Important capabilities of DART

In this section we discuss the capabilities of DART that may be of interest to the user. This is a partial list of all of the
functionality that is available in DART, and additional capabilities and improvements are continually being added.

As mentioned above, DART allows for both OSSE and OSE systems of models large and small. This allows users to
test both theoretical limits of DA, models, and observations with idealized experiments as well as to improve actual
real-world forecasts of chaotic systems with real observations.

6.15.1 Models supported by DART

A full list of models can be found /ere, but in brief the models supported by DART include:

6.15. Important capabilities of DART 47

DART, Release 9.16.0

Model Latest version | Model Latest version
lorenz_63 Manhattan lorenz_84 Manhattan
lorenz_96 Manhattan lorenz_96_2scale | Manhattan
lorenz_04 Manhattan simple_advection | Manhattan
bgrid_solo Manhattan WRF Manhattan
MPAS Manhattan ATM Manhattan
ROMS Manhattan CESM Manhattan
CAM-FV Manhattan CAM-CHEM Manhattan
WACCM Manhattan WACCM-X Manhattan
CICE Manhattan CM1 Manhattan
FESOM Manhattan NOAH-MP Manhattan
WRF-Hydro | Manhattan GCCOM Lanai

LMDZ Lanai MITgcm_ocean Lanai
NAAPS Lanai AM2 Lanai
CAM-SE Lanai CLM Lanai
COAMPS Lanai COSMO Lanai
Dynamo Lanai GITM Lanai

Ikeda Lanai JULES Lanai
MPAS_ocean | Lanai null_model Lanai
openggcm Lanai PARFLOW Lanai

sqg Lanai TIE-GCM Lanai
WRF-CHEM | Lanai ECHAM Prior to Lanai
PBL_1d Prior to Lanai MITgem_annulus | Prior to Lanai
forced_barot | Prior to Lanai pe2lyr Prior to Lanai
ROSE Prior to Lanai CABLE Prior to Lanai

The models listed as “Prior to Lanai” will take some additional work to integrate with a supported version of DART;
please contact the dart @ ucar.edu team for more information. The versions listed as “Lanai” will be ported to the
Manhattan version of DART depending on the needs of the user community as well as the availablity of resources on

the DART team.

6.15.2 Observation converters provided by DART

Given a way to compute the expected observation value from the model state, in theory any and all observations can
be assimilated by DART through the obs_seq.out file. In practice this means a user-defined observation converter
is required. DART provides many observation converters to make this process easier for the user. Under the directory
DART/observations/obs_converters there are multiple subdirectories, each of which has at least one observation

converter. The list of these directories is as follows:

Observation Directory Format
Atmospheric Infrared Sounder satellite retrievals AIRS HDF-EOS
Advanced Microwave Sounding Unit brightness temperatures AIRS netCDF

Aviso: satellite derived sea surface height Aviso netCDF

Level 4 Flux Tower data from AmeriFlux Ameriflux Comma-separated text
Level 2 soil moisture from COSMOS COSMOS Fixed-width text
Doppler wind lidar DWL ASCII text

GPS retrievals of precipitable water GPSPW netCDF

GSI observation file GSI2DART Fortran binary
Global Temperature-Salinity Profile Program (GTSPP) GTSPP netCDF
Meteorological Assimilation Data Ingest System (MADIS) MADIS netCDF

continues on next page

48

Chapter 6. References

https://airs.jpl.nasa.gov/
https://aqua.nasa.gov/content/amsu
https://www.aviso.altimetry.fr/en/home.html
http://ameriflux.lbl.gov/
http://cosmos.hwr.arizona.edu/
http://www.nodc.noaa.gov/GTSPP/index.html
http://madis.noaa.gov/

DART, Release 9.16.0

Table 1 - continued from previous page

Observation Directory Format

MIDAS ionospheric obs MIDAS netCDF

MODIS satellite retrievals MODIS Comma-separated text

NCEP PREPBUFR NCEP/prep_bufr PREPBUFR

NCEP ASCII observations NCEP/ascii_to_obs | NCEP text files

ROMS verification observations ROMS netCDF

Satellite winds from SSEC SSEC ASCII text

Sea surface temperature SST netCDF

Special Sensor Ultraviolet Spectrographic Imager (SSUSI) retrievals | SSUSI netCDF

World Ocean Database (WOD) WOD World Ocean Database packed ASCII
National Snow and Ice Data Center sea ice obs cice Binary sea ice

VTEC Madrigal upper atmospheric obs gnd_gps_vtec ASCII text

GPS obs from COSMIC 2ps netCDF

Oklahoma Mesonet MDF obs ok_mesonet Oklahoma Mesonet MDF files
QuikSCAT scatterometer winds quikscat HDF 4

Radar reflectivity/radial velocity obs Radar WSR-88D (NEXRAD)
MODIS Snowcover Fraction obs SNOw General text

Text file (e.g. spreadsheet) obs Text General text

Total precipitable water from AQUA tpw HDF-EOS

Automated Tropical Cyclone Forecast (ATCF) obs Tropical Cyclones | Fixed width text

LITTLE R obs var little-r

MMS5 3D-VAR radar obs var MMS5 3D-VAR 2.0 Radar data files

6.15.3 Data assimilation algorithms available in DART

DART allows users to test the impact of using multiple different types of algorithms for filtering, inflation/deflation,
and covariance localization.

DART offers numerous filter algorithms. These determine how the posterior distribution is updated based on the
observations and the prior ensemble. The following table lists the filters supported in DART along with their type (set
by filter_kind in input.nml under the “assim_tools_nml” section):

Filter | Filter Name References

#

1 EAKF (Ensemble Adjustment Kalman | Anderson, J. L., 2001." Anderson, J. L., 2003.> Anderson,
Filter) J., Collins, N., 2007}

2 ENKF (Ensemble Kalman Filter) Evensen, G., 2003.7

3 Kernel filter

4 Observation Space Particle filter

5 Random draw from posterior None. IMPORTANT: (contact dart @ ucar.edu before using)

6 Deterministic draw from posterior with | None. IMPORTANT: (contact dart @ ucar.edu before using)
fixed kurtosis

7 Boxcar kernel filter

8 Rank Histogram filter Anderson, J. L., 2010.°

9 Particle filter Poterjoy, J., 2016.°

I Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation.

doi:10.1175/1520-0493(2001)129<2884: AEAKFF>2.0.CO;2
2 Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Monthly Weather Review, 131, 634-642. doi:10.1175/1520-
0493(2003)131<0634:ALLSFF>2.0.CO;2
3 Anderson, J., Collins, N., 2007: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation. Journal of Atmospheric and

Monthly Weather Review, 129, 2884-2903.

6.15. Important capabilities of DART

49

https://www.sciencedirect.com/science/article/pii/S0273117712001135
https://modis.gsfc.nasa.gov/
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm
https://www.myroms.org/
https://www.ssec.wisc.edu/data/
https://ssusi.jhuapl.edu/
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html
http://nsidc.org/
http://millstonehill.haystack.mit.edu/
http://www.cosmic.ucar.edu/
http://www.mesonet.org/
http://winds.jpl.nasa.gov/missions/quikscat/index.cfm
https://modis.gsfc.nasa.gov/data/dataprod/mod10.php
https://www.nrlmry.navy.mil/atcf_web/
http://www2.mmm.ucar.edu/mm5/On-Line-Tutorial/little_r/little_r.html
http://www2.mmm.ucar.edu/mm5/
https://doi.org/10.1175/1520-0493(2001)129\T1\textless {}2884:AEAKFF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131\T1\textless {}0634:ALLSFF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131\T1\textless {}0634:ALLSFF\T1\textgreater {}2.0.CO;2

DART, Release 9.16.0

DART also has several inflation algorithms available for both prior (the first value in the namelist) and posterior (the
second value in the namelist). The following table lists the inflation “flavors” supported in DART along with their type
number (set by inf_flavor in input.nml under the “filter_nml” section):

Flavor # | Inflation flavor name References

0 No inflation n/a

1 (Not Supported) n/a

2 Spatially-varying state-space (Gaussian) Anderson, J. L., 2009.”

3 Spatially-fixed state-space (Gaussian) Anderson, J. L., 2007.%

4 Relaxation to prior spread (posterior inflation only) Whitaker, J.S. and T.M. Hamill, 2012.”
5 Enhanced spatially-varying state-space (inverse gamma) | El Gharamti M., 2018.""

DART has the ability to correct for sampling errors in the regression caused by finite ensemble sizes. DART’s sampling
error correction algorithm (and localization algorithm) is described in Anderson, J.L., 2012'' Sampling error correc-
tion can be turned on or off via the sampling_error_correction variable in the input . nml under the “assim_tools_nml”
section.

The following covariance localization options are available (set by select_localization in input.nml under the
“cov_cutoff_nml” section):

Loc # | Localization type References

1 Gaspari-Cohn eq. 4.10 | Gaspari, G. and Cohn, S. E., 1999."
2 Boxcar None

3 Ramped boxcar None

The following image depicts all three of these options:

Oceanic Technology, 24, 1452-1463. doi:10.1175/JTECH2049.1

4 Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dynamics. 53(4), 343-367.
doi:10.1007%2Fs10236-003-0036-9

5 Anderson, J. L., 2010: A Non-Gaussian Ensemble Filter Update for Data Assimilation. Monthly Weather Review, 139, 4186-4198.
doi:10.1175/2010MWR3253.1

6 Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Monthly Weather Review, 144 59-76. doi:10.1175/MWR-
D-15-0163.1

7 Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A, 61, 72-83,
doi:10.1111/§.1600-0870.2008.00361.x

8 Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A, 59, 210-224,
doi:10.1111/§.1600-0870.2006.00216.x

9 Whitaker, J.S. and T.M. Hamill, 2012: Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Monthly Weather
Review, 140, 3078-3089, doi:10.1175/MWR-D-11-00276.1

10'E] Gharamti M., 2018: Enhanced Adaptive Inflation Algorithm for Ensemble Filters. Monthly Weather Review, 2, 623-640, doi:10.1175/MWR-
D-17-0187.1

T Anderson, J.L., 2012: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation. Monthly Weather Review,
140, 2359-2371. doi:10.1175/MWR-D-11-00013.1

12 Gaspari, G. and Cohn, S. E., 1999: Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal Meteo-
rological Society, 125, 723-757. doi:10.1002/qj.49712555417

50 Chapter 6. References

https://doi.org/10.1175/JTECH2049.1
https://doi.org/10.1007%2Fs10236-003-0036-9
https://doi.org/10.1175/2010MWR3253.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-11-00013.1
https://doi.org/10.1002/qj.49712555417

DART, Release 9.16.0

Cutoff Options
1 2 T T T T R T
Gaspari-Cohn
Boxcar-ramp
Boxcar --------
1 - I/;\.... -
// \\
/ \
| / l\\
0.8 [: / \ 3 7
5 : \ 1
3 / \
L / \
Q / \
wn 0 6 [/f \\ -
c / \
[] / \
e / \
[0 / \
— / \\
8 ! / \
£ |) \ |
: / \\ :
// \\
/ \
. r/ \\ !
02 / A -1
‘ //
0 | _— I] I — i
-2 -1 0 1 2
Times Cutoff Distance
References

6.16 Working with collaborators on porting hew models

The DART team often collaborates with other groups to help write the interface code to a new model. The most efficient
way to get started is to meet with DAReS staff either virtually or in person, to discuss what is involved in supporting a
different model.

If part of your team isn’t familiar with data assimilation yet, you should review the introductory material in this docu-
mentation and and also look at work through the concepts in the DART Tutorial.

6.16. Working with collaborators on porting new models 51

DART, Release 9.16.0

6.16.1 Goals of using DART

DART is the Data Assimilation Research Testbed. It is a collection of tools and routines and scripts that allow users to
built custom solutions and explore a variety of DA related efforts. It is not a turnkey system; it must be built before use
and is often customized based on needs and goals.

DART is often used for the following types of projects:
» Learning about Data Assimilation (DA)
» Using DART with an existing model and supported observations
¢ Adding a DART interface to a new model
» Using new observations with DART in an existing model
» Using both a new model and new observations with DART
* Using DART to teach DA

Everything on this “possible goals™ list except adding support for a new model can generally be done by a single user
with minimal help from the DART team. Therefore this discussion focuses only on adding a new model to DART.

6.16.2 Should | consider using DART?

DART is an ensemble-based DA system. It makes multiple runs of a model with slightly different inputs and uses the
statistical distribution of the results to decide how to adjust the model state to be more consistent with the observations.

The advantage of ensemble systems is that no changes to the model itself are required. The disadvantage is that multiple
runs of the model are needed and this can be computationally expensive.

Simple models can be added to DART with a single person effort, but larger, more complex models can require multiple
person-months with support from the DART team to add the interfaces and scripts needed to perform a large-scale DA
experiment.

The DART code is in Fortran. The supporting scripts and tools are a mix of shell scripts and python. The model can
be written in any language; it will only be run and the input and output files will be used by DART.

6.16.3 Things to discuss before beginning

Is your model appropriate for any kind of DA?

If your model isn’t chaotic, you don’t need data assimilation. In non-chaotic models, you can improve your predictions
by running the model, examining the difference between the prediction and the observations, inverting the equations
inside the model to compute how different inputs would have produced outputs closer to the observations.

Chaotic models do not have a simple relationship between inputs and outputs. There are internal feedbacks and non-
linear behaviors that make it difficult to adjust the inputs to make the outputs better match the observations.

52 Chapter 6. References

DART, Release 9.16.0

What is your model state?

“Model state” has a very specific definition that can be the source of much confusion if someone running a model has
not thought about DA before. Formally it is the minimal set of variables that must be saved when a model stops so it
can be restarted again exactly.

At first glance this means all the variables on the right side of the equals sign for the governing equations of the system.
However many models which have not been designed with DA in mind may have no clear time when all parts of the
model are at a consistent time. e.g. some variables may be 1/2 timestep ahead or behind others. Some derived variables
may be expensive to compute and so are precomputed and stored and not recomputed. If the DA process changes the
state variables all derived variables must be recomputed before proceeding.

Restart files often store many more variables than the minimal set needed to restart the model. Often other variables
are used in diagnostic routines or are of interest on their own. Generally these are not considered part of the model
state.

How is your model execution controlled?

Generally larger and more complex models have an environment they are expecting to run in/with. e.g. scripts to
control the execution parameters, or input parameter files; how many processors are used in a parallel system, how the
tasks are distributed over the hardware; how long does the execution run, in model time, and what variables are written
to the output files.

For DA, at a minimum there must be a way to control how long the model runs before it writes out the results and exits.

For large models, the DA filter process is a large parallel program generally requiring a multi-processor supercomputer
or cluster. Many models themselves are large parallel programs, so there can be issues with how the switch between
model and DA process is done.

New or adjusted scripting is generally required to include the DA process in the overall execution flow.

Cycling with a DA system

The DA process is generally a cycle of running the model for a certain amount of model time, then running the DA
filter to adjust the model state before continuing.

These two steps happen over and over as observations are available to guide the adjustments to the model state.

Models may be written with the assumption that startup costs are only done once and then the model runs for a long
period of time. When used with DA models are generally started and stopped after running a relatively short amount
of model time. If model startup time is long this can result in unacceptably slow performance.

A small amount of round-off error is often introduced when a model writes restart files before stopping. So running a
model N timesteps forward vs. running N/2, stopping, writing restart files, starting, reading restart files, and finishing
the last N/2 timesteps will may not result in identical values. Large changes suggest that the model is not a good
candidate for a cycling DA system.

The goal is to minimize the differences. This can require small or large changes to make the model behave as expected
with repeated starting and stopping.

Some models include external forcing, for example boundary conditions from a separate model. If cycling the forcing
files may need to be updated periodically outside of the DA system.

6.16. Working with collaborators on porting new models 53

DART, Release 9.16.0

What coordinate system is used by your model?

Coordinate systems use a series of numbers to describe the relationship in space between parts of the model state
and where observations are located. In Earth-system models, often a latitude-longitude-vertical coordinate system is
used. X,Y,Z Cartesian coordinates are also used to describe 3D space. Other options include cyclindrical or spherical
coordinates, and unit-line, -square or -cube coordinates with cyclical boundaries.

Only a single coordinate system can be selected and it applies to both the model state locations as well as the observa-
tions.

If the model coordinate system is based on some other space it may be necessary to transform it into physical coordinates
before running DA. For example, some models compute in spectral space and the output must be translated into a
physical space before DA can be done.

What file format is used for model restart files?

DART reads and writes NetCDF file format. Many earth-system models already use this format. If the model does not,
converter programs from the native format to NetCDF and back are needed. NetCDF is a self-describing format with
metadata that allows DART to read and process model data without additional configuration files.

What quantities are in the model state?

DART defines a “Quantity” as the fundamental physical object a value is measuring. Examples are Temperature,
Pressure, Salinity, etc. Each value in a model state must be associated with a defined quantity.

What observations are you intending to assimilate?

Any observation you intend to assimilate requires a method to compute an “expected value” based on the model state.
Often the observation is of the same quantity as exists in the model state, so computing the expected value is a direct
process.

Other times the expected value is a function of quantities in the model state, and code called a “forward operator’ uses
one or more quantities from the model state and computes the expected value.

If the model state does not contain quantities that are needed to compute an expected value, auxiliary data values can
be read and used to compute the expected value. But if the expected value cannot be computed or is not in some way
a function of the model state, the observations cannot be assimilated.

How are you going to generate your initial ensemble?

Most models don’t have an existing ensemble of states ready for ingestion into an ensemble DA system. Options for
generating the initial ensemble include adding random perturbations to a single variable in a single state, perturbing
forcing variables differently for each ensemble member, or perturbing the entire state.

For models which have a lot of error growth it may be enough to add a very small amount of noise to a single variable
in the state to generate an ensemble of states and then run them forward in time with the model to generate states which
have sufficient differences.

For models with slower error growth, larger perturbations may be needed, a longer model advance time before starting
assimilation, or perturbations of forcing or boundary files may be needed.

The goal is to generate a set of model states which are different but contain internally-consistent values.

An ensemble of states without sufficient differences (spread) will reject assimilating observations.

54 Chapter 6. References

DART, Release 9.16.0

6.16.4 What code is required to interface a model with DART?

There is a single FORTRAN module that hides the model details from the rest of the DART system. Generally the
routines which require the most work are the interpolation routine, followed by the metadata routine and the “get close”
localization routines.

Interpolation

Given an observation quantity and location, the model interface routines must return an array of values, one for each
ensemble member. The values must be the best estimate of what a real instrument would return if the real state of the
system were each of the ensemble values.

For a regular grid this can be computed fairly simply with routines already provided in the DART system. It involves
locating the grid values that enclose the observation location, and doing bi- or tri-linear interpolation to the actual
location.

However, many models have non-regular grid, especially in the vertical coordinates for an earth-system-based model.
Or the grid can be an irregular mesh or deformed mesh. It may take searching or transforms to identify the closest
values in the model state to use for interpolation.

Metadata

Given an offset into the model state, the model interface routines must return the location in the selected coordinate
system, and the quantity at that offset.

There are routines provided which simplify this for regular or deformed grids, so this generally is not too complex but
may require additional arrays for irregular grids or unstructured grids.

Localization

DART bases the impact of observations on the model state on the correlation between the array of predicted observation
values, the actual observation value and error, and the array of model state values.

In practice observations are only correlated with model state values “close” to the observation. Spurrious correlations
can occur which degrade the results after assimilation. Also there are efficiency gains if only parts of the model state
which are “close” to the observation are processed.

DART includes routines which can compute what part of the state are close to a given observation. However some
models have special considerations for whether they want to control the impact of observations on parts of the model
state and this can be adjusted based on code added to the model-specific parts of getting close observations and model
state.

Vertical issues

Most Earth System models use Latitude and Longitude for horizontal coordinates or can generate them if needed
(e.g. spectral models can transform their state into Lat/Lon coords). But often vertical coordinates pose additional
complications.

If the model and the observations both use the same coordinates for vertical, e.g. pressure or height, then there are
no need for conversion routines. But some models use terrain-following coordinates, or a mix of pressure and terrain
coordinates. Observation vertical locations can be reported in height or in pressure.

Additionally, if vertical localization is to be done in a different coordinate than the model or observations (e.g. scale
height), then conversion routines are needed.

6.16. Working with collaborators on porting new models 55

DART, Release 9.16.0

The interface code may need to read in additional arrays from the model in order to convert the vertical coordinates
accurately.

During the run of filter there are two options for when vertical conversion is done: all at the start, or on demand. If
the observations to be assimilated are expected to impact all or almost all of the state, doing all vertical conversion
at the start is more efficient. If the observations are expected to impact only a small percentage of the state variables
then doing it on demand is more efficient. The options here are namelist selectable at runtime and the impact on total
runtime can be easily measured and compared.

6.16.5 Reuse code when possible

The models/template directory has files that can be used to start porting code to support a new model, but we also
recommend looking at the existing supported models and reusing code from them if possible. Models with similar grid
types or vertical coordiates are good candidates.

6.17 Assimilation in a complex model

6.17.1 Introduction

Running a successful assimilation takes careful diagnostic work and experiment iterations to find the best settings for
your specific case.

The basic Kalman filter can be coded in only a handful of lines. The difficulty in getting an assimilation system working
properly involves making the right choices to compensate for sampling errors, model bias, observation error, lack of
model forecast divergence, variations in observation density in space and time, random correlations, etc. There are
tools built into DART to deal with most of these problems but it takes careful work to apply them correctly.

6.17.2 Your first attempt

If you are adding a new model or a new observation type, you should assimilate exactly one observation, with no model
advance, with inflation turned off, with a large cutoff, and with the outlier threshold off (see below for how to set these
namelist items).

Run an assimilation. Look at the obs_seq.final file to see what the forward operator computed. Use ncdiff to
difference the preassim_mean.nc and postassim_mean.nc (or output_mean.nc) diagnostic NetCDF files and
look at the changes (the “innovations”) in the various model fields. Is it in the right location for that observation? Does
it have a reasonable value?

Then assimilate a group of observations and check the results carefully. Run the observation diagnostics and look at
the total error and spread. Look carefully at the number of observations being assimilated compared to how many are
available.

Assimilations that are not working can give good looking statistics if they reject all but the few observations that happen
to match the current state. The errors should grow as the model advances and then shrink when new observations are
assimilated, so a timeseries plot of the RMSE should show a sawtooth pattern. The initial error entirely depends on
the match between the initial ensemble and the observations and may be large but it should decrease and then reach a
roughly stable level. The ensemble spread should ultimately remain relatively steady, at a value around the expected
observation error level. Once you believe you have a working assimilation, this will be your baseline case.

If the ensemble spread is too small, several of the DART facilities described below are intended to compensate for
ensemble members getting too close to each other. Then one by one enable or tune each of the items below, checking
each time to see what is the effect on the results.

56 Chapter 6. References

DART, Release 9.16.0

6.17.3 Next attempts

High-level data assimilation workflows gives an overview of a variety of complete assimilation experiments, including
the programs which need to be run and their input and output.

6.17.4 Important features of assimilations

Suggestions for the most common namelist settings and features built into DART for running a successful assimilation
include:

Ensemble size

In practice, ensemble sizes between 20 and 100 seem to work best. Fewer than 20-30 members leads to statistical errors
which are too large. More than 100 members takes longer to run with very little benefit, and eventually the results get
worse again. Often the limit on the number of members is based on the size of the model since you have to run N
copies of the model each time you move forward in time. If you can, start with 50-60 members and then experiment
with fewer or more once you have a set of baseline results to compare it with. The namelist setting for ensemble size
is&filter_nml :: ens_size

Localization

There are two main advantages to using localization. One is it avoids an observation impacting unrelated state variables
because of spurious correlations. The other is that, especially for large models, it improves run-time performance
because only points within the localization radius need to be considered. Because of the way the parallelization was
implemented in DART, localization was easy to add and using it usually results in a very large performance gain. See
here for a discussion of localization-related namelist items.

Inflation

Since the filter is run with a number of members which is usually small compared to the number of degrees of freedom
of the model (i.e. the size of the state vector or the number of EOFs needed to characterize the variability), the model
uncertainty is under-represented. Other sources of error and uncertainty are not represented at all. These factors lead to
the ensemble being ‘over-confident’, or having too little spread. More observations leads to more over-confidence. This
characteristic can worsen with time, leading to ensemble collapse to a single solution. Inflation increases the spread
of the members in a systematic way to overcome this problem. There are several sophisticated options on inflation,
including spatial and temporal adaptive and damping options, which help deal with observations which vary in density
over time and location. See Inflation for a discussion of inflation-related namelist items.

Outlier rejection

Outlier rejection can be used to avoid bad observations (ones where the value was recorded in error or the processing
has an error and a non-physical value was generated). It also avoids observations which have accurate values but the
mean of the ensemble members is so far from the observation value that assimilating it would result in unacceptably
large increments that might destablize the model run. If the difference between the observation and the prior ensemble
mean is more than N standard deviations from the square root of the sum of the prior ensemble and observation error
variance, the observation will be rejected. The namelist setting for the number of standard deviations to include is
&filter_nml :: outlier_threshold and we typically suggest starting with a value of 3.0.

6.17. Assimilation in a complex model 57

../assimilation_code/modules/assimilation/assim_tools_mod.html#Localization

DART, Release 9.16.0

Sampling error

For small ensemble sizes a table of expected statistical error distributions can be generated before running DART.
Corrections accounting for these errors are applied during the assimilation to increase the ensemble spread
which can improve the assimilation results. The namelist item to enable this option is &assim_tools_nml

sampling_error_correction. Additionally you will need to have the precomputed correction file
sampling_error_correction_table.nc, in the run directory. See the description of the namelist item in the &as-
sim_tools_nml namelist, and PROGRAM gen_sampling_err_table for instructions on where to find (or how to generate)
the auxiliary file needed by this code. See Anderson (2011).

Free run/forecast after assimilation

Separate scripting can be done to support forecasts starting from the analyzed model states. After filter exits, the models
can be run freely (with no assimilated data) further forward in time using one or more of the last updated model states
from filter. Since all ensemble members are equally likely a member can be selected at random, or a member close to the
mean can be chosen. See the PROGRAM closest_member_tool for one way to select a “close” member. The ensemble
mean is available to be used, but since it is a combination of all the member states it may not have self-consistent
features, so using a single member is usually preferred.

Evaluating observations without assimilation

Filter can be used to evaluate the accuracy of a single model state based on a set of available observations. Either
copy or link the model state file so there appear to be 2 separate ensemble members (which are identical). Set the filter
namelist ensemble size to 2 by setting ens_size to 2 in the &filter_nml namelist. Turn off the outlier threshold and
both Prior and Posterior inflation by setting outlier_threshold to -1, and both the inf_flavor values to O in the
same &filter_nml namelist. Set all observation types to be ‘evaluate-only’ and have no types in the ‘assimilate’ list
by listing all types in the evaluate_these_obs_types list in the &bs_kind_nml section of the namelist, and none
in the assimilation list. Run filter as usual, including model advances if needed. Run observation diagnostics on the
resulting obs_seq. final file to compute the difference between the observed values and the predicted values from
this model state.

Verification/comparison with and without assimilation

To compare results of an experiment with and without assimilating data, do one run assimilating the observations.
Then do a second run where all the observation types are moved to the evaluate_these_obs_types list in the
&obs_kind_nml section of the namelist. Also turn inflation off by setting both inf_flavor values to 0 in the &fil-
ter_nml namelist. The forward operators will still be called, but they will have no impact on the model state. Then the
two sets of diagnostic state space netcdf files can be compared to evaluate the impact of assimilating the observations,
and the observation diagnostic files can also be compared.

DART quality control flag added to output observation sequence file

The filter adds a quality control field with metadata ‘DART quality control’ to the obs_seq. final file. At present,
this field can have the following values:

58 Chapter 6. References

../assimilation_code/modules/assimilation/assim_tools_mod.html#Namelist
../assimilation_code/modules/assimilation/assim_tools_mod.html#Namelist

DART, Release 9.16.0

Observation was assimilated successfully

Observation was evaluated (as specified in namelist) and not used in the assimilation

The observation was used but one or more of the posterior forward observation operators failed

The observation was evaluated AND one or more of the posterior forward observation operators failed
One or more prior forward observation operators failed so the observation was not used

The observation was not used because it was not selected in the namelist to be assimilated or evaluated
The prior quality control value was too high so the observation was not used.

Outlier test failed (see below)

Vertical conversion failed

e EA A e Bl B

The outlier test computes the difference between the observation value and the prior ensemble mean. It then computes
a standard deviation by taking the square root of the sum of the observation error variance and the prior ensemble
variance for the observation. If the difference between the ensemble mean and the observation value is more than the
specified number of standard deviations, then the observation is not used and the DART quality control field is set to 7.

6.18 Message Passing Interface

6.18.1 Introduction

DART programs can be compiled using the Message Passing Interface (MPI). MPI is both a library and run-time system
that enables multiple copies of a single program to run in parallel, exchange data, and combine to solve a problem more
quickly.

DART does NOT require MPI to run; the default build scripts do not need nor use MPI in any way. However, for larger
models with large state vectors and large numbers of observations, the data assimilation step will run much faster in
parallel, which requires MPI to be installed and used. However, if multiple ensembles of your model fit comfortably
(in time and memory space) on a single processor, you need read no further about MPI.

MPI is an open-source standard; there are many implementations of it. If you have a large single-vendor system it
probably comes with an MPI library by default. For a Linux cluster there are generally more variations in what might
be installed; most systems use a version of MPI called MPICH. In smaller clusters or dual-processor workstations a
version of MPI called either LAM-MPI or OpenMPI might be installed, or can be downloaded and installed by the end
user.

Note: OpenMP is a different parallel system; OpenMPI is a recent effort with a confusingly similar name.

An “MPI program” makes calls to an MPI library, and needs to be compiled with MPI include files and libraries.
Generally the MPI installation includes a shell script called mpif90 which adds the flags and libraries appropriate for
each type of fortran compiler. So compiling an MPI program usually means simply changing the fortran compiler name
to the MPI script name.

These MPI scripts are built during the MPI install process and are specific to a particular compiler; if your system has
multiple fortran compilers installed then either there will be multiple MPI scripts built, one for each compiler type, or
there will be an environment variable or flag to the MPI script to select which compiler to invoke. See your system
documentation or find an example of a successful MPI program compile command and copy it.

6.18. Message Passing Interface 59

DART, Release 9.16.0

DART use of MPI

To run in parallel, only the DART ‘filter’ program (possibly the companion ‘wakeup_filter’ program), and the
‘GSI2DART"’ observation converter need to be compiled with the MPI scripts. All other DART executables should
be compiled with a standard FO0 compiler and are not MPI enabled. (And note again that ‘filter’ can still be built as
a single executable like previous releases of DART; using MPI and running in parallel is simply an additional option.)
To build a parallel version of the ‘filter’ program, the ‘mkmf_filter’ command needs to be called with the ‘-mpi’ option
to generate a Makefile which compiles with the MPI scripts instead of the Fortran compiler.

See the quickbuild. csh script in each $DART/models/*/work directory for the commands that need to be edited
to enable the MPI utilities. You will also need to edit the $DART /mkmf/mkmf . template file to call the proper version
of the MPI compile script if it does not have the default name, is not in a standard location on the system, or needs
additional options set to select between multiple Fortran compilers.

MPI programs generally need to be started with a shell script called ‘mpirun’ or ‘mpiexec’, but they also interact with
any batch control system that might be installed on the cluster or parallel system. Parallel systems with multiple users
generally run some sort of batch system (e.g. LSF, PBS, POE, LoadLeveler, etc). You submit a job request to this
system and it schedules which nodes are assigned to which jobs. Unfortunately the details of this vary widely from
system to system; consult your local web pages or knowledgeable system admin for help here. Generally the run scripts
supplied with DART have generic sections to deal with LSF, PBS, no batch system at all, and sequential execution, but
the details (e.g. the specific queue names, accounting charge codes) will almost certainly have to be adjusted.

The data assimilation process involves running multiple copies (ensembles) of a user model, with an assimilation
computation interspersed between calls to the model. There are many possible execution combinations, including:

* Compiling the assimilation program ‘filter’ with the model, resulting in a single executable. This can be either a
sequential or parallel program.

* Compiling ‘filter’ separately from the model, and having 2 separate executables. Either or both can be sequential
or parallel.

The choice of how to combine the ‘filter’ program and the model has 2 parts: building the executables and then
running them. At build time, the choice of using MPI or not must be made. At execution time, the setting of the
‘async’ namelist value in the filter_nml section controls how the “filter’ program interacts with the model.

Choices include:

* async = 0 The model and filter programs are compiled into a single executable, and when the model needs to
advance, the filter program calls a subroutine. See a diagram which illustrates this option.

* async =2 The model is compiled into a sequential (single task) program. If ‘filter’ is running in parallel, each filter
task will execute the model independently to advance the group of ensembles. See a diagram which illustrates
this option.

* async = 4 The model is compiled into an MPI program (parallel) and only ‘filter’ task O tells the startup script
when it is time to advance the model. Each ensemble is advanced one by one, with the model using all the
processors to run in parallel. See a diagram which illustrates this option.

* async ignored (sometimes referred to as ‘async 5’°, but not a setting in the namelist) This is the way most large
models run now. There is a separate script, outside of filter, which runs the N copies of the model to do the
advance. Then filter is run, as an MPI program, and it only assimilates for a single time and then exits. The
external script manages the file motion between steps, and calls both the models and filter in turn.

This release of DART has the restriction that if the model and the ‘filter’ program are both compiled with MPI and are
run in ‘async=4’ mode, that they both run on the same number of processors; e.g. if ‘filter’ is run on 16 processors,
the model must be started on 16 processors as well. Alternatively, if the user model is compiled as a single executable

60 Chapter 6. References

filter_async_modes.html#async0
filter_async_modes.html#async2
filter_async_modes.html#async4

DART, Release 9.16.0

(async=2), ‘filter’ can run in parallel on any number of processors and each model advance can be executed
independently without the model having to know about MPI or parallelism.

Compiling and running an MPI application can be substantially more complicated than running a single executable.
There are a suite of small test programs to help diagnose any problems encountered in trying to run the new version
of DART. Look in DART/developer_tests/mpi_utilities/tests/README for instructions and a set of tests to
narrow down any difficulties.

Performance issues and timing results

Getting good performance from a parallel program is frequently difficult. Here are a few of reasons why:

¢ Amdahl’s law You can look up the actual formula for this “law” in the Wikipedia, but the gist is that the amount
of serial code in your program limits how much faster your program runs on a parallel machine, and at some
point (often much sooner than you’d expect) you stop getting any speedup when adding more processors.

* Surface area to volume ratio Many scientific problems involve breaking up a large grid or array of data and
distributing the smaller chunks across the multiple processors. Each processor computes values for the data on the
interior of the chunk they are given, but frequently the data along the edges of each chunk must be communicated
to the processors which hold the neighboring chunks of the grid. As you increase the number of processors (and
keep the problem size the same) the chunk size becomes smaller. As this happens, the ‘surface area’ around
the edges decreases slower than the ‘volume’ inside that one processor can compute independently of other
processors. At some point the communication overhead of exchanging edge data limits your speedup.

* Hardware architecture system balance Raw CPU speeds have increased faster than memory access times, which
have increased faster than access to secondary storage (e.g. I/O to disk). Computations which need to read input
data and write result files typically create I/O bottlenecks. There are machines with parallel filesystems, but
many programs are written to have a single processor read in the data and broadcast it to all the other processors,
and collect the data on a single node before writing. As the number of processors increases the amount of time
spent waiting for I/O and communication to and from the I/O node increases. There are also capacity issues; for
example the amount of memory available on the I/O node to hold the entire dataset can be insufficient.

* NUMA memory Many machines today have multiple levels of memory: on-chip private cache, on-chip shared
cache, local shared memory, and remote shared memory. The approach is referred as Non-Uniform Memory Ac-
cess (NUMA) because each level of memory has different access times. While in general having faster memory
improves performance, it also makes the performance very difficult to predict since it depends not just on the
algorithms in the code, but is very strongly a function of working-set size and memory access patterns. Beyond
shared memory there is distributed memory, meaning multiple CPUs are closely connected but cannot directly
address the other memory. The communication time between nodes then depends on a hardware switch or net-
work card, which is much slower than local access to memory. The performance results can be heavily influenced
in this case by problem size and amount of communication between processes.

Parallel performance can be measured and expressed in several different ways. A few of the relevant definitions are:

» Speedup Generally defined as the wall-clock time for a single processor divided by the wall-clock time for N
processors.

« Efficiency The speedup number divided by N, which for perfect scalability will remain at 1.0 as N increases.
* Strong scaling The problem size is held constant and the number of processors is increased.

* Weak scaling The problem size grows as the number of processors increases so the amount of work per processor
is held constant.

We measured the strong scaling efficiency of the DART ‘filter’ program on a variety of platforms and problem sizes.
The scaling looks very good up to the numbers of processors available to us to test on. It is assumed that for MPP
(Massively-Parallel Processing) machines with 10,000s of processors that some algorithmic changes will be required.
These are described in this paper.

6.18. Message Passing Interface 61

http://www.image.ucar.edu/DAReS/DART/scalable_paper.pdf

DART, Release 9.16.0

User considerations for their own configurations

Many parallel machines today are a hybrid of shared and distributed memory processors; meaning that some small
number (e.g. 2-32) of CPUs share some amount of physical memory and can transfer data quickly between them,
while communicating data to other CPUs involves slower communication across either some kind of hardware switch
or fabric, or a network communication card like high speed ethernet.

Running as many tasks per node as CPUs per shared-memory node is in general good, unless the total amount of
virtual memory used by the program exceeds the physical memory. Factors to consider here include whether each
task is limited by the operating system to 1/Nth of the physical memory, or whether one task is free to consume more
than its share. If the node starts paging memory to disk, performance takes a huge nosedive.

Some models have large memory footprints, and it may be necessary to run in MPI mode not necessarily because the
computation is faster in parallel, but because the dataset size is larger than the physical memory on a node and must
be divided and spread across multiple nodes to avoid paging to disk.

6.19 Filters

The different types of assimilation algorithms (EAKF, ENKF, Kernel filter, Particle filter, etc.) are determined by the
&assim_tools_nml:filter_kind entry, described in MODULE assim_tools_mod. Despite having ‘filter’ in the
name, they are assimilation algorithms and so are implemented in assim_tools_mod. £90.

6.20 Inflation

In pre-Manhattan DART, there were two choices for the basic type of inflation: observation-space or state-space.
Observation-space inflation is no longer supported. (If you are interested in observation-space inflation, talk to Jeff
first.) The rest of this discussion applies to state-space inflation.

State-space inflation changes the spread of an ensemble without changing the ensemble mean. The algorithm
computes the ensemble mean and standard deviation for each variable in the state vector in turn, and then moves the
member’s values away from the mean in such a way that the mean remains unchanged. The resulting standard
deviation is larger than before. It can be applied to the Prior state, before observations are assimilated (the most
frequently used case), or it can be applied to the Posterior state, after assimilation. See Anderson (2007), Anderson
(2009).

Historically, inflation was first introduced to address sampling errors (the fact that we are limited to a small ensemble
size). Latest research, e.g. El Gharamti et al. (2019) suggests that prior and posterior inflation can be used to address
different issues in the filtering problem. Prior inflation is able to address issues in the forecast step such as model errors
while posterior inflation can help mitigate sampling errors in the analysis step.

Inflation values can vary in space and time, depending on the specified namelist values. Even though we talk about
a single inflation value, the inflation has a probability density with a mean and standard deviation. We use the mean
value when we inflate, and the standard deviation indicates how sure of the value we are. Larger standard deviation
values mean “less sure” and the inflation value can increase more quickly with time. Smaller values mean “more sure”
and the time evolution will be slower since we are more confident that the mean (inflation value) is correct.

The standard deviation of inflation allows inflation values to increase with time, if required by increasing density or
frequency of observations, but it does not provide a mechanism to reduce the inflation when the frequency or density
of observations declines. So there is also an option to damp inflation through time. In practice with large geophysical
models using damped inflation has been a successful strategy.

62 Chapter 6. References

http://dx.doi.org/10.1175/JTECH2049.1
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1175/MWR-D-18-0389.1

DART, Release 9.16.0

The following namelist items which control inflation are found in the input .nml file, in the &filter_nml namelist. The
detailed descriptions are in the filter_mod page. Here we try to give some basic advice about commonly used values
and suggestions for where to start. Spatial variation is controlled by inf_flavor, which also controls whether there’s
any inflation, inf_initial_from_restart, and inf_initial, as described below. Time variation is controlled by
inf_sd_initial_from_restart, inf_sd_initial, inf_sd_lower_bound, inf_damping, inf_lower_bound
and inf_upper_bound.

In the namelist each entry has two values. The first is for Prior inflation and the second is for Posterior inflation.
&filter_nml :: inf flavor valid values:0,2,3,4,5
Set the type of Prior and Posterior inflation applied to the state vector. Values mean:

* 0: No inflation (Prior and/or Posterior) and all other inflation variables are ignored

¢ [1: Deprecated: Observation space inflation]

 2: Spatially-varying state space inflation (gaussian)

* 3: Spatially-uniform state space inflation (gaussian)

¢ 4: Relaxation To Prior Spread (Posterior inflation only)

* 5: Enhanced Spatially-varying state space inflation (inverse gamma)

Spatially-varying state space inflation stores an array of inflation values, one for each item in the state vector.
If time-evolution is enabled, each value can evolve independently. Spatially-uniform state space inflation uses a
single inflation value for all items in the state vector. If time-evolution is enabled, that single value can evolve. See
inf_sd_* below for control of the time-evolution behavior. Enhanced spatially-varying inflation uses an inverse-
gamma distribution which allows the standard deviation of the inflation to increase or decrease through time and
may produce better results (see El Gharamti (2018)). In practice we recommend starting with no inflation (both
values 0). Then try inflation type 2 or 5 prior inflation and no inflation (0) for posterior. WARNING: even if
inf_flavor is not 0, inflation will be turned off if inf_damping is set to 0.

Important: Relaxation to prior spread (aka RTPS, i.e., inf_flavor=4)is a spatially varying posterior inflation
algorithm.

When using RTPS you cannot set the prior inflation flavor to 4. The code will exit with an error messge.
Unlike all other flavors, RTPS does not use files to handle inflation in time. So, if the user supplies
input_postinf_{mean, sd}.nc, these will be ignored. The ONLY namelist option that RTPS uses (other
than inf_flavor=4) is the second entry of inf_initial. This value is technically not the posterior inflation
value but rather a weighting factor (denoted by «; in Whitaker and Hamill (2012)) that is used to relax the pos-
terior spread to the prior spread. For instance, if o = 0.3 then the inflated posterior spread is as follows: 70%
of the analysis spread plus 30% of the prior spread. If « = 1.0, then the inflated posterior spread is simply set
to the prior spread. Using o, RTPS calculates the effective posterior inflation under the hood and writes out the
inflation values to the user. These can be looked at for diagnostic purposes. The algorithm disregards them for
the next data assimilation cycle. In short, RTPS is adaptive in time but unlike flavors 2, 3 and 5 it has no memory.
The recommendation is to set the second entry of inf_initial to any number between 0.0 and 1.0.

&filter_nml :: inf_initial_from_restart valid values: .true. or .false.

If true, read the inflation values from an inflation restart file named input_{prior,post}inf mean.nc. An
initial run could be done to let spatially-varying inflation values evolve in a spinup phase, and then the saved
values can be read back in and used as fixed values in further runs. Or if time-varying inflation is used, then the
restart file from the previous job step must be supplied as an input file for the next step.

&filter_nml :: inf initial valid values: real numbers, usually 1.0 or slightly larger If not reading in inflation
values from a restart file, the initial value to set for the inflation. Generally we recommend starting with just
slightly above 1.0, maybe 1.02, for a slight amount of initial inflation.

6.20. Inflation 63

../assimilation_code/modules/assimilation/filter_mod.html#Namelist
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-11-00276.1

DART, Release 9.16.0

&filter_nml :: inf_lower_bound valid values: real numbers, usually 1.0 or slightly larger

If inflation is time-evolving (see inf_sd_* below), then this sets the lowest value the inflation can evolve to.
Setting a number less than one allows for deflation but generally in a well-observed system the ensemble needs
more spread and not less. We recommend a setting of 1.0.

&filter_nml :: inf_upper_bound valid values: real numbers, larger than 1.0

If inflation is time-evolving (see inf_sd_* below), then this sets the largest value the inflation can evolve to.
We recommend a setting of 100.0, although if the inflation values reach those levels there is probably a problem
with the assimilation.

&filter_nml :: inf damping valid values: 0.0 to 1.0

Applies to all state-space inflation types, but most frequently used with time-adaptive inflation variants. The
difference between the current inflation value and 1.0 is multiplied by this factor before the next assimilation
cycle. So the inflation values are pushed towards 1.0, from above or below (if inf_lower_bound allows inflation
values less than 1.0). A value of 0.0 turns all inflation off by forcing the inflation value to 1.0. A value of 1.0 turns
damping off by leaving the original inflation value unchanged. We have had good results in large geophysical
models using time- and space-adaptive state-space inflation and setting the damping to a value of 0.9, which
damps slowly.

&filter_nml :: inf sd_initial_from_restart valid values: .true. or .false.

If true, read the inflation standard deviation values from an restart file named input_{prior,post}inf_sd.
nc. See the comments above about inflation_initial_from_restart.

&filter_nml :: inf_sd_initial valid values: 0.0 to disable evolution of inflation, > 0.0 otherwise

The initial value to set for the inflation standard deviation, IF not reading in inflation standard deviation values
from a file. This value (or these values) control whether the inflation values evolve with time or not. A negative
value or 0.0 prevents the inflation values from being updated, so they are constant throughout the run. If positive,
the inflation values evolve through time. We have had good results setting this and inf_sd_lower_bound to
0.6 for large geophysical models.

&filter_nml :: inf_sd_lower_bound valid values: 0.0 to disable evolution of inflation, > 0.0 otherwise

If the setting of inf_sd_initial is O (to disable time evolution of inflation) then set this to the same value.

Otherwise, the standard deviation of the inflation cannot fall below this value. Smaller values will restrict
the inflation to vary more slowly with time; larger values will allow the inflation to adapt more quickly.
We have had good results setting this and inf_sd_initial to 0.6 for large geophysical models. Since the
inf_sd_lower_bound is a scalar, it is not possible to set different lower bounds for different parts of the state
vector.

Time-varying inflation with flavor 2 generally results in the inflation standard deviation for all state variables
shrinking to the lower bound and staying there. For flavor 5, the inflation standard deviation value is allowed to
increase and decrease.

&filter_nml :: inf sd_max_change valid values: 1.0to 2.0

Used only with the Enhanced inflation (flavor 5). The Enhanced inflation algorithm allows the standard devia-
tion to increase as well as decrease. The inf_sd_max_change controls the maximum increase of the standard
deviation in an assimilation cycle. A value of 1.0 means it will not increase, a value of 2.0 means it can double;
a value inbetween sets the percentage it can increase, e.g. 1.05 is a limit of 5%. Suggested value is 1.05 (max
increase of 5% per cycle).

Because the standard deviation for original flavor 2 could never increase, setting the inf_sd_initial value
equal to the inf_sd_lower_bound value effectively fixed the standard deviation at a constant value. To match
the same behavior, if they are equal and Enhanced inflation (flavor 5) is used it will also use that fixed value
for the standard deviation of the inflation. Otherwise the standard deviation will adapt as needed during each
assimilation cycle.

64

Chapter 6. References

DART, Release 9.16.0

&filter_nml :: inf_deterministic valid values: .true. or .false.

Recommend always using .true..

6.20.1 Guidance regarding inflation

First and foremost, if you are using one of the temporally-varying inflation options, save the entire series of inflation files
to explore how inflation evolves through time. As part of the workflow, you have to take the output of one assimilation
cycle and rename it to be the input for the next assimilation cycle. That is the time to make a copy that has a unique
name - usually with some sort of date or timestamp. This also makes it possible to restart an experiment.

The suggested procedure for testing inflation options is to start without any (both inf_flavor values set to O
and inf damping > 0.). Then enable Prior state space, spatially-varying inflation, with no Posterior inflation
(set inf_flavor to [2, 0]). Then try damped inflation (set inf_damping to 0.9 and set inf_sd_initial and
inf_sd_lower_bound to 0.6). The inflation values and standard deviation are written out to files with _{prior,
post}inf_{mean, sd} in their names. These NetCDF files can be viewed with common tools (we often use ncview).
Expected inflation values are generally in the 1 to 30 range; if values grow much larger than this it usually indicates a
problem with the assimilation.

PROGRAM fill_inflation_restart may be used to create netCDF files with initial values such that the input.nml settings
for reading from file vs. reading from namelist can stay constant throughout the entire experiment.

It is possible to set inflation values in an existing netCDF file by using one of the standard NCO utilities like “ncap2”
on a copy of a restart file. Inflation mean and sd values look exactly like restart values, arranged by variable type like
T, U, V, etc.

Here’s an example of using ncap2 to set the T,U and V inf values:

ncap2 -s 'T=1.0;U=1.0;V=1.0" wrfinput_dO®1 input_priorinf_mean.nc

ncap2 -s 'T=0.6;0=0.6;V=0.6" wrfinput_d0®1 input_priorinf_sd.nc

or

ncap2 -s 'T(:,:,:)=1.0;0C:,:,:)=1.0;V(:,:,:)=1.0" wrfinput_d®1 input_priorinf_mean.nc
ncap2 -s 'T(:,:,:)=0.6;U0(C:,:,:)=0.6;V(:,:,:)=0.6" wrfinput_d®1 input_priorinf_sd.nc

Some versions of the NCO utilities change the full 3D arrays into a single scalar. If that’s your result (check your output
with ncdump -h) use the alternate syntax or a more recent version of the NCO tools.

6.21 Required model_mod routines

There are 18 Fortran subroutines necessary to implement in order to successfully integrate a model in DART. You will
place these routines in your model_mod. £90 in a subdirectory with the name of your model in DART/models. There is
often a sensible default implementation that can be used for each of these routines. For example, in the case of a model
that starts at a time of “0”, for the required routine init_time() the following code will use this default implementation:

use default_model_mod, only : init_time

As in all Fortran programs, a comma-separated list of routines can be listed after the colon.

The following table lists each of the 18 routines, their default modules relative to DART, and the default behavior. If the
default behavior is not desired, see the section Suggestions for a “simple” model for a model that DART can advance,
or Suggestions for a “complex” model for a model that is advanced externally from DART.

6.21. Required model_mod routines 65

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.16.0

Routine # / name Purpose Default module / direc- | Default behavior
tory
.. Set the initial time if not | default_model_mod / | Sets the initial time to O
1. init_time() read from the restart file. models/utilities days, 0 seconds

2. init_conditions()

For a “cold start” fill in
an empty state vector with
initial conditions. Many
models cannot just make
up values from thin air and
thus choose to fail when
this is requested.

default_model_mod /
models/utilities

Sets the initial state
to 0. To fail use
init_conditions =>

fail_init_conditions.

3. get_model_size()

Return the number of
items in the state vector.

default_model_mod /
models/utilities

Returns 1; i.e. there is only
one item in the state.

static_init_model()

Initialize DART with in-
formation about the model
that will be used by the re-
maining model_mod rou-
tines. The procedure for
doing this will depend on
how complex the model is;
see below for suggestions
for implementation.

default_model_mod /
models/utilities

Does nothing.

get_state_meta_data

Takes an index into the
state vector and returns the
()location corresponding to
that value and optionally
the variable type. See be-
low for suggestions on im-

default_model_mod /
models/utilities

Sets a missing location
and the default variable

type.

plementation.
6. end del Deallocate any ar- | default_model_mod / | Does nothing.
- end_model() rays allocated in | models/utilities

static_init_model().

7. adv_1step()

If possible, advance the
model state from one time
to another. Complex mod-
els will be unable to im-
plement this method and
should fail.

default_model_mod /
models/utilities

Call the error handler with
the message “‘unable to ad-
vance model”.

8. short-

est_time_between_ass

Return a namelist or a
ﬁxeii value_for the mini-
1mi athI}iSQ .

mum modae advance time
between assimilations.
Note that complex models
will handle advancing the

time externally.

default_model_mod /
models/utilities

Returns a time period of 1
day.

model_interpolate()

Interpolate a requested
quantity to the given
location to get an array
of expected values for
all ensemble members.
NOTE: this is often the
most time consuming
method to implement.

default_model_mod /
models/utilities

Fail and set the expected
observation to “missing.”

A1]

66 10.
nc_write_model_att;

Add—any —additionat—in-
(iormation to the netCDF
i utput diagnostic files.
NOTE: the state will

already be output by other

N

] £ . . | | |
derault_moder_moda
models/utilities

Doesnothing:
Chapter 6. References

DART, Release 9.16.0

6.22 Suggestions for a “simple” model

A “simple” model is one where DART can advance the model through a function call. As we saw above, Lorenz 63
falls into this category and can be used as a reference. Here we provide some further advice on how to add this kind of
model to DART.

The primary consideration with a simple model is how you will store the state. If you have only a single type of variable
in your state vector (for example, the Lorenz 63 model), here are some hints on how to implement your initialization
and meta data routines:

Routine # / name Suggested implementation

Your model_size will likely be set by namelist, so read
it, allocate an array of that size, and precompute all the
locations for each state vector item. Call add_domain()
with the model size so DART knows how long the state
vector is.

Return QTY_STATE_VARIABLE as the quantity, and re-
turn the location for that index through a look-up into
the location array created during static_init_ model().

4. static_init_model()

5. get_state_meta_data()

LR T3

If you have more than a single type of variable in the state vector (for example, “concentration”, “wind”, etc. as in the
DART/models/simple_advection model):

Routine # / name Suggested implementation

Read from the namelist the number of fields to be used
in the state vector. Use add_domain() to indicate which
netCDF vars should be read. Read in any auxiliary
data needed by interpolation code (for example, the grid
topology). Cache the grid locations of the state variables
as appropriate, and use get_domain_size() to compute
the model_size.

Call get_model_variable_indices() and
get_state_kind() to figure out the (iy,k) indices
and which variable this offset is. Use the (i,j,k) index to
compute the grid location and return it along with the
quantity.

4. static_init_model()

5. get_state_meta_data()

Now, for either type of simple model, the following applies:

6.22. Suggestions for a “simple” model 67

DART, Release 9.16.0

Routine # / name Suggested implementation
Deallocate any arrays allocated in static_init_model()

6. end_model()

If possible, embed the code that computes x(1+1) =
F(x(¢)) or call a separate subroutine to advance the
model state from one time to another.

Return a namelist or a fixed value for the minimum
model advance time.

7. adv_1step()

8. shortest_time_between_assimilations()

Find the (i,j,k) indices which enclose that location, or
search for the cell number. For some models you can
compute (i,f) directly from a regular lat/lon grid, and in
others you may have to search over a deformed grid. Any
model code or utilities available for this purpose may
prove very helpful as a starting point. In the end, you
will use get_state() to retrieve an ensemble-sized array
of values for each offset into the state vector, and then do
interpolation to get an array of expected values.
Optionally add any desired attributes to the output diag-
nostic files.

9. model_interpolate()

10. nc_write_model_atts()

The remaining routines can mostly use the defaults, except possibly for 11. read_model_time() and 12.
write_model_time(), which may need to be customized if using a model restart file that already stores time in a par-
ticular format.

Note that there is often no need to convert vertical obs or states in a simple model without vertical coordinate choices.

6.23 Suggestions for a “complex” model

A “complex” model is typically a large geophysical model where the model must be advanced outside of DART exe-
cution control. Here we provide some advice on how to integrate this kind of model with DART.

First of all, the 4. static_init_model, 5. get_state_meta_data() and 6. end_model() suggestions will match the
multiple state variable in the previous section as complex models will typically have multiple fields.

An additional twist is that complex models may have different grid locations for different variables, (i.e. grid staggering),
but the above instructions still apply.

The 7. adv_1step() method for a complex model should fail, so the default behavior is sufficient.

The advice for the 8. shortest_time_between_assimilations() routine is similar to the advice for a simple model: read
the value from the namelist or return a fixed time as appropriate.

Note: Since the model will not be advanced by DART, the value returned here is irrelevant except for user information
purposes.

For the remaining routines, we give the following implementation suggestions:

68 Chapter 6. References

DART, Release 9.16.0

Routine # / name

Suggested implementation

9.

model_interpolate()

Find the (i,j,k) indices which enclose that location, or
search for the cell number. For some models you can
compute (i,j) directly from a regular lat/lon grid, and in
others you may have to search over a deformed grid. Any
model code or utilities available for this purpose may
prove very helpful as a starting point. In the end, you
will use get_state() to retrieve an ensemble-sized array
of values for each offset into the state vector, and then do
interpolation to get an array of expected values.

10.

nc_write_model_atts()

It is very helpful (but optional) to add grid information
to assist in plotting your results.

11.

read_model_time()

(see write_model_time() below)

12.

write_model_time()

If the model time is stored in the netCDF files, supply
routines that can read and write it in the correct format.
The default routines will work if the model time matches
what those routines expect: a time variable with an op-
tional calendar variable. If no calendar is provided, the
routine assumes fractional days. If the time variable is
an array (i.e. more than one time step is stored in the file),
read/write the last one.

13.

pert_model_copies()

The default of adding Gaussian noise to all state vari-
ables may be undesirable. Complex models often have
a method to perturb a state according to a particular for-
mula or method. Otherwise, it may be necessary to per-
turb each variable with separate noise levels, only per-
turb certain variables, etc.

14.

convert_vertical_obs()

(see convert_vertical_state() below)

15.

convert_vertical_state()

Add code to convert between vertical coordinates
(e.g. pressure, height, sigma levels, etc.) if appropriate.
Code from the model or a model utility may be a very
helpful starting point.

16.

get_close_obs()

(see get_close_state() below)

17.

get_close_state()

If you want to change the localization impact based on
something other than the type or kind, put code here.
You should test for vertical type and do the conversion
on demand if it hasn’t already been done.

As mentioned above, the most difficult routine to implement for a complex model is typically 9. model_interpolate().

6.23. Suggestions for a “complex” model

69

DART, Release 9.16.0

6.24 How to test your model_mod routines

The program model_mod_check. £f90 can be used to test the routines individually before running them with filter.
Add a mkmf_model_mod_check and path_names_model_mod_check to your DART/models/your_model /work
subdirectory. You might find it helpful to consult another model matching your model type (simple or complex). See
the documentation for model_mod_check in DART/assimilation_code/programs/model_mod_check for more
information on the tests available.

6.25 Controlling which files are output by filter

DART provides you with fine-grained control over how and when files are output. You can instruct DART whether
or not to output files after each stage in an assimilation cycle. Since most experiments are run for more than one
assimilation cycle, you can also instruct DART to aggregate all of the output for a specific stage into a single file.

These options are controlled by three settings in the filter_nml namelist in input.nml:

* stages_to_write specifies the stages during an assimilation cycle during which state files may be output. The
possible stages are 'input', 'forecast', 'preassim', 'postassim', 'analysis' and 'output'. The
input strings are case-insensitive, but the corresponding output files are always lowercase.

* single_file_in specifies how input state files are structured. If .true. the state of all ensemble members is
expected to be read from single file. If . false. the state of each ensemble member expected to be read from its
own file.

* single_file_out specifies how output state files are structured. If . true. the state of all ensemble members
is output to a single file. If .false. the state of each ensemble members is output to its own file.

Caution: single_file_out only refers to the output for a particular stage. So even if you set
single_file_out = .true., you can get several output files - one per stage. If you set single_file_out
= .false. filter will output a deluge of files. Be careful about what stages you choose to write.

6.25.1 Two common assimilation workflows

There are many ways to configure your data assimilation workflows. However, the following two workflows are sensible
for small models and large models, respectively.

Small models
For models that read and write small state files and complete their numerical integrations relatively quickly, it makes
sense to configure filter to:
1. complete multiple assimilation cycles
2. read from and write to a single output file for all ensemble members
This workflow requires setting single_file_in = .true. and single_file_out = .true..

When filter isused for along assimilation experiment, setting single_file_out = .true. will consolidate all the
information for a particular stage into a single file that contains all the ensemble members, the mean, spread, inflation,
etc.

This results in far fewer files, and each file may contain multiple timesteps to encompass the entirety of the experiment.
Take note: since a single task must write each file, this setting engenders some computational overhead.

70 Chapter 6. References

DART, Release 9.16.0

Large models
For models that read and write large state files and complete their numerical integrations relatively slowly, it make
sense to configure filter to:

1. complete a single assimilation cycle at a time

2. read from and write to a seperate output file for each ensemble member

This workflow requires setting single_file_out = .false. and makes sense for large models or in cases where it
is beneficial to run different number of MPI tasks for the model advances and the assimilation. In this case, there can
be a substantial computational efficiency to have each ensemble member write its information to a separate file, and
each file can be written simultaneously by different tasks. The tradeoff (at the moment) is that each of the files can only
have a single timestep in them. Consequently, some files are redundant and should not be output.

6.25.2 Output and diagnostic files produced by filter

In the case when single_file_out = .false.

from perfect_model_obs
obs_seq.out the synthetic observations at some predefined times and locations
perfect_output.nc 1 timestep | a netCDF file containing the model trajectory - the true state

There are some namelist settings that control what files are output. Depending on the settings for in-
put.nml&filter_nml:stages_to_write and others ...

6.25. Controlling which files are output by filter 71

DART, Release 9.16.0

from filter

forecast_member_####.
nc

1 timestd

pthe ensemble forecast, each ensemble member is a separate file

forecast_[mean,sd].nc

1 timeste

pthe mean and standard deviation (spread) of the ensemble forecast

forecast_priorinf_[mean
sd] .nc

, 1 timeste

pthe prior inflation information before assimilation

forecast_postinf_ [mean,
sd] .nc

1 timestd

pthe posterior inflation information before assimilation

preassim_member_#### .
nc

1 timeste

pthe model states after any prior inflation but before assimilation

preassim_[mean,sd].nc

1 timestg

pthe mean and standard deviation (spread) of the ensemble after any prior
inflation but before assimilation

preassim_priorinf_[mean
sd] .nc

, 1 timeste

pthe prior inflation information before assimilation

preassim_postinf_[mean,
sd] .nc

1 timestd

pthe posterior inflation information before assimilation

postassim_member_####.
nc

1 timeste

pthe model states after assimilation but before posterior inflation

postassim_[mean,sd].
nc

1 timestg

pthe mean and standard deviation (spread) of the ensemble after assimila-
tion but before posterior inflation

postassim_priorinf_[me3
sd] .nc

nl timestg

pthe (new) prior inflation information after assimilation

postassim_postinf_[mean
sd] .nc

, 1 timeste

pthe (new) posterior inflation information after assimilation

analysis_member_####.
nc

1 timestg

pthe model states after assimilation and after any posterior inflation

analysis_[mean,sd].nc

1 timestg

pthe mean and standard deviation (spread) of the ensemble after assimila-
tion and after posterior inflation

analysis_priorinf_ [mean
sd] .nc

, 1 timeste

pthe (new) prior inflation information after assimilation

analysis_postinf_[mean,
sd] .nc

1 timeste

pthe (new) posterior inflation information after assimilation

output_[mean,sd].nc

1 timestg

pthe mean and spread of the posterior ensemble

output_priorinf_[mean,
sd] .nc

1 timestg

pthe (new) prior inflation information after assimilation

output_priorinf_[mean,
sd] .nc

1 timeste

pthe (new) posterior inflation information after assimilation

obs_seq.final

the model estimates of the observations (an integral part of the data as-
similation process)

from both
dart_log. | the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the bottom
out to see the latest values)
dart_log. | the input parameters used for an experiment
nml
72 Chapter 6. References

DART, Release 9.16.0

In the case when single_file_out = .true.

All the information for each stage is contained in a single file that may have multiple timesteps.

from perfect_model_obs

obs_seq.out

the synthetic observations at some predefined times and locations

perfect_output.nc N timesteps | a netCDF file containing the model trajectory - the true state

There are some namelist settings that control what files are output. Depending on the settings for input.nml
&filter_nml:stages_to_write and others.

from fil-
ter

filter_inpltimes

téphe starting condition of the experiment. All ensemble members, [optionally] the input mean

nc and standard deviation (spread), [optionally] the prior inflation values, [optionally] the poste-
rior inflation values

forecast| Ntimestdfixe ensemble forecast. All ensemble members, the mean and standard deviation (spread), the

nc prior inflation values, the posterior inflation values

preassim| N timestépiter any prior inflation but before assimilation. All ensemble members, the mean and standard

nc deviation (spread) of the ensemble, the prior inflation values, the posterior inflation values

postassim.Ntime

stéplter assimilation but before posterior inflation. All ensemble members, the mean and stan-

nc dard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior
inflation values

analysis| N timestépiter assimilation and after any posterior inflation. All ensemble members, the mean and stan-

nc dard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior

inflation values

filter_outbtimes

tefrfter assimilation and after any posterior inflation. All ensemble members, the mean and stan-

nc dard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior
inflation values

obs_seq. the model estimates of the observations (an integral part of the data assimilation process)

final

from both

dart_log. | the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the bottom

out to see the latest values)

dart_log. | the input parameters used for an experiment

nml

6.26 Advice for models with multiple vertical coordinate options

6.26.1 DART vertical types for the 3D sphere locations type (threed_sphere)

A location when using the MODULE location_mod (threed_sphere) location module consists of a Latitude (-90 to 90),
a Longitude (0 to 360), and a vertical value and type. The value is a real number. Possible types are:

* Height (in meters)

¢ Pressure (in Pascals)

¢ Model Level (index number)

* Scale Height (unitless)

6.26. Advice for models with multiple vertical coordinate options 73

DART, Release 9.16.0

¢ Surface (if value used, elevation of surface in meters)
¢ Undefined (entire vertical column)

If the model grid locations, all observation locations, and the choice of localization coordinate are all using the identical
vertical type then no vertical conversion routines are needed. However, this is seldom the case.

6.26.2 Multiple vertical coordinate types

Most Earth System models and observations use latitude and longitude for horizontal coordinates or can generate them
if needed (e.g. spectral models can transform their state into Lat/Lon coords). But often vertical coordinates pose
additional complications.

Some models use terrain-following vertical coordinates, or a mix of pressure and terrain coordinates. Observation
vertical locations are frequently reported in height or in pressure.

Additionally, if vertical localization is to be done in a different coordinate than the model or observations (e.g. scale
height), then conversion routines are needed.

Vertical conversion routines typically take a DART location_type derived type and a desired output vertical co-
ordinate type as inputs, and either update the location derived type or return a separate location type with the value
converted to the requested type.

The conversion code may require additional auxilliary arrays from the model in order to convert the vertical coordinates
accurately.

6.26.3 Varying vertical levels

If the computation of the vertical location depends on any of the fields in the state (e.g. pressure), then different
ensemble members may compute different vertical locations.

Forward operators

During computation of expected values (Forward Operators), each ensemble member should compute the most accurate
value regardless of whether the location in the model grid is consistent from member to member.

Localization

During assimilation the distance between model state values and the observation must be computed and only a single
value can be returned, not an ensemble of distances. If part of the state is needed to compute the vertical location the
ensemble mean is available to compute a single value which is representative of the entire state.

6.26.4 Choice of when conversion is done

During the assimilation phase of filter there are two options for when vertical conversion is done: all at the start, or
on demand. If the observations to be assimilated are expected to impact all or almost all of the state, doing all vertical
conversion at the start is more efficient. If the observations are expected to impact only a small percentage of the state
variables then doing it on demand is more efficient.

The options here are namelist selectable at runtime and the impact on total runtime can be easily measured and com-
pared.

74 Chapter 6. References

DART, Release 9.16.0

6.27 Data management in DART

One of the more challenging aspects of an ensemble Data Assimilation (DA) system is the need to manage large amounts
of memory to store ensembles of the model state.

Most contemporary large models run in parallel on multi-processor computer systems and distribute the data across
multiple memory nodes to support finer grids, smaller timesteps and longer modeling time periods. Common computer
science strategies include using shared memory on individual nodes and using the Message Passing Interface (MPI)
libraries on distributed memory nodes.

Ensemble DA exacerbates this memory problem by requiring multiple copies, often 20-100x, of the model data to do
the assimilation.

DART uses the MPI libraries to distribute ensembles of model state data across distributed memory nodes. For models
with small amounts of data the code can be compiled and run as a serial program but when compiled with MPI it can
scale up to 10,000s of nodes using Giga to Petabytes of memory.

Memory usage and internode communication time are mutually incompatible items to minimize. DART has different
strategies that can be selected at runtime to use less memory per node at the cost of more time spent in communication
of data between nodes, or use more memory per node and minimize communication time.

The following descriptions detail the different phases of the main assimilation program in DART, called filter, and
what options exist for memory layout and management.

6.27.1 Ensembles of data
State data
* N ensemble members times X items in the state vector, always resident.
6 additional copies of X items for inflation, ensemble mean & sd, etc.
Observations

Allocated and deallocated if looping over multiple assimilation windows within a single run of filter.
* Only observations within the current assimilation window, O
* O observations times N ensemble members for the Forward Operator (FO) results

¢ O observations times N ensemble members for the QC results

Delayed writing option

If selected in the namelist, up to P phases (input, forecast, preassim, postassim, analysis, output) of the state data are
stored in memory and written out at the end of filter.

6.27. Data management in DART 75

DART, Release 9.16.0

6.27.2 Filter run phases

FO computation, prior and posterior

Run-time options include allocating spaces for two layouts and transposing between them, or running distributed in ‘all
copies’ mode.

Assimilation

Distributed FO and QC observation ensembles

Runtime option to either replicate the model state ensemble mean on each MPI task or run with that ensemble fully
distributed.

6.27.3 Ensemble memory usage and layout

Transposable

Data is distributed over T MPI tasks but during the program execution the data is communicated between tasks to
alternate between two different data layouts.

Allocations are needed for two different 2D arrays:
* N ensemble members times (X items/T tasks)
¢ X items times (N ensemble members/T tasks)

Distributed

Data is distributed over T MPI tasks but only a single data array is used:
¢ N ensemble members times (X items/T tasks)

Replicated

The same data array is replicated on each MPI task:

* X items per task

6.28 Programs included with DART

This list of programs is separated into groups which have similar functionality. Within each group they are sorted by
the order in which they might be used and/or by how widely they are used.

76 Chapter 6. References

DART, Release 9.16.0

6.28.1 Setting Up Experiments

In many cases, you won’t need to use any programs in Setting Up Experiments except for preprocess, because you're
using an existing model interface and have the observation sequence files. In that case, you the programs you’re looking
for are probably in Assimilation Programs.

preprocess Program to insert observation specific code into DART before filter or perfect_model_obs is compiled.
fill_inflation_restart Create inflation restart files with constant values taken from fill_inflation_restart_nml.

obs_impact_tool Construct a table that is read by filter at run-time to localize the impact of sets of observation types
on sets of state vector quantities.

model_mod_check Program to test some of the more fundamental routines in any model_mod, especially a for a new
model.

perturb_single_instance Generate an ensemble of perturbed ensemble member restart files. (Alternatively, you might
perturb the model state using model_nml variables).

gen_sampling_err_table Computes a table of values needed to apply Sampling Error Correction (SEC), which corrects
covariances based on small sample size statistics.

6.28.2 Creating Observation Sequence Files

create_obs_sequence Creates a short andor synthetic observation sequence file using values read from standard input.

create_fixed_network_seq Reads observation sequence file information from standard input and replicates it multiple
times in a second observation sequence file, at user specified dates.

obs_utils/create_obs_grid Create a set of observations located on a regular grid. Obs have no data values, but they
are time ordered.

obs_utils/obs_timejitter Randomly perturb the times of the observations in a (usually) set_def.out file. Writes the
results to (usually) obs_seq.in.

6.28.3 Querying Observation Sequence Files

obs_utils/obs_info Summarize obs types, times, counts found in observation sequence file(s).

obs_utils/obs_assim_count Prints out a quick table of obs types and counts, overall start and stop times, and metadata
strings and counts. See obs_diag for more. There is an older version in the obs_assim_count directory.

obs_seq_coverage Queries a set of observation sequence files to determine which observation locations report fre-
quently enough to be useful for a verification study.

obs_total_error Prints the total error in the mean and spread from an obs_seq file which has been through both
perfect_model_obs and filter, so it has copies ‘truth’, ‘ensemble mean’, and ‘ensemble spread’. You can get more
information by running the obs_diag program.

6.28. Programs included with DART 77

DART, Release 9.16.0

6.28.4 Changing Observation Sequence Files
obs_sequence_tool Subsets, combines, or alters observations from one or more observation sequence files and option-
ally writes them into a single output obs_seq file.

obs_loop A template to read in observations from one obs_seq file and write them, optionally modified by user supplied
code, to another obs_seq file.

obs_utils/obs_sort Do a complete sort of an obs_seq file by location, observation type, then variance. An ancestor of
obs_remove_dups.

obs_utils/obs_remove_dups Removes duplicate observations from an obs_seq file, which involves a complete sort by
time, location, observation type, then variance.

obs_selection Extracts observations out of one or more obs_sequence files according to a list of observation types,
times, and locations. The list is usually created by obs_seq_coverage, but can be an observation sequence file.

obs_common_subset Select the subset of observations, which were successfully assimilated, from two or more assim-
ilation cases (which used the same obs_seq.out file).

obs_keep_a_few Creates an output observation sequence file that is shorter than the input obs_seq file.

obs_seq_verify Reorders the observations from a forecast run of DART into a structure that is amenable for the eval-
uation of the forecast.

obs_utils/obs_data_denial THIS IS NOT YET DONE! Help implement a data-denial experiment by randomly chang-
ing the error variance of N of each obs type in an observation sequence file to a huge value.

6.28.5 Assimilation Programs

perfect_model_obs Creates synthetic observation sequences from a hindcast model.
filter Main Fortran program for driving ensemble filter assimilations.
advance_time Provides a shell-scripting-friendly way to increment and decrement calendar dates and times.

integrate_model Generic main program which advances a single ensemble member in perfect_model_obs or the
serial or parallel version of the filter program.

6.28.6 Evaluating Results
obs_diag Reads obs_seq.final files, calculates statistics, and writes them to NetCDF files for use by Matlab (or other)
plotting scripts. There are separate versions for models with different coordinate systems:
e ID
* 3D Cartesian
* 3D spherical
* 3D spherical with streamflow.

obs_seq_to_netcdf Extracts the observation components from observation sequence files and writes out netCDF files
that can be used by other applications. such as diagnostics/matlab/plot_obs_netcdf* There are two
versions; the standard version and one which filters out radiance metadata which is not needed by the scripts
which use the resulting NetCDF file.

compare_states Compare fields in two NetCDF files and print out the min and max values from each file and of the
difference between the two files.

78 Chapter 6. References

DART, Release 9.16.0

compute_error Compute the time-mean ensemble error and spread in the same manner as the DART MATLAB diag-
nostic routine plot_total_err; in state space from true_state.nc and preassim.nc (or analysis.nc).

closest_member_tool Prints out a sorted order of which ensemble members are ‘closest’ to the mean, where the method
for computing the ‘close’ metric is selectable by namelist option.

6.28.7 Historical and Deprecated

system_simulation A collection of standalone programs for simulating various properties of ensembles. Talk to Jeff
Anderson about the programs in this directory.

wakeup_filter For use in the “async=4" case where both the main filter program and the hindcast model are MPI
programs. The main MPI job script runs each of the model advances for the ensemble members, and then runs
this program to restart the filter program.

6.29 Adding your observations to DART

First, you should understand that DART already supports a tremendous variety of observations. To fully support an
observation means that the observation can be converted from its native format to the DART observation sequence
format and that the observation forward operator is already implemented. Keep in mind that forward operators are not
specific to any one model.

The observation converters are in the observations/obs_converter directory and you should look there for the docu-
mentation describing which converters are available.

The forward operators are functionally or logically grouped into Fortran modules in the observations/forward_operator
directory. DART employs a ‘contractual’ style of programming in that the forward operator requests information from
the model, and if the model cannot provide it, the forward operator may request different information in an attempt to
collect the information needed to apply the operator. If the model cannot provide any of the required information, the
forward operator fails, the DART QC for that observation is set to the appropriate value, and the program continues.

6.30 How DART supports different types of observations: the prepro-
cess program

DART’s preprocess program actually writes the source code that supports observations. This source code is then used
by other modules.

6.30.1 The rationale for preprocess

Certain types of data require additional metadata in order to be assimilated. For example, while radiosondes only require
the observation location in order to be assimilated, radar observations need extra metadata to specify the location of
the radar in addition to the location of the observation. GPS occultations need the locations of the two satellites so the
forward operator can integrate along the raypath. Cosmic ray soil moisture sensors have forward operators that require
site-specific calibration parameters that are not part of the model and must be included in the observation metadata.

The potential examples are numerous.

Since each ‘observation quantity’ may require different amounts of metadata to be read or written, any routine to read
or write an observation sequence must be compiled with support for those particular observations. This is the rationale
for the inclusion of preprocess in DART. The supported observations are listed in the obs_kind_nml namelist in
input.nml.

6.29. Adding your observations to DART 79

DART, Release 9.16.0

For this reason, we strongly recommend that you use the DART routines to read and process DART observation se-
quence files.

Important: You must actually run preprocess before building any executables. It is an essential part of DART
that enables the same code to interface with multiple models and observation types. For example, preprocess allows
DART to assimilate synthetic observations for the Lorenz_63 model and real radar reflectivities for WRF without
needing to specify a set of radar operators for the Lorenz_63 model.

preprocess combines multiple obs_def and obs_quantity modules into one obs_def_mod. £90 that is then used
by the rest of DART. Additionally, a new obs_kind_mod. £90 is built that will provide support for associating the
specific observation TYPES with corresponding (generic) observation QUANTITIES.

The list of obs_def and obs_quantity module source codes are contained in the &preprocess_nml namelist in
input.nml. These modules determine what observations and operators are supported.

Warning: If you want to add another obs_def module, you must rerun preprocess and recompile the rest of
your project.

6.30.2 Example preprocess namelist

As an example, if a preprocess_nml namelist in input.nml looks like:

&preprocess_nml

input_obs_kind _mod_file = '../../../assimilation_code/modules/observations/DEFAULT_
—0obs_kind_mod.F90'
output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_kind_
—mod.f90'
quantity_files ='../../../assimilation_code/modules/observations/
—atmosphere_quantities_mod.f90',
input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT obs_def_
—mod.F90'
obs_type_files = "'../../../observations/forward_operators/obs_def_gps_mod.
190",
'../../../observations/forward_operators/obs_def_QuikSCAT_
—mod.f90"',
'../../../observations/forward_operators/obs_def_GWD_mod.
190",

'../../../observations/forward_operators/obs_def_
—altimeter_mod. f90',
'../../../observations/forward_operators/obs_def_
—reanalysis_bufr_mod. £90'
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90"'
/

preprocess will combine the following modules:
e DEFAULT_obs_def_mod.F90
e obs_def_gps_mod. f90
e obs_def_QuikSCAT_mod. f90
* obs_def_GWD_mod.f90

80 Chapter 6. References

DART, Release 9.16.0

e obs_def_altimeter_mod. £90
e and obs_def_reanalysis_bufr_mod.£90

into obs_def_mod. £90. This resulting module can be used by the rest of the project.

6.30.3 Building and running preprocess

Since preprocess is an executable, it must be compiled following the procedure of all DART executables:
1. The DART/build_templates/mkmf. template must be correct for your environment.
2. The preprocess_nml namelist in input.nml must be set properly with the modules you want to use.

If those two conditions are met, you can build and run preprocess using these commands:

$ csh mkmf_preprocess
$ make
$./preprocess

The first command generates an appropriate Makefile and the input.nml.preprocess_default file. The second
command results in the compilation of a series of Fortran90 modules which ultimately produces the preprocess
executable file. The third command actually runs preprocess - which builds the new obs_kind_mod.f90 and
obs_def_mod. £90 source code files. Once these source code files are created, you can now build the rest of DART.

6.31 How DART stores observations: observation sequence
(obs_seq) files

Since DART is designed to assimilate observations from any data source, it includes a set of programs to convert
observations from their original format to DART’s own observation sequence, or obs_seq, format. The obs_seq
format is designed to allow DART to accomodate a myriad of source observation file formats, structure and metadata.
Many original source observation files don’t contain the necessary information about the error characteristics and spatial
structure of the data needed to perform an assimilation.

There are three types of obs_seq files.

6.31.1 obs_seq.in
An obs_seq.1in file actually contains no observation quantities. It may be best thought of as a perfectly laid-out
notebook waiting for an observer to fill in the actual observation quantities.

All the rows and columns are ready, labelled, and repeated for every observation time and platform. The obs_seq.in
file is generally the start of a “perfect model” experiment.

In a perfect model experiment, one instance of the model is run through the DART program perfect_model_obs -
which applies the appropriate forward operators to the model state and writes down the observations generated by the
model in the writes them down in the perfectly laid-out notebook.

The completed notebook is then renamed obs_seq. out.

6.31. How DART stores observations: observation sequence (obs_seq) files 81

DART, Release 9.16.0

6.31.2 obs_seq.out
An obs_seq. out file contains a linked list of observations. The observations can potentially be (and usually are) from
different platforms and of different quantities, each with their own error characteristics and metadata.

An obs_seq.out file containing real data can be generated by using one of DART’s many observation con-
verter programs. Additionally, an obs_seq.out file containing synthetic data can be created by running DART’s
perfect_model_obs program.

The observations in the obs_seq.out files are assimilated into the model ensemble by DART’s filter program.
To learn more about the structure of the obs_seq.out file, see Detailed structure of an obs_seq file.

If you want to create an observation sequence file from real observations, you should contact DAReS staff by emailing
dart@ucar.edu for advice regarding your specific types of observations.

6.31.3 obs_seq.final
When running an assimilation, DART’s filter program assimilates the observations contained in the obs_seq.out
file and generates an obs_seq. final file.

The obs_seq. final file contains everything in the obs_seq.out file and also contains a few additional ‘copies’ of
the observation.

Since DART is an ensemble algorithm, each ensemble member must compute its own estimate of the observation for
the algorithm. You can save the ensemble members’ estimates of the observation in the obs_seq. final file by setting
the num_output_obs_members entry in the filter_nml namelist of input.nml to a value greater than zero.

Minimally, £ilter will record the mean and spread of the ensemble estimates in the obs_seq.final file.

To learn more about the structure of the obs_seq. final file, see Detailed structure of an obs_seq file.

6.31.4 Using obs_seq.final for observation-space diagnostics

The best method to determine the performance of an experiment in which you assimilate data from real-world sources
is to compare the ensemble estimates of the observation to your real-world data. You can estimate the bias and error of
the ensemble mean or gauge how many of the real-world observations are actually being assimilated. These diagnostics
are known as observation-space diagnostics.

DART provides programs obs_diag and MATLAB® observation space diagnostics for you use to quickly assess the
performance of your experiment.

Note: Since each ‘observation type’ may require different amounts of metadata to be read or written, any routine to
read or write an observation sequence must be compiled with support for those particular observations. The supported
observations are listed in the obs_kind_nml namelist of input.nml. For more information, see How DART supports
different types of observations: the preprocess program.

82 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.16.0

6.32 Detailed structure of an obs_seq file

Since the configuration of model ensembles and the characteristics of assimilated observations are highly variable,
observation sequence files are highly adjustable to accomodate these variations.

There are many extensible parts of an observation sequence file. The following aspects of an observation sequence file
can be adjusted:

* the number of observation kinds contained in the file

» whether the locations have one or more components

* how many quality control values are available for each observation
* where those quality control values come from

* how many copies of each observation there are

The following two diagrams demonstrate the structure of an obs_seq.out and an obs_seq. final file, respectively.

Note: These example files are from entirely separate experiments. They were selected to demonstrate the flexibility
of the observation sequence file format.

6.32. Detailed structure of an obs_seq file 83

DART, Release 9.16.0

6.32.1 obs_seq.out structure

obs_sequence

obs_kind_definitions
7
10 ADCP_U_CURRENT_COMPONENT
11 ADCP_V_CURRENT_COMPONENT

16 DRIFTER_U_CURRENT_COMPONENT
17 DRIFTER_V_CURRENT_COMPONENT

23 GLIDER_TEMPERATURE
29 SATELLITE_INFRARED_SST
30 SATELLITE SSH
num_copies: 1 '@um_qc: D
num_obs: 559502 max_isium_obs:
observation
QC value -
first: 1 last:

559502

559502

OBS 1
-0.176900000000000

1.00000000000000

-1 2
obdef
loc3d
4.62424

kind

&

0.32550 0.00000 -1
30
3600 144270 }

2.500000000000000E-003

observation value
QC value
linked list information

type of location metadata
longitude latitude level vertica

30 == SATELLITE_SSH (from ttble in header)

observation time (seconds, da
observation error variance

0oBS 2
-0.177600000000000
1.00000000000000
1 3 -1

f
loc3d) i -\; _\: \.
4.61726 0.32724 0.00000 -1

kind
30
3600 144270
2.500000000000000E-003

s)

84

Chapter 6. References

coordinate_type

DART, Release 9.16.0

6.32. Detailed structure of an obs_seq file 85

DART, Release 9.16.0

6.32.2 obs_seq.final structure

obs_sequence
obs kind definitions
15
1 RADIOSONDE_U_WIND_COMPONENT
2 RADIOSONDE_V_WIND_COMPONENT
3 RADIOSONDE_SURFACE_PRESSURE
4 RADIOSONDE_TEMPERATURE
5 RADIOSONDE_SPECIFIC_HUMIDITY
6 AIRCRAFT_U_WIND_COMPONENT
7 AIRCRAFT_V_WIND_COMPONENT
8 AIRCRAFT_TEMPERATURE
9 ACARS_U_WIND_COMPONENT
10 ACARS_V_WIND_COMPONENT
11 ACARS_TEMPERATURE
12 MARINE_SFC_U_WIND_COMPONENT
13 MARINE_SFC_V_WIND_COMPONENT
14 MARINE_SFC_TEMPERATURE
15 MARINE SFC SPECIFIC HUMIDITY
num_copies: 5‘)1um_qc:: 2
5 max_num_obs: 37695
NCEP BUFR observation
prior ensemble mean
posterior ensemble mean 5 copies
prior ensemble spread
posterior ensemble spread
NCEP QC index -
DART guality control 2 kinds of Qc
first: 1 last; 37695
OBS 1
1009.76377118761002
1008.61783794436531 i
1009.92390496581413 5 coples
0.799858860231082436
0.202591644167762347
2.00000000000000000
0.000000000000000000E+00
-12-1
obdef
loc3d
4.433480 0.858041 917.000000 -1
kind
3
64800 148425
1.00000000000000000
OBS 2
1013.65517759213003
1014.38817672596736
1015.08278344676989
1.21335841600085725
0.300925406401195361
2.00000000000000000

0.000000000000000000E+00 2 kinds of QC
131
obdef
loc3d
4.494620 0.894229 498.000000 -1
kind
3

64800 148425
1.00000000000000000

86 Chapter 6. References

DART, Release 9.16.0

6.33 Creating an obs_se(q file of synthetic observations

There are several steps to create an observation sequence file, which follows directly from the modular nature of the
DART programming philosophy. This procedure may be used to create synthetic observations from any model.

1. Decide what observations you want to investigate and edit the input .nml&obs_kind_nml block.
2. Build and run preprocess to create code that supports the observations you want.

3. Build and run create_obs_sequence to define the specifics about the observation you want.

4. Build and run create_fixed_network_sequence to replicate those specifics through time.
5

. Build and run perfect_model_obs to create an observation consistent with the model state and specified error
distribution at the requested times and locations.

These programs are described in Programs included in DART .

6.33.1 Example: generating observations for the Lorenz 63 model.

While this procedure works with any model, the responses in ‘create_obs_sequence’ will vary based on what obser-
vations are supported. You should not expect the responses for observations for L63 can be used to produce radar
observations from WRE, for example. When compiled with support for radar observations, create_obs_sequence will
prompt you for the required metadata.

1) There are no ‘real’ observations for the Lorenz 63 model, so the appropriate namelist settings are:

&obs_kind_nml
assimilate_these_obs_types = 'RAW_STATE_VARIABLE' /

&preprocess_nml

input_obs_def _mod_file = '../../../observations/forward_operators/DEFAULT _obs_def_
—mod.F90'
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90"'
input_obs_kind _mod_file = '../../../assimilation_code/modules/observations/DEFAULT_
—obs_kind_mod.F90'
output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_kind_
—mod.f90'
input_files = '../../../observations/forward_operators/obs_def 1d_state_
—mod.£f90'
/

2) Run preprocess in the normal fashion.

3) create_obs_sequence creates an observation set definition (typically named set_def.out), the time-independent
part of an observation sequence. It may help to think of it as trying to define what sorts of observations will be taken
at one ‘reading’ ... you walk out to the box and take temperature, humidity, and wind observations all at the same
time and place, for example. You can think of it as one page in an observer’s notebook, and only contains the location,
type, and observational error characteristics (normally just the diagonal observational error variance) for a related set
of observations. There are no actual observation values, nor are there any times associated with the definition. The
program is interactive and queries the user for the information it needs. Begin by creating a minimal observation set
definition in which each of the 3 state variables of L63 is directly observed with an observational error variance of 1.0
for each observation. To do this, use the following input sequence (the text including and after # is a comment and does
not need to be entered):

The following is a screenshot (much of the verbose logging has been left off for clarity), the user input looks like this.

6.33. Creating an obs_seq file of synthetic observations 87

DART, Release 9.16.0

[unixprompt]$./create_obs_sequence
Starting program create_obs_sequence
Initializing the utilities module.
Trying to log to unit 10

Trying to open file dart_log.out

Starting ... at YYYY MM DD HH MM SS =
2017 3 28 10 15 30
Program create_obs_sequence

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml

-------------- ASSIMILATE_THESE_OBS_TYPES -----------—--
RAW_STATE_VARTABLE
-------------- EVALUATE_THESE_OBS_TYPES --------------

Input upper bound on number of observations in sequence
4
Input number of copies of data (0 for just a definition)
0
Input number of quality control values per field (0 or greater)
0
input a -1 if there are no more obs
0
Input -1 * state variable index for identity observations
OR input the name of the observation type from table below:
OR input the integer index, BUT see documentation...
1 RAW_STATE_VARIABLE
-1
input time in days and seconds
00
Input error variance for this observation definition
1.0
input a -1 if there are no more obs
0

{ this gets repeated ... until you tell it to stop ... }

input a -1 if there are no more obs

-1

Input filename for sequence (set_def.out usually works well)
set_def.out

write_obs_seq opening formatted file set_def.out

write_obs_seq closed file set_def.out

88 Chapter 6. References

DART, Release 9.16.0

Rest assured that if you requested to assimilate more realistic observation types, you will be queried for appropriate
information by create_obs_sequence. Below is a table that explains all of the input you should need to supply for
observations of the L63 model state.

#
#
#
#

S~ S~ @ | (= — I —
(=] (=]
FH W KR W FH oW KR W

—
[=)
H R R R

set_def.out #

upper bound on num of observations in sequence

number of copies of data (0 for just a definition)
number of quality control values per field (0 or greater)
-1 to exit/end observation definitions

observe state variable 1

time -- days, seconds

observational variance

-1 to exit/end observation definitions

observe state variable 2

time -- days, seconds

observational variance

-1 to exit/end observation definitions

observe state variable 3

time -- days, seconds

observational variance

-1 to exit/end observation definitions

Output file name

4) create_fixed_network_sequence takes the observation set definition and repeats it in time, essentially making multiple
pages in our notebook. Again, the program is interactive and queries the user for information. You should be able to
simply follow the prompts. The table below represents the input needed for the L63 example:

set_def.out
1

1000
0, 43200
0, 43200

obs_seq.in

Input observation set definition file

Regular spaced observation interval in time

1000 observation times

First observation after 12 hours (0 days, 12 * 3600 seconds)
Observations every 12 hours

Output file for observation sequence definition

5) perfect_model_obs advances the model from the state defined by the initial conditions file specified in the input . nml
and ‘applies the forward operator’ to harvest observations to fill in the observation sequence specified in obs_seq. in.
The observation sequence finally has values for the observations and is saved in a file generally named obs_seq.out.
perfect_model_obs is namelist-driven, as opposed to the previous two (whose input is a lot harder to specify in a
namelist). Take a look at (and modify if you like) the input.nml&perfect_model_obs_nml section of the namelist.

The End. Not only should you have an observation sequence file (usually obs_seq.out), you also have a file containing
the exact evolution of the model consistent with those observations - the true state: perfect_output.nc.

6.33. Creating an obs_seq file of synthetic observations 89

DART, Release 9.16.0

6.34 Creating an obs_se(q file from real observations

Real observations come in a mind-boggling diversity of formats. We have converters for many formats in the DART/
observations/obs_converters directory. The documentation for that directory is listed in DART Observations.

The converters are designed to work on one input file format and create (or add to) an output observation sequence. It
may be desirable to post-process multiple observation sequence files with the program obs_sequence_tool to select for
timeframe, geographic region, etc.

Many of the formats require their own libraries (like HDF), and require intimate knowledge of the data format to extract
the portions required for the DART observation sequence file.

You should feel free to browse the converters and their companion documentation. If you create a new observation
coverter for a format that DART doesn’t already support, please follow the Contributors’ guide to add your code to
DART. These types of contributions are greatly appreciated by DAReS staff and by the geoscience community!

The DART framework enforces a clean separation between observations and the models used for assimilation. The
same observations can be used in any model which understands how to generate a value for the requested type of
observation from the models’ state-space values (i.e. the forward observation operator must exist - DART provides
many for the most common state variables).

In many cases, the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data. The DART software distribution includes Fortran
subroutines and functions to help create a sequence of observations in memory, and then a call to the DART observation
sequence write routine will create an entire obs_seq file in the correct format.

In many cases, a single, self-contained program can convert directly from the observation location, time, value, and
error into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR),
there is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards single-
step conversions but either approach can be used for new programs.

The DART system comes with several types of location modules for computing distances appropriately. The two
most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. All the
programs in the DART/observations directory assume the assimilation_code/location/threed_sphere/
location_mod. £90 3D sphere location module is being used.

With the myriad of observation file formats, HDF, Grib, BUFR, netCDF, ... we simply have not had the time nor need
to support all of them. The converters are a work in progress. There are currently about 10 other observation sources
and types which we are in the process of collecting information and conversion programs for and which will eventually
be added to this directory. In the meantime, if you have converters for data or interest in something that is not in the
repository, please email the DART group. Your best bet is to contact our group at dart@ucar.edu with a specific request
and we can steer you to the most similar process.

6.34.1 Overview

Real-world observations of earth-system data come from a variety of sources, including radiosondes, satellites, ships,
aircraft, weather stations, etc. The files in this observations directory can be used to convert data from a variety of
native formats into a common DART observation sequence format.

Synthetic observations are those not based on an actual instrument reading of a system, but instead are fabricated to
have a known value, or have values computed by running a model, possibly with a fixed amount of simulated noise
added. These observations can be used for testing, determining the sensitivity of the model to assimilation, and for
designing new observation systems. The DART system includes several ways to create synthetic observations. For
more information, see Creating an obs_seq file of synthetic observations.

The DART framework enforces a clean separation between observations and the models they are assimilated into. The
same observations can be used in any model which understands how to generate a value for the requested type of

90 Chapter 6. References

DART, Release 9.16.0

observation from its state space values.

In many cases a single, self-contained program can convert directly from the observation location, time, value, and error
into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR), there
is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards single-step
conversions but either approach can be used for new programs.

Frequently the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data.

The DART software distribution includes Fortran subroutines and functions to help create a sequence of observations
in memory, and then a call to the DART observation sequence write routine will create an entire obs_seq file in the
correct format.

The DART system comes with several types of location modules for computing distances appropriately. Two of the ones
most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. All the programs
here assume the location/threed_sphere/location_mod.£90 3D sphere location module is being used.

There are currently some additional observation sources and types which we are in the process of collecting infor-
mation and conversion programs for and which will eventually be added to this directory. In the meantime, if you
have converters for data or interest in something that is not in the repository, please contact DAReS staff by emailing
dart@ucar.edu.

6.34.2 Data sources and formats

See the various subdirectories here, which generally include information on where the example data was obtained and
in what format it is distributed. Most data is available for download off the web. The Data Support Section (DSS) at
NCAR has large data repositories, the MADIS data center distributes observations in netCDF format, GTS real-time
weather data is available from various sources. For new converters, if you can find what format the data is distributed in
you may be able to adapt one of the existing converters here for your own use. Formats read by the existing converters
include netCDF, HDF, little-r, text, Prepbufr, amongst others.

See the current list of converter programs

If you have looked and none of the existing converters are right for your data, here are some suggestions for where
to start creating a new converter. Create a new subdirectory in the observations directory. Copy with the recursive
option (cp -r) one of the existing converters and adapt to your needs. Our suggestions for which converter to start from
depends on the format of your input observations to be converted. If your input data format is:

format advice

netCDF Start with the MADIS converters, and in particular try the convert_madis_profiler.£f90
file because it is the most straightforward. Another good optionis SST/0i_sst_to_obs.f90.
Comma separated | Start with the Ameriflux converter.

text

Generic text Start with the fext converter.
HDF-EOS5 Start with the AIRS converter.
BUFR or prep- | Start with the NCEP converter.
BUFR

Dense data, like | Start with the fpw converter, which includes code that averages the raw data in space and time.
Satellite swaths

Ray-path inte- | Start with the GPS converter, which includes code that traces a path and integrates values
grated data along the ray.

World Ocean | Start with the WOD converter.

Database packed

ASCII

6.34. Creating an obs_seq file from real observations 91

mailto:dart@ucar.edu

DART, Release 9.16.0

6.34.3 Decisions you might need to make
Time

Time enters into the assimilation system in 3 places: the timestamp of the state vector data (the current model time
when this data was produced), the time of each observation, and the minimum time period the model should be called
to advance (the assimilation window size). The internal timestepping of the model is unrelated to any of these times
and is outside the scope of the assimilation system.

The basic time type in DART is a pair of integers; one for the day number and one for the number of seconds. Generally
the low order models, which aren’t direct geophysical models, use time directly as a sequence of days starting at 0 and
incrementing in any appropriate number of seconds or days. The observations assimilated into these systems do not
need to use a calendar.

Observations of a real-world system usually are distributed with a year/month/day, hour/min/seconds timestamp.
There are routines in DART to convert back and forth between the (day-number/seconds) format and a variety of
(year/month/day) calendars. For more details on how DART stores time information and the types of available calen-
dars, see MODULE time_manager_mod.

Some climate models which do long runs (100s or 1000s of years) use a modified calendar for simplicity in computation,
e.g. months which always have 30 days, or no leap years. When trying to assimilate real observations into these models
there may be calendar issues to solve.

The smallest resolvable unit of time in DART is a second. To model a system which operates on sub-second time scales
the time can be scaled up by some factor. As long as the observation time, the state data time, and the minimum model
advance time are expressed in the same scaled time units, there is no problem.

Error variances

Observations must specify an associated expected error variance. Each individual observation stores its own error
variance value, so it can be a constant value for all observations of that type or it can vary by location, by height, by
magnitude of the observed value, etc. This value is the expected instrument error variance plus the representativeness
error variance of the model. The model error variance includes deficiencies in the equations representing the processes
of the system as well as errors introduced by representing a continuous system as a series of discrete points. While
the instrument error and the representativeness error could be specified separately, they each have the same impact on
the assimilation and can be difficult to determine with any real accuracy. For simplicity, in DART (and most current
assimilation software) they are combined and specified as a single value, which we frequently call the ‘observation
error’. Keep in mind we really mean ‘observation error variance’.

The instrument error is generally supplied by the instrument maker. Sadly, it is frequently surprisingly difficult to
find these values. For the representativeness error, you can generate a set of artificial observations with the program
perfect_model_obs and then run an assimilation experiment to generate an estimate of the error in the model.

In practice, however, most people make an educated guess on the values of the error and then start with a larger than
expected value and decrease it based on the results of running some test assimilations.

For these tests, the namelist for the outlier threshold in the filter_nml namelist of input.nml should be disabled
by setting it to -1 (the default value is 3). This value controls whether the observation is rejected because the observed
value is too far from the ensemble mean.

If the diagnostics show that the difference between the mean of the forward operators and the observed value is consis-
tently smaller than the specified observation error, then the error is probably too large. A error that is too large reduces
the impact of an observation on the state. If the specified observation error is too small it is likely the observation will
be rejected when the outlier threshold is enabled, and the observation will not be assimilated. It is important to look at
the output observation sequence files after an assimilation to see how many observations were assimilated or rejected,
and also at the RMSE (root mean squared error) versus the total spread. DART includes Matlab diagnostic routines to
create these types of plots. The observation RMSE and total spread should be roughly commensurate. The total spread

92 Chapter 6. References

http://www.wikipedia.org/wiki/RMSE

DART, Release 9.16.0

includes contributions from both the ensemble variance and the observational error variance, so it can be adjusted by
changing the error values on the incoming observations.

There are other ways to adjust the ensemble spread, including /nflation, so the observation error is not the only factor
to consider.

One last recommendation: if possible, the Prior forward operator values should be compared against the observations
after several assimilation cycles. If you plot results using the Posterior values it is always possible for the assimilation
to overfit the observations and look good on the diagnostic plots. But the actual test is to then advance the model and
look at how the forecast of the state compares to the observations.

Observation types

All observations have to have a specific ‘type’. There are namelist controls to turn on and off the assimilation of
observations at run-time by type, or to only evaluate the forward operator for an observation but have no impact on
the state. Several of the diagnostics also group observations by type to give aggregate statistics after an assimila-
tion. Generally types are based on both the observing platform or instrument as well as the ‘kind’ of observation,
e.g. RADIOSONDE_TEMPERATURE, ARGO_SALINITY, etc. Each type is associated with a single underlying
generic ‘kind’, which controls what forward operator code is called inside the model, e.g. QTY_TEMPERATURE,
QTY_DENSITY, etc.

For more details on how to use and add new DART types, see the MODULE obs_def _mod.

The DART obs_kind_mod. £90 defines a list of already defined observation types, and users can either use existing
observation types in ‘obs_def_xxx_mod.f90’ files, or define their own. Be aware that obs_kind_mod. £90 is auto-
generated by the PROGRAM preprocess, so until you configure and run preprocess, obs_kind_mod. £90 will not
exist.

Observation locations

The two most common choices for specifying the location of an observation are the MODULE location_mod
(threed_sphere) and the MODULE (1D) location_mod locations.

For observations of a real-world system, the 3D Sphere is generally the best choice. For low-order, 1D models, the
1D locations are the most commonly used. The observation locations need to match the type of locations used in the
model in that you cannot read observations on a unit circle (1D) when using models that require 3D Sphere locations.

The choice of the vertical coordinate system may also be important. For the 3D Sphere, the vertical coordinate system
choices are:

string integer value | meaning

VERTISUNDEF -2 has no specific vertical location (undefined)
VERTISSURFACE -1 surface value (value is surface elevation in m)
VERTISLEVEL 1 by model level

VERTISPRESSURE 2 by pressure (in pascals)

VERTISHEIGHT 3 by height (in meters)
VERTISSCALEHEIGHT | 4 by scale height (unitless)

The choice of the vertical coordinate system may have ramifications for vertical localization, depending on your model’s
ability to convert from one coordinate system to another. VERTISUNDEF is typically used for column-integrated quan-
tities. VERTISLEVEL only makes sense for synthetic observations.

When observations are declared to be VERTISSURFACE or VERTISUNDEF it is not possible to compute a vertical distance
between the observation and anything else. Consequently, the distance between that observation and everything else
(state, other observations) is strictly a horizontal distance, and the observation will impact the entire column (all levels)
within the horizontal localization radius.

6.34. Creating an obs_seq file from real observations 93

DART, Release 9.16.0

6.35 Available observation converter programs

The DART/observations/obs_converters directory contains a variety of converter programs to read various ex-
ternal formats and convert the observations into the format required by DART.

Each directory has at least one converter:

AIRS: AIRS and AMSU

AURA: See DART/observations/obs_converters/AURA
Aviso+/CMENMS: Aviso+/CMEMS Observations

Ameriflux: PROGRAM level4_to_obs

CHAMP: CHAMP

cice: PROGRAM cice_to_obs

CNOFS: See DART/observations/obs_converters/CNOFS
CONAGUA: CONAGUA

COSMOS: PROGRAM COSMOS_to_obs

DWL: PROGRAM dwl_to_obs

GMI: GMI Brightness Temperatures

GOES: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances
GPSPW: GPSPW

GRACE: See DART/observations/obs_converters/GRACE
GSI2DART: GSI2DART

GTSPP: GTSPP Observations

MADIS: MADIS Data Ingest System

MIDAS: PROGRAM MIDAS_to_obs

MODIS: PROGRAM MODI15A2_to_obs

MPD: See DART/observations/obs_converters/MPD
NCEP: (prepbufr -> ascii) PROGRAM prepbufr

NCEP: (ascii -> obs_seq) PROGRAM create_real_obs

ROMS: ROMS observations to DART observation sequences
SIF: PROGRAM SIF_to_obs_netcdf

SSEC: SSEC Data Center

SST: PROGRAM sst_to_obs, oi_sst_to_obs

SSUSI: SSUSI F16 EDR-DSK format to observation sequence converters
WOD: WOD Observations

gnd_gps_vtec: GND GPS VTEC

GPS: GPS Observations

ok_mesonet: Oklahoma Mesonet MDF Data

QuikSCAT: QuikSCAT SeaWinds Data

94

Chapter 6.

References

DART, Release 9.16.0

e Radar: Radar observations
e snow: PROGRAM snow_to_obs
e Text: PROGRAM text_to_obs
e text_GITM: See DART/observations/obs_converters/text_GITM
» tpw: Total Precipitable Water Observations
e Tropical Cyclones: PROGRAM tc_to_obs
e Var (little-r): PROGRAM littler_tf _dart
e Var (radar): PROGRAM rad 3dvar_to_dart
There are also a couple utilities of note:

» Even Sphere - autility for generating evenly-spaced observation locations that can then be used in a perfect model
experiment.

* Obs Error - modules that specify observation errors based on what is used by ECMWF and NCEP
In addition the following external program produces DART observation sequence files:

* Observation Processing And Wind Synthesis (OPAWS): OPAWS can process NCAR Dorade (sweep) and NCAR
EOL Foray (netCDF) radar data. It analyzes (grids) data in either two-dimensions (on the conical surface of each
sweep) or three-dimensions (Cartesian). Analyses are output in netCDF, Vis5d, and/or DART (Data Assimilation
Research Testbed) formats.

For generating synthetic observations, see the documentation for the program create_obs_sequence. You can also
generate observation files based on text input. See the documentation for the PROGRAM text_to_obs. Or for simu-
lating a large complex observing system, you can use the DART library routines in a Fortran program to compute the
observation information and have the DART routines write the output file.

To learn how to run a model with a set of observations that have only locations, types, and times, and have the forward
operators compute the observation values, see the documentation for the program perfect_model_obs.

6.36 Manipulating obs_seq files with the obs_sequence_tool

Please see the program obs_sequence_tool document for detailed information and examples.
The obs_sequence_tool is the primary means to manipulate observation sequence files.

Observations sequence files are linked lists of observations organized by time. The observations may appear in any
order in the file, but traversing the linked list will result in observations ordered by time.

The obs_sequence_tool can be used to combine observation sequences, convert from ASCII to binary or vice-versa,
extract a subset of observations, etc.

When you are testing your DA application, you should use the obs_sequence_tool to extract one or a small number of
observations from an existing observation sequence file for assimilation. Testing your application using a small number
of observations will allow you to test and troubleshoot problems much faster than performing a full-scale assimilation.

6.36. Manipulating obs_seq files with the obs_sequence_tool 95

http://code.google.com/p/opaws/

DART, Release 9.16.0

6.37 The difference between observation TYPE and QUANTITY

Since DART is designed to assimilate data from any data source into any model, the assimilation algorithms need a
way to define how observational data sources relate to model state variables.

DART does this by defining a single generic observation QUANTITY, such as zonal wind, and mapping many specific
observation TYPEs, corresponding to source observations, to the single QUANTITY.

For example, QuikSCAT and radiosondes are both capable of measuring zonal wind. DART defines two observation
TYPEs:

e QKSWND_U_WIND_COMPONENT for the QuikSCAT observations of zonal wind
e RADIOSONDE_U_WIND_COMPONENT for the radiosonde observations of zonal wind
and relates both of these TYPES to a single QUANTITY: QTY_U_WIND_COMPONENT.

Thus TYPE and QUANTITY have a many-to-one relationship. This distinction enables you to assimilate or evaluate
observation platforms independently of one another with a single observation sequence file; reducing the possibility of
error.

The forward observation operators are implemented based on observation QUANTITY. When requested, the model
generates a QTY_U_WIND_COMPONENT, it doesn’t need to know that it will be compared to an observation from
QuikSCAT or one from a radiosonde.

Tip: It is usually scientifically very interesting to be able to compare the assimilations one TYPE of observation
verus another. An observation sequence file can have many types of observations. DART has the capability to assimilate
(or evaluate) any combination of observation types without getting bogged down in dataset management. The same
observation sequence can be used for experiments that include or exclude certain observation types. This procedure
can ensure that you are actually performing the experiment that you think you are performing.

6.38 Adding support for a new observation TYPE

If you would like to add support for a new observation TYPE, see MODULE obs_def _mod for detailed information.

6.39 Introduction to DART’s support for RTTOV

This document serves as an orientation for DART’s support for satellite radiance assimilation. At the current time, only
ECMWEF’s RTTOV radiative transfer model is supported.

DART now includes the ability to use the RTTOV forward operators for satellite radiance assimilation. This is a new
capability for DART, please submit issues with the DART Issues facility.

Note that DART support for RTTOV does not mean that all issues regarding satellite data assimilation with an ensemble
system have been solved. Rather, the DART team hopes to provide the tools necessary for researchers to investigate
the relevant issues with multiple models and data assimilation methodologies.

DART supports RTTOV version 12.3. Both RTTOV-direct for visible/infrared/microwave without scattering as well
as RTTOV-scatt for microwave computations with full scattering are supported. DART supports all features of RT-
TOV 12.3 as a pass-through from the models to RTTOV. This includes aerosols, trace gases, clouds, and atmospheric
variables. It also includes directly specifying scattering properties.

96 Chapter 6. References

https://github.com/NCAR/DART/issues

DART, Release 9.16.0

However, a particular model may not have all of the variables necessary for these functions depending on the model
and model setup. In some cases RTTOV default climatologies can be used, but at a minimum the following quantities
must be supplied by the model_mod interpolate:

Quantity Description
QTY_PRESSURE atmospheric pressure in hPa at the model levels
QTY_TEMPERATURE atmospheric temperature in K at the model levels

QTY_VAPOR_MIXING_RATIO | atmospheric humidity mixing ratio in kg/kg at the model levels
QTY_SURFACE_PRESSURE the surface pressure in hPa
QTY_SURFACE_ELEVATION the surface elevation in km

QTY_2M_TEMPERATURE the atmospheric temperature in K at 2 m above the surface
QTY_SKIN_TEMPERATURE the surface (skin) temperature in K
QTY_SURFACE_TYPE 0 =land, 1 = water, 2 = sea ice

If a DART model_mod cannot provide these required quantities, the RTTOV forward operator will fail and cannot be
used. It may be possible to look up surface elevation or surface type through an look-up table or “atlas,” although DART
does not yet provide such functionality. 2M temperature in theory could be interpolated based on skin temperature and
the lowest-level model temperature.

Beyond these fields, there are many other optional fields (such as clouds, trace gases, and aerosols) that can be specified.
See the obs_def_rttov_mod.html page in the observations/forward_operators directory for a complete list of values.

6.39.1 Setting up DART+RTTOV

The RTTOV code and coefficients can be downloaded from this page:
https://www.nwpsaf.eu/site/software/rttov

Be aware that there are more coefficient files available once you download the RTTOV package. There is a
rtcoef_rttovl2/rttov_coef_download.sh script that assists in the process and you can select specific coefficient
files or large batches. There is also a website https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/
rttov-v12-coefficient-download/

You will need to register for a free account before downloading the code.

You should read the RTTOV user guide carefully as DART primarily acts as a pass through. Refer to the setup instruc-
tions included with the RTTOV documentation.

It may also be useful to refer to:
https://github.com/NCAR/DART/wiki/Getting- Started-with-DART-RTTOV

Once you have successfully installed RTTOV, you should customize the mkmf.template.rttov.gfortran file to your own
build system, possibly referring to the other mkmf.template examples for additional information if you are not using
gfortran.

There are many namelist options available through input.nml that control the run-time behavior of the RTTOV model.
These are documented in obs_def_rttov_mod.html in the observations/forward_operators directory.

To get RTTOV to work with your model, you will need to follow these steps:
1. Install RTTOV as above
2. Customize your mkmf.template to include the RTTOV libraries and include directories
3. Go into the models//work directory for your model of choice

4. Add your observation types (which are listed in obs_def_rttov_mod.html/f90) to the input.nml namelist (assim-
ilate_ / evaluate_these_obs_types)

6.39. Introduction to DART’s support for RTTOV 97

https://www.nwpsaf.eu/site/software/rttov
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/rttov-v12-coefficient-download/
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/rttov-v12-coefficient-download/
https://github.com/NCAR/DART/wiki/Getting-Started-with-DART-RTTOV

DART, Release 9.16.0

5. Include observations/forward_operators/obs_def_rttov_mod.f90 in the input_files section under &preprocess
6. In your model of choice, run ./quickbuild.csh and ensure the RTTOV libraries are built
7. For OSSE runs with perfect_model_obs:

» Create an observation sequence file using ./create_obs_sequence and ./create_fixed_network_seq as de-
tailed in the DART Getting_Started documentation

* Run perfect_model_obs
» Setup your ensemble as appropriate
* Run filter and analyze the results in the usual way
8. For OSE runs:
* Run the observation converter for your desired observations
* Setup your ensemble as appropriate
* Run filter and analyze the results in the usual way

Note that currently obervation converters are only provided for AIRS, AMSU/A, GOES, and GMI. These converters
can be found in the observations/obs_converters directories. The L1 converters are the appropriate converters for the
radiance or brightness temperatures (rather than retrievals). If you need real L1 data for another satellite (as opposed
to running an OSSE with perfect_model_obs where you can generate your own data), you may be able to use one of
these converters to get you started. We welcome your contributions back to the DART public repository. Please issue
a pull request to https://github.com/NCAR/DART.

Note that some of the observation converters may require the HDF-EOS libraries. See the BUILDME script in each
directory for help in building these observation converters.

6.39.2 Current list of known issues
DART support for satellite radiances cannot be considered 100% complete. The following details the known issues
that are being considered with DART’s support for satellite radiances.

* DART does not yet provide satellite bias correction capabilities. This will be released in the near future.

* Cross-channel error correlations are not yet supported. A principal component approach has been discussed. For
now, the best bet is to use a subset of channels that are nearly independent of one another.

¢ Vertical localization is an issue for satellite radiances. The main choices are to turn off vertical localization, use
the maximum peak of the weighting function or the cloud-top may be appropriate, or explore other options. We
consider this an open research problem.

6.40 DART Observations

6.40.1 Overview

Real-world observations of earth-system data come from a variety of sources, including radiosondes, satellites, ships,
aircraft, weather stations, etc. The files in this observations directory can be used to convert data from a variety of
native formats into a common DART observation sequence format.

Synthetic observations are those not based on an actual instrument reading of a system, but instead are fabricated to
have a known value, or have values computed by running a model, possibly with a fixed amount of simulated noise
added. These observations can be used for testing, determining the sensitivity of the model to assimilation, and for

98 Chapter 6. References

https://github.com/NCAR/DART

DART, Release 9.16.0

designing new observation systems. The DART system includes several ways to create synthetic observations. See the
programs section below for more details.

The DART framework enforces a clean separation between observations and the models they are assimilated into. The
same observations can be used in any model which understands how to generate a value for the requested type of
observation from its state space values.

In many cases a single, self-contained program can convert directly from the observation location, time, value, and error
into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR), there
is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards single-step
conversions but either approach can be used for new programs.

Frequently the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data.

The DART software distribution includes Fortran subroutines and functions to help create a sequence of observations
in memory, and then a call to the DART observation sequence write routine will create an entire obs_seq file in the
correct format.

The DART system comes with several types of location modules for computing distances appropriately. Two of the
ones most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. Most of the
programs here assume the location/threed_sphere/location_mod.f90 3D sphere location module is being used.

There are currently some additional observation sources and types which we are in the process of collecting informa-
tion and conversion programs for and which will eventually be added to this directory. In the meantime, if you have
converters for data or interest in something that is not in the repository, please email the DART group.

6.40.2 Data Sources and Formats

See the various subdirectories here, which generally include information on where the example data was obtained and
in what format it is distributed. Most data is available for download off the web. The Data Support Section (DSS) at
NCAR has large data repositories, the MADIS data center distributes observations in NetCDF format, GTS real-time
weather data is available from various sources. For new converters, if you can find what format the data is distributed in
you may be able to adapt one of the existing converters here for your own use. Formats read by the existing converters
include NetCDF, HDF, little-r, text, Prepbufr, amongst others.

See the programs section below for a list of the current converter programs. It might save you from reinventing
the wheel.

If you have looked and none of the existing converters are right for your data, here are some suggestions for where
to start creating a new converter. Create a new subdirectory in the observations directory. Copy with the recursive
option (cp -r) one of the existing converters and adapt to your needs. Our suggestions for which converter to start from
depends on the format of your input observations to be converted. If your input data format is:

Start with the MADIS converters, and in particular try the convert_madis_profiler.f90 file because it is the most straight-
forward. Another good option is SST/oi_sst_to_obs.f90

6.40. DART Observations 99

mailto:dart@ucar.edu

DART, Release 9.16.0

netCDF Start with the MADIS converters, and in particular try the convert_madis_profiler.fo0 file
because it is the most straightforward. Another good option is SST/oi_sst_to_obs.f90

Comma separated | Start with the Ameriflux converter.

text

Generic text Start with the text converter.

HDF-EOS Start with the AIRS converter.

BUFR or prep- | Start with the NCEP converter.

BUFR

Dense data, like

Satellite swaths

Start with the tpw converter, which includes code that averages the raw data in space and
time.

Ray-path integrated
data

Start with the GPS converter, which includes code that traces a path and integrates values
along the ray.

World Ocean | Start with the WOD converter.
Database packed
ASCII

6.40.3 Decisions You May Need to Make
Time

Time enters into the assimilation system in 3 places: the time of the state vector data (the current model time when this
data was produced), the time of each observation, and the assimilation window length. The window length is set by the
model-dependent routine shortest_time_between_assimilations(). The internal timestepping of the model is
unrelated to any of these times and is outside the scope of the assimilation system.

The basic time type in DART is a pair of integers; one for the day number and one for the number of seconds. Generally
the low order models, which aren’t direct geophysical models, use time directly as a sequence of days starting at 0 and
incrementing in any appropriate number of seconds or days. The observations assimilated into these systems do not
need to use a calendar.

Observations of a real-world system usually are distributed with a year/month/day, hour/min/seconds timestamp.
There are routines in DART to convert back and forth between the (day-number/seconds) format and a variety of
(year/month/day) calendars. See the time manager documentation for more details on how DART stores time infor-
mation and the types of available calendars. Some climate models which do long runs (100s or 1000s of years) use a
modified calendar for simplicity in computation, e.g. months which always have 30 days, or no leap years. When trying
to assimilate real observations into these models there may be calendar issues to solve.

The smallest resolvable unit of time in DART is a second. To model a system which operates on sub-second time scales
the time can be scaled up by some factor. As long as the observation time, the state data time, and the minimum model
advance time are expressed in the same scaled time units, there is no problem.

Error

Observations must specify an associated expected error. Each individual observation stores its own error value, so
it can be a constant value for all observations of that type or it can vary by location, by height, by magnitude of the
observed value, etc. This value is the expected instrument error plus the representativeness error of the model. The
model error includes deficiencies in the equations representing the processes of the system as well as errors introduced
by representing a continuous system as a series of discrete points. While the instrument error and the representativeness
error could be specified separately, they each have the same impact on the assimilation and can be difficult to determine
with any real accuracy. For simplicity, in DART (and most current assimilation software) they are combined and
specified as a single value.

100 Chapter 6. References

../../assimilation_code/modules/utilities/time_manager_mod.html#time_type

DART, Release 9.16.0

The instrument error is generally supplied by the instrument maker. Sadly, it is frequently surprisingly difficult to
find these values. For the representativeness error, a set of artificial observations could be generated with the per-
fect_model_obs program and an assimilation experiment could be run to generate an estimate of the error in the model.
In practice however most people make an educated guess on the values of the error and then start with a larger than
expected value and decrease it based on the results of running some test assimilations. For these tests the namelist
for the outlier threshold should be disabled by setting it to -1 (the default value is 3). This value controls whether the
observation is rejected because the observed value is too far from the ensemble mean.

If the diagnostics show that the difference between the mean of the forward operators and the observed value is con-
sistently smaller than the specified observation error, then the error is probably too large. A too-large error reduces the
impact of an observation on the state. If the specified observation error is too small it is likely the observation will be
rejected when the outlier threshold is enabled, and the observation will not be assimilated. It is important to look at
the output observation sequence files after an assimilation to see how many observations were assimilated or rejected,
and also at the RMSE (root mean squared error) versus the total spread. DART includes Matlab diagnostic routines to
create these types of plots. The observation RMSE and total spread should be roughly commensurate. The total spread
includes contributions from both the ensemble variance and the observational error variance, so it can be adjusted by
changing the error values on the incoming observations. There are other ways to adjust the ensemble spread, including
inflation, so the observation error is not the only factor to consider.

One last recommendation: if possible, the Prior forward operator values should be compared against the observations
after several assimilation cycles. If you plot results using the Posterior values it is always possible for the assimilation
to overfit the observations and look good on the diagnostic plots. But the actual test is to then advance the model and
look at how the forecast of the state compares to the observations.

Types

All observations have to have a specific ‘type’. There are namelist controls to turn on and off the assimilation of
observations at run-time by type, or to only evaluate the forward operator for an observation but have no impact on
the state. Several of the diagnostics also group observations by type to give aggregate statistics after an assimila-
tion. Generally types are based on both the observing platform or instrument as well as the kind of observation,
e.g. RADIOSONDE_TEMPERATURE, ARGO_SALINITY, etc. Each type is associated with a single underlying
generic ‘kind’, which controls what forward operator code is called inside the model, e.g. QTY_TEMPERATURE,
QTY_DENSITY, etc.

See here for more details on how to use and add new DART types. The DART obs_kind_mod.f90 defines a list of
already defined observation kinds, and users can either use existing observation types in ‘obs_def_xxx_mod.f90’ files,
or define their own.

6.40. DART Observations 101

../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../../assimilation_code/programs/filter/filter.html#Namelist
http://www.wikipedia.org/wiki/RMSE
../../assimilation_code/programs/filter/filter.html#Inflation
../forward_operators/obs_def_mod.html

DART, Release 9.16.0

Locations

The two most common choices for specifying the location of an observation are the threed_sphere and the oned loca-
tions. For observations of a real-world system, the 3D Sphere is generally the best choice. For low-order, 1D models,
the 1D locations are the most commonly used. The observation locations need to match the type of locations used in
the model.

6.40.4 Converting a series of observations

If you are running a series of assimilation steps you may need a separate observation sequence (obs_seq) file per step.
The suggested process is to create the first few files by hand to check the resulting obs_seq files and then write scripts
(python, shell) to automate the creation of the remainder of the files. The following are some of the considerations to
take into account when creating scripts for a series of obs_seq files.

Looping in Time

Often observations are distributed in files that contain observations from a particular time period, e.g. a file per day or
per week. The output obs_seq files need to include observations from the same time period as the assimilation window;
how often the assimilation is stopped and the model is advanced in time. The conversion process can either convert
all the observations from an input file into a single output file and in a subsequent step break the file into the required
time ranges, or the conversion process can extract and convert only the observations required for a single output file
and loop multiple times over the same input file.

Generally earth system models use calendar dates, including months, days, years, hours, minutes and seconds. The
advance_time program is very useful in adding or subtracting time periods from calendar dates taking into account
changing months and years, accounting for leap days, etc.

Observation conversion programs usually take one of two strategies for their input and output filenames.

* Have fixed input and output filenames for the converter. Have the script make symbolic links from the actual
filenames to the fixed names for the files for each conversion run.

* Have a Fortran namelist variable that sets the input and output filenames for the converter. Have the script
generate or edit the namelist file (e.g. with the sed stream editor) to set the actual filenames for each conversion
run.

Generally it is a good idea to encode the date information in the output filename so each file is guarenteed to be unique.
This can also make it simpler at filter runtime to generate the required input observation sequence filenames using a
program like advance_time.

Multiple Observation Files

It is common that an assimilation will want to use observations from different sources. Generally it is easier to convert
observations from each source separately and then merge them together with the obs_sequence_tool.

Creating filenames and directory names which follow a pattern that can be generated with the advance_time program
makes this easier to do.

The obs_sequence_tool can read the input filenames from a separate ascii file. This makes generating the file-
names easy from a script; it can simply concatinate the input filenames echo’d to an ascii file and then run the
obs_sequence_tool. The output file can either be set by using sed on the namelist, or a fixed output filename can
be used and then the file renamed after the tool has run.

102 Chapter 6. References

../../assimilation_code/location/threed_sphere/location_mod.html
../../assimilation_code/location/oned/location_mod.html

DART, Release 9.16.0

Conversion Run Time for Large File Counts

If 100s of files need to be generated and a supercomputer or other multiple-CPU resource is available, batch files which
convert multiple files at the same time can be a large time savings. Care must be taken that each conversion has its own
settings and unique filenames. Often a separate working directory from other conversions running at the same time
simplifies the scripting needed.

Verification

Observations taken from real-world sources can have missing values, illegal values, missing files, duplicated data, etc.
The list is as long as your imagination. It can be very useful to write or adapt programs like obs_info to print out
the first and last obs times in a file, the count of each obs type, etc. Especially for observations which are close to the
start/end of a month or year, it is easy to find truncated data files.

If converting a large number of files it is also common for computer system failures to occur at random times. File
systems fill up, batch jobs exit early, power glitches stop programs before they finish. Look for anomolous observation
counts, unexpected first and last times of obs in a file, missing files, files with many fewer bytes than others, and anything
else you can think of.

Output Formats

There are options to write output obs_seq files in binary, which are roughly half the size of ascii files. However it
greatly increases the effort to examine the contents of a file for problems. Generally we have used the ascii format. It
is portable between systems of different “endians” (order of bytes in a multi-byte number) and can be browsed much
more easily.

6.41 Converter programs

The DART/observations/obs_converters directory contains a variety of converter programs to read various external
formats and convert the observations into the format required by DART.

The current list of converters (some directories contain multiple converters) include:
e AIRS: AIRS and AMSU
e AURA: See ./AURA
e Aviso+/CMEMS: Aviso+/CMEMS Observations
e Ameriflux: PROGRAM level4_to_obs
* CHAMP: CHAMP
e cice: PROGRAM cice to_obs
¢ CNOFS: See ./CNOFS
* CONAGUA: CONAGUA
e COSMOS: PROGRAM COSMOS_to_obs
e DWL: PROGRAM dwl_to_obs
* GMI: GMI Brightness Temperatures
* GOES: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances
e GPSPW: GPSPW

6.41. Converter programs 103

DART, Release 9.16.0

GRACE: See ./GRACE

GSI2DART: GSI2DART

GTSPP: GTSPP Observations

MADIS: MADIS Data Ingest System

MIDAS: PROGRAM MIDAS_to_obs

MODIS: PROGRAM MOD15A2_to_obs

MPD: See . /MPD

NASA_EarthdataPROGRAMS LPRM_L3_to_obs.f90 AMSR_E_L2_to_obs.f90
NCEP: (prepbufr-> ascii) PROGRAM prepbufr

NCEP: (ascii-> obs_seq) PROGRAM create_real_obs
NSIDCPROGRAM SMAP_L2_to_obs

ROMS: ROMS observations to DART observation sequences
SIF: PROGRAM SIF_to_obs_netcdf

SSEC: SSEC Data Center

SST: PROGRAM sst_to_obs, oi_sst_to_obs

ocean color: VIIRS/AQUA Satellite Ocean Color
SSUSI: SSUSI F16 EDR-DSK format to observation sequence converters
WOD: WOD Observations

gnd_gps_vtec: GND GPS VTEC

GPS: GPS Observations

ok_mesonet: Oklahoma Mesonet MDF Data

QuikSCAT: QuikSCAT SeaWinds Data

Radar: Radar observations

snow: PROGRAM snow_to_obs

Text: PROGRAM text_to_obs

text_GITM: See ./text_GITM

tpw: Total Precipitable Water Observations

Tropical Cyclones: PROGRAM tc_to_obs

Var (little-r): PROGRAM littler_tf_dart

Var (radar): PROGRAM rad_3dvar_to_dart

In addition the following external program produces DART observation sequence files:

Observation Processing And Wind Synthesis (OPAWS): OPAWS can process NCAR Dorade (sweep) and NCAR
EOL Foray (netcdf) radar data. It analyzes (grids) data in either two-dimensions (on the conical surface of each
sweep) or three-dimensions (Cartesian). Analyses are output in netcdf, Vis5d, and/or DART (Data Assimilation
Research Testbed) formats.

104

Chapter 6. References

http://code.google.com/p/opaws/

DART, Release 9.16.0

For generating synthetic observations, see the create_obs_sequence program documentation. You can also generate
observation files based on text input. See the text_to_obs program documentation and even_sphere. Or for simulating a
large complex observing system, you can use the DART library routines in a Fortran program to compute the observation
information and have the DART routines write the output file.

There are a couple utilities of note:

* even_sphere - a utility for generating a text file of evenly-spaced observation locations that can then be used in a
perfect model experiment.

* obs_error - modules that specify observation errors based on what is used by ECMWF and NCEP

See the perfect_model program documentation on how to run a model with a set of observations that have only locations,
types, and times, and have the forward operators compute the observation values.

Contact the DART development group if you have observations in a different format that you want to convert. We can
give you advice and pointers on how to approach writing the code.

6.42 AIRS and AMSU

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The NASA
Earthdata Data Access Services website is the download site for the necessary libraries. An example build script
(AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

This directory covers two observation converters:
* Program convert_airs_L2 for temperature and moisture retrievals.
e Program convert_amsu_LI for radiances.

Both converters are in the AIRS directory because of the complicated history of the data used to create the AIRS L2
product (which includes some AMSU observations). Since both datasets are HDF - it was believed that some of the
routines could be used by both converters. Alas, that has not proven to be the case.

6.42.1 Atmospheric Infrared Sounder (AIRS) Level 2 observations

The AIRS instrument is an Atmospheric Infrared Sounder flying on the Aqua spacecraft. Aqua is one of a group of
satellites flying close together in a polar orbit, collectively known as the “A-train”. The programs in this directory help
to extract the data from the distribution files and put them into DART observation sequence (obs_seq) file format.

AIRS data includes atmospheric temperature in the troposphere, derived moisture profiles, land and ocean surface
temperatures, surface emissivity, cloud fraction, cloud top height, and ozone burden in the atmosphere.

6.42.2 Advanced Microwave Sounding Unit (AMSU-A) L1B Brightness Tempera-
tures

The DART/observations/obs_converters/AIRS directory contains the code to convert the L1B AMSU-A Brightness
Temperatures in HDF-EOS2 format to the DART observation sequence file format.

There is a little bit of confusing history to be aware of for AMSU/A:

https://en.wikipedia.org/wiki/ Advanced_microwave_sounding_unit#History

AMSU/A was flown on NOAA 15-17. It is also on the Aqua satellite (that also houses AIRS) as well as the European
MetOp. It has been replaced by ATMS on NOAA-20.

6.42. AIRS and AMSU 105

../../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
text/text_to_obs.html
even_sphere/README.html
obs_error/README.html
../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
mailto:dart@ucar.edu
https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads
http://airs.jpl.nasa.gov/
http://aqua.nasa.gov
https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History

DART, Release 9.16.0

6.42.3 Dependencies

Both convert_airs_L2 and convert_amsu_LI require the HDF-EOS libraries. convert_amsu_LI also requires
HDFS5 support because of the RTTOV libraries. HDFS5 is incompatible with HDF-EOS, so a two-step conver-
sion is necessary for the AMSU observations. The data must be converted from HDF to netCDF (which can
be done without HDF5) and then the netCDF files can be converted to DART radiance observation format -
which requires obs_def_rttov_mod. 90, which depends on HDF5. To simplify things, An example build script
(DART/observations/obs_converters/AIRS/Build_HDF-EQOS.sh) is supplied and may provide some guidance on down-
loading and building the libraries required by NASA.

The NASA Earthdata Data Access Services website is the download site, at press time, the following packages were
required to build HDF-EOS Release v2.20:

e hdf-4.2.13.tar.gz

* HDF-EOS2.20v1.00.tar.Z

e HDF-EOS2.20v1.00_TestDriver.tar.Z

* HDF-EOS_REF.pdf

* HDF-EOS_UG.pdf

* jpegsrc.vOb.tar.gz

e zlib-1.2.11.tar.gz
Similarly for HDF-EOSS Release v5.1.16:

* HDF-EOS5.1.16.tar.Z
HDF-EOS5.1.16_TESTDRIVERS.tar.Z
HDF-EOS5_REF.pdf
HDF-EOS5_UG.pdf
hdf5-1.8.19.tar.gz

* szip-2.1.1.tar.gz

BUILD_HDF-EOS.sh may help you build these libraries. You will have to modify it for your system, and you probably
will have to iterate on that process. The script takes the stance that if you have to build HDF4, HDF-EOS, HDFS ...
you might as well build HDF-EOSS5 too. The HDF-EOSS is entirely optional. The HDF5 will be needed by RTTOV.

6.42.4 Converting from HDF4 to netCDF

There are multiple ways to convert from HDF4 to netCDF. The HDF-EOS Tools and Information Center provides
binaries for several common platforms as well as source code should you need to build your own.

HDF4 CF CONVERSION TOOLKIT

The HDF-EOS Tools and Information Center provides the HDF4 CF CONVERSION TOOLKIT

The HDF4 CF (H4CF) Conversion Toolkit can access various NASA HDF4 external and HDF-EOS?2 exter-
nal files by following the CF conventions external. The toolkit includes a conversion library for application
developers and a conversion utility for NetCDF users. We have translated the information obtained from
various NASA HDF-EOS2 and HDF4 files and the corresponding product documents into the informa-
tion required by CF into the conversion library. We also have implemented an HDF4-to-NetCDF (either
NetCDF-3 or NetCDF-4 classic) conversion tool by using this conversion library. In this web page, we will
first introduce how to build the conversion library and the tool from the source. Then, we will provide basic

106 Chapter 6. References

https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads
http://hdfeos.org/software/h4cflib.php

DART, Release 9.16.0

usage of the tool and the conversion library APIs. The information for the supported NASA HDF-EOS2
and HDF4 products and visualization screenshots of some converted NetCDF files will also be presented.

If you download a binary, it’s a good habit to verify the checksum. The download page has a link to a .pdf that has the
known checksums. Here’s how to generate the checksum. Be aware that when I downloaded the file (via Chrome or
‘wget’) on an OSX system, the checksum did not match. When I downloaded the file on a linux system, the checksum
did match.

If you download the source, the tar file comes with a README and an INSTALL. Please become familiar with them.
DART also has a build script: AIRS/shell_scripts/Build_HDF_to_netCDF.csh that you can customize after you
read the INSTALL document.

6.43 Program convert_airs_L2

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The NASA
Earthdata Data Access Services website is the download site for the necessary libraries. An example build script
(AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

6.43.1 Overview

The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS)
polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the
Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared,
and microwave sensors. AIRS data will be generated continuously. Global coverage will be obtained twice daily (day
and night) on a 1:30pm sun synchronous orbit from a 705-km altitude.

The AIRS Standard Retrieval Product consists of retrieved estimates of cloud and surface properties, plus profiles of
retrieved temperature, water vapor, ozone, carbon monoxide and methane. Estimates of the errors associated with
these quantities will also be part of the Standard Product. The temperature profile vertical resolution is 28 levels total
between 1100 mb and 0.1 mb, while moisture profile is reported at 14 atmospheric layers between 1100 mb and 50 mb.
The horizontal resolution is 50 km. An AIRS granule has been set as 6 minutes of data, 30 footprints cross track by
45 lines along track. The Shortname for this product is AIRX2RET. (AIRS2RET is the same product but without the
AMSU data.)

Atmospheric Infrared Sounder (AIRS) Level 2 observations

Several types of AIRS data, with varying levels of processing, are available. The following descriptions are taken from
the V5_Data_Release_ UG document:

The L1B data product includes geolocated, calibrated observed microwave, infrared and visible/near in-
frared radiances, as well as Quality Assessment (QA) data. The radiances are well calibrated; however,
not all QA data have been validated. Each product granule contains 6 minutes of data. Thus there are 240
granules of each L1B product produced every day.

The L2 data product includes geolocated, calibrated cloud-cleared radiances and 2-dimensional and 3-
dimensional retrieved physical quantities (e.g., surface properties and temperature, moisture, ozone, carbon
monoxide and methane profiles throughout the atmosphere). Each product granule contains 6 minutes of
data. Thus there are 240 granules of each L2 product produced every day.

The L3 data are created from the L2 data product by binning them in 1°x1° grids. There are three products:
daily, 8-day and monthly. Each product provides separate ascending (daytime) and descending (nighttime)
binned data sets.

6.43. Program convert_airs_L2 107

https://security.stackexchange.com/questions/189000/how-to-verify-the-checksum-of-a-downloaded-file-pgp-sha-etc
https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads
http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_Data_Release_UG.pdf

DART, Release 9.16.0

The converter in this directory processes level 2 (L.2) data files, using data set AIRS_DP and data product AIRX2RET or
ATRS2RET without HSB (the instrument measuring humidity which failed).

Getting the data currently means putting in a start/stop time at this web page. The keyword is AIRX2RET and put in the
time range of interest and optionally a geographic region. Each file contains 6 minutes of data, is about 2.3 Megabytes,
and globally there are 240 files/day (about 550 Megabytes/day). There are additional options for getting only particular
variables of interest, but the current reader expects whole files to be present. Depending on your connection to the
internet, there are various options for downloading. We have chosen to download a wget script which is created by the
web page after adding the selected files to a ‘cart’ and ‘checking out’. The script has a series of wget commands which
downloads each file, one at a time, which is run on the machine where you want the data.

6.43.2 convert_airs L2.f90

The convert_airs_L2 converter is for temperature and moisture retrievals from the L2 data. The temperature
observations are at the corresponding vertical pressure levels. However, the moisture obs are the mean for the layer,
so the location in the vertical is the midpoint, in log space, of the current layer and the layer above it. There is an
alternative computation for the moisture across the layer which may be more accurate, but requires a forward operator
subroutine to be written and for the observation to contain metadata. The observation could be defined with a layer
top, in pressure, and a number of points to use for the integration across the layer. Then the forward operator would
query the model at each of the N points in the vertical for a given horizontal location, and compute the mean moisture
value. This code has not been implemented yet, and would require a different QTY_xxx to distinguish it from the
simple location/value moisture obs. See the GPS non-local operator code for an example of how this would need to be
implemented.

The temperature observations are located on standard levels; there is a single array of heights in each file and all
temperature data is located on one of these levels. The moisture observations, however, are an integrated quantity for
the space between the levels; in their terminology the fixed heights are ‘levels’ and the space between them are ‘layers’.
The current converter locates the moisture obs at the midpoint, in log space, between the levels.

The hdf files need to be downloaded from the data server, in any manner you choose. The converter program reads each
hdf granule and outputs a DART obs_seq file containing up to 56700 observations. Only those with a quality control
of 0 (Best) are kept. The resulting obs_seq files can be merged with the program obs_sequence_tool into larger time
periods.

It is possible to restrict the output observation sequence to contain data from a region of interest throught the use of
the namelist parameters. If you need a region that spans the Prime Meridian lon1 can be a larger number than lon2, for
example, a region from 300 E to 40 E and 60 S to 30 S (some of the South Atlantic), would be lonl = 300, lon2 = 40,
lat] = -60, lat2 = -30.

The DART/observations/obs_converters/AIRS/shell_scripts directory includes scripts (download_L2.sh
and oneday_down. sh) that make use of the fact that the AIRS data is also archived on the NCAR HPSS (tape library)
in daily tar files. oneday_down. sh has options to download a day of granule files, convert them, merge them into daily
files, and remove the original data files and repeat the process for any specified time period.

6.43.3 Namelist

This namelist is read in a file called input .nml. We adhere to the FO0 standard of starting a namelist with an ampersand
‘&’ and terminating with a slash ‘/* for all our namelist input. Character strings that contain a ‘/” must be enclosed in
quotes to prevent them from prematurely terminating the namelist. The default values are shown below. More realistic
values are provided in AIRS/work/input.nml

&convert_airs_L2_nml
12_files ="
12_file_list ="

(continues on next page)

108 Chapter 6. References

http://mirador.gsfc.nasa.gov/cgi-bin/mirador/homepageAlt.pl?keyword=AIRX2RET

DART, Release 9.16.0

(continued from previous page)

outputfile ="

lonl = 0.0
lon2 = 360.0
latl = -90.0
lat2 = 90.0
min_MMR_threshold = 1.0e-30
top_pressure_level = 0.0001

cross_track_thin =0

along_track_thin =0
use_NCEP_errs = .false.
version =6
/
Con- | Type Description
tents
12_files| charac- A list of one or more names of the HDF file(s) to read, NOT including the directory. If
ter(len=256), multiple files are listed, each will be read and the results will be placed in a separate file with
dimen- an output filename constructed based on the input filename.
sion(512)
12_file_listharac- The name of an ascii text file which contains one filename per line, NOT including the di-
ter(len=256) rectory. Each file will be read and the observations converted into an output file where the
output filename is based on the input filename. Only one of ‘12_files’ and ‘12_file_list’ can
be specified. The other must be * * (empty).
out- charac- The name of the output observation sequence file.
put- ter(len=256
file
lonl real(r8) the West-most longitude of interest in degrees. [0.0, 360]
lon2 real(r8) the East-most longitude of interest in degrees. [0.0, 360]
latl real(r8) the South-most latitude of interest in degrees. [-90.0,90.0]
lat2 real(r8) the North-most latitude of interest in degrees. [-90.0,90.0]
min_MM=Ratte@shold The data files contains ‘Retrieved Water Vapor Mass Mixing Ratio’. This is the minimum
threshold, in gm/kg, that will be converted into a specific humidity observation.
top_pressmal(t8yel | The highest pressure level of interest (in mb).
cross_tradktehen provides ability to thin the data by keeping every Nth data value in the cross-track scan.
[0,30] e.g. 3 == keep every third value. O is no thinning.
along_tradktegsn provides ability to thin the data by keeping every Nth data value in the along-track scan.
[0,45] e.g. 4 == keep only every 4th row. 0 is no thinning.
use_ NCERgicH if .true. use the maximum observation error from either the granule or the NCEP equivalent
(from obs_error_mod. £90)
ver- integer The AIRS file format version.
sion

6.43. Program convert_airs_L2 109

DART, Release 9.16.0

Dependencies

See the Dependencies Section of the AIRS/README.

Known Bugs
Earlier versions of this converter mistakenly put the moisture obs at level heights, in the same location as the temperature
observations. The moisture observations are in fact an integrated value across the distance between two levels. This

means the location was shifted 1/2 level in the vertical from the center of the layer. The fixed converter outputs the
location at the center, in log space, of each layer.

Future Plans

If a more accurate moisture observation was needed, the observation value could be computed by actually integrating
multiple values between the levels. At this point it doesn’t seem necessary.

6.44 Program convert_amsu_L1

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The NASA
Earthdata Data Access Services website is the download site for the necessary libraries. An example build script
(AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

6.44.1 Overview

There is a little bit of confusing history to be aware of for AMSU/A:
https://en.wikipedia.org/wiki/ Advanced_microwave_sounding_unit#History

AMSU/A was flown on NOAA 15-17. It is also on the Aqua satellite (that also houses AIRS) as well as the European
MetOp. It has been replaced by ATMS on NOAA-20.

The datset of interest is: “AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005
(AIRABRAD) at GES DISC” The short name for this dataset is ‘AIRABRAD’

The introductory paragraph for the dataset is:

Version 5 is the current version of the data set.tmospheric Infrared Sounder (AIRS) is a grating spectrom-
eter (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In
combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil
(HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave
sensors. The AMSU-A instrument is co-aligned with AIRS so that successive blocks of 3 x 3 AIRS foot-
prints are contained within one AMSU-A footprint. AMSU-A is primarily a temperature sounder that
provides atmospheric information in the presence of clouds, which can be used to correct the AIRS in-
frared measurements for the effects of clouds. This is possible because non-precipitating clouds are for
the most part transparent to microwave radiation, in contrast to visible and infrared radiation which are
strongly scattered and absorbed by clouds. AMSU-A1 has 13 channels from 50 - 90 GHz and AMSU-A2
has 2 channels from 23 - 32 GHz. The AIRABRAD_005 products are stored in files (often referred to as
“granules”) that contain 6 minutes of data, 30 footprints across track by 45 lines along track.

The citation information for this dataset is:

110 Chapter 6. References

https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads
https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History

DART, Release 9.16.0

Title: AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005 Version:
005 Creator: AIRS project Publisher: Goddard Earth Sciences Data and Information Services Center (GES
DISC) Release Date: 2007-07-26T00:00:00.000Z Linkage: https://disc.gsfc.nasa.gov/datacollection/
AIRABRAD_005.html

NASA provides a README.AIRABRAD.pdf through the Goddard Earth Sciences Data and Information Services
Center.

6.44.2 convert_ amsua L1.f90

convert_amsua_L1 converts the L1B AMSU-A Brightness Temperatures in netCDF format to the DART observation
sequence file format. The native HDF-EOS2 format files must be converted to netCDF. The conversion from HDF-
EOS?2 to netCDF is easily performed by the h4tonccf_nc4 converter.

As you can imagine, you need to download each satellite’s data in a different way. Also, just for your information,
AMSU/B has been replaced on newer satellites by MHS and HSB, but especially MHS is almost identical.

Namelist

DARTSs design structure has the support for radiance observations (like brightness temperatures) provided by the MOD-
ULE obs_def _rttov_mod which depends on HDF5 libraries. Consequently, the obs_def_rttov_mod_nml namelist
must appear in the input.nml. However, only two options are used when converting the observations: use_zeeman
and rttov_sensor_db_file.

Be aware that if the RTTOV namelist option use_zeeman = .true. certain metadata must be available in the obser-
vation. This is not fully implemented in the AMSU-A observation converter. For more information, please see GitHub
Issue 99 “AIRS AMSUA observation converter ... Zeeman coefficients and channels”

Namelists are read in a file called input.nml. We adhere to the FO0 standard of starting a namelist with an ampersand
‘&’ and terminating with a slash ‘/’ for all our namelist input. Character strings that contain a ‘/” must be enclosed in
quotes to prevent them from prematurely terminating the namelist. The default values are shown below. More realistic
values are provided in AIRS/work/input.nml

&convert_amsua_L1_nml

11_files ="'
11_file_list ="'
outputfile ="
append_output = .false.
channel_list = 'null’
along_track_thin =0
cross_track_thin =0
lonl = 0.0
lon2 = 360.0
latl = -90.0
lat2 = 90.0
verbose =0

6.44. Program convert_amsu_L1 111

https://disc.gsfc.nasa.gov/datacollection/AIRABRAD_005.html
https://disc.gsfc.nasa.gov/datacollection/AIRABRAD_005.html
https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/README.AIRABRAD.pdf
http://hdfeos.org/software/h4cflib.php
https://github.com/NCAR/DART/issues/99

DART, Release 9.16.0

Con-| Type Description
tents
11_filescharac- A list of one or more names of the netCDF file(s) to read.
ter(len=256),
dimen-
sion(512)
11_file disrac- The name of an ascii text file which contains one filename per line. Each file will be read and
ter(len=256the observations converted into a single output file. Only one of ‘11_files’ and ‘11_file_list’ can
be specified. The other must be © * (empty).
out- | charac- The name of the output observation sequence file.
put- | ter(len=256)
file
ap- | logical If the output observation sequence file exists it is possible to add to it. The observations are added
pend_output consistent with the paradigm that the observation linked list will be traversed in temporally-
ascending fashion, no matter the physical location of the observation in the file. . true. adds the
new observations to the existing file, . false. will cause an existing output file to be overwritten.
chan-| charac- The AMSU channels desired. See the table below for valid input.
nel_listter(len=8)
dimen-
sion(15)
along| tiatdgethin | provides ability to thin the data by keeping every Nth data value in the along-track scan. [0,45]
e.g. 4 == keep only every 4th row. 0 is no thinning.
cross| tiatkgehin | provides ability to thin the data by keeping every Nth data value in the cross-track scan. [0,30]
e.g. 3 == keep every third value. 0 is no thinning.
lonl | real(r8) the West-most longitude of interest in degrees. [0.0, 360]
lon2 | real(r8) the East-most longitude of interest in degrees. [0.0, 360]
latl | real(r8) the South-most latitude of interest in degrees. [-90.0,90.0]
lat2 | real(r8) the North-most latitude of interest in degrees. [-90.0,90.0]
ver- | integer Controls the amount of run-time output. 0 == bare minimum. 3 is very verbose. Only use 3 if
bose converting one or two files for testing.

Channel Specification

“AMSU-A primarily provides temperature soundings. It is a 15-channel microwave temperature sounder
implemented as two independently operated modules. Module 1 (AMSU-A1) has 12 channels in the 50-58
GHz oxygen absorption band which provide the primary temperature sounding capabilities and 1 channel
at 89 GHz which provides surface and moisture information. Module 2 (AMSU-A2) has 2 channels: one
at 23.8 GHz and one at 31.4 GHz which provide surface and moisture information (total precipitable water
and cloud liquid water).”

To facilitate the selection of channels, either the ‘Integer’ or ‘String’ values may be used to specify channel_list.
The ‘Documentation’ and ‘netCDF’ values are provided for reference only. The ‘Documentation’ values are from the
README.AIRABRAD.pdf document.

112 Chapter 6. References

https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/README.AIRABRAD.pdf

DART, Release 9.16.0

Integer | String | Documentation Frequency | netCDF center_freq
Module 2 - surface and moisture information

1 ‘A2-1° 23.8 23.8

2 ‘A2-2 314 314
Module 1 - primary temperature sounding capability

3 ‘Al-1° 50.3 50.3

4 ‘Al1-2’ 52.8 52.8

5 ‘Al-3° 53.596 53.596

6 ‘Al-4° 54.4 54.4

7 ‘Al-5° 54.94 54.94

8 ‘Al-6° 55.5 55.5

9 ‘Al-T° 57.29034 57.29034
10 ‘Al-8 57.29034
11 ‘Al-9’ 57.29034
12 ‘Al-10° 57.29034
13 ‘Al-11° 57.29034
14 ‘Al-12° 57.29034
15 ‘Al-13 89 89

Known Bugs

None.

Future Plans

None.

Instructions to download the AIRABRAD dataset

1. Go to https://earthdata.nasa.gov
Log in (or create an account if necessary)

Search for AIRABRAD

il

Scroll down past datasets to “Matching results.”

* Follow the link to “AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005
(AIRABRAD) at GES DISC”

5. You should now be at ‘https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.html’ (unless
they’ve changed the site).

* Select the ‘Download data’ tab

* Select ‘Earthdata search’

* Select the AIRS link under ‘Matching datasets’ (I have not tested the NRT products)
6. You can now select ‘Granule filters’ to choose your start and end dates.
7. Select the granules you want, then click ‘download all’ and ‘download data’

8. Click download access script

6.44. Program convert_amsu_L1 113

https://earthdata.nasa.gov
https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.html

DART, Release 9.16.0

9. Follow the instructions on that page to download the data.

Each granule is about 560K and has names like

AIRS.2019.06.22.236.L1B.AMSU_Rad.v5.0.0.0.G19174110442.hdf

Build

See the Dependencies Section of the AIRS/README.

Because the data are distributed in HDF-EOS format, and the RTTOV libraries require HDF5 (incompatible with
HDF-EOS) a two-step conversion is necessary. The data must be converted from HDF to netCDF (which can be done
without HDF5) and then the netCDF files can be converted to DART radiance observation format - which is the part
that requires obs_def_rttov_mod. £90, which is the part that requires HDFS5.

The NASA Earthdata Data Access Services website is the download site, at press time, the following packages were
required to build HDF-EOS Release v2.20:

e hdf-4.2.13.tar.gz
HDF-EO0S2.20v1.00.tar.Z
HDF-EOS2.20v1.00_TestDriver.tar.Z
HDF-EOS_REF.pdf

* HDF-EOS_UG.pdf

* jpegsrc.v9b.tar.gz

e zIlib-1.2.11.tar.gz
Similarly for HDF-EOSS5 Release v5.1.16:

* HDF-EOS5.1.16.tar.Z
HDF-EOS5.1.16_TESTDRIVERS.tar.Z
HDF-EOS5_REF.pdf
HDF-EOS5_UG.pdf
hdf5-1.8.19.tar.gz

* szip-2.1.1.tar.gz

DART provides a script DART/observations/obs_converters/AIRS/BUILD_HDF-EOS. sh that may help provide
support for these libraries. You will have to modify it for your system, and you probably will have to iterate on that
process. The script takes the stance that if you have to build HDF4, HDF-EOS, HDF5 ... you might as well build
HDF-EOSS5 too. The HDF-EOSS is entirely optional. The HDF5 will be needed by RTTOV.

114 Chapter 6. References

https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads

DART, Release 9.16.0

6.44.3 Converting from HDF4 to netCDF

There are multiple ways to convert from HDF4 to netCDF. The HDF-EOS Tools and Information Center provides
binaries for several common platforms as well as source code should you need to build your own.

HDF4 CF CONVERSION TOOLKIT

The HDF-EOS Tools and Information Center provides the HDF4 CF CONVERSION TOOLKIT

The HDF4 CF (H4CF) Conversion Toolkit can access various NASA HDF4 external and HDF-EOS?2 exter-
nal files by following the CF conventions external. The toolkit includes a conversion library for application
developers and a conversion utility for NetCDF users. We have translated the information obtained from
various NASA HDF-EOS2 and HDF4 files and the corresponding product documents into the informa-
tion required by CF into the conversion library. We also have implemented an HDF4-to-NetCDF (either
NetCDF-3 or NetCDF-4 classic) conversion tool by using this conversion library. In this web page, we will
first introduce how to build the conversion library and the tool from the source. Then, we will provide basic
usage of the tool and the conversion library APIs. The information for the supported NASA HDF-EOS2
and HDF4 products and visualization screenshots of some converted NetCDF files will also be presented.

If you download a binary, it’s a good habit to verify the checksum. The download page has a link to a .pdf that has the
known checksums. Here’s how to generate the checksum. Be aware that when I downloaded the file (via Chrome or
‘wget’) on an OSX system, the checksum did not match. When I downloaded the file on a linux system, the checksum
did match.

If you download the source, the tar file comes with a README and an INSTALL. Please become familiar with them.
DART also has a build script: AIRS/shell_scripts/Build_HDF_to_netCDF.csh that you can customize after you
read the INSTALL document.

Actually converting to netCDF

While the converter creates very nice netCDF files, there are two global attributes that are exceedingly large and unin-
formative. Should you want to remove them, I suggest using the ncatted command from NCO.

h4tonccf_nc4 AIRS.2019.06.22.236.L1B.AMSU_Rad.v5.0.0.0.G19174110442.hdf bob.nc
ncatted -a coremetadata,global,d,,, -a StructMetadata_0,global,d,,, bob.nc bill.nc

The DART L1_AMSUA_to_netcdf.f90 program

Before I became aware of h4tonccf_nc4, I was in the process of writing my own converter L1_AMSUA_to_netcdf.
£90. It is not finished. Furthermore, at this stage, I don’t know which variables are needed to be a viable DART
observation sequence file, and I don’t see the point in converting EVERY THING.

6.45 Aviso+/CMEMS Observations

6.45.1 Overview

This short description of the SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018 product is repeated from the
INFORMATION tab from the Copernicus Marine Environment Monitoring Service online catalogue (in April 2017).

For the Global Ocean- Mono altimeter satellite along-track sea surface heights computed with respect to a
twenty-year mean. Previously distributed by Aviso+, no change in the scientific content. All the missions
are homogenized with respect to a reference mission which is currently Jason-2. This product is computed

6.45. Aviso+/CMEMS Observations 115

http://hdfeos.org/software/h4cflib.php
https://security.stackexchange.com/questions/189000/how-to-verify-the-checksum-of-a-downloaded-file-pgp-sha-etc
http://nco.sourceforge.net/nco.html
http://marine.copernicus.eu/about-us/about-your-copernicus-marine-service/

DART, Release 9.16.0

with an optimal and centered computation time window (6 weeks before and after the date). Two kinds of
datasets are proposed: filtered (nominal dataset) and unfiltered.

The main researcher for this project was Fred Castruccio.

The convert_aviso. f90 program is designed to read a netCDF file containing the (Level 3) sea surface anomalies
from any of the following platforms: “Jason-1”, “Envisat”, or “Geosat Follow On”. One of those platforms must be
listed in the netCDF file global attribute: platform

The data files have names like:
 dt_global_j1_sla_vfec_20080101_20140106.nc,
* dt_global_en_sla_vfec_20080101_20140106.nc, or
e dt_global_g2_sla_vfec_20080101_20140106.nc

corresponding to the “Jason-1”, “Envisat”, and the “Geosat Follow On” platforms. The DART observation
TYPE corresponding to each of these platforms are J1_SEA_SURFACE_ANOMALY, EN_SEA_SURFACE_ANOMALY, and
GFO_SEA_SURFACE_ANOMALY, respectively and are defined in obs_def _ocean_mod.f90.

Fred wrote a python script (shell_scripts/convert_aviso.py) to repeatedly call convert_aviso and decided it
was easiest to simply provide the input file name as a command line argument and always have the output file have the
name obs_seq.aviso. As such, there is no input namelist specifically for these parameters, but other DART modules
still require run-time crontrol specified by input.nml.

After creating a large number of output observation sequence files, it is usually necessary to consolidate the files and
subset them into files containing just the timeframe required for a single assimilation. NOTE: the obs_sequence_tool
is constructed for just this purpose.

The shell_scripts/makedaily. sh script attempts to consolidate all the SLA observations and those that may have
been (separately) converted from the World Ocean Database into 24-hour segments centered at midnight GMT. You
will have to modify the makedaily. sh script to suit your filesystem and naming convention. It is provided as a starting
point.

Reminder: (according to the data providers): In order to compute Absolute Dynamic Topography, the Mean Dy-
namic Topography (MDT) can be added. It is distributed by Aviso+ (http://www.aviso.altimetry.fr/en/data/products/
auxiliary-products/mdt.html). Fred was using this product in assimilations with POP, so he chose a different source
for MDT - consistent with POP’s behavior.

6.45.2 Data sources

The Copernicus Marine and Environment Monitoring Service (CMEMS) has taken over the processing and distribution
of the Ssalto/Duacs multimission altimeter products formerly administered by Aviso+. After a registration process, the
along-track sea level anomalies (SLA) may be downloaded from http://marine.copernicus.eu/services-portfolio/access-
to-products/ - search for the SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018 if it does not come up directly.

116 Chapter 6. References

http://www.unidata.ucar.edu/software/netcdf
../../forward_operators/obs_def_ocean_mod.html
http://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html
http://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018

DART, Release 9.16.0

6.45.3 Programs

convert_avisdaes the actual conversion from netCDF to a DART observation sequence file, which may be ASCII
£90 or binary.

shell_scriptgython script to convert a series of input files and datestamp the output files.

convert_aviso.

py
shell_scriptshll script to repeatedly call obs_sequence_tool to consolidate multiple observation sequence
makedaily. | files into an observation sequence file that has ALL the observations from ALL platforms in a single
sh file. makedaily. sh is capable of looping over time ranges and creating observation sequences for
each time range.

6.45.4 Namelist

There is no namelist for convert_aviso, but other namelists control aspects of the execution, namely
&obs_sequence_nml :write_binary_obs_sequence. see MODULE obs_sequence_mod.

6.45.5 Modules used

assimilation_code/location/threed_sphere/location_mod. £90
assimilation_code/modules/assimilation/assim_model_mod. £90
assimilation_code/modules/io/dart_time_io_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod. f90
assimilation_code/modules/utilities/ensemble_manager_mod. f90
assimilation_code/modules/utilities/null_mpi_utilities_mod. 90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/sort_mod.£f90
assimilation_code/modules/utilities/time_manager_mod.f90
assimilation_code/modules/utilities/types_mod. £f90
assimilation_code/modules/utilities/utilities_mod.£f90
models/template/model_mod. 90
observations/forward_operators/obs_def_mod. £90
observations/obs_converters/AVISO/convert_aviso.f90
observations/obs_converters/utilities/obs_utilities_mod. 90

6.46 PROGRAM level4_to_obs

6.46.1 Overview

AmeriFlux level 4 data to DART observation sequence converter

This routine is designed to convert the flux tower Level 4 data from the AmeriFlux network of observations from
micrometeorological tower sites. AmeriFlux is part of FLUXNET and the converter is hoped to be a suitable starting
point for the conversion of observations from FLUXNET. As of May 2012, I have not yet tried to work with any other
observations from FLUXNET.

The AmeriFlux Level 4 products are recorded using the local time. DART observation sequence files use GMT. For
more information about AmeriFlux data products, go to http://ameriflux.1bl.gov.

6.46. PROGRAM level4_to_obs 117

http://ameriflux.lbl.gov
http://fluxnet.ornl.gov
http://ameriflux.lbl.gov

DART, Release 9.16.0

Warning: There was a pretty severe bug in the converter that swapped latent heat flux and sensible heat flux. The
bug was present through revision 7200. It was corrected on 30 Dec 2016.

The workflow is usually:
1. download the Level 4 data for the towers and years in question (see DATA SOURCES below)
2. record the TIME ZONE, latitude, longitude, and elevation for each tower

3. build the DART executables with support for the tower observations. This is done by running preprocess with
obs_def_tower_mod. f90 in the list of input_files for preprocess_nml.

4. provide basic tower information via the level4_to_obs_nml namelist since this information is not contained
in the Level 4 data file

5. convert each Level 4 data file individually using level4_to_obs
6. combine all output files for the region and timeframe of interest into one file using program obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a series of files
that contains ONLY the observations for each assimilation. This can be achieved with the makedaily.sh script.

6.46.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&level4_to_obs_nml
text_input_file = 'textdata.input',

obs_out_file = 'obs_seq.out',
year = -1,
timezoneoffset = -1,

latitude =-1.0,
longitude = -1.0,
elevation = -1.0,
flux_height = -1.0,
maxgoodqc = 3,

verbose = .false.

/

118 Chapter 6. References

makedaily.sh

DART, Release 9.16.0

Con- | Type Description
tents
text_inpwthdite | Name of the Level 4 ASCII file of comma-separated values. This may be a relative or absolute
ac- filename.
ter(len=128)
obs_out_dhlar- Name of the output observation sequence file.
ac-
ter(len=128)
year | integer | The year of the observations in the Level 4 text file.
time- | real the time zone offset (in hours) of the station. The tower observation times are local time, we need
zone- to convert them to GMT.
offset
lati- real Latitude (in degrees N) of the tower.
tude
lon- real Longitude (in degrees E) of the tower. For internal consistency, DART uses longitudes in the
gi- range [0,360]. An input value of -90 will be converted to 270, for example.
tude
ele- real surface elevation (in meters) of the tower.
va-
tion
flux_heighal height (in meters) of the flux instrument on the tower.
max- | real maximum value of any observation quality control flag to pass through to the output observation
goodqa sequence. Keep in mind that filter has the ability to discriminate on the value, so there is
really little to be gained by rejecting them during the conversion.
ver- logical | Print extra information during the 1evel4_to_obs execution.
bose

6.46.3 Data sources

The data was acquired from http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/Sites_ ByName
and have names like

USBar2004_L4_h.txt, USHal2004_L4_h.txt, USNR12004_L4_h.txt,

USSP32004_L4_h.txt, USSRM2004_L4_h.txt, USWCr2004_L4_h.txt, USWrc2004_L4_h.txt,
The Level 4 products in question are ASCII files of comma-separated values taken every 30 minutes for an entire
year. The first line is a comma-separated list of column descriptors, all subsequent lines are comma-separated
numerical values. The converter presently searches for the columns pertaining to NEE_or_fMDS, H_f, LE_f, their
corresponding quality control fields, and those columns pertaining to the time of the observation. These values are
mapped as follows:

6.46. PROGRAM level4_to_obs 119

http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/Sites_ByName

DART, Release 9.16.0

Level 4 | Level 4 | description DART type DART kind DART

units variable units

W/m"2 LE_f Latent Heat Flux | TOWER_LATENT_HEATQTYX.ATENT_HEAT_ FLJUW/m"2

[0-3] LE_fqc QC for LE_f N/A N/A same

W/m"2 H_f Sensible Heat | TOWER_SENSIBLE_HEAQTRLSKNSIBLE_HEAT_FIWXn"2
Flux

[0-3] H_fqc QC for H_f N/A N/A same

umolCO2/m "NEE_or_fMDNet Ecosystem | TOWER_NETC_ECO_EXCHANSET CARBON_PRORBOGTTEN
Production

[0-3] NEE_or_fMDSgC for | N/A N/A same
NEE_or_fMDS

The LE_fqc, H_fqc, and NEE_or_£fMDSqc variables use the following convention:

0 = original, 1 = category A (most reliable), 2 = category B (medium), 3 = category C (least reliable).
(Refer to Reichstein et al. 2005 Global Change Biology for more information)

I am repeating the AmeriFlux Data Fair-Use Policy because I believe it is important to be a good scientific citizen:

“The AmeriFlux data provided on this site are freely available and were furnished by individual AmeriFlux
scientists who encourage their use. Please kindly inform in writing (or e-mail) the appropriate AmeriFlux
scientist(s) of how you intend to use the data and of any publication plans. It is also important to contact
the AmeriFlux investigator to assure you are downloading the latest revision of the data and to prevent
potential misuse or misinterpretation of the data. Please acknowledge the data source as a citation or in
the acknowledgments if no citation is available. If the AmeriFlux Principal Investigators (PIs) feel that
they should be acknowledged or offered participation as authors, they will let you know and we assume
that an agreement on such matters will be reached before publishing and/or use of the data for publica-
tion. If your work directly competes with the PI’s analysis they may ask that they have the opportunity
to submit a manuscript before you submit one that uses unpublished data. In addition, when publishing
please acknowledge the agency that supported the research. Lastly, we kindly request that those publishing
papers using AmeriFlux data provide reprints to the PIs providing the data and to the AmeriFlux archive
via ameriflux.lbl.gov.”

6.46.4 Programs

The level4_to_obs. £90 file is the source for the main converter program. Look at the source code where it reads
the example data file. You will almost certainly need to change the “read” statement to match your data format. The
example code reads each text line into a character buffer and then reads from that buffer to parse up the data items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/obs_def directory. If you can find an obs_def XXX_mod.f90 file
with an appropriate set of observation types, change the ‘use’ lines in the converter source to include those types. Then
add that filename in the input .nml namelist file to the &preprocess_nml namelist, the ‘input_files’ variable. Multiple
files can be listed. Then run quickbuild.csh again. It remakes the table of supported observation types before trying to
recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

120 Chapter 6. References

http://ameriflux.lbl.gov/Data/Pages/DataUsagePolicy.aspx

DART, Release 9.16.0

6.46.5 Decisions you might need to make

See the discussion in the Creating an obs_seq file from real observations page about what options are available for
the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

6.47 CHAMP

This is a modification of a standard text_to_obs converter that comes that comes with DART.

This observation converter reads CHAMP and GRACE density files, as described in Sutton (2011)" and outputs
obs_seq files that can be assimilated using DART.

Warning: If an obs_seq.out file already exists, this converter automatically adds new observations to that file
without deleting it. This is done to allow the wrapper script (work/convert.sh) to process sequentially numbered
Density_*.ascii files, as documented in the comments in convert.sh. If you don’t want this behavior, comment out
lines 129-132 in text_to_obs.f90 and rebuild.

6.47.1 Namelist

Please inspect the text_to_obs_nml namelist in work/input.nml to ensure the input and output filenames are spec-
ified properly.

Note: The work/Density_3deg_02_335.ascii file is truncated to 2 datapoints merely to demonstrate the format. It isn’t
meant to be used for real experiments.

6.47.2 Author

Thank you to Alexey Morozov for contributing this observation converter.
6.47.3 References
6.48 PROGRAM cice_to_obs

6.48.1 Overview

Sea ice percentage observations to DART converter

This converter reads the binary sea ice observations from the snow and ice data center files and outputs DART obs_seq
format files. It will loop over multiple days inside a single run of the converter program.

1 Sutton, Erik K., 2011: Accelerometer-Derived Atmospheric Density from the CHAMP and GRACE Satellites.

6.47. CHAMP 121

DART, Release 9.16.0

6.48.2 Data sources

The National Snow and Ice Data Center supplies the data files read by this converter. (I believe it is this format?)

6.48.3 Programs

The cice_to_obs. £90 file is the source for the main converter program. More documentation is in the source code
file especially around where the namelist variables are declared.

6.49 CONAGUA

The streamflow observations from CONAGUA are naturally in a Microsoft database format. Mirce converts these one-
at-a-time to a csv format. The filenames have a gage identifier in them, there is another file that has the lat/lon of the

gage.

/9lade/scratch/mirce/LaSierra/Observations/

The existing DART csv readers are:

vi -R Ameriflux/level4_to_obs.f90 \
CHAMP/CHAMP_density_text_to_obs.f90 \
CNOFS/CNOFS_text_to_obs.f90 \
COSMOS/COSMOS_development.£f90 \
COSMOS/COSMOS_to_obs. 90 \
MODIS/MOD15A2_to_obs.f90 \
ROMS/convert_roms_obs.f90 \
gnd_gps_vtec/gnd_gps_vtec_text_to_obs.f90 \
gps/convert_cosmic_gps_cdf.f90 \
gps/convert_cosmic_ionosphere.f90 \
quikscat/quikscat_JPL_mod.f90 \
snow/snow_to_obs.f90 \
text/text_to_obs.f90 \
text_GITM/text_to_obs.f90

One of these should be close enough. Some are more sophisticated in that they try to determine which column contains
the string that identifies the year, mondy, day, etc. - as opposed to hardcoding the knowledge about which column is
which.

These are the meanings for each of the column headers in the daily observation files: pk_anio = Year pk_mes = Month
ngasto_d01, dO2 ... and so on up to d31 = Streamflow in day 01, day 02 ...day 31 The streamflow is in cms

6.50 PROGRAM COSMOS_to_obs

6.50.1 Overview

COSMOS “level 2” text file to DART converter

COSMOS is an NSF supported project to measure soil moisture on the horizontal scale of hectometers and depths of
decimeters using cosmic-ray neutrons. The data for each station is available from the COSMOS data portal with

122 Chapter 6. References

http://nsidc.org/
http://nsidc.org/data/NSIDC-0051
http://cosmos.hwr.arizona.edu/

DART, Release 9.16.0

several levels of processing. The metadata for each station (location, height, etc) is also available from the data portal.
The Level 2 Data is most suited for use with DART.

Since each site has a separate input data file, and the metadata for each site must essentially be hand-input to the
converter program, it is generally easiest to convert the observations for each site separately and then use the program
obs_sequence_tool to combine the observations from multiple sites and restrict the DART observation sequence file
to contain just the observations of the timeframe of interest.

FYT - in DART, the soil moisture profile is converted to expected neutron counts using the COsmic-ray Soil Moisture
Interaction Code (COSMIC), developed at the University of Arizona by Rafael Rosolem and Jim Shuttleworth.

The workflow is usually:

1. get the site metadata and enter it in the input.nml &COSMOS_to_obs_nml

2. download the Level 2 Data and prefix the filename with the station name (or else they all get named corcounts.
txt) and enter the filename into £&COSMOS_to_obs_nml

3. make sure the station soil parameters and COSMIC parameters are contained in the observations/COSMOS/
data/COSMIC_parlist.nc (more on this in the section on COSMIC parameters)

4. run COSMOS_to_obs to generate a DART observation sequence file for the station and rename the output file if
necessary (you can explicity name the output file via the namelist).

5. repeat steps 1-4 for this converter to generate a DART observation sequence file for each station.

6. use the program obs_sequence_tool to combine the observations from multiple sites

6.50.2 Data sources

The COSMOS data portal can be found at: http://cosmos.hwr.arizona.edu/Probes/probemap.php The data for each
station is available from the data portal with several levels of processing. The metadata for each station (location,
height, etc) is also available from the data portal. The Level 2 Data is most suited for use with DART. An example of
the Level 2 Data follows:

YYYY-MM-DD HH:MM MOD PROBE PRESS SCALE SANPE INTEN OTHER CORR ERR
2009-10-23 18:34 5996 0.800 1.087 06.901 2.486 1.062 1.000 1768 022
2009-10-23 19:34 5885 0.800 1.080 06.901 2.486 1.059 1.000 1729 022
2009-10-23 20:34 6085 0.800 1.072 06.901 2.486 1.059 1.000 1774 022
2009-10-23 21:34 6339 0.800 1.068 06.901 2.486 1.059 1.000 1843 023

6.50.3 Programs

The COSMOS_to_obs. £90 file is the source code for the main converter program. At present there is an uncomfortable
assumption that the order of the columns in the Level 2 data is fixed. I hope to relax that requirement in the near future.
COSMOS_to_obs reads each text line into a character buffer and then reads from that buffer to parse up the data items.
The items are then combined with the COSMIC parameters for that site and written to a DART-format observation
sequence file. The DART format allows for the additional COSMIC parameters to be contained as metadata for each
observation.

To compile and test, go into the COSMOS/work subdirectory and run the quickbuild.csh script to build
the converter and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e.
combines, subsets) DART observation files once they have been created. —The default observations sup-
ported are those defined in DART/observations/forward_operators/obs_def_land_mod.f90 and DART/
observations/forward_operators/obs_def _COSMOS_mod.£90. If you need additional observation types, you
will have to add the appropriate obs_def_XXX_mod. £f90 file to the input.nml &preprocess_nml:input_files

6.50. PROGRAM COSMOS_to_obs 123

http://cosmos.hwr.arizona.edu/Probes/probemap.php
http://cosmos.hwr.arizona.edu/Probes/probemap.php

DART, Release 9.16.0

variable and run quickbuild.csh again. It rebuilds the table of supported observation types before compiling the
source code.

Guidance on COSMIC parameters

Additional information is needed by DART to convert soil moisture profiles to neutron counts. Each COSMOS
instrument has site-specific parameters describing soil properties etc. Those parameters have been inserted into the
observation file as metadata for each observation to simplify the DART observation operator. It is a bit redundant as
currently implemented, but it is convenient.

COSMOS_to_obs reads the site name from the input namelist and the known station information from
COSMIC_parlist.nc. The simplest way to add a new station to COSMIC_parlist.nc is probably to:

1. manually enter the information into the “data” section of COSMIC_parlist_station.txt
2. then use ncgen to convert COSMIC_parlist_station.txt to a netCDF file.
3. That netCDF file can be concatenated onto COSMIC_parlist.nc with a simple ncrcat command.

Listing the sites already supported is easy:

observations/COSMOS/data % ncdump -v sitenames COSMIC_parlist.nc
netcdf COSMIC_ parlist {
dimensions:

nsites = UNLIMITED ; // (42 currently)

strlength = 21 ;

variables:

char sitenames(nsites, strlength) ;
sitenames:long_name = "COSMOS Site Names" ;

double longitude(nsites) ;
longitude:long_name = "Longitude" ;
longitude:units = "degrees" ;

double latitude(nsites) ;
latitude:long_name = "Latitude" ;
latitude:units = "degrees" ;

double elevation(nsites) ;
elevation:long_name = "Elevation" ;
elevation:units = "m" ;

double bd(nsites) ;
bd:long_name = "Dry Soil Bulk Density" ;
bd:units = "g cm{-3}" ;

double lattwat(nsites) ;

lattwat:long_name = "Lattice Water Content" ;
lattwat:units = "m m{-3}" ;
double N(nsites) ;
N:long_name = "High Energy Neutron Intensity" ;
N:units = "relative counts" ;
double alpha(nsites) ;
alpha:long_name = "Ratio of Fast Neutron Creation Factor (Soil to Water)

alpha:units = H

double Ll(nsites) ;
L1:1long_name = "High Energy Soil Attenuation Length" ;
Ll:units = "g cm{-2}" ;

(continues on next page)

124 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

double L2(nsites) ;

L2:long_name = "High Energy Water Attenuation Length"

L2:units = "g cm{-2}" ;
double L3(nsites) ;

L3:long_name = "Fast Neutron Soil Attenuation Length"

L3:units = "g cm{-2}" ;
double L4(nsites) ;

L4:long_name = "Fast Neutron Water Attenuation Length" ;

L4:units = "g cm{-2}" ;

// global attributes:

:website = "COsmic-ray Soil Moisture Observing System (COSMOS) -

http://cosmos.hwr.arizona.edu" ;
data:

sitenames =
"ARM-1
"Austin_Cary ,
"Bondville "
"Brookings ,
"Chestnut_Ridge_NOAA ",
"Coastal_Sage_UCI "
"Daniel_Forest)
"Desert_Chaparral _UCI ",
"Fort_Peck "
"Harvard_Forest ,
"Hauser_Farm_North ,
"Hauser_Farm_South ,
"Howland "
"Towa_Validation_Site ",
"Island_Dairy ,
"JERC "
"Kendall "
"KLEE "
"Manitou_Forest_Ground",
"Metolius ,
"Morgan_Monroe ,
"Mozark ,
"Mpala_North ",
"Neb_Field_3 "
"P301 ",
"Park_Falls "
"Pe-de-Gigante ,
"Rancho_No_Tengo ,
"Reynolds_Creek ,
"Rietholzbach "
"Rosemount ,
"San_Pedro_2 ",
"Santa_Rita_Creosote ,
"Savannah_River ,
"Silver_Sword ,
"SMAP-0K "

(continues on next page)

6.50. PROGRAM COSMOS_to_obs

125

DART, Release 9.16.0

(continued from previous page)

"Soaproot
"Sterling
"Tonzi_Ranch
"UMBS

"UVA
"Wind_River

The observation sequence files will look something like the following, the attributes on the “cosmic” record are the
information from COSMIC_parlist.nc (in their closes 64-bit real representation):

obs_sequence
obs_kind_definitions
1

20 COSMOS_NEUTRON_INTENSITY

num_copies:
num_obs:
observation
COSMOS QC
first: 1
OBS 1
1048.0000000000000
1.0000000000000000
-1
obdef
loc3d

4.154723123116714

kind
20

cosmic 0.88500000000000001

—31918025877000000

161.98621864285701

—8086191933000002
1

77340 150034
1225.0000000000000

3840 max_num_obs:

last:

1 num_qc: 1
3840

3840

0.7997185899100618 0.000000000000000

5.84099999999999966E-002

336.95696938999998 0.

129.14558984999999 55.311849408000000 3.

6.50.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the

namelist.

&COSMOS_to_obs_nml
site_metadata_file
text_input_file
obs_out_file
sitename

'COSMIC_parlist.nc'
'textdata.input',
'obs_seq.out',
'missing',

(continues on next page)

126

Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

maxgoodqc = 3,
verbose = .false.
/
Con- Type Description
tents
site_metadathdrbe- The netCDF file containing the parameter values for each site.
ter(len=256)
text_input] fdkarac- The text file containing the raw observations for each site.
ter(len=128)
obs_out_fillecharac- The output observation sequence file for DART.
ter(len=128)
sitename | charac- The name of the site. Must match one of the site names in the site_metadata_file.
ter(len=128)Case-insensitive match, trailing blanks ignored. Use ncdump -v sitenames COS-
MIC_parlist.nc
max- integer left for future implementation.
goodqc
verbose logical A switch to specify the amount of run-time output. .true. the most amount of output.
.false. the least amount of output.

Cosmos_to_obs namelist

&COSMOS_to_obs_nml

site_metadata_file

text_input_file
obs_out_file
sitename

= '"COSMIC_parlist.nc',
'SantaRita_corcounts.txt',
'SantaRita_obs_seq.out',

'Santa_Rita_Creosote',

6.50.5 References

* The COSMOS web page.

e Franz, T.E, M. Zreda, T.P.A. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng and W.J. Shuttleworth, 2012:
Measurement depth of the cosmic-ray soil moisture probe affected by hydrogen from various sources. Water
Resources Research 48, W08515, doi:10.1029/2012WR011871

* Franz, T.E, M. Zreda, R. Rosolem, T.P.A. Ferre, 2012: Field validation of cosmic-ray soil moisture probe using
a distributed sensor network. Vadose Zone Journal (in press), doi:10.2136/vzj2012.0046

6.50.6 Future Plans

* Implement a routine to automatically determine the column indices of the columns of interest.

¢ Implement a QC encoding that reflects the uncertainty of the measurement. Presently, all Level 2 data have an
incoming QC of 1.

6.50. PROGRAM COSMOS_to_obs

127

http://cosmos.hwr.arizona.edu
http://dx.doi.org/10.1029/2012WR011871
http://dx.doi.org/10.2136/vzj2012.0046

DART, Release 9.16.0

6.51 PROGRAM COSMOS_development

6.51.1 Overview

Trial COSMOS text file to DART converter

COSMOS is an NSF supported project to measure soil moisture on the horizontal scale of hectometers and depths of
decimeters using cosmic-ray neutrons. The data for each station is available from the COSMOS data portal with
several levels of processing. The metadata for each station (location, height, etc) is also available from the data portal.
The Level 2 Data is most suited for use with DART, but does not currently have a correction for the amount of
hydrogen in the atmospheric volume near the probe. To this end, Rafael Rosolem has a separate data stream.
COSMOS_development reads Rafaels data streams and converts them to DART observation sequence files. Since
these data streams are not widespread, we recommend using PROGRAM COSMOS_to_obs.

The workflow is usually:

1. get the site metadata and enter it in the input.nml &COSMOS_development_nml

2. acquire the development observation data and prefix the filename with the station name (or else they all get named
corcounts.txt) and enter the filename into &COSMOS_development_nml

3. make sure the station soil parameters and COSMIC parameters are contained in the observations/COSMOS/
data/COSMIC_parlist.nc (more on this in the section on COSMIC parameters)

4. run COSMOS_development to generate a DART observation sequence file for the station and rename the output
file if necessary (you can explicity name the output file via the namelist).

5. repeat steps 1-4 for this converter to generate a DART observation sequence file for each station.

6. use the program obs_sequence_tool to combine the observations from multiple sites

6.51.2 Data sources

The COSMOS data portal can be found at: http://cosmos.hwr.arizona.edu/Probes/probemap.php The development
observation data for each station is generally not available. The metadata for each station (location, height, etc) is also
available from the data portal. The Level 2 Data is most suited for use with DART. We recommend using PROGRAM
COSMOS_to_obs. An example of the development observation data follows:

month,day,hour,doy,neutron_fluxAVE,neutron_£f1uxSTD,neutron_£fluxQC
1, 1, 0, 1,-9999,9999,3
, 1, 1,-9999,9999,3
, 2, 1,-9999,9999,3
3, 1,-9999,9999,3

1, 1
1, 1
1, 1,

128 Chapter 6. References

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/Probes/probemap.php
http://cosmos.hwr.arizona.edu/Probes/probemap.php

DART, Release 9.16.0

6.51.3 Programs

The COSMOS_development . £90 file is the source code for the main converter program. At present there is an uncom-
fortable assumption that the order of the columns in the Level 2 data is fixed. I hope to relax that requirement in the
near future. COSMOS_development reads each text line into a character buffer and then reads from that buffer to parse
up the data items. The items are then combined with the COSMIC parameters for that site and written to a DART-
format observation sequence file. The DART format allows for the additional COSMIC parameters to be contained as
metadata for each observation.

To compile and test, go into the COSMOS/work subdirectory and run the quickbuild.csh script to build
the converter and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e.
combines, subsets) DART observation files once they have been created. —The default observations sup-
ported are those defined in DART/observations/forward_operators/obs_def_land_mod.f90 and DART/
observations/forward_operators/obs_def COSMOS_mod. £90. If you need additional observation types, you
will have to add the appropriate obs_def_XXX_mod. £90 file to the input.nml &preprocess_nml:input_files
variable and run quickbuild.csh again. It rebuilds the table of supported observation types before compiling the
source code.

COSMIC parameters

Additional information is needed by DART to convert soil moisture profiles to neutron counts. Each COSMOS
instrument has site-specific parameters describing soil properties etc. Those parameters have been inserted into the
observation file as metadata for each observation to simplify the DART observation operator. It is a bit redundant as
currently implemented, but it is convenient.

COSMOS_development reads the site name from the input namelist and the known station information from
COSMIC_parlist.nc. The simplest way to add a new station to COSMIC_parlist.nc is probably to:

1. manually enter the information into the “data” section of COSMIC_parlist_station.txt
2. then use ncgen to convert COSMIC_parlist_station.txt to a netCDF file.
3. That netCDF file can be concatenated onto COSMIC_parlist.nc with a simple ncrcat command.

Listing the sites already supported is easy:

observations/COSMOS/data % ncdump -v sitenames COSMIC_parlist.nc
netcdf COSMIC_parlist {
dimensions:

nsites = UNLIMITED ; // (42 currently)

strlength = 21 ;

variables:

char sitenames(nsites, strlength) ;
sitenames:long_name = "COSMOS Site Names" ;

double longitude(nsites) ;
longitude:long_name = "Longitude" ;
longitude:units = "degrees" ;

double latitude(nsites) ;
latitude:long_name = "Latitude" ;
latitude:units = "degrees" ;

double elevation(nsites) ;
elevation:long_name = "Elevation" ;
elevation:units = "m" ;

double bd(nsites) ;
bd:long_name = "Dry Soil Bulk Density" ;

(continues on next page)

6.51. PROGRAM COSMOS_development 129

DART, Release 9.16.0

(continued from previous page)

bd:units = "g cm{-3}" ;

double lattwat(nsites) ;
lattwat:long_name = "Lattice Water Content" ;
lattwat:units = "m{3} m{-3}" ;

double N(nsites) ;
N:long_name = "High Energy Neutron Intensity" ;
N:units = "relative counts" ;

double alpha(nsites) ;

alpha:long_name = "Ratio of Fast Neutron Creation Factor (Soil to Water)

alpha:units = ;

double Ll(nsites) ;
L1l:long_name = "High Energy Soil Attenuation Length" ;
Ll:units = "g cm{-2}" ;

double L2(nsites) ;
L2:1long_name = "High Energy Water Attenuation Length" ;
L2:units = "g cm{-23}" ;

double L3(nsites) ;
L3:long_name = "Fast Neutron Soil Attenuation Length" ;
L3:units = "g cm{-2}" ;

double L4(nsites) ;
L4:long_name = "Fast Neutron Water Attenuation Length" ;
L4:units = "g em{-2}" ;

// global attributes:

:website = "COsmic-ray Soil Moisture Observing System (COSMOS) -

http://cosmos.hwr.arizona.edu" ;
data:

sitenames =
"ARM-1 "
"Austin_Cary ,
"Bondville "
"Brookings ;
"Chestnut_Ridge_NOAA ",
"Coastal_Sage_UCI ",
"Daniel_Forest ,
"Desert_Chaparral _UCI ",
"Fort_Peck "
"Harvard_Forest ,
"Hauser_Farm_North ,
"Hauser_Farm_South ,
"Howland "
"Iowa_Validation_Site ",
"Island_Dairy ,
"JERC "
"Kendall "
"KLEE "
"Manitou_Forest_Ground",
"Metolius)
"Morgan_Monroe ,
"Mozark ,

(continues on next page)

130 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

"Mpala_North s
"Neb_Field_3 ",
"P301 ",
"Park_Falls "
"Pe-de-Gigante ,
"Rancho_No_Tengo s
"Reynolds_Creek ,
"Rietholzbach "
"Rosemount ,
"San_Pedro_2 "
"Santa_Rita_Creosote ,
"Savannah_River ,
"Silver_Sword ,
"SMAP-0OK ",
"Soaproot ,
"Sterling ,
"Tonzi_Ranch ,
"UMBS ",

"UVA ",

"Wind_River ;

}

The observation sequence files will look something like the following, the attributes in yellow are the information from
COSMIC_parlist.nc:

obs_sequence
obs_kind_definitions
1
20 COSMOS_NEUTRON_INTENSITY

num_copies: 1 num_qc: 1
num_obs: 3840 max_num_obs: 3840
observation
COSMOS QC
first: 1 1last: 3840
OBS 1

1048.0000000000000
1.0000000000000000

-1 2 -1
obdef
loc3d
4.154723123116714 0.7997185899100618 0.000000000000000 -1
kind
20

cosmic 0.88500000000000001 5.84099999999999966E-002 336.95696938999998 0.31918025877000000
161.98621864285701 129.14558984999999 55.311849408000000 3.8086191933000002 1

77340 150034
1225.0000000000000

6.51. PROGRAM COSMOS_development 131

DART, Release 9.16.0

6.51.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the

namelist.

&COSMOS_development_nml
site_metadata_file = 'COSMIC_parlist.nc'
text_input_£file
obs_out_file

= 'textdata.input',
= 'obs_seq.out',

sitename = 'missing',
year = -1
maxgoodqc = 3,
verbose = .false.
/
Con- Type Description
tents

site_metadathdrhe-

ter(len=25¢

The netCDF file containing the parameter values for each site.

~

D

text_input | fkarac-

The text file containing the raw observations for each site.

ter(len=128)

obs_out_filecharac- The output observation sequence file for DART.
ter(len=128)

sitename | charac- The name of the site. Must match one of the site names in the site_metadata_file.
ter(len=128)Case-insensitive match, trailing blanks ignored. Use ncdump -v sitenames COS-

MIC _parlist.nc

year integer The year of the data.

max- integer left for future implementation.

goodqc

verbose logical A switch to specify the amount of run-time output. .true. the most amount of output.

.false. the least amount of output.

COSMOS development namelist

&COSMOS_development_nml
site_metadata_file = '../data/COSMIC_parlist.nc',
text_input_file

obs_ou

t_file

sitename

= 'SantaRita_corcounts.txt',
'SantaRita_obs_seq.out',
'Santa_Rita_Creosote',

6.51.5 References

e The COSMOS web page.

e Franz, T.E, M. Zreda, T.P.A. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng and W.J. Shuttleworth, 2012:
Measurement depth of the cosmic-ray soil moisture probe affected by hydrogen from various sources. Water
Resources Research 48, W08515, doi:10.1029/2012WR011871

¢ Franz, T.E, M. Zreda, R. Rosolem, T.P.A. Ferre, 2012: Field validation of cosmic-ray soil moisture probe using
a distributed sensor network. Vadose Zone Journal (in press), doi:10.2136/vzj2012.0046

132

Chapter 6. References

http://cosmos.hwr.arizona.edu
http://dx.doi.org/10.1029/2012WR011871
http://dx.doi.org/10.2136/vzj2012.0046

DART, Release 9.16.0

6.51.6 Future Plans

* Implement a routine to automatically determine the column indices of the columns of interest.

e Implement a QC encoding that reflects the uncertainty of the measurement. Presently, all Level 2 data have an
incoming QC of 1.

6.52 PROGRAM dwl_to_obs

6.52.1 Overview

DWL to DART converter

These are Doppler Wind Lidar measurements which have previously been extracted from the incoming format and
output in ascii format, one pair of wind component observations per line. This converter reads in the ascii file and
outputs the data in DART observation sequence (obs_seq) format.

This is OSSE data from a satellite which is expected to be launched in 2015. Information on the satellite mission is
here at http://en.wikipedia.org/wiki/ ADM-Aeolus.

The workflow is:

¢ read in the needed information about each observation - location, time, observation values, obs errors - from an
ascii file

* call a series of DART library routines to construct a derived type that contains all the information about a single
observation

« call another set of DART library routines to put it into a time-sorted series
* repeat the last 2 steps until all observations are processed

* finally, call a write subroutine that writes out the entire series to a file in a format that DART can read in

6.52.2 Data sources

Matic Savli at University of Ljubljana has programs which read the expected instrument formats, do the proper con-
versions, and write out ascii lines, one per wind observation.

6.52.3 Programs

The dwl_to_obs.£90 file is the source for the main converter program. There is a sample data file in the “data”
directory. The converter reads each text line into a character buffer and then reads from that buffer to parse up the data
items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

The observation types are defined in DART/obs_def/obs_def_dwl_mod.£90. That filename must be added to the
input.nml namelist file, to the &preprocess_nml namelist, the ‘input_files’ variable before compiling any program
that uses these observation types. Multiple files can be listed. Then run quickbuild.csh again. It remakes the table of
supported observation types before trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. It will need customization before
being used.

6.52. PROGRAM dwl_to_obs 133

http://en.wikipedia.org/wiki/ADM-Aeolus

DART, Release 9.16.0

6.53 GMI Brightness Temperatures

This directory contains the code to convert the GMI Brightness Temperatures in HDF5 format to the DART observation
sequence file format.

The dataset of interest is: “GPM GMI Common Calibrated Brightness Temperatures Collocated L1C 1.5 hours 13 km
V05 (GPM_1CGPMGMI) at GES DISC” not the _R set! The short name for this dataset is ‘GPM_1CGPMGMTI’.

The introductory paragraph for the dataset is:

Version 5 is the current version of the data set. Version 4 is no longer available and has been superseded
by Version 5. All 1C products have a common L1C data structure, simple and generic. Each L1C swath
includes scan time, latitude and longitude, scan status, quality, incidence angle, Sun glint angle, and the
intercalibrated brightness temperature (Tc). One or more swaths are included in a product. The radiometer
data are recalibrated to a common basis so that precipitation products derived from them are consistent.
1CGMI contains common calibrated brightness temperatures from the GMI passive microwave instrument
flown on the GPM satellite. 1C-R GMI is a remapped version of 1CGMI which is explained at the end
of this section. Swath S1 has 9 channels which are similar to TRMM TMI (10V 10H 19V 19H 23V 37V
37H 89V 89H). Swath S2 has 4 channels similar to AMSU-B (166V 166H 183+/-3V 183+/-8V). Data for
both swaths is observed in the same revolution of the instrument.

The citation information for this dataset is: Title: GPM GMI Common Calibrated Brightness Temperatures Collo-
cated L1C 1.5 hours 13 km V05 Version: 05 Creator: Wesley Berg Publisher: Goddard Earth Sciences Data and
Information Services Center (GES DISC) > Release Date: 2016-03-03T00:00:00.000Z

Linkage: https://disc.gsfc.nasa.gov/datacollection/GPM_1CGPMGMI_05.html

6.53.1 Instructions to download the GPM_1CGPMGMI dataset for the GMI converter

1. Go to https://earthdata.nasa.gov

2. Log in (or create an account if necessary)

3. Search for GMI L1C (the “c” here is for cross-calibrated with other satellites)
4. Scroll down past datasets to “Matching results.”

¢ Follow the link to the GMI common calibrated data set: “GPM GMI Common Calibrated Brightness Tempera-
tures Collocated L1C 1.5 hours 13 km V05 (GPM_1CGPMGMI) at GES DISC” dataset (NOT the _R set)

5. You should now be at the https://cmr.earthdata.nasa.gov/search/concepts/C1383813813-GES_DISC.html page.
* Select the ‘Download data’ tab
* Select ‘Earthdata search’
* Select the GPM link under ‘Matching datasets’

You can now select ‘Granule filters’ to choose your start and end dates.

Select the granules you want, then click ‘download all” and ‘download data’

Click download access script

© ® =2

Follow the instructions on that page to download the data.

Each granule is about 28M and has names like:
1C.GPM.GMI.XCAL2016-C.20160621-S001235-E014508.013137.VO5A.HDF5

134 Chapter 6. References

https://disc.gsfc.nasa.gov/datacollection/GPM_1CGPMGMI_05.html
https://earthdata.nasa.gov
https://cmr.earthdata.nasa.gov/search/concepts/C1383813813-GES_DISC.html

DART, Release 9.16.0

Guidelines for converting the observations, thinning, superobbing, etc. are forthcoming. For more background on
assimilating radiances in DART, please read https://dart.ucar.edu/pages/Radiance_support.html

When running the DART converter, two swaths (S1, S2) are converted to observations. S1 and S2 have different
channels and different “postings,” meaning actual observation locations. They are more or less right next to each other

https://disc.gsfc.nasa.gov/datasets/ GPM_1CGPMGMI_05/summary

Swath S1 has 9 channels which are similar to TRMM TMI (10V 10H 19V 19H 23V 37V 37H 89V 89H).
Swath S2 has 4 channels similar to AMSU-B (166V 166H 183+/-3V 183+/-8V).
Data for both swaths is observed in the same revolution of the instrument.

Partial run-time output for one file (no thinning, whole globe, i.e. about 8 million observations):

Data Metadata: observation
QC Metadata: GMI QC
First timestamp: day=151747, sec=6309
calendar Date: 2016 Jun 21 01:45:09
Last timestamp: day=151747, sec=11863
calendar Date: 2016 Jun 21 03:17:43
Number of obs processed : 5734296

GPM_1_GMI_TB 5734296 obs

add_swath_observations: Converted 5734296 obs for swath /S1; total GMI obs = o
— 5734296

Data Metadata: observation
QC Metadata: GMI QC
First timestamp: day=151747, sec=6309
calendar Date: 2016 Jun 21 01:45:09
Last timestamp: day=151747, sec=11863
calendar Date: 2016 Jun 21 03:17:43
Number of obs processed : 8279480

GPM_1_GMI_TB 8279480 obs

add_swath_observations: Converted 2545184 obs for swath /S2; total GMI obs = o
— 8279480

write_obs_seq opening unformatted observation sequence file "obs_seq.gmi"
write_obs_seq closed observation sequence file "obs_seq.gmi"
convert_gmi_L1.f90 Finished successfully.

6.53. GMI Brightness Temperatures 135

https://dart.ucar.edu/pages/Radiance_support.html
https://disc.gsfc.nasa.gov/datasets/GPM_1CGPMGMI_05/summary

DART, Release 9.16.0

6.54 NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b
Radiances

The data are available from NOAA-NCEI

The convert_goes_ABI_L1b program converts ABI Level 1b Radiances in netCDF format to a DART observation
sequence file with GOES_16_ABI_RADIANCE observations (there is a namelist option to select other GOES satellites,
which will have the appropriate observation type).

The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral
bands using several arrays of detectors in the instrument’s focal plane. Single reflective band ABI Level
1b Radiance Products (channels 1 - 6 with approximate center wavelengths 0.47, 0.64, 0.865, 1.378, 1.61,
2.25 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for
visible and near-infrared (IR) bands. Single emissive band ABI L1b Radiance Products (channels 7 - 16
with approximate center wavelengths 3.9, 6.185, 6.95, 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3 microns, re-
spectively) are digital maps of outgoing radiance values at the top of the atmosphere for IR bands. Detector
samples are compressed, packetized and down-linked to the ground station as Level O data for conversion
to calibrated, geo-located pixels (Level 1b Radiance data). The detector samples are decompressed, radio-
metrically corrected, navigated and resampled onto an invariant output grid, referred to as the ABI fixed
grid.

Cite as: GOES-R Calibration Working Group and GOES-R Series Program, (2017): NOAA GOES-R
Series Advanced Baseline Imager (ABI) Level 1b Radiances. [indicate subset used]. NOAA National
Centers for Environmental Information. doi:10.7289/V5BV7DSR. [access date].

6.54.1 Specifying a vertical location

Jeff Steward added (PR 48) the capability to specify a vertical location if desired. This allows for localization in the
vertical.

It’s sometimes helpful, even though definitely wrong from a theoretical standpoint, to give a vertical lo-
cation to satellite observations (which are integrated quantities). This has been an issue with observation-
space localization for some time, and this is the standard workaround pioneered by Lili Lei and Jeff Whit-
taker.

136 Chapter 6. References

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C01501

DART, Release 9.16.0

6.54.2 A short description of the namelist options

This table is meant to familiarize you with some of the options available. Until we fully implement automatic documen-
tation generation, you would be well advised to familiarize yourself with the code. This is not the full list of namelist
variables ...

vari- | de- meaning

able | fault

x_thin | O Skip this many per X scan.

y_thin | O Skip this many per Y scan.

goes_num 6 GOES Satellite number.

re- .true. | Bad scan rejection criteria. If .true. and DQF /= 0, the scan is rejected. If .false. any DQF > 1

ject_dqf_1 rejects the scan.

ver- false. | Run-time output verbosity

bose

obs_err| MISS- | The observation error standard deviation (std dev, in radiance units) TODO: make this more

ING_RB sophisticated. You must supply a value other than MISSING_RS8. Be aware that the observation

sequence files convert this to a variance.

vloc_pres:IhPa | The vertical location of this observation (hPa). A negative means there is no vertical location
(which is typical for a ve rtically-integrated quantity).

6.55 GPSPW

convert GPS observations of Precipitable Water into DART obs_sequence format.

6.56 GSI2DART

6.56.1 Overview
The GSI2DART converter was contributed by Craig Schwartz and Jamie Bresch of the Mesoscale & Microscale
Meteorology Lab at NCAR. Thanks Craig and Jamie!

This converter is designed to convert observation files created by the Gridpoint Statistical Interpolation (GSI) system
maintained by the National Oceanic and Atmospheric Administration (NOAA) into DART observation sequence files.
The files created by GSI are ‘BIG_ENDIAN’ and have filenames such as:

* diag_amsua_metop-a_ges.ensmean
» diag_amsua_metop-a_ges.mem001
* diag_amsua_metop-a_ges.mem(002
» diag_amsua_n18_ges.ensmean
 diag_amsua_n18_ges.mem001
» diag_amsua_n18_ges.mem002
* diag_amsua_n19_ges.ensmean
e diag_amsua_n19_ges.mem001
 diag_amsua_n19_ges.mem002

* diag_conv_ges.ensmean

6.55. GPSPW 137

DART, Release 9.16.0

* diag_conv_ges.mem001
 diag_conv_ges.mem(002

The DART converter uses routines from the GSI system that use the Message Passing Interface (MPI) to process
observations in parallel (even when converting a small amount of observations) so MPI is required to execute this
observation converter.

Due to these prerequisites, we provide a detailed description of this directory to guide the user.

This directory contains copies of several source code files from GSI. The GSI source code is available via a Github
repository managed by NOAA’s Environmental Modeling Center (EMC):

https://github.com/NOAA-EMC/GSI

To differentiate between the sets of code, we refer to the root directory of the NOAA-EMC repository as GSI and refer
to the root directory of this observation converter as GSI2DART.

GSI2DART/enkf copies seven files from GSI/src mostly without modification:
1. GSI2DART/enkf/constants.f90 from GSI/src/gsi/constants. f90
2. GSI2DART/enkf/kinds.F90 from GSI/src/gsi/kinds.F90
3. GSI2DART/enkf/mpi_readobs. f90 from GSI/src/enkf/mpi_readobs.f90
4. GSI2DART/enkf/readconvobs. £90 from GSI/src/enkf/readconvobs.f90
5. GSI2DART/enkf/read_diag.f90 from GSI/src/gsi/read_diag.f90
6. GSI2DART/enkf/readozobs.f90 from GSI/enkf/readozobs. {90
7. GSI2DART/enkf/readsatobs. f90 from GSI/enkf/readsatobs.£f90

Note that within GSI the source file kinds.F90 has an upper-case F90 suffix. Within the GSI2DART observation
converter, it gets preprocessed into mykinds . £90 with a lower-case £90 suffix. Case-insensitive filesystems should be
banned ... until then, it is more robust to implement some name change during preprocessing. The path name specified
in GSI2DART /work/path_names_gsi_to_dart reflects this processed filename.

The following three files had their open() statements modified to read ‘BIG_ENDIAN’ files without the need to compile
EVERYTHING with the -convert big_endian compiler option. Using the DART open_file() routine also provides
some nice error handling.

e original: open(iunit, form="unformatted",file=obsfile,iostat=ios)

¢ modified: iunit = open_file(obsfile, form="unformatted',action="read',
convert="BIG_ENDIAN')

1. GSI2DART/enkf/readconvobs. f90
2. GSI2DART/enkf/readozobs.f90
3. GSI2DART/enkf/readsatobs.f90

138 Chapter 6. References

https://github.com/NOAA-EMC/GSI

DART, Release 9.16.0

6.56.2 DART Modifications

Within GSI2DART

The source files within GSI2DART are:
1. gsi_to_dart.f90: the main program.
2. dart_obs_seq_mod.£90: the DART obs_seq output subroutine.

3. params.f90: the same module name as GSI/src/enkf/params. £90 but with different content. This version
is used to avoid modifying GSI2DART/enkf/read*. £90.

4. radinfo.£90: the same module name as GSI/src/gsi/radinfo. £90 but with different content. This version
is used to avoid modifying GSI2DART/enkf/read*. £90.

5. mpisetup.f90: the same module name as GSI/src/enkf/mpisetup.£f90 but with different content. This
version is used to avoid dependency on GSI.

Elsewhere in the repository

This observation converter required modifying two files and adding a module for radiance observation types.
¢ Modified ../../forward_operators/DEFAULT_obs_def_mod.F90
e Modified ../../DEFAULT_obs_kind_mod.F90®

e Added ../../forward_operators/obs_def_radiance_mod.f90 which has radiance observation types

Compiler notes

When using ifort, the Intel Fortran compiler, you may need to add the compiler flag -nostdinc to avoid inserting the
standard C include files which have incompatible comment characters for Fortran. You can add this compiler flag in
the the GSI2DART /work/mkmf_gsi_to_dart file by adding it to the “-c” string contents.

Please note: this was NOT needed for ifort version 19.0.5.281.

Additional files and directories

1. satinfo is a file read by radinfo. £90 and must exist in the GSI2DART /work directory.

2. datapath specifies the directory containing the data to be converted — it is specified in the gsi_to_dart_nml
namelist in GSI2DART /work/input.nml.

3. submit.csh is contained in GSI2DART/work/ — it runs the gsi_to_dart converter once it has been compiled.
Again, since GSI requires MPI, multiple processors must be requested to run the gsi_to_dart executable.

6.56. GSI2DART 139

DART, Release 9.16.0

6.56.3 Issues

1. The converter requires an ensemble size greater than one and will MPI_Abort() if only one ensemble member is
requested.

The following are issues previously recorded in the README:
1. Radiance and surface pressure bias correction
2. Surface pressure altimeter adjustment?

3. Specific humidity obs are transformed to relative humidity. What to do? [Just run EnSRF with psuedo_rh=.false.
and assimilate RH obs]

4. DART must use W and PH as control variables [okay, EnSRF can do this too (nvars=6 for WRF-ARW)]

5. Does DART not do vertical localization for surface obs?

! If which_vert has no vertical definition for either location do only horizontal
if(loc1%which_vert == VERTISUNDEF .or. loc2%which_vert == VERTISUNDEF) comp_h_only = .
—true.

! If both verts are surface, do only horizontal

if(loc1%which_vert == VERTISSURFACE .and. loc2%which_vert == VERTISSURFACE) comp_h_only.,
= .true.

Running with 32 bit reals
The converter has been tested with 64-bit reals as well as 32-bit reals (i.e. 18=r4 and -D_REAL_4). The answers are
different only at the roundoff level.
This requires changes in two places:
1. DART/assimilation_code/modules/utilities/types_mod.£90 change required: 18 = r4
2. GSI2DART/work/mkmf_gsi_to_dart change required: -D_REAL4_

If these are not set in a compatible fashion, you will fail to compile with the following error (or something similar):

../../../../observations/obs_converters/GSI2DART/dart_obs_seq_mod.f90(213): error #6284:
There is no matching specific function for this generic function reference. [SET_
--LOCATION]

location = set_location(lon, lat, vloc, which_vert)

6.57 GTSPP Observations

6.57.1 Overview

GTSPP (Global Temperature-Salinity Profile Program) data measures vertical profiles of ocean temperature and salin-
ity. The GTPSS home page has detailed information about the repository, observations, and datasets. The programs
in this directory convert from the netcdf files found in the repository into DART observation sequence (obs_seq) file
format.

140 Chapter 6. References

https://www.ncei.noaa.gov/products/global-temperature-and-salinity-profile-programme

DART, Release 9.16.0

6.57.2 Data sources

Data from the GTSPP can be downloaded interactively from the GTSPP data server. It is delivered in netCDF file
format, one vertical profile per netCDF file.

Currently each vertical profile is stored in a separate file, so converting a months’s worth of observations involves
downloading many individual files. The converter program can take a list of input files, so it is easy to collect a month
of observations together into a single output file with one execution of the converter program.

The units in the source file are degrees C for temperature, g/kg for salinity, and so far we have not found any error infor-
mation (not quality control, but observation instrument error values). There is probably instrument source information
encoded in these files, but so far we don’t have the key. The quality control values are read and only those with a QC
of 1 are retained.

6.57.3 Programs

The data is distributed in netCDF file format. DART requires all observations to be in a proprietary format often called
DART “obs_seq” format. The files in this directory, a combination of C shell scripts and a Fortran source executable,
do this data conversion.

6.57.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

>spp_to_obs_nml

gtspp_netcdf_file = '1234567.nc’
gtspp_netcdf_filelist = 'gtspp_to_obs_filelist'
gtspp_out_file = 'obs_seq.gtspp'
avg_obs_per_file = 500

debug = .false.

6.57. GTSPP Observations 141

http://www.nodc.noaa.gov/cgi-bin/gtspp/gtsppform01.cgi
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf

DART, Release 9.16.0

ltem | Type | Description

gt- char- | The input filename when converting a single profile. Only one of the two file or filelist items can
spp_netcakt- file have a valid value, so to use the single filename set the list name ‘gtspp_netcdf_filelist’ to the empty
ter(len=528pg C).

gt- char- | To convert a series of profiles in a single execution create a text file which contains each input file,
spp_netcalt- filelish ascii, one filename per line. Set this item to the name of that file, and set ‘gtspp_netcdf_file’ to
ter(len=1tB8 pmpty string (* °).

gt- char- | The output file to be created. To be compatible with earlier versions of this program, if this file
spp_out_dile already exists it will be read in and the new data will be inserted into that file.

ter(len=128)

avg_obs ipte- fileThe code needs an upper limit on the number of observations generated by this program. It can be
ger larger than the actual number of observations converted. The total number of obs is computed by
multiplying this number by the number of input files. If you get an error because there is no more
room to add observations to the output file, increase this number.

de- logi- | If true, output more debugging messages.

bug cal

6.57.5 Modules used

types_mod
time_manager_mod
utilities_mod
location_mod
obs_sequence_mod
obs_def_mod
obs_def_ocean_mod
obs_kind_mod
netcdf

6.57.6 Known Bugs

Does not have correct code for setting observation error variance yet. Also, not sure if the incoming data qc is strict
enough.

6.58 MADIS Data Ingest System

6.58.1 Overview

The MADIS (Meteorological Assimilation Data Ingest System) service provides access to real-time and archived data
of a variety of types, with added Quality Control (QC) and integration of data from a variety of sources.

To convert a series of MADIS data files (where different types of observations are distributed in separate files), one
high level view of the workflow is:

142 Chapter 6. References

http://madis.noaa.gov/

DART, Release 9.16.0

1. convert each madis file, by platform type, into an obs_seq file. one file in, one file out. no time changes. use
the shell_scripts/madis_conv.csh script. there are script options for hourly output files, or a single daily
output file.

2. if you aren’t using the wrf preprocessing program, you're ready to go.
3. if you do want to do subsequent wrf preprocessing, you need to:

1. decide on the windowing. each platform has a different convention and if you’re going to put them into the
wrf preprocessing you’ll need to have the windowing match. use the shell_scripts/windowing.csh
script.

2. the wrf preprocessing takes a list of files and assumes they will all be assimilated at the same time, for
superob’ing purposes, so it should match the expected assimilation window when running filter.

6.58.2 Data sources

http://madis.noaa.gov

There are two satellite wind converter programs; the one in this directory and one in the SSEC Data Center directory.
The observations distributed here come from NESDIS. The SSEC observations are processed by SSEC itself and will
differ from the observations converted here.

6.58.3 Programs

The programs in the DART/observations/MADIS/ directory extract data from the distribution files and create DART
observation sequence (obs_seq) files. Build them in the work directory by running the . /quickbuild. csh script. In
addition to the converters, the advance_time and obs_sequence_tool utilities will be built.

There are currently converters for these data types:

ACARS aircraft T,U,V,Q data | convert_madis_acars
Marine surface data convert_madis_marine
Mesonet surface data convert_madis_mesonet
Metar data convert_madis_metar
Wind Profiler data convert_madis_profiler
Rawinsonde/Radiosonde data | convert_madis_rawin
Satellite Wind data convert_madis_satwnd

Example data files are in the data directory. Example scripts for converting batches of these files are in the
shell_scripts directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized
for your use. There are comments at the top of the scripts saying what options they include, and should be commented
enough to indicate where changes will be likely to need to be made.

Several converters have compile-time choices for outputting various types of moist variables. Check the source code
for more details. Some converters also read multiple T/F strings from the console (standard input) to control at run-time
what types of observations to convert. Again, check the source code for more details.

Each converter has hard-coded input and output filenames:

6.58. MADIS Data Ingest System 143

http://madis.noaa.gov/
http://www.nesdis.noaa.gov

DART, Release 9.16.0

convert_madis_acars:

acars_input.nc

obs_seq.acars

convert_madis_marine:

marine_input.nc

obs_seq.marine

convert_madis_mesonet:

mesonet_input.nc

obs_seq.mesonet

convert_madis_metar:

metar_input.nc

obs_seq.metar

convert_madis_profiler:

profiler_input.nc

obs_seq.profiler

convert_madis_rawin:

rawin_input.nc

obs_seq.rawin

convert_madis_satwnd: satwnd_input.nc obs_seq.satwnd

The expected usage pattern is that a script will copy, rename, or make a symbolic link from the actual input file (which
often contains a timestamp in the name) to the fixed input name before conversion, and move the output file to an
appropriate filename before the next invocation of the converter. If an existing observation sequence file of the same
output name is found when the converter is run again, it will open that file and append the next set of observations to it.

6.59 PROGRAM MIDAS_to_obs

6.59.1 Overview

MIDAS netCDF file to DART observation converter

Alex Chartier (University of Bath, UK) contributed the code.

“MIDAS runs in Matlab. The raw observations come from GPS receivers as RINEX files, but we can’t
use them directly just yet ... Currently, the ‘slant’ (satellite-to-receiver path) observations are inverted by
MIDAS to make vertical, column-integrated ‘observations’ of plasma density.”

6.59.2 Data sources

The original files have been converted to netCDF files that are then converted to DART observation sequence files. The
netCDF files have a pretty simple format:

netcdf Test {
dimensions:
latitude = 5 ;
longitude = 6 ;

height = 30 ;
time = UNLIMITED ; // (1 currently)
variables:

double latitude(latitude) ;
latitude:units = "degrees_north" ;

latitude:long_name = "latitude" ;

latitude:standard_name = "latitude" ;
double longitude(longitude) ;

longitude:units = "degrees_east" ;

longitude:long_name = "longitude" ;

longitude:standard_name = "longitude" ;
double height(height) ;

height:units = "metres" ;

height:long_name = "height" ;
height:standard_name = "height" ;
double time(time) ;

(continues on next page)

144 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

time:units = "Days since 1601-01-01" ;

time:long_name = "Time (UT)" ;
time:standard_name = "Time" ;

double Ne(Cheight, latitude, longitude) ;
Ne:grid_mapping = "standard" ;
Ne:units = "1E11 e/mA3"
Ne:long_name = "electron density" ;
Ne:coordinates = "latitude longitude" ;

double TEC(time, latitude, longitude) ;
TEC:grid_mapping = "standard" ;
TEC:units = "1E16 e/m*2"

TEC:long_name = "total electron content" ;
TEC:coordinates = "latitude longitude" ;

double Variance(time, latitude, longitude) ;
Variance:grid_mapping = "standard" ;
Variance:units = "1E16 e/mA2"
Variance:long_name = "Variance of total electron content" ;
Variance:coordinates = "latitude longitude" ;
Variance:standard_name = "TEC variance" ;

// global attributes:

:Conventions = "CF-1.5" ;

}

6.59.3 Programs

The MIDAS_to_obs. £90 file is the source code for the main converter program.

To compile and test, go into the MIDAS/work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e. combines, subsets)
DART observation files once they have been created. The default observations supported are those defined in
observations/forward_operators/obs_def_upper_atm_mod.f90. If you need additional observation types, you will
have to add the appropriate obs_def_XXX_mod. £90 file to the input .nml &reprocess_nml:input_files
variable and run quickbuild. csh again. It rebuilds the table of supported observation types before compiling the
source code.

6.59.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/> must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&MIDAS_to_obs_nml

input_file = 'infile.nc'
obs_out_file = 'obs_seqg.out',
verbose = .false.

/

6.59. PROGRAM MIDAS_to_obs 145

../../forward_operators/obs_def_upper_atm_mod.f90

DART, Release 9.16.0

Item Type Description
in- charac- Name of the input netCDF MIDAS file to read.
put_file | ter(len=256)
obs_out_{fikharac- Name of the output observation sequence file that is created.
ter(len=256)
ver- logical Controls how much informational output is printed during a conversion. .true. the most
bose amount of output. . false. the least amount of output.
Example

&MIDAS_to_obs_nml

input_file = '../data/Test.nc',
obs_out_file = 'obs_seqg.out',
verbose = .TRUE.,

6.59.5 References

6.60 DART observations and MODIS products.

There are many MODIS products, in many formats. This document will list all of the data products and formats that
have DART programs to convert them to observation sequence files.

6.60.1 Programs

PROGRAM Converts MODIS Land Product Subsets Leaf Area Index (LAI) and Fraction of Photosyn-
MODI15A2_to_obs | thetically Active Radiation (FPAR) 8 day composite [MODI15A2]

6.60.2 Plans

1. Support MOD15A2 ‘Global Tool’ records.

2. The work that remains is to get the IGBP landcover code for the site and incorporate that into the observation
metadata. I almost have everything I need. Once that happens, the forward observation operator can be made to
be much more accurate by only using model landunits that have the right landcover class.

3. Support more products. Put in a request to help me prioritize.

6.61 PROGRAM MOD15A2_to_obs

6.61.1 MODIS land product subsets (collection 5) to DART observation sequence
converter

146 Chapter 6. References

http://daac.ornl.gov/MODIS/modis.shtml
https://lpdaac.usgs.gov/products/modis_products_table/mod15a2

DART, Release 9.16.0

Overview

This routine is designed to convert the MODIS Land Product Subsets data of Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation (FPAR) 8 day composite [MOD15A2] to a DART observation sequence file.
According to the MODIS LAI/FPAR Product User’s Guide:

Leaf area index (LAI; dimensionless) is defined as the one-sided green leaf area per unit ground area in
broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous canopies.
Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR; dimensionless) is defined
as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the green elements
of a vegetation canopy.

Specifically, the composites are comma-separated-values (.csv format) ASCII files where each line is a record. The
input . csv files are directly from the Oak Ridge National Laboratory DAAC. There are two streams to download the
data formats we support, they differ only in the very first line of the file. One of the formats has a header record, the
other does not. Other than that, the file formats are identical. The format with the header record is fully described
in https://Ipdaac.usgs.gov/dataset_discovery/modis. Please remember to cite the data in your publications, specific
instructions from LP DAAC are available here. This is an example:

Data Citation: Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2012.
MODIS subsetted land products, Collection 5. Available on-line [http://daac.ornl.gov/MODIS/modis.
html] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A. Accessed Month dd, yyyy.

For more information on downloading the data, see DATA SOURCES below. The MODIS Land Product Subsets page
indicates that the Collection 5 MODIS Subsets are available three ways:

1. Field Site and Flux tower. Since the files are preprocessed, the download is immediate. The current state of the
converter supports this format.

2. Global Tool. This requires exact knowledge of the location(s) of interest. Because some processing to fulfill the
request is needed, a job is scheduled on the DAAC server and an email notification is sent with instuctions on
how to retrieve the file(s) of interest. The converter does not currently support this format, but will soon. Worst
case scenario is that you make your own header file and add your ‘site’ to the metadata file described below.

3. Web Service. I have not used the Web Service.
The DART workflow is usually:
1. download the MOD15A2 data for the sites and years in question (see DATA SOURCES below)

2. build the DART executables with support for MODIS_LEAF_AREA_INDEX and MODIS_FPAR observations. This is
done by running preprocess with obs_def_land_mod. £90 in the list of input_files for preprocess_nml
and then building MOD15A2_to_obs in the usual DART way.

3. provide basic information via the input.nml:MOD15A2_to_obs_nml namelist
4. convert each MODIS data file individually using MOD15A2_to_obs
5. combine all output files for the region and timeframe of interest into one file using program obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a series of files
that contains ONLY the observations for each assimilation. This can be achieved with the DART/observations/
obs_converters/MODIS/shell_scripts/makedaily. sh script.

6.61. PROGRAM MOD15A2_to_obs 147

http://daac.ornl.gov/MODIS/modis.shtml
https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS-LAI-FPAR-User-Guide.pdf
http://daac.ornl.gov
https://lpdaac.usgs.gov/dataset_discovery/modis
https://lpdaac.usgs.gov/about/citing_lp_daac_and_data
https://lpdaac.usgs.gov/about/citing_lp_daac_and_data
http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.shtml
http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
https://lpdaac.usgs.gov/tools/lp_daac_web_services

DART, Release 9.16.0

6.61.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&MOD15A2_to_obs_nml
text_input_file = 'MOD15A2.fn_usbouldr.txt"',
metadata_file 'MOD15A2_site_metadata.txt',
obs_out_file 'obs_seq.out',

maxgoodqc = 10,
verbose = .false.
/

Conq Type | Description
tents
text_inpharfile Name of the MODIS file of comma-separated values. This may be a relative or absolute filename.
ac-
ter(len=256)

metat char- | Name of the file that contains the location information for the specific sites. This may be a relative
data_|fike- or absolute filename. If this file does not exist, it is presumed that the location information is part
ter(len=@b@he ‘site’ column. If this is not true, the program will fail. For more information see the section
Presumed Format

obs_outhfite | Name of the output observation sequence file.

ac-
ter(len=128)

max-| real | maximum value of any observation quality control flag to pass through to the output observation
goodgc sequence. Keep in mind that filter has the ability to discriminate on the value, so there is really
little to be gained by rejecting them during the conversion. The QC value is passed through in its
native value, i.e. it is not converted to play nicely with observations that have values 0,1,2,3,4,5 etc.
ver- | logi- | Print extra information during the MOD15A2_to_obs execution.

bose | cal

6.61.3 Data sources

Field site and flux tower

The download site for the ‘Field Site and Flux tower’ data is
http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html. Since the files are preprocessed, the download is
immediate. This method results in files with the header record, and requires a small amount of additional work:

e Download the metadata file containing the locations for the Field Sites ftp://daac.ornl.gov/data/modis_ascii_
subsets/5S_MODIS_SUBSETS_C5_&_FLUXNET.csv

e I wusually convert this to UNIX format with the UNIX utility dos2unix and rename it to
MOD15A2_site_metadata.txt

The data files have names like MOD15A2. fn_uswiirpi.txt or MOD15A2. fn_dehambur.txt and have very long
lines. The first line (i.e. record) of the file is a comma-separated list explaining the file format for all the remaining
lines/records.

148 Chapter 6. References

http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html
ftp://daac.ornl.gov/data/modis_ascii_subsets/5_MODIS_SUBSETS_C5_&_FLUXNET.csv
ftp://daac.ornl.gov/data/modis_ascii_subsets/5_MODIS_SUBSETS_C5_&_FLUXNET.csv

DART, Release 9.16.0

These files contain records with 49 pixel values where each pixel represents the values for a 1km by 1km voxel. The
center pixel is the only value converted to a DART observation value.

MODIS_LAI % head -1 MOD15A2.fn_dehambur. txt
HDFname,Product,Date,Site,ProcessDate,Band,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,
-19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,
48,49

The format of the Site in these files is the predominant difference between the files from the download methods. The
Site fields in these files have specified site names that must have a case-sensitive match to a site in the metadata file
specified by input.nml:metadata_file.

Global tool

This format is not supported yet.
The download site for the ‘Global Tool’ data is

http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl. Because some
processing to fulfill the request is needed, a job is scheduled on the DAAC server and an email notification is sent
with instuctions on how to retrieve the file(s) of interest. This method requires exact knowledge of the location(s)
of interest. MOD15A2_to_obs presumes prior knowledge of the file format and that the latitude and longitude are
coded in the site name (which is the default behavior). Do not change the format of the file. Please follow the
download instructions below - exactly. These instructions were accurate as of 11 April 2014.

1. go to the DAAC download site for MODIS global data.
2. Select either

1. “Country” (it helps to FIRST clear out the values from the “lat/lon” boxes)

2. or a specific latitude and longitude. Be precise. This will specify the center pixel location.
3. click “Continue”

4. Select the “[MOD15A2] Leaf Area Index (LAI) and Fraction of Photsyntetically Active Radiation (FPAR) 8 Day
Composite” from the pull-down menu.

5. Important: Specify 3 and only 3 kilometers to encompass the center location. This results in the 7 km by 7 km
resolution required by MOD15A2_to_obs.

6. click “Continue”

7. select the Starting Date and Ending Date from the list. You can convert the entire dataset into one long DART
observation sequence file and then subset it later if need be.

8. Important: Make sure you check the button “Generate GeoT'IFF and Reproject to Geographic Lat/long”
9. Supply your REAL email address
10. click “Continue”

11. Review the confirmation page. Make sure the requested resolution and area is correct. You should see something
like “The Requested Data Area is Approximately 7 Kilometers Wide and 7 Kilometers High”

12. click “Continue”

13. Atsome point later (perhaps even days), you will get an email with the subject “ORNL DAAC MODIS MOD15A2
order”, follow the instructions to complete the download.

6.61. PROGRAM MOD15A2_to_obs 149

http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl

DART, Release 9.16.0

The resulting ASCII files will have the same format as described below. The ‘site name’ column for these files is of the
form: Lat47.61666667Lonl12.58333333Samp7Line7 which provides the location information otherwise provided
by the MOD15A2_site_metadata.txt file for the predefined sites.

Web service

I have not used the Web Service.

6.61.4 Format

The data product “Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km”
(MOD15A2) is described in https://Ipdaac.usgs.gov/products/modis_products_table/mod15a2 (expand the ‘Layers’
tab). The units and the QC values are described there. What I have not been able to determine is how to interpret the

‘Date’ ...

you know the answer, please let me know.

Taken (almost) directly from https://Ipdaac.usgs.gov/tools/lp_daac_web_services and modified only slightly with
examples more appropriate for the LAI/FPAR product.
The MODIS MOD15A2 products in question are ASCII files of comma-separated values. If the file contains a header
record/line, all columns are interpreted based on this header column. If the file does not contain a header, the

following format is REQUIRED.

ASCII values are comma delimited

* Row 1 is the header row (which may not exist for products generated by the Global Tool)

* Data values start in row 2 if the header row is present.

* Rows of QC data are interleaved with measurement data as indicated in Column 6.

if it is 2000049 ... It is day 49 of year 2000. Is that the start of the 8 day composite, the middle, the end? If

* Note that values may contain embedded periods, dashes, and underscores (*.,-, _”).
Col-| Column Description Example Values
umn
1 Unique row identifier MOD15A2.A2000049.fn_ruyakuts.005.2006268205917.Fpar_1lkm
MOD15A2.A2000049.fn_ruyakuts.005.2006268205917.Lai_1km
2 MODIS Land Product Code MODI15A2
3 MODIS Acquisition Date A(YYYYDDD) A2000049 (?this is an 8 day average) What does
49 indicate? start? middle? end?
4 SiteID Each site is assigned a unique ID. To get the Site | fn_ustnwalk,
name information from SitelD, click here Lat47.61666667Lon12.58333333Samp7Line7
5 MODIS Processing Date (YYYYDDDHHMMSS) 2006269073558
6 Product Scientific Data Set (Band): Indicates type of | MODI15A2: FparExtra_QC, FparLai_QC, FparSt-
values to follow. Specific values vary by Product. Data | dDev_1km, Fpar_lkm, LaiStdDev_1km, Lai_lkm
quality information are interleaved.
7to | Data values of type as specified. Number of data | QC: 00100001,01100001,01100001, ... Measure-
N columns as given in Column 4. Definition of QC com- | ment: 2,2,1,1,1,1,1,0,0,0,1,1,0,0, to N
ponent values vary by Scientific Data Set

QC flags are binary-coded ascii strings e.g., 10011101 bits 5,6,7 (the last three) are decoded as follows:

* 000 ... Main(RT) method used, best result possible (no saturation)

* 001 ... Main(RT) method used with saturation, Good, very usable

150

Chapter 6. References

https://lpdaac.usgs.gov/tools/lp_daac_web_services
https://lpdaac.usgs.gov/products/modis_products_table/mod15a2
https://lpdaac.usgs.gov/tools/lp_daac_web_services
ftp://daac.ornl.gov/data/modis_ascii_subsets/MODIS_Subset_Sites_Information_Collection5.csv

DART, Release 9.16.0

* 010 ... Main(RT) method failed due to bad geometry, empirical algorithm used
e 011... Main(RT) method failed due to other problems
* 100 ... pixel not produced at all

Consequently, the last three digits are used by DART’s data processing logic.

6.61.5 Programs

The MOD15A2_to_obs. £90 file is the source for the main converter program. Look at the source code where it reads
the example data file. You will almost certainly need to change the “read” statement to match your data format. The
example code reads each text line into a character buffer and then reads from that buffer to parse up the data items.

FIXME Explain the 10% for the obs error for FPAR and question the LAIStddev ...

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/obs_def directory. If you can find an obs_def XXX mod.f90 file
with an appropriate set of observation types, change the ‘use’ lines in the converter source to include those types. Then
add that filename in the input.nml namelist file to the &preprocess_nml namelist, the ‘input_files’ variable. Multiple
files can be listed. Then run quickbuild.csh again. It remakes the table of supported observation types before trying to
recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

6.61.6 Decisions you might need to make

See the general discussion in the Creating an obs_seq file from real observations page about what options are available
for the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

6.61.7 Future plans

* Support for the data records without the header, as created by the Global Tool.

* The work that remains is to get the IGBP landcover code for the site and incorporate that into the observation
metadata. I almost have everything I need. Once that happens, the forward observation operator can be made to
be much more accurate by only using model landunits that have the right landcover class.

6.61. PROGRAM MOD15A2_to_obs 151

DART, Release 9.16.0

6.62 PROGRAM MOD15A2_to_obs

MODIS land product subsets (collection 5) to DART observation sequence converter

6.63 MPD

The Micro Pulse Differential Absorption Lidar (MPD) data were collected during field campaigns and testing periods
by the Earth Observing Laboratory (EOL).

The differential absorption lidar (DIAL) technique uses two separate laser wavelengths: an absorbing wavelength (on-
line) and a non-absorbing wavelength (offline). The ratio of the range-resolved backscattered signals between the online
and offline wavelengths is proportional to the amount of water vapor in the atmosphere, which allows the retrieval of
absolute humidity profiles above the lidar site.

This observation converter takes absolute humidity (g/m3) profiles retrieved from the MPD data and converts them
to the format used by DART. The obs_converter/MPD/work/convert_to_text.py script reads the netCDF files
from each MPD site and combines them into text files, one for each date and time. The obs_converter/MPD/work/
MPD_text_to_obs program translates the text files to the DART obs_seq.out format.

Test data for a single site and an example output can be downloaded from https://www.image.ucar.edu/pub/DART/
MPD/MPD..tar.gz

For more details of the retrieval and quality control process, and inquire about data availability for your research project,
please contact Tammy Weckwerth at EOL, NCAR.

6.64 PROGRAMS LPRM_L3_to_obs.f90 AMSR_E_L2_to_obs.£f90

This is a brief description of the converters and utilities in this directory retrieved from the NASA Earthdata portal This
is a front end for many (Distributed Active Archive Center) DAAC portals and for the Goddard Earth Sciences Data
and Information Services Center

These directories contain satellite retrieval data for land surface soil moisture and leaf area index (LAI).
The general workflow for each of the observation converters (described in more detail below) is usually:
1. Download the data for the period in question (see DATA SOURCES below)

2. Build the DART executables with support for the soil moisture observations. This is done by running preprocess
with obs_def_land_mod. £90 in the list of input_files for preprocess_nml.

3. Convert each data file individually (e.g. executing LPRM_L3_to_obs)

4. Combine or subset all output files for the region and timeframe of interest into one file using program
obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a se-
ries of files that contains ONLY the observations for each assimilation. This can be achieved with the ~/mod-
els/clm/shell_scripts/makedaily.sh script. Since there are subtleties for each model, makedaily.sh is generally found
in the shell_scripts directory of the model.

152 Chapter 6. References

https://www.image.ucar.edu/pub/DART/MPD/MPD.tar.gz
https://www.image.ucar.edu/pub/DART/MPD/MPD.tar.gz
https://earthdata.nasa.gov/
https://disc.gsfc.nasa.gov
https://disc.gsfc.nasa.gov

DART, Release 9.16.0

6.64.1 Soil Moisture Observation Converters

Program AMSR_E_L2_to_obs. f90

Description

AMSR-E/Aqua surface soil moisture (LPRM) L2B V002 is a Level 2 (swath) data set. Its land surface parameters,
surface soil moisture, land surface (skin) temperature, and vegetation water content are derived from passive microwave
remote sensing data from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), using
the Land Parameter Retrieval Model (LPRM). Each swath is packaged with associated geolocation fields. The data
set covers the period from June 2002 to October 2011 (when the AMSR-E on the NASA EOS Aqua satellite stopped
producing data due to a problem with the rotation of its antenna), at the spatial resolution (nominally 56 and 38 km,
respectively) of AMSR-E’s C and X bands (6.9 and 10.7 GHz, respectively).

NAMELIST

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&AMSRE_L2_to_obs_nml

input_file = 'LPRM-AMSR_E_L2_D_SOILM2_V002_20030630025503.nc"'
obs_out_file = 'obs_seq.out'

max_rfi_code =2

amsre_rep_error =2

/

Description of namelist variables:

Con- Type Description
tents
in- charac- Name of the netcdf soil moisture data file.
put_file ter(len=2564)
obs_out_filecharac- Name of the output observation sequence file.
ter(len=256)
max_rfi_cpdeteger Maximum Radio Frequency Interference. Soil moisture values with a max rfi above this
threshold are excluded from obs_out_file
am- integer Representativeness Error (standard deviation units). This value is added to the instrument
sre_rep_error error provided from the input file to calculate the total observation error variance

Important: The total error (instrument error + representativeness error) is used to calculate the observation error
variance in the obs_out_file. The instrument error is taken from the data file variable (sm_c_error or sm_x_error),
whereas the represenativeness error (amsre_rep_error) is a namelist variable input by the user at runtime.

6.64. PROGRAMS LPRM_L3_to_obs.f90 AMSR_E_L2_to_obs.f90 153

DART, Release 9.16.0

Data Source

The dataset (LPRM_AMSRE_SOILM2: AMSR-E/Aqua surface soil moisture (LPRM) L2B V002) can be found here.
Program LPRM_L3_to_obs.f90

Description

TMI/TRMM surface soil moisture (LPRM) L3 1 day 25 km x 25 km nighttime VOO1 is Level 3 (gridded) data set. Its
land surface parameters, surface soil moisture, land surface (skin) temperature, and vegetation water content, are de-
rived from passive microwave remote sensing data from the Tropical Rainfall Measuring Mission (TRMM) Microwave
Imager (TMI), using the Land Parameter Retrieval Model (LPRM). There are two files per day, one daytime and one
nighttime, archived as two different products. This document is for the nighttime product. The data set covers the pe-
riod from December 1997 to April 2015 (when the instruments on the TRMM satellite were shut down in preparation
for its reentry into the earth’s atmosphere).

The LPRM is based on a forward radiative transfer model to retrieve surface soil moisture and vegetation optical depth.
The land surface temperature is derived separately from TMI’s Ka-band (37 GHz). A unique feature of this method is
that it can be applied at any microwave frequency, making it very suitable to exploit all the available passive microwave
data from various satellites.

NAMELIST

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&LPRM_L3_to_obs_nml

input_file = '"LPRM-TMI_L3_NT_SOILM3_V001-20120411T144345Z_20120407.nc'
output_file = 'obs_seq.out'

lon_bounds = 0.0, 360.0

lat_bounds = -90.0, 90.0

/

Description of namelist variables:

Contents | Type Description
input_file | charac- Name of the netcdf soil moisture data file.
ter(len=256)

out- charac- Name of the output observation sequence file.

put_file ter(len=256)

lon_bounds| real(r8) Longitude bounds. Observations outside these bounds are excluded from the out-
put_file

lat_bounds | real(r8) Latitude bounds. Observations outside these bounds are excluded from the out-
put_file

Important: The total error (instrument error + representativeness error) is used to calculate the observation error
variance in the output_file. The instrument error is taken from the data file variable (sm_x_error), whereas the
representativeness error is set to 0.1 within the LPRM_L3_to_obs.

154 Chapter 6. References

https://disc.gsfc.nasa.gov/datasets/LPRM_AMSRE_SOILM2_002/summary

DART, Release 9.16.0

Data Source

The dataset (LPRM_TMI_NT_SOILM3: TMI/TRMM surface soil moisture (LPRM) L3 1 day 25km x 25km nighttime
V001) can be found here.

6.64.2 Leaf Area Index Observation Converter

Program netCDF_to_obs.£90

Description

This dataset provides a global 0.25 degree x 0.25 degree gridded monthly mean leaf area index (LAI) climatology as
averaged over the period from August 1981 to August 2015. The data were derived from the Advanced Very High
Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) LAI3g version 2, a bi-
weekly data product from 1981 to 2015 (GIMMS-LAI3g version 2). The LAI3g version 2 (raw) data were first regridded
from 1/12 x 1/12 degree to 0.25 x 0.25 degree resolution, then processed to remove missing and unreasonable values,
scaled to obtain LAI values, and the bi-weekly LAI values were averaged for every month. Finally, the monthly long-
term mean LAI (1981-2015) was calculated.

The Global Monthly Mean Leaf Area Index Climatology, (1981-2015) dataset may be converted with the
netCDF_to_obs program. Since these are monthly means, each timestep is read and output as their own observa-
tion sequence file that has the date and time appended to the filename.

NAMELIST

&netCDF_to_obs_nml
input_file
output_file_base

'LAT_mean_monthly_1981-2015.nc4'
'obs_seq.out'

lon_bounds = 0.0, 360.0

lat_bounds = -90.0, 90.0

debug = .FALSE.

observation_varname = 'LAI'

observation_type = 'GIMMS_LEAF_AREA_INDEX'
obs_error_standard_deviation = 0.2

/

Description of namelist variables:

6.64. PROGRAMS LPRM_L3_to_obs.f90 AMSR_E_L2_to_obs.f90 155

https://disc.gsfc.nasa.gov/datasets/LPRM_TMI_NT_SOILM3_001/summary

DART, Release 9.16.0

Contents Type Description
input_file charac- Name of the netcdf LAI data file.
ter(len=256)
output_file_base charac- Name of the output observation sequence file.
ter(len=256)
lon_bounds real(r8) Longitude bounds. Observations outside these bounds are excluded
from the output file
lat_bounds real(r8) Latitude bounds. Observations outside these bounds are excluded
from the output file
debug logical If . TRUE. prints out extra information on data file characteristics
observation_varname charac- Name of of the leaf area variable within the netcdf data file
ter(len=256)
observation_type charac- Name of the DART observation type
ter(len=256)
obs_error_standard_deviatichmarac- The observation error standard deviation (not provided within data
ter(len=256) file)

Data Source

The Global Monthly Mean Leaf Area Index Climatology, (1981-2015) data can be found here.

6.65 PROGRAM prepbufr

6.65.1 Overview

Translating NCEP PREPBUFR files into DART obs_seq.out files (input file to filter) is a 2 stage process. The first
stage uses NCEP software to translate the PREPBUEFR file into an intermediate text file. This is described in this
document. The second step is to translate the intermediate files into obs_seq.out files, which is done by create_real_obs,
as described in PROGRAM create_real_obs .

6.65.2 Instructions

The prep_bufr package is free-standing and has not been completely assimilated into the DART architecture. It also
requires adaptation of the sources codes and scripts to the computing environment where it will be run. It is not so
robust that it can be controlled just with input parameters. It may not have the same levels of error detection and warning
that the rest of DART has, so the user should very careful about checking the end product for correctness.

Overview of what needs to be built and run

More detailed instructions follow, but this section describes a quick overview of what programs you will be building
and running.

156 Chapter 6. References

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1653

DART, Release 9.16.0

Building

Running the install.sh script will build the library and main executable. You will probably have to edit this script to set
which fortran compiler is available on your system.

If you have raw unblocked PREPBUFR files you will need to convert them to blocked format (what prepbufr expects
as input). The blk/ublk section of the build script compiles the cword.x converter program.

If you are running on an Intel (little-endian) based machine you will need the grabbufr byte swapping program that
is also built by this script.

One-shot execution

If you are converting a single obs file, or are walking through the process by hand for the first time, you can follow
the more detailed build instructions below, and then run the prep_bufr.x program by hand. This involves the following
steps:

* building the executables.

* running the blocker if needed (generally not if you have downloaded the blocked format PREPBUEFR files).
* running the binary format converter if you are on an Intel (little-endian) machine.

* linking the input file to a fixed input filename

* running prepbufr.x to convert the file

* copying the fixed output filename to the desired output filename

Production mode

If you have multiple days (or months) of observations that you are intending to convert, there is a script in the work
subdirectory which is set up to run the converter on a sequence of raw data files, and concatenate the output files
together into one output file per day. Edit the work/prepbufr.csh script and set the necessary values in the ‘USER SET
PARAMETERS’ section near the top. This script can either be run from the command line, or it can be submitted to a
batch queue for a long series of conversion runs.

Installation of the ncep prepbufr decoding program

This package is currently organized into files under the DART/observations/NCEP/prep_bufr directory:

src Source code of the NCEP PREPBUFR decoder
lib NCEP BUFR library source
install.sh A script to install the NCEP PREPBUFR decoder and the NCEP BUFR library.
exe Executables of the decoder and converter.
data Where the NCEP PREPBUFR files (prepgm****) could be loaded into

from the NCAR Mass Store (the script assumes this is the default location).
work Where we run the script to do the decoding.

convert_bufr Source code (grabbufr) to convert the binary big-endian PREPBUFR files to
little-endian files, and a script to compile the program.

blk_ublk Source code (cwordsh) to convert between blocked and unblocked format.

docs Some background information about NCEP PREPBUFR observations.

6.65. PROGRAM prepbufr 157

DART, Release 9.16.0

The decoding program: src/prepbufr.f

The program prepbufr.f is used to decode the NCEP reanalysis PREPBUFR data into intermediate text files. This
program was originally developed by NCEP. It has been modified to output surface pressure, dry temperature, specific
humidity, and wind components (U/V) of conventional radiosonde, aircraft reports, and satellite cloud motion derived
wind. There are additional observation types on the PREPBUEFR files, but using them they would require significant
modifications of prepbufr and require detailed knowledge of the NCEP PREPBUEFR files. The NCEP quality control
indexes for these observations based on NCEP forecasts are also output and used in DART observation sequence files.
The NCEP PREPBUFR decoding program is written in Fortran 77 and has been successfully compiled on Linux
computers using pgi90, SGI® computers with {77, IBM® SP® systems with xIf, and Intel® based Mac® with gfortran.

If your operating system uses modules you may need to remove the default compiler and add the one desired for this
package. For example

* which pgf90 (to see if pgf90 is available.)
¢ module rm intel64 netcdf64 mpich64
* module add pgi32

To compile the BUFR libraries and the decoding program, set the CPLAT variable in the install.sh script to match
the compilers available on your system. CPLAT = linux is the default. Execute the install.sh script to complete the
compilations for the main decoding program, the NCEP BUFR library, and the conversion utilities.

The executables (i.e., prepbufr.x, prepbufr_03Z.x) are placed in the ../exe directory.
Platforms tested:

¢ Linux clusters with Intel, PGI, Pathscale, GNU Fortran,

e Mac OS X with Intel, GNU Fortran,

* SGI Altix with Intel

* Cray with Intel, Cray Fortran.

The byte-swapping program convert_bufr/grabbufr.f

For platforms with little-endian binary file format (e.g. Intel, AMD®, and non-MIPS SGI processors) the program
grabbufr.f is used to convert the big-endian format NCEP PREPBUFR data into little-endian format. The grabbufr.f
code is written in Fortran 90, and has been compiled can be compiled with the pgf90 compiler on a Linux system, with
gfortran on an Intel based Mac, and the ifort compiler on other Linux machines. More detailed instructions for building
it can be found in convert_buft/README, but the base install script should build this by default. In case of problems,
cd into the convert_bufr subdirectory, edit convert_bufr.csh to set your compiler, and run it to compile the converter
code (grabbufr).

This program reads the whole PREPBUEFR file into memory, and needs to know the size of the file (in bytes). Un-
fortunately, the system call STAT() returns this size as one number in an array, and the index into that array differs
depending on the system and sometimes the word size (32 vs 64) of the compiler. To test that the program is using the
right offset into this array, you can compile and run the stat_test.f program. It takes a single filename argument and
prints out information about that file. One of the numbers will be the file size in bytes. Compare this to the size you
see with the ‘Is -1’ command for that same file. If the numbers do not agree, find the right index and edit the grabbufr.f
source file. Look for the INDEXVAL line near the first section of executable code.

If grabbuftr.f does not compile because the getarg() or iargc() subroutines are not found or not available, then either use
the arg_test.f program to debug how to get command line arguments into a fortran program on your system, or simply
go into the grabbufr.f source and comment out the section which tries to parse command line arguments and comment
in the hardcoded input and output filenames. Now to run this program you must either rename the data files to these
predetermined filenames, or you can use links to temporarily give the files the names needed.

158 Chapter 6. References

DART, Release 9.16.0

The blocking program blk_ublk/cword.x

The prepbufr.x program expects to read a blocked input file, which is generally what is available for download. However,
if you have an unblocked file that you need to convert, there is a conversion program. The install.sh script will try to build
this by default, but in case of problems you can build it separately. Change directories into the blk_ublk subdirectory
and read the README_cwordsh file for more help. The cwordsh shell-script wrapper shows how to run the executable
cwordsh.x executable.

Note that if you can get the blocked file formats to begin with, this program is not needed.

Getting the ncep reanalysis prepbufr format data from ncar hpss

The NCEP PREPBUER files (prepqmY YMMDDHH) can be found within the NCEP reanalysis dataset, ds090.0, on
NCAR Mass Store System (HPSS).

To find the files:
* go to the NCAR/NCEP reanalysis archive.
* Click on the “Inventories” tab.
* Select the year you are interested in.
e Search for files with the string “prepgm” in the name.

* Depending on the year the format of the filenames change, but they should contain the year, usually as 2 digits,
the month, and then either the start/stop day for weekly files, or the letters A and B for semi-monthly files.

Depending on the year you select, the prepqm files can be weekly, monthly, or semi-monthly. Each tar file has a unique
dataset number of the form “A#####°. For example, for January of 2003, the 4 HPSS TAR files are: A21899, A21900,
A21901, A21902. After September 2003, these files include AIRCRAFT data (airplane readings taken at cruising
elevation) but not ACARS data (airplane readings taken during takeoff and landing). There are different datasets which
include ACARS data but their use is restricted and you must contact the RDA group to get access.

If you are running on a machine with direct access to the NCAR HPSS, then change directories into the
prep_bufr/data subdirectory and run:

> hsi get /DSS/A##### rawfile
where ##### is the data set number you want.

These files may be readable tar files, or they may require running the cosconvert program first. See if the tar
command can read them:

> tar -tvf rawfile

If you get a good table of contents then simply rename the file and untar it:
> mv rawfile data.tar

> tar -xvf data.tar

However, if you get an error from the tar command you will need to run the cosconvert program to convert the file
into a readable tar file. On the NCAR machine yellowstone, run:

> /glade/u/home/rdadata/bin/cosconvert -b rawfile data.tar

On other platforms, download the appropriate version from: http://rda.ucar.edu/libraries/io/cos_blocking/utils/ .
Build and run the converter and then you should have a tar file you can unpack.

The output of tar should yield individual 6-hourly NCEP PREPBUFR data files for the observations in the +/- 3-hour
time windows of 00Z, 06Z, 12Z, and 18Z of each day. Note that DART obs_seq files are organized such that a 24 hour

6.65. PROGRAM prepbufr 159

http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/libraries/io/cos_blocking/utils/

DART, Release 9.16.0

file with 4 observation times would contain observations from 3:01Z to 3:00Z of the next day, centered on 6Z, 12Z, 18Z
and “247”. In addition, there are some observations at 3:00Z on the PREPBUFR file labelled with 06Z. Then, in order
to make a full day intermediate file incorporating all the required obs from the “next” day, you’ll need the PREPBUFR
files through 6Z of the day after the last day of interest. For example, to generate the observation sequence for Jan 1,
2003, the decoded NCEP PREPBUEFR text files for Jan 1 and 2, 2003 are needed, and hence the PREPBUEFR files

e prepqm03010106
e prepqm03010112
e prepqm03010118
e prepgqm03010200
e prepgm03010206

are needed.

Running the ncep prepbufr decoding program

In prep_bufr/work/prepbufr.csh set the appropriate values of the year, month, first day, and last day of the period you
desire, and the variable “convert” to control conversion from big- to little-endian. Confirm that the raw PREPBUFR
files are in ../data, or that prepbufr.csh has been changed to find them. Execute prepbufr.csh in the work directory. It
has code for running in the LSF batch environment, but not PBS.

Currently, this script generates decoded PREPBUFR text data each 24 hours which contains the observations
within the time window of -3:01 hours to +3:00Z within each six-hour synoptic time. These daily out-
put text files are named as temp_obs.yyyymmdd. These text PREPBUFR data files can then be read by
DART/observations/NCEP/ascii_to_obs/work/PROGRAM create_real_obs to generate the DART daily observation
sequence files.

There is an alternate section in the script which creates a decoded PREPBUFR text data file each 6 hours (so they are
1-for-1 with the original PREPBUFR files). Edit the script prepbufr.csh and look for the commented out code which
outputs 4 individual files per day. Note that if you chose this option, you will have to make corresponding changes in
the create_obs_seq.csh script in step 2.

6.65.3 Other modules used

This is a piece of code that is intended to be ‘close’ to the original, as such, we have not modified it to use the DART
build mechanism. This code does not use any DART modules.

6.65.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&prep_bufr_nml
obs_window =
obs_window_upa =
obs_window_air
obs_window_sfc =
obs_window_cw =
land_temp_error
land_wind_error

WNRFRE SR =R

(continues on next page)

160 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

land_moist_error

otype_use
gctype_use

0.2,
missing,
= missing,

ltem

Type

Description

obs_wind

oreal

Window of time to include observations. If > 0, overrides all the other more specific window
sizes. Set to -1.0 to use different time windows for different obs types. The window is +/- this
number of hours, so the total window size is twice this value.

obs_wind

ovealipd

Window of time to include sonde observations (+/- hours) if obs_window is < 0, otherwise ig-
nored.

obs_wind

oveahir

Window of time to include aircraft observations (+/- hours) if obs_window is < 0, otherwise
ignored.

obs_wind

oweatfc

Window of time to include surface observations (+/- hours) if obs_window is < 0, otherwise
ignored.

obs_wind

oreatw

Window of time to include cloud wind observations (+/- hours) if obs_window is < 0, otherwise
ignored.

otype_us

e real(3

D(Beport Types to extract from bufr file. If unspecified, all types will be converted.

qce-
type_use

inte-
ger(3()

QC types to include from the bufr file. If unspecified, all QC values will be accepted.
0)

land_tem

p_rentor

observation error for land surface temperature observations when none is in the input file.

land_win

d reator

observation error for land surface wind observations when none is in the input file.

land_moi

stree] ef

rabservation error for land surface moisture observations when none is in the input file.

6.65.5 Files

* input file(s); NCEP PREPBUFR observation files named using ObsBase with the “yymmddhh” date tag on the
end. Input to grabbufr if big- to little-endian is to be done. Input to prepbufr if not.

* intermediate (binary) prepqm.little; output from grabbufr, input to prepbufr.

* intermediate (text) file(s) “temp_obs.yyyymmddhh”; output from prepbufr, input to create_real_obs

6.65. PROGRAM prepbufr 161

DART, Release 9.16.0

6.65.6 References

DART/observations/NCEP/prep_bufr/docs/* (NCEP text files describing the PREPBUEFR files)

6.66 PROGRAM create real obs

6.66.1 Overview

Translating NCEP BUFR files into DART obs_seq.out files (input file to filter) is a 2 stage process. The first stage uses
NCEP software to translate the BUFR file into an “intermediate” text file. This is described in PROGRAM prepbufr.
The second step is to translate the intermediate files into an obs_seq. out files, which is done by create_real_obs,
as described in this document.

This program provides a number of options to select several observation types (radiosonde, aircraft, and satellite
data, etc.) and the DART observation variables (U, V, T, Q, Ps) which are specified in its optional namelist interface
&ncepobs_nml which may be read from file input.nml.

6.66.2 Instructions

¢ Go to DART/observations/NCEP/ascii_to_obs/work

* Use quickbuild. csh to compile all executable programs in the directory. To rebuild just one program:
— Use mkmf_create_real_obs to generate the makefile to compile create_real_obs. f90.
— Type make to get the executable.

* Make appropriate changes to the &icep_obs_nml namelist in input.nml, as follows.

* run create_real_obs.

The selection of any combinations of the specific observation fields (T, Q, U/V, and surface pressure) and types (ra-
diosonde, aircraft reports, or satellite wind, etc.) is made in the namelist & cepobs_nml. All the available combi-
nations of fields X types (i.e. ADPUPA and obs_U) will be written to the obs_seq file. (You will be able to select
which of those to use during an assimilation in another namelist (assimilate_these_obs, in &bs_kind_nml), so
be sure to include all the fields and types you might want.) You should change Obsbase to the pathname of the decoded
PREPBUEFR text data files. Be sure that daily_file is set to .TRUE. to create a single 24 hour file; .FALSE. converts
input files one-for-one with output files. The default action is to tag each observation with the exact time it was taken
and is the recommended setting. However, if you want to bin the observations in time, for example to do additional
post-processing, the time on all observations in the window can be overwritten and set to the nearest synoptic time (e.g.
0Z, 6Z, 12Z, or 187), by setting obs_time to false.

Generally you will want to customize the namelist for your own use. For example, here is a sample namelist:

&ncepobs_nml

year = 2007,
month = 3,
day = 1,

tot_days = 31,

max_num = 700000,

ObsBase = '../prep_bufr/work/temp_obs.'
select_obs =1,

ADPUPA = .true.,

ATRCAR = .false.,

(continues on next page)

162 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

AIRCFT = .true.,
SATEMP = .false.,
SFCSHP = .false.,
ADPSFC = .false.,
SATWND = .true.,
obs_U = .true.,
obs_V = .true.,
obs_ T = .true.,
obs_PS = .false.,
obs_QV = .false.,
daily_file = .true.
obs_time = .true.,

/

&obs_sequence_nml
write_binary_obs_sequence = .false.

/

This will produce daily observation sequence files for the period of March 2007, which have the selected observation
types and fields; T, U, and V from radiosondes (ADPUPA) and aircraft (AIRCFT). No surface pressure or specific
humidity would appear in the obs_seq files, nor observations from ACARS, satellites, and surface stations. The output
files look like “obs_seq200703dd”, with dd = 1,...,31.

6.66.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&ncepobs_nml

year = 2003,
month =1,

day =1,
tot_days = 31,
max_num = 800000,
select_obs = 0,
ObsBase = 'temp_obs.',
ADPUPA = .false.,
AIRCAR = .false.,
AIRCFT = .false.,
SATEMP = .false.,
SFCSHP = .false.,
ADPSFC = .false.,
SATWND = .false.,
obs_U = .false.,
obs_V = .false.,
obs_T = .false.,
obs_PS = .false.,
obs_QV = .false.,
daily_file = .true.,
obs_time = .true.,

(continues on next page)

6.66. PROGRAM create real obs 163

DART, Release 9.16.0

(continued from previous page)

lonl = 0.0,
lon2 = 360.0,
latl = -90.0,
lat2 = 90.0

164 Chapter 6. References

DART, Release 9.16.0

ltem

Type

Description

year, month, day

integer

Beginning year, month, day of the
observation period.

tot_days

integer

Total days in the observation period.
The converter cannot cross month
boundaries.

max_num

integer

Maximum observation number for
the current one day files.

select_obs

integer

Controls whether to select a sub-
set of observations from the NCEP
BUFR decoded daily ascii files.
e 0 = All observations are se-
lected.
* 1 = Select observations using
the logical parameters below.

daily_file

logical

Controls timespan of observations in
each obs_seq file:

* true = 24 hour spans (3:01Z
to 3:00Z of the next day).
Filenames have the form
obs_seqYYYYMMDD.

* false = 6 hour spans (3:01Z
to 9:00Z, 9:01Z to 15:00Z,
15:01Z to 21:00Z, and
21:01Z to 3:00Z of the next
day. Filenames have the form
obs_seqYYYYMMDDHH,
where HH is 06, 12, 18, and
24,

ObsBase

character(len=129)

Path that contains the decoded
NCEP BUFR daily observation
files. To work with the example
scripts this should be ‘temp_obs.’,
or if it includes a pathname then it
should end with a ‘/temp_obs.’

include_specific_humidity, in-
clude_relative_humidity, in-
clude_dewpoint

logical

Controls which moisture observa-
tions are created. The default is to
create only specific humidity obs,
but any, all, or none can be re-
quested. Setto .TRUE. to output that
obs type, .FALSE. skips it.

ADPUPA

logical

Select the NCEP type ADPUPA
observations which includes land
and ship launched radiosondes and
pibals as well as a few profile drop-
sonde. This involves, at 00Z and
127, about 650 - 1000 stations, and
at 06Z and 18Z (which are mostly
pibals), about 150 - 400 stations.

AIRCFT

logical

Select the NCEP type AIRCFT ob-
servations, which includes commer-
cial, some military and reconnais-

6.66. PROGRAM create real obs

sance-reports— Thev are flicht level
Sance-reports—ineyareHgntiever

reports. 165

AIRCAR

logical

Select the NCEP type AIRCAR ob-
servations, which includes data from
aircraft takeoff and landings. Some-

DART, Release 9.16.0

6.66.4 Modules used

types_mod
utilities_mod
obs_utilities_mod
obs_sequence_mod
obs_kind_mod
obs_def_mod
assim_model_mod
model_mod
cov_cutoff_mod
location_mod
random_seq_mod
time_manager_mod
null_mpi_utilities_mod
real_obs_mod

6.66.5 Files

 path_names_create_real_obs; the list of modules used in the compilation of create_real_obs.

* temp_obs.yyyymmdd; (input) NCEP BUFR (decoded/intermediate) observation file(s) Each one has 00Z of the
next day on it.

* input.nml; the namelist file used by create_real_obs.

* obs_seqYYYYMMDD[HH]; (output) the obs_seq files used by DART.

6.66.6 References

¢ .../DART/observations/NCEP/prep_bufr/docs/* (NCEP text files describing the BUFR files)

6.67 PROGRAM SMAP_L2_to_obs

6.67.1 Overview

Soil Moisture Active Passive (SMAP) passive microwave radiometer

to DART Observation Sequence Converter

This routine is designed to convert the SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Soil moisture
product (Versions 4-8) to a DART observation sequence file.

Quoting the NSIDC:

This Level-2 (L2) soil moisture product provides estimates of global land surface conditions retrieved by the Soil Mois-
ture Active Passive (SMAP) passive microwave radiometer during 6:00 a.m. descending and 6:00 p.m. ascending
half-orbit passes. SMAP L-band brightness temperatures are used to derive soil moisture data, which are then resam-
pled to an Earth-fixed, global, cylindrical 36 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0).

166 Chapter 6. References

https://nsidc.org/data/SPL2SMP
https://nsidc.org/data/SPL2SMP
https://nsidc.org

DART, Release 9.16.0

Data Set ID: SPL2SMP SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture

Surface soil moisture (0-5 cm) in m3/m3 derived from brightness temperatures (TBs) is output on a fixed global 36 km
EASE-Grid 2.0. Also included are brightness temperatures in kelvin representing the weighted average of Level-1B
brightness temperatures whose boresights fall within a 36 km EASE-Grid 2.0 cell.

Important: SMAP_L2_to_obs uses an observation error standard deviation of 0.01 m3/m3 or 20% of the soil moisture
value, whatever is higher. These numbers have no scientific basis and should be thoroughly explored. The data
files I have explored have a variable soil_moisture_error but these appear to be empty - i.e. full of _FillValue values.
A better way of specifying the observation error standard deviation is needed.

Important: SMAP_L2_to_obs has only been thoroughly tested with the half-orbit files - these files have names like
‘SMAP_L2_SM_P_02526_D_20150723T070211_R12170_001.h5".

Important: SMAP_L2_to_obs is not compatible with SMAP L3 files as they are formatted differently

The workflow is usually:
1. Download the data for the period in question (see DATA SOURCES below)

2. Build the DART executables with support for the soil moisture observations. This is done by running preprocess
with obs_def_land_mod. £90 in the list of input_files for preprocess_nml.

3. Convert each data file individually using SMAP_L2_to_obs

4. Combine or subset all output files for the region and timeframe of interest into one file using program
obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a se-
ries of files that contains ONLY the observations for each assimilation. This can be achieved with the ~/mod-
els/clm/shell_scripts/makedaily.sh script. Since there are subtleties for each model, makedaily.sh is generally found
in the shell_scripts directory of the model.

6.67.2 NAMELIST

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/* must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&SMAP_L2_to_obs_nml
input_file_list
obs_out_file 'obs_seq.out'
max_num_input_files 10
verbose = .false.

/

'file_list.txt'

Description of namelist variables:

6.67. PROGRAM SMAP_L2_to_obs 167

DART, Release 9.16.0

Contents | Type Description

in- charac- Name of the file containing the list of input data files. Each input data file name must be
put_file_list ter(len=256)pn a separate line. No blank lines are allowed. This may be a relative or absolute filename.
obs_out_file charac- Name of the output observation sequence file.

ter(len=256)
max_num_inputedeles | The maximum number of filenames in ‘input_file_list’ to convert. This should be a small
number - converting all frequencies, all polarizations, both passes into one file is not rec-
ommended

verbose logical Print extra information during the SMAP_L2_to_obs execution.

6.67.3 Data Sources

The SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 4 data

6.67.4 Data Citation

The following example shows how to cite the use of this data set in a publication. For more information, see the Use
and Copyright web page

O’Neill, P. E., S. Chan, E. G. Njoku, T. Jackson, and R. Bindlish. 2016. SMAP L2 Radiometer Half-Orbit
36 km EASE-Grid Soil Moisture, Version 4. [Indicate subset used]. Boulder, Colorado USA. NASA
National Snow and Ice Data Center Distributed Active Archive Center. doi: http://dx.doi.org/10.5067/
XPITJT812XFY. [Date Accessed].

6.67.5 PROGRAMS

The SMAP_L2_to_obs. £90 file is the source for the converter program. To compile and test, go into the work subdirec-
tory and run the quickbuild. csh script to build the converter and a couple of general purpose utilities. PROGRAM
advance_time helps with calendar and time computations, and the program obs_sequence_tool manipulates DART
observation files once they have been created.

6.67.6 DECISIONS YOU MIGHT NEED TO MAKE

See the discussion in the Creating an obs_seq file from real observations introduction page about what options are
available for the things you need to specify. These include setting a time, specifying an expected error, setting a
location, and an observation type.

6.67.7 Terms of Use

DART software - Copyright UCAR. This open source software is provided by UCAR, “as is”, without charge, subject
to all terms of use at http://www.image.ucar.edu/DAReS/DART/DART_download

168 Chapter 6. References

https://nsidc.org/data/SPL2SMP/versions/4
http://nsidc.org/about/use_copyright.html
http://nsidc.org/about/use_copyright.html
http://dx.doi.org/10.5067/XPJTJT812XFY
http://dx.doi.org/10.5067/XPJTJT812XFY
http://www.image.ucar.edu/DAReS/DART/DART_download

DART, Release 9.16.0

6.68 ROMS observations to DART observation sequences

6.68.1 Overview

The relationship between ROMS and DART is slightly different than most other models. ROMS has the ability to
apply its own forward operator as the model is advancing (a capability needed for variational assimilation) which pro-
duces something the ROMS community calls ‘verification’ observations. The observation file that is input to ROMS
is specified by the s4dvar.in:0BSname variable. The verification obs are written out to a netcdf file whose name is
specified by the s4dvar.in:MODname variable. Since each ROMS model is advancing independently, a set of verifi-
cation observation files are created during a DART/ROMS assimilation cycle. This set of files can be converted using
convert_roms_obs to produce a DART observation sequence file that has precomputed forward operators (FOs).
convert_roms_obs can also convert s4dvar.in:0BSname,MODname files to a DART observation sequence file that
does not have the precomputed FOs.

The ROMS verification observation files must contain the obs_provenance as a global attribute and the following
variables:

* obs_lat, obs_lon, obs_depth
e obs_value

e obs_error

e obs_time

e NLmodel value

e obs_scale

* obs_provenance

Note that the obs_provenance:flag_values, and obs_provenance:flag_meanings attributes are totally ignored - those
relationships are specified by the global attribute obs_provenance.

Locations only specified by obs_Xgrid, obs_Ygrid, obs_depth are not supported.

The conversion of a (set of) ROMS verification observations requires metadata to coordinate the relationship of the
ROMS observation provenance to a DART observation TYPE. ROMS provides significant flexibility when specifying
the observation provenance and it is simply impractical for DART to try to support all of them. An example of the
current practice is described in the PROGRAMS section below.

Important: filter and perfect_model_obs must also be informed which DART observation types use
precomputed forward operators. This is done by setting the input.nml&obs_kind_nml namelist. An example is
shown at the end of the PROGRAMS section below.

6.68.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a /> must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_roms_obs_nml
ens_size
roms_mod_obs_files =
roms_mod_obs_filelist
dart_output_obs_file

1

"filelist.txt'
'obs_seq.out'

(continues on next page)

6.68. ROMS observations to DART observation sequences 169

DART, Release 9.16.0

(continued from previous page)

append_to_existing = .false.
use_precomputed_values = .true.
add_random_noise = .false.
pert_amplitude = 0.01
verbose =0
type_translations = 'NULL'
/

170 Chapter 6. References

DART, Release 9.16.0

Item | Type | Description

ens_sjzénte- Number of ensemble members which are expected to be found when creating the expected obs val-
ger ues. This must match the number of ROMS “mod” files listed in either the ‘roms_mod_obs_files’
or ‘roms_mod_obs_filelist’ namelist items. It is an error if they are not the same length.
roms_|nubds- obp_lfikisof filenames, one per ensemble member, that contain the observation values for each ensemble

ac- member. These are output from the ROMS program. If listing the files explicitly in this list,
ter(len=25)ms_mod_obs_filelist’ must be © * (null).
di-
men-
sion(100)

roms_|nubds- obs_Telistme of an ASCII file which contains, one per line, a list of filenames, one per ensemble mem-
ac- ber, that contain the expected obs values for each ensemble member. The filenames should NOT be

ter(len=P3@pted. These are output from the ROMS program. If using a filelist, then ‘roms_mod_obs_files’
must be ‘ ¢ (null).
dart_oughat- obs_Tihe name of the DART obs_seq file to create. If a file already exists with this name, it is either

ac- appended to or overwritten depending on the ‘append_to_existing’ setting below.
ter(len=256)
ap- logi- If an existing ‘dart_output_obs_file’ is found, this namelist item controls how it is handled. If .true.

pend_[tacalxistingthe new observations are appended to the existing file. If .false. the new observations overwrite
the existing file.

use_prelogiyputedlamledndicate that the output DART observation sequence file should include the verification
cal observation values from all of the ROMS observation files. If . true. this will result in the DART
file having the precomputed FOs to be used in the DART assimilation. If .false. this will result
in DART files having the instrument values only.

add_randgim_noigklmost always should be .false. . The exception is the first cycle of an assimilation if all the ROMS
cal input files are identical (no ensemble currently exists). To create differences in the forward operator
values (since they are computed by ROMS), we can add gaussian noise here to give them perturbed
values. This should be set as well as the “perturb_from_single_instance = .true.” namelist in the
&filter_nml namelist. After the first cycle, both these should be set back to .false. .
pert_dmphit@r8¢| Ignored unless ‘add_random_noise’ is .true. . Controls the range of random values added to the
expected obs values. Sets the width of a gaussian.

ver- | inte- If greater than O, prints more information during the conversion.

bose | ger

type_traslntionsA set of strings which control the mapping of ROMS observation types to DART observation
ac- types. These should be specified in pairs. The first column should be a string that occurs in
ter(256), the global attribute ‘obs_provenance’. Note that the obs_provenance:flag_values and
di- obs_provenance: flag_meanings attributes are ignored. The second column should be a DART
men- specific obs type that is found in DART/assimi lation_code/modules/observations/
sion(2, | obs_kind_mod. £90, which is created by the DART preprocess program.
100)

6.68. ROMS observations to DART observation sequences 171

DART, Release 9.16.0

6.68.3 Data sources

The origin of the input observation files used by ROMS are completely unknown to me.

6.68.4 Programs

e convert_roms_obs

PROGRAM obs_seq_to_netcdf
e program obs_sequence_tool
* PROGRAM preprocess
* PROGRAM advance_time
Only convert_roms_obs will be discussed here.

The global attribute obs_provenance is used to relate the observation provenance to DART observation TYPES.
The ROMS ‘MODname’ netCDF file(s) must have both the obs_provenance variable and a obs_provenance global
attribute. The exact strings must be repeated in the DART convert_roms_obs_nml:type_translations variable
to be able to convert from the integer value of the obs_provenance to th DART type in the following example:

ncdump -h roms_mod_obs.nc (the output has been pruned for clarity)

netcdf roms_mod_obs {
dimensions:
record = 2 ;
survey = 5376 ;
state_var = 8 ;
datum = 2407217 ;
variables:
{snip}
int obs_provenance(datum) ;
obs_provenance:long_name = "observation origin" ;
obs_provenance: flag_values = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ;
double obs_time(datum) ;

obs_time:long_name = "time of observation" ;
obs_time:units = "days since 1900-01-01 00:00:00 GMT" ;
obs_time:calendar = "gregorian" ;

double obs_lon(datum) ;
obs_lon:long_name = "observation longitude" ;
obs_lon:units = "degrees_east" ;

double obs_lat(datum) ;
obs_lat:long_name = "observation latitude" ;
obs_lat:units = "degrees_north" ;

double obs_depth(datum) ;
obs_depth:long_name = "ROMS internal depth of observation variable" ;
obs_depth:units = "meters or fractional z-levels" ;
obs_depth:negative_value = "downwards" ;

obs_depth:missing _value = 1.e+37 ;
double obs_error(datum) ;

obs_error:long_name = "observation error covariance' ;
double obs_value(datum) ;
obs_value:long_name = "observation value" ;

double obs_scale(datum) ;

(continues on next page)

172 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

obs_scale:long_name = "observation screening/normalization scale" ;
obs_scale:_FillValue = 0. ;

double NLmodel_value(datum) ;
NLmodel_value:long_name = "nonlinear model at observation locations" ;

NLmodel_value:_FillValue = 1.e+37 ;
{snip}
:obs_provenance = "\n",
"1: gridded AVISO sea level anomaly (zeta)\n",
"2: gridded Aquarius SSS (salinity)\n",
"3: XBT from Met Office (temperature)\n",
"4: CTD from Met Office (temperature)\n",
"5: CTD from Met Office (salinity)\n",
"6: ARGO floats (temperature)\n",
"7: ARGO floats (salinity)\n",
"8: glider UCSD (temperature)\n",
"9: glider UCSD (salinity)\n",
"10: blended satellite SST (temperature)" ;
{snip}

Note the integer values that start the obs_provenance strings are used to interpret the integer contents of the

obs_provenance variable. They need not be consecutive, nor in any particular order, but they must not appear more

than once.
The following is the relevent section of the DART input.nml:

&convert_roms_obs_nml
ens_size
roms_mod_obs_filelist
dart_output_obs_file

32
'precomputed_files.txt'
'obs_seq.out'

append_to_existing = .false.

use_precomputed_values = .true.

add_random_noise = .false.

verbose =1

type_translations = "gridded AVISO sea level anomaly (zeta)", "SATELLITE_SSH",
"gridded Aquarius SSS (salinity)", "SATELLITE_SSS",
"XBT from Met Office (temperature)", "XBT_TEMPERATURE",
"CTD from Met Office (temperature)", "CTD_TEMPERATURE",
"CTD from Met Office (salinity)", "CTD_SALINITY",
"ARGO floats (temperature)", "ARGO_TEMPERATURE",
"ARGO floats (salinity)", "ARGO_SALINITY",
"glider UCSD (temperature)", "GLIDER_TEMPERATURE",
"glider UCSD (salinity)", "GLIDER_SALINITY",
"blended satellite SST (temperature)", "SATELLITE_BLENDED_SST"

A complete list of DART observation TYPES for oceans is described in MODULE obs_def _ocean_mod

Any or all of the DART observation types that appear in the second column of type_translations mustalso be desig-
nated as observations that have precomputed forward operators. This is done by setting the input .nm1&obs_kind_nml

namelist as follows:

6.68. ROMS observations to DART observation sequences

DART, Release 9.16.0

&obs_kind_nml
assimilate_these_obs_types = 'SATELLITE_SSH',

"SATELLITE_SSS',
'XBT_TEMPERATURE',
'CTD_TEMPERATURE',
"CTD_SALINITY',
"ARGO_TEMPERATURE ',
"ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST'

use_precomputed_FOs_these_obs_types = 'SATELLITE_SSH',

"SATELLITE_SSS',
'XBT_TEMPERATURE',
'CTD_TEMPERATURE',
"CTD_SALINITY',
"ARGO_TEMPERATURE ',
"ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST'

6.69 PROGRAM SIF_to_obs_netcdf

6.69.1 Overview

Harmonized SIF data product to DART observation sequence converter

This routine converts a harmonized satellite SIF product (Harmonized long-term SIF; SIF005) to DART obs_seq
format. The SIF product is described by JPL and combines GOME-2 and SCTAMACHY SIF retrievals, along with
MODIS data to produce a single continuous, monthly, 0.05 degree SIF data set. See Wen et al., 2020 RSE for a more
detailed description. The conversion script was designed and tested for version SIFO05v2. Download instructions can
be found in the Data Sources section below.

This SIF data product also comes with its own uncertainty value, and quality control flag described below. Namelist
options also include a wavelength option (e.g. 740 nm or 755 nm) to specify the location the SIF value is centered

upon.

Standard workflow:

1.

Download the Level 3 data for the months of interest. Years 2002-2018 are available as of 5/18/21. (see Data
Sources below)

Make note of the SIF wavelength the data is centered upon. This information is included in the SIF variable of
netcdf file SIF_740_daily_corr

Build the DART executables with support for land observations. This is done by running preprocess with
obs_def_land_mod. £f90 in the list of input_files for preprocess_nml.

Provide basic information via the SIF_to_obs_netcdf_nml (e.g. verbose, wavelength)

Convert single or multiple SIF netcdf data files using SIF_to_obs_netcdf. Converting one file at a time results
in better memory management, but this is unlikely to be an issue in most cases.

174

Chapter 6. References

https://climatesciences.jpl.nasa.gov/sif/download-data/level-3/
https://doi.org/10.1016/j.rse.2020.111644

DART, Release 9.16.0

6. Combine all output files for the region and timeframe of interest into one file using program obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a series of files
that contains ONLY the observations for each assimilation. This can be achieved with the makedaily.sh script which
can be found in the DART/models/clm/shell_scripts directory.

6.69.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a /> must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&SIF_to_obs_netcdf_nml
input_file_list = 'SIF.input.txt',

verbose =0

wavelength = 740

/
Contents | Type Description
in- charac- Name of the Level 3 netcdf containing with SIF data. This may be a relative or
put_file_list | ter(len=256) absolute filename.
verbose integer Print more/less information during the SIF_to_obs_netcdf execution.
wavelength | integer The wavelength at which SIF irradiance is centered upon (e.g. 740 nm)

6.69.3 Data Sources

The datasets are available from the Cornell University Box service, and have names like:
SIFOO5_YYYYMM.nc, SIFO05_200504.nc, SIFO05_201808.nc

The Level 3 SIF product is provided within netcdf files for monthly average values from 2002-2018. This
SIF_obs_to_netcdf converter was tested using SIFO05v2 files, although older (SIFO0O5v1) and newer (SIFO05v2.2)
versions exist with similar format.

The data product variables are provided in global, gridded (lat/lon) format:

Units Variable Description Obser- DART QUANTITY DART
vation units
TYPE
mW/m”"2/nSfkt 740_daily] Smiar Induced Fluorescence Ir- | HARMO- QTY_SOLAR_INDUCED| WGORESGENCE
radiance NIZED_SIF
mW/m"2/niSifkt 740_daily| SetarSInduced Fluorescence Ir- | N/A N/A mW/m”2/nm/sr
radiance Standard Deviation
See be- | EVI_Quality | MODIS EVI Quality Flag N/A N/A See be-
low low
degrees | lat latitude N/A N/A radians
degrees | lon longitude N/A N/A radians

The SIF_740_daily_corr value is the SIF satellite derived irradiance value. It is most closely related to the ‘top of
the vegetation canopy’ emitted SIF as simulated from land surface models. This is distinct from ‘leaf-level’ emitted
SIF.

6.69. PROGRAM SIF_to_obs_netcdf 175

https://cornell.app.box.com/s/gkp4moy4grvqsus1q5oz7u5lc30i7o41/folder/100438579357

DART, Release 9.16.0

The SIF_740_daily_corr_SD value is an algorithm based uncertainty estimate provided by the data product
providers. It is most closely related to instrument uncertainty inherent to the SIF retrievals and does not account
for representativeness error when compared to the simulated SIF from a land surface model. We recommend this
uncertainty value be used as a minimum baseline when performing data assimilation.

The EVI_Quality is a data quality estimate for the SIF_740_daily_corr. The EVI_Quality is derived from the
MODIS retrieval of EVI (enhanced vegetation index) which is one of the explanatory variables used in the algorithm
to calculate SIF_740_daily_corr. The EVI_Quality is an integer (representing a 16 bit field) that evaluates quality
through 9 parameters that include VI (Vegetation Index) Quality, VI Usefulness, Aerosol Quantity, Adjacent Cloud
Detection, Atmosphere BRDF correction, Mixed Clouds, Land/Water Mask, possible snow/ice, possible shadow. See
Table 5 of the MODIS Vegetation Index Users Guide for more information.

The DART-compatible QC value assigned to the obs_seq.out uses the criteria from the MODIS EVI Quality and EVI
Usefulness only. The DART-compatible QC is based on NCEP-like error codes and SIF_to_obs_netcdf assigns
values as follows:

0 = best quality
1 = less quality

17 = least quality
50 = faulty, no utility

The input_qc_threshold namelist value can be used to test whether or not lesser quality observations improve the result
or not. Thus, all observations (except those that are defined as faulty/no utility) are included in obs_seq.out and the
exclusion of observations is left up to the user based upon the input_qgc_threshold.

The gc value assignment is such where values given an EVI quality value of ‘good’ (00), are assigned a QC from 1-7
based on the EVI Quality Usefulness Parameter (see table below). Values where the ‘EVI is produced, but should be
checked with additional QA’ (01) are assigned a QC from 10-17. Anything with an EVI Quality Usefulness Parameter
of ‘1101” or higher is given a QC of 50 (or more) and is currently skipped and not written to the output observation
sequence file.

EVI Quality Usefulness Parameter QC | EVI Quality Value | QC | EVI Quality Value
(00) (01)
0000 Highest quality 0 Highest quality 10 | Decreasing quality
0001 Lower quality 1 Lower quality 11 Decreasing quality
0010 Decreasing quality 2 Decreasing quality 12 | Decreasing quality
0100 Decreasing quality 3 Decreasing quality | 13 Decreasing quality
1000 Decreasing quality 4 Decreasing quality 14 | Decreasing quality
1001 Decreasing quality 5 Decreasing quality | 15 | Decreasing quality
1010 Decreasing quality 6 Decreasing quality | 16 | Decreasing quality
1100 Lowest quality 7 Decreasing quality | 17 | Least quality
1101 Quality so low that it is not useful 50 | Not used 50 | Not used
1110 L1B data faulty 50 | Notused 50 | Notused
1111 Not useful for any other reason/not | 50 | Not used 50 | Not used
processed
176 Chapter 6. References

https://lpdaac.usgs.gov/documents/103/MOD13_User_Guide_V6.pdf

DART, Release 9.16.0

6.69.4 Citation

Wen, J., P. Kohler, G. Duveiller, N. C. Parazoo, T. S. Magney, G. Hooker, L. Yu, C. Y. Chang, and
Y. Sun. “A framework for harmonizing multiple satellite instruments to generate a long-term global high
spatial-resolution solar-induced chlorophyll fluorescence (SIF).” Remote Sensing of Environment 239 (2020):
111644 .https://doi.org/10.1016/j.rse.2020.111644

6.69.5 Programs

The SIF_to_obs_netcdf.f90 file is the source for the main converter program. To compile and test, go into
the work subdirectory and run mkmf_preprocess, run the Makefile and finally run preprocess. Be sure that
obs_def_land_mod. £90 is included as an input file within & reprocess_nml of the input.nml.

Next compile the observation converter by running mkmf_SIF_to_obs_netcdf, run Makefile, and finally run
SIF_to_obs_netcdf.

6.70 SSEC Data Center

6.70.1 Overview

The program in this directory takes satellite wind data from the University of Wisconsin-Madison Space Science and
Engineering Center, and converts it into DART format observation sequence files, for use in assimilating with the
DART filter program.

6.70.2 Data sources

The Space Science and Engineering Center (SSEC) at University of Wisconsin-Madison has an online data center with
both real-time and archival weather satellite data.

The last 2 day’s worth of data is available from ftp://cyclone.ssec.wisc.edu/pub/fnoc.

There is a second satellite wind DART converter in the MADIS Data Ingest System directory which converts wind
observations which originate from NESDIS. The data from this converter is processed at the SSEC and the observations
will be different from the ones distributed by MADIS.

6.70.3 Programs

Conversion program convert_ssec_satwnd converts the ascii data in the input files into a DART observation
sequence file. Go into the work directory and run the quickbuild. csh script to compile the necessary files.

The program reads standard input for the data time range, which types of observations to convert, and then, if quality
control information is found in the input file, what type of quality control algorithm to use when deciding whether the
observation is of good quality or not. See the references below.

6.70. SSEC Data Center 177

http://www.ssec.wisc.edu/data
ftp://cyclone.ssec.wisc.edu/pub/fnoc
http://www.nesdis.noaa.gov

DART, Release 9.16.0

6.70.4 References

* RF method: Velden, C. S., T. L. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind
information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and
case analysis. Mon. Wea. Rev., 126, 1202-1218.

¢ QI method: Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion
vectors to derive quality indicators. Wea. Forecasting, 13, 1093-1104.

* Comparison of two methods: Holmlund, K., C.S. Velden, and M. Rohn, 2001: Enhanced Automated Quality
Control Applied to High-Density Satellite-Derived Winds. Mon. Wea. Rev., 129, 517-529.

6.71 PROGRAM sst_to_obs, oi_sst_to_obs

6.71.1 Overview

There are two gridded SST observation converters in this directory, one for data from PODAAC, and one from
NOAA/NCDC. sst_to_obs converts data from PODAAC and has been used by Romain Escudier for regional stud-
ies with ROMS. oi_sst_to_obs converts data from NOAA/NCDC and has been used by Fred Castruccio for global
studies with POP.

sst_to_obs — GHRSST to DART observation sequence converter

These routines are designed to convert the GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature
Analysis (GDS version 2) from NCEI data distributed by the Physical Oceanography Distributed Active Archive Center.
Please remember to cite the data in your publications, specific instructions from PODAAC are available here. This is
an example:

National Centers for Environmental Information. 2016. GHRSST Level 4 AVHRR_OI Global Blended
Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset
accessed [YYYY-MM-DD] at http://dx.doi.org/10.5067/GHAAO-4BC02.

Many thanks to Romain Escudier (then at Rutgers) who did the bulk of the work and graciously contributed
his efforts to the DART project. Romain gave us scripts and source code to download the data from the PODAAC
site, subset the global files to a region of interest, and convert that subsetted file to a DART observation sequence file.
Those scripts and programs have been only lightly modified to work with the Manhattan version of DART and contain
a bit more documentation.

The workflow is usually:
1. compile the converters by running work/quickbuild. csh in the usual way.

2. customize the shell_scripts/parameters_SST resource file to specify variables used by the rest of the script-
ing.
3. run shell_scripts/get_sst_ftp.sh to download the data from PODAAC.

4. provide a mask for the desired study area.

5. run shell_scripts/Prepare_SST. sh to subset the PODAAC data and create the DART observation sequence
files. Be aware that the Prepare_SST. sh modifies the shell_scripts/input.nml.template file and gen-
erates its own input.nml. work/input.nml is not used.

6. combine all output files for the region and timeframe of interest into one file using the program obs_sequence_tool

178 Chapter 6. References

https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
http://podaac.jpl.nasa.gov
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
http://dx.doi.org/10.5067/GHAAO-4BC02

DART, Release 9.16.0

Example

It is worth describing a small example. If you configure get_sst_£ftp. sh to download the last two days of 2010 and
then specify the mask to subset for the NorthWestAtlantic (NWA) and run Prepare_SST. sh your directory structure
should look like the following:

0[1234] cheyenne6:/<6>0bs_converters/SST

| -- ObsData
| ‘-- SST
| |-- ncfile
| | T-- 2010
| [|-- 20101230120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0.nc
| [T-- 20101231120000-NCEI-L4_GHRSST-SSTbhlend-AVHRR_OI-GLOB-v02.0-fv02.0.nc
| " -- nwaSST
| T-- 2010
| |-- 20101230120000-NCEI-L4_GHRSST-SSThlend-AVHRR_OI-GLOB-v02.0-fv02.0_
—NWA.nc
| “-- 20101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0_
—NWA.nc
|-- oi_sst_to_obs.£f90
|-- oi_sst_to_obs.nml
| -- sst_to_obs.f90
|-- sst_to_obs.nml
| -- shell_scripts
| | -- Prepare_SST.sh
| | -- functions.sh
| |-- get_sst_ftp.sh
| |-- input.nml
| |-- input.nml.template
| |-- my_log.txt
| | -- parameters_SST
| "-- prepare_SST_file_NWA.sh
| -- masks
| | -- Mask_NWA-NCDC-L4LRblend-GLOB-v®1-fv02_0-AVHRR_OI.nc
| "-- Mask_NWA120000-NCEI-L4_GHRSST-SSTbhlend-AVHRR_OI-GLOB-v02.0-fv02.0.nc
"-- work
| -- Makefile
| -- advance_time
|-- input.nml
| -- mkmf_advance_time
| -- mkmf_obs_sequence_tool
| -- mkmf_oi_sst_to_obs
| -- mkmf_preprocess
| -- mkmf_sst_to_obs
| -- obs_sequence_tool
| -- oi_sst_to_obs
| -- path_names_advance_time
| -- path_names_obs_sequence_tool
| -- path_names_oi_sst_to_obs
| -- path_names_preprocess
| -- path_names_sst_to_obs
| -- preprocess

(continues on next page)

6.71. PROGRAM sst_to_obs, oi_sst_to_obs 179

DART, Release 9.16.0

(continued from previous page)

| -- quickbuild.csh
‘-- sst_to_obs

The location of the DART observation sequence files is specified by parameter_SST:DIR_OUT_DART. That directory
should contain the following two files:

0[1236] cheyenne6:/<6>v2/Err30® > 1s -1

"total 7104

-rw-r--r-- 1 thoar p86850054 3626065 Jan 10 11:08 obs_seq.sst.20101230
-rw-r--r-- 1 thoar p86850054 3626065 Jan 10 11:08 obs_seq.sst.20101231

6.71.2 oi_sst_to_obs — noaa/ncdc to DART observation sequence converter

oi_sst_to_obs is designed to convert the NOAA High-resolution Blended Analysis: Daily Values using AVHRR
only data. The global metadata of a typical file is shown here:

:Conventions = "CF-1.5" ;
:title = "NOAA High-resolution Blended Analysis: Daily Values using AVHRR only" ;
:institution = "NOAA/NCDC" ;
:source = "NOAA/NCDC ftp://eclipse.ncdc.noaa.gov/pub/0I-daily-v2/" ;
:comment = "Reynolds, et al., 2007:

Daily High-Resolution-Blended Analyses for Sea Surface Temperature.

J. Climate, 20, 5473-5496.

Climatology is based on 1971-2000 OI.v2 SST,

Satellite data: Navy NOAA17 NOAA18 AVHRR, Ice data: NCEP ice." ;
thistory = "Thu Aug 24 13:46:51 2017: ncatted -0 -a References,global,d,, sst.day.mean.
—2004.v2.nc\n",

"Version 1.0" ;

:references = "https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html

:dataset_title = "NOAA Daily Optimum Interpolation Sea Surface Temperature" ;

The workflow is usually:

1. compile the converters by running work/quickbuild. csh in the usual way.
download the desired data.
customize the work/input.nml file.

run work/oi_sst_to_obs to create a single DART observation sequence file.

A

combine all output files for the region and timeframe of interest into one file using the program obs_sequence_tool

180 Chapter 6. References

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html

DART, Release 9.16.0

6.71.3 sst_to_obs namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&sst_to_obs_nml
sst_netcdf_file
sst_netcdf_filelist
sst_out_file

'1234567 .nc'
'sst_to_obs_filelist'
'obs_seq.sst'

subsample_intv =1
sst_rep_error =0.3
debug = .false.
/

Con4 Type Description
tents
sst_netcHfirfildName of the (usually subsetted) netcdf data file. This may be a relative or absolute filename.
ac- | If you run the scripts ‘as is’, this will be something like: ../ObsData/SST/nwaSST/2010/
ter(len283@)1231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0_NWA.nc
sst_netcHfirfil®imme of the file that contains a list of (usually subsetted) data files, one per line. You may not specify
ac- | both sst_netcdf_file AND sst_netcdf_filelist. One of them must be empty.

ter(len=256)

sst_optclfide| Name of the output observation sequence file.

ac-
ter(len=256)

sub- | in- | Itis possible to ‘thin’ the observations. subsample_intv allows one to take every Nth observation.

sam-| te-

ple_intger

sst_repreadrar In DART the observation error variance can be thought of as having two components, an instrument
error and a representativeness error. In sst_to_obs the instrument error is specified in the netCDF
file by the variable analysis_error. The representativeness error is specified by sst_rep_error,
which is specified as a standard deviation. These two values are added together and squared and used
as the observation error variance. Note: This algorithm maintains backwards compatibility, but is
technically not the right way to combine these two quantities. If they both specified variance, adding
them together and then taking the square root would correctly specify a standard deviation. Variances
add, standard deviations do not. Since the true observation error variance (in general) is not known,
we are content to live with an algorithm that produces useful observation error variances. If your
research comes to a more definitive conclusion, please let us know.

de- | log- | Print extra information during the sst_to_obs execution.

bug | ical

6.71.4 oi_sst to_obs namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&oi_sst_to_obs_nml
input_file = '1234567.nc’
output_file_base = 'obs_seq.sst'

(continues on next page)

6.71. PROGRAM sst_to_obs, oi_sst_to_obs 181

DART, Release 9.16.0

(continued from previous page)

subsample_intv =1
sst_error_std =0.3
debug = .false.
/
Con- | Type | Description
tents
in- char- Name of the input netcdf data file. This may be a relative or absolute filename. If
put_file ac- you run the scripts ‘as is’, this will be something like: ../ObsData/SST/nwaSST/2010/
ter(len=2529101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0_NWA.nc
out- char- Partial filename for the output file. The date and time are appended to output_file_base to
put_file_hase construct a unique filename reflecting the time of the observations in the file.
ter(len=256)
sub- inte- It is possible to ‘thin’ the observations. subsample_intv allows one to take every Nth obser-
sam- ger vation.
ple_inty
sst_errorrstd This is the total observation error standard deviation.
de- logical | Print extra information during the oi_sst_to_obs execution.
bug

6.71.5 Decisions you might need to make

See the general discussion in the Creating an obs_seq file from real observations page about what options are available
for the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

6.71.6 Known Bugs

I do not believe sst_to_obs will work correctly if given multiple files in sst_netcdf_filelist. The number of
observation used to declare the length of the output observation sequence is based on a single file ... yet seems to
be used by many. I have not tested this configuration, since the scripting does not use the sst_netcdf_filelist
mechanism.

6.72 SSUSI F16 EDR-DSK format to observation sequence converters

6.72.1 Overview

The Special Sensor Ultraviolet Spectrographic Imager SSUSI is designed to remotely sense the ionosphere and ther-
mosphere. The following is repeated from the SSUSI home page:

Overview Beginning in 2003, the Defense Meteorological Satellite Program (DMSP) satellites began car-
rying the SSUSI instrument - a combination of spectrographic imaging and photometric systems designed
to remotely sense the ionosphere and thermosphere. The long term focus of the SSUSI program is to pro-
vide data concerning the upper atmospheric response to the sun over the changing conditions of the solar
cycle. Data collected by SSUSI instrument can help identify structure in the equatorial and polar regions.
Mission SSUSI was designed for the DMSP Block 5D-3 satellites. These satellites are placed into nearly
polar, sun-synchronous orbits at an altitude of about 850 km. SSUSI is a remote-sensing instrument which
measures ultraviolet (UV) emissions in five different wavelength bands from the Earth’s upper atmosphere.

182 Chapter 6. References

http://http://ssusi.jhuapl.edu/

DART, Release 9.16.0

SSUSI is mounted on a nadir-looking panel of the satellite. The multicolor images from SSUSI cover the
visible Earth disk from horizon to horizon and the anti-sunward limb up to an altitude of approximately
520 km. The UV images and the derived environmental data provide the Air Force Weather Agency (Of-
futt Air Force Base, Bellevue, NE) with near real-time information that can be utilized in a number of
applications, such as maintenance of high frequency (HF) communication links and related systems and
assessment of the environmental hazard to astronauts on the Space Station.

convert_£16_edr_dsk. £90 will extract the ON2 observations from the F16 “edr-dsk” format files and create DART
observation sequence files. There is one additional preprocessing step before the edr-dsk files may be converted.

The ON2_UNCERTAINTY variable in the netcdf files have IEEE NaN values, but none of the required metadata to
interpret them correctly. These 2 lines will add the required attributes so that NaNs are replaced with a fill value that
can be queried and manipulated. Since the ON2_UNCERTAINTY is a standard deviation, it is sufficient to make the
fill value negative. See the section on Known Bugs

ncatted -a _FillValue,ON2_UNCERTAINTY,o,f,NaN input_file.nc
ncatted -a _FillValue,ON2_UNCERTAINTY,m,f,-1.0 input_file.nc

6.72.2 Data sources

http://ssusi.jhuapl.edu/data_products

Please read their data usage policy.

6.72.3 Programs

DART/observations/SSUSI/convert_f16_edr_dsk.f90 will extract ON2 data from the distribution files and cre-
ate DART observation sequence (obs_seq) files. Build it in the SSUSI/work directory by running the . /quickbuild.
csh script located there. In addition to the converters, the advance_time and obs_sequence_tool utilities will be
built.

An example data file is in the data directory. An example scripts for adding the required metadata to the
ON2_UNCERTAINTY variable in the shell_scripts directory. These are NOT intended to be turnkey scripts;
they will certainly need to be customized for your use. There are comments at the top of the scripts saying what options
they include, and should be commented enough to indicate where changes will be likely to need to be made.

6.72.4 Errors

The code for setting observation error variances is using fixed values, and we are not certain if they are correct. Incoming
QC values larger than 0 are suspect, but it is not clear if they really signal unusable values or whether there are some
codes we should accept.

6.72. SSUSI F16 EDR-DSK format to observation sequence converters 183

http://ssusi.jhuapl.edu/data_products
http://ssusi.jhuapl.edu/home_data_usage

DART, Release 9.16.0

6.72.5 Known Bugs

The netCDF files - as distributed - have NaN values to indicate “MISSING”. This makes it exceptionally hard to read or
work with, as almost everything will core dump when trying to perform any math with NaNs. convert_£16_edr_dsk.
£90 tries to count how many values are missing. If the NaN has not been replaced with a numerically valid MISSING
value, the following FATAL ERROR is generated (by the Intel compiler, with debug and traceback enabled):

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
forrtl: error (65): floating invalid

Image PC Routine Line Source

convert_f16_edr_d 000000000051717D MAIN__ 143 convert_f16_edr_dsk.
—£90

convert_f16_edr_d 0000000000409B3C Unknown Unknown Unknown

libc.so.6 0000003101E1ED5D Unknown Unknown Unknown

convert_f16_edr_d 0000000000409A39 Unknown Unknown Unknown

Abort (core dumped)

The solution is to replace the NaN values with a viable MISSING value using the shell_scripts/netcdf_manip.
csh script. It relies on the netCDF Operators, freely available http://nco.sourceforge.net

6.73 WOD Observations

6.73.1 Overview

The World Ocean Database (WOD) is a collection of data from various sources, combined into a single format with
uniform treatment. WOD is created by the National Centers for Environmental Information (NCEI) of the National
Oceanic and Atmospheric Administration (NOAA).

An updated version of the dataset is released approximately every four years. It was first produced in 1994 and has
been released in 1998, 2001, 2005, 2009, 2013 and 2018.

The WOD website has detailed information about the repository, observations, and datasets. The programs in this
directory convert from the packed ASCII files found in the repository into DART observation sequence (obs_seq) file
format.

There are two sets of available files: the raw observations and the observations binned onto standard levels.

Note: DAReS staff recommend using the datasets on standard levels for assimilation. The raw data can be very dense
in the vertical and are not truly independent observations. The correlation between nearby observations leads to too
much certainty in the updated values during the assimilation.

184 Chapter 6. References

http://nco.sourceforge.net
https://www.ncei.noaa.gov/products/world-ocean-atlas

DART, Release 9.16.0

6.73.2 Data sources

Use already existing obs_seq files

NCAR staff have prepared datasets already converted to DART’s obs_seq file format for the World Ocean Database
2013 (WOD13) and the World Ocean Database 2009 (WOD09).

WOD13

The already-converted WOD13 dataset comprises data from 2005-01-01 to 2016-12-31 and was created by Fred Cas-
truccio. Thanks Fred! The files are stored in the following directory on GLADE:

/g9lade/p/cisl/dares/Observations/WOD13

The subdirectories are formatted in YYYYMM order and contain the following observation types:

FLOAT_SALINITY FLOAT_TEMPERATURE
DRIFTER_SALINITY DRIFTER_TEMPERATURE
GLIDER_SALINITY GLIDER_TEMPERATURE
MOORING_SALINITY | MOORING_TEMPERATURE
BOTTLE_SALINITY BOTTLE_TEMPERATURE

CTD_SALINITY CTD_TEMPERATURE
XCTD_SALINITY XCTD_TEMPERATURE
APB_SALINITY APB_TEMPERATURE

XBT_TEMPERATURE

If you use WOD13, please cite Boyer et al. (2013).!

WODO09

The already-converted WODO09 dataset, which comprises data from 1960-01-01 to 2008-12-31, is stored in the follow-
ing directory on GLADE:

/glade/p/cisl/dares/Observations/WODO9

If you use WODO09, please cite Johnson et al. (2009).”

1 Boyer, T.P, J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D.
O’Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72, S.
Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., doi:10.7289/V5NZ85MT.

2 Johnson, D.R., T.P. Boyer, H.E. Garcia, R.A. Locarnini, O.K. Baranova, and M.M. Zweng, 2009. World Ocean Database 2009 Documentation.
Edited by Sydney Levitus. NODC Internal Report 20, NOAA Printing Office, Silver Spring, MD, 175 pp., http://www.nodc.noaa.gov/OC5/WOD09/
pr_wod09.html.

6.73. WOD Observations 185

http://doi.org/10.7289/V5NZ85MT
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html

DART, Release 9.16.0

Download WOD from NCEI

Data from each of the WOD releases can be downloaded interactively from the WOD website.

Download WOD from NCAR

WODO09 can also be downloaded from NCAR’s research data archive (RDA) dataset 285.0.

6.73.3 Programs

The data is distributed in a specialized packed ASCII format. In this directory is a program called wodFOR. £ which
is an example reader program to print out data values from the files. The program wod_to_obs converts these packed
ASCII files into DART obs_sequence files.

As with most other DART directories, the work directory contains a quickbuild.csh script to build all necessary

executables.

6.73.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the

namelist.

&wod_to_obs_nml
wod_input_file =
wod_input_filelist =
wod_out_file =
avg_obs_per_file =
debug =
timedebug =
print_gc_summary =
max_casts =
no_output_file =
print_every_nth_cast
temperature_error
salinity_error

/

| temperature error is in

'XBTS2005"',

(]
’

'obs_seq.wod',
500000,
.false.,
.false.,
.true.,

degrees C, salinity error in g/kg.

186

Chapter 6. References

https://www.ncei.noaa.gov/products/world-ocean-atlas
https://rda.ucar.edu/datasets/ds285.0/

DART, Release 9.16.0

ltem | Type| Description
wod_inparfildhe input filename when converting a single file. Only one of the two namelist items that specify
ac- | input files can have a valid value, so to use a single filename set the list name ‘wod_input_filelist’ to
ter(lengi@8mpty string (* °).
wod_inghurildléstonvert one or more files in a single execution create a text file which contains each input filename,
ac- | in ascii, one filename per line. Set this item to the name of that file, and set ‘wod_input_file’ to the
ter(lenehBRy string (* °).
wod_puwhdile The output file to be created. Note that unlike earlier versions of some converters, this program will
ac- | overwrite an existing output file instead of appending to it. The risk of replicated observations, which
ter(lenat@8jfficult to detect since most of the contents are floating point numbers, outweighed the possible
utility.
avg_qbsnper_fllee code needs an upper limit on the number of observations generated by this program. It can be
te- | larger than the actual number of observations converted. The total number of obs is computed by
ger | multiplying this number by the number of input files. If you get an error because there is no more
room to add observations to the output file, increase this number. Do not make this an unreasonably
huge number, however, since the code does preallocate space and will be slow if the number of obs
becomes very large.
print_|eiety_|nfli acastue greater than 0, the program will print a message after processing every N casts. This allows
te- | the user to monitor the progress of the conversion.
ger
print_|qlogamiifaffRUE. the program will print out a summary of the number of casts which had a non-zero quality
ical | control values (current files appear to use values of 1-9).
de- | log- | If TRUE. the program will print out debugging information.
bug | ical
timededog- | If .TRUE. the program will print out specialized time-related debugging information.
bug | ical
max_cdsts | If a value greater than O the program will only convert at most this number of casts from each input
te- | file. Generally only expected to be useful for debugging. A negative value will convert all data from
ger | the input file.
no_outpog-fildf . TRUE. the converter will do all the work needed to convert the observations, count the number of
ical | each category of QC values, etc, but will not create the final obs_seq file. Can be useful if checking
an input file for problems, or for getting QC statistics without waiting for a full output file to be
constructed, which can be slow for large numbers of obs. Only expected to be useful for debugging.
tem- | real(18)he combined expected error of temperature observations from all sources, including instrument er-
per- ror, model bias, and representativeness error (e.g. larger or smaller grid box sizes affecting expected
a- accuracy), in degrees Centigrade. Values in output file are error variance, which will be this value
ture_¢rror | squared.
salin-| real(18)The combined expected error of salinity observations from all sources, including instrument error,
ity_error model bias, and representativeness error (e.g. larger or smaller grid box sizes affecting expected
accuracy) in g/kg (psu). Values in output file are error variance, and use units of msu (kg/kg), so the
numbers will be this value / 1000.0, squared.

6.73. WOD Observations 187

DART, Release 9.16.0

6.73.5 Modules used

types_mod
time_manager_mod
utilities_mod
location_mod
obs_sequence_mod
obs_def_mod
obs_def_ocean_mod
obs_kind_mod

6.73.6 Errors and known bugs

The code for setting observation error variances is using fixed values, and we are not certain if they are correct. Incoming
QC values larger than O are suspect, but it is not clear if they really signal unusable values or whether there are some
codes we should accept.

6.73.7 Future Plans
 This converter is currently being used on WODO09 data, but the standard files generally stop with early 2009 data.
There are subsequent additional new obs files available from the download site.

* The fractional-time field, and sometimes the day-of-month field in a small percentage of the obs have bad val-
ues. The program currently discards these obs, but it may be possible to recover the original good day num-
ber and/or time of day. There is a subroutine at the end of the wod_to_obs.f90 file which contains all the re-
ject/accept/correction information for the year, month, day, time fields. To accept or correct the times on more
obs, edit this subroutine and make the necessary changes.

6.73.8 References

6.74 GND GPS VTEC

This is a modification of a standard “text” converter that comes with DART.

gnd_gps_vtec_text_to_obs. f90 reads VTEC text files (from OpenMadrigal at http://madrigal.haystack.mit.edu/)
and outputs DART obs_seq.out files.

Please examine work/input.nml :&text_to_obs_nml as it specifies the name of the input and the output files

The provided file work/gps021201g.002.txt is only for example (only 2 datapoints are shown) and not for real estimation.

6.75 GPS Observations

6.75.1 Overview

The COSMIC project provides data from a series of satellites. There are two forms of the data that are used by DART:
GPS Radio Occultation data and Electron Density. The programs in this directory extract the data from the distribution
files and put them into DART observation sequence (obs_seq) file format.

188 Chapter 6. References

http://madrigal.haystack.mit.edu/
http://www.cosmic.ucar.edu

DART, Release 9.16.0

Radio occultation

The COSMIC satellites measure the phase delay caused by deviation of the straight-line path of the GPS satellite signal
as it passes through the Earth’s atmosphere when the GPS and COSMIC satellites rise and set relative to each other.
This deviation results from changes in the angle of refraction of light as it passes through regions of varying density
of atmosphere. These changes are a result of variations in the temperature, pressure, and moisture content. Vertical
profiles of temperature and moisture can be derived as the signal passes through more and more atmosphere until it is
obscured by the earth’s horizon. There are thousands of observations each day distributed around the globe, including
in areas which previously were poorly observed. These data are converted with the convert_cosmic_gps_cdf. £90
program and create DART observations of GPSRO_REFRACTIVITY.

Electron density

The COSMIC satellites also provide ionospheric profiles of electron density. The accuracy is generally about 10# 10
cm. These data are converted with the convert_cosmic_ionosphere. £90 program and create DART observations
tagged as COSMIC_ELECTRON_DENSITY.

6.75.2 Data sources

Data from the COSMIC Program are available by signing up on the data access web page. We prefer delivery in netCDF
file format.

Radio occultation

The files we use as input to these conversion programs are the Level 2 data, Atmospheric Profiles (filenames include
the string ‘atmPrf”).

Each vertical profile is stored in a separate netCDF file, and there are between 1000-3000 profiles/day, so converting a
day’s worth of observations used to involve downloading many individual files. There are now daily tar files available
which makes it simpler to download the raw data all in a single file and then untar it to get the individual profiles.
The scripts in the shell_scripts directory can now download profiles from any of the available satellites that
return GPS RO data to the CDAAC web site. See the gpsro_to_obsseq.csh or convert_many_gpsro.csh script
for where to specify the satellites to be included.

Electron density

The files we have used as input to these conversion programs are from the COSMIC 2013 Mission and have a data
type of ‘ionPrf’.

The file naming convention and file format are described by COSMIC here and there can be more than 1000
profiles/day. Like the GPS radio occultation data, the profiles are now available in a single daily tar file which can be
downloaded then be unpacked into the individual files. COSMIC has instructions on ways to download the data at
http://cdaac-www.cosmic.ucar.edu/cdaac/tar/rest.html

6.75. GPS Observations 189

http://www.cosmic.ucar.edu
http://cosmic-io.cosmic.ucar.edu/cdaac
http://www.unidata.ucar.edu/software/netcdf
http://cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=ionPrf
http://cdaac-www.cosmic.ucar.edu/cdaac/tar/rest.html

DART, Release 9.16.0

6.75.3 Programs

Convert_cosmic_gps_cdf

The data are distributed in netCDF file format. DART requires all observations to be in a proprietary format often
called DART “obs_seq” format. The files in this directory (a combination of C shell scripts and a Fortran source
executable) do this data conversion.

The shell_scripts directory contains several example scripts, including one which downloads the raw data files a day
at a time (download_script.csh), and one which executes the conversion program (convert_script.csh).
These scripts make 6 hour files by default, but have options for other times. Each profile is stored in a separate netcdf
file and there are usually between 1000-3000 files/day, so the download process can be lengthy. You probably want to
download as a separate preprocess step and do not use the script options to automatically delete the input files. Keep
the files around until you are sure you are satisified with the output files and then delete them by hand.

The conversion executable convert_cosmic_gps_cdf, reads the namelist &convert_cosmic_gps_nml from the
file input.nml.

The namelist lets you select from one of two different forward operators. The ‘local’ forward operator computes the
expected observation value at a single point: the requested height at the tangent point of the ray between satellites.
The ‘non-local’ operator computes values along the ray-path and does an integration to get the expected value. The
length of the integration segments and height at which to end the integration are given in the namelist. In some
experiments the difference between the two types of operators was negligible. This choice is made at the time of the
conversion, and the type of operator is stored in the observation, so at runtime the corresponding forward operator
will be used to compute the expected observation value.

The namelist also lets you specify at what heights you want observations to be extracted. The raw data is very dense
in the vertical; using all values would not results in a set of independent observations. The current source code no
longer does an intermediate interpolation; the original profiles appear to be smooth enough that this is not needed.
The requested vertical output heights are interpolated directly from the full profile.

Convert_cosmic_ionosphere

Each profile is interpolated to a set of desired levels that are specified at run time. During the conversion process, each
profile is checked for negative values of electron density above the minimum desired level. If negative values are found,
the entire profile is discarded. If an observation sequence file already exists, the converter will simply add the new ob-
servations to it. Multiple profiles may be converted in a single execution, so it is easy to consolidate all the profiles for
a single day into a single observation sequence file, for example. convert_cosmic_ionosphere reads the namelist
&convert_cosmic_ionosphere_nml from the file input.nml. The original observation times are preserved in the
conversion process. If it is desired to subset the observation sequence file such that observations too far away from de-
sired assimilation times are rejected, a separate post-processing step using the program obs_sequence_tool is required.
A script will be necessary to take a start date, an end date, an assimilation time step, and a desired time ‘window’ - and
strip out the unwanted observations from a series of observation sequence files. There are multiple ways of specifying
the observation error variance at run time. They are implemented in a routine named electron_density_error()
and are selected by the namelist variable observation_error_method.

‘constant’ a scalar value for all observations

‘scaled’ the electron density is multiplied by a scalar value

‘lookup’ a lookup table is read

‘scaled_lookup’ | the lookup table value is multiplied by a scalar value and the electron density value

I-Te Lee: ” ... the original idea for error of ionospheric observation is 1%. Thus, I put the code as “oerr
=0.01_r8 * obsval”. Liu et. al and Yue et al investigated the Abel inversion error of COSMIC ionosphere
profile, both of them figure out the large error would appear at the lower altitude and push model toward
wrong direction at the lower ionosphere while assimilating these profiles. On the other hand, the Abel
inversion error depends on the ionospheric electron density structure, which is a function of local time,

190 Chapter 6. References

http://www.unidata.ucar.edu/software/netcdf

DART, Release 9.16.0

altitude and geomagnetic latitude. To simplify the procedure to define observation error of profiles, Xinan
Yue help me to estimate an error matrix and saved in the file which named ‘f3coerr.nc’. ... The number in
the matrix is error percentage (%), which calculated by OSSE. Here are two reference papers. In the end,
the observation error consists of instrumentation error (10%) and Abel error.”

* X. Yue, W.S. Schreiner, J. Lei, S.V. Sokolovskiy, C. Rocken, D.C. Hunt, and Y.-H. Kuo (2010),
Error analysis of Abel retrieved electron density profiles from radio occultation measurements.
Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences. 28 No. 1, pp 217-222,
doi:10.5194/angeo-28-217-2010

e J.Y. Liu, C.Y. Lin, C.H. Lin, H.F. Tsai, S.C. Solomon, Y.Y. Sun, I.T. Lee, W.S. Schreiner, and Y.H.
Kuo (2010), Artificial plasma cave in the low-latitude ionosphere results from the radio occultation
inversion of the FORMOSAT-3/COSMIC}, Journal of Geophysical Research: Space Physics. 115
No. A7, pp 2156-2202, doi:10.1029/2009JA015079

It is possible to create observation sequence files for perfect model experiments that have realistic observation sampling
patterns and observation error variances that do not have any actual electron densities. The COSMIC data files are
read, but the electron density information is not written. Keep in mind that some methods of specifying the observation
error variance require knowledge of the observation value. If the observation value is bad or the entire profile is bad,
no observation locations are created for the profile.

6.75.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_cosmic_gps_nml

obs_levels =-1.0
use_original_kuo_error = .false.
local_operator = .true.
ray_ds = 5000.0
ray_htop = 15000.0
gpsro_netcdf_file = 'cosmic_gps_input.nc'
gpsro_netcdf_filelist = "'
gpsro_out_file = 'obs_seq.gpsro'

/

6.75. GPS Observations 191

https://www.ann-geophys.net/28/217/2010/
http://dx.doi.org/10.1029/2009JA015079
http://dx.doi.org/10.1029/2009JA015079

DART, Release 9.16.0

Item Type Description

obs_levels| inte- A series of heights, in kilometers, where observations from this profile should be interpo-
ger(200) | lated. (Note that the other distances and heights in the namelist are specified in meters.) The
values should be listed in increasing height order.

use_originallkgioabrrodf .true. use the observation error variances for a refractivity observation that come from a
Kuo paper and were implied to be used for the CONUS domain. If .false. use observation
error variances similar to what is used in GSI.

lo- logical | If .true. compute the observation using a method which assumes all effects occur at the
cal_operatpr tangent point. If .false. integrate along the tangent line and do ray-path reconstruction.
ray_ds real(r8) | For the non-local operator only, the delta stepsize, in meters, to use for the along-path inte-

gration in each direction out from the tangent point.

ray_htop | real(r8) | For the non-local operator only, stop the integration when one of the endpoints of the next
integration step goes above this height. Specify in meters.

gp- charac- | The input filename when converting a single profile. Only one of the file or filelist items can
sro_netcdf] fite(len=128nve a valid value, so to use the single filename set the list name ‘gpsro_netcdf_filelist’ to
the empty string (* °).

gp- charac- | To convert a series of profiles in a single execution create a text file which contains each
sro_netcdf] fiteliem=128)put file, in ascii, one filename per line. Set this item to the name of that file, and set
‘gpsro_netcdf_file’ to the empty string ().

gp- charac- | The output file to be created. To be compatible with earlier versions of this program, if this
sro_out_file ter(len=128je already exists it will be read in and the new data will be appended to that file.

A more useful example follows:

&convert_cosmic_gps_nml
gpsro_netcdf_file =

gpsro_netcdf_filelist = 'flist'

gpsro_out_file = 'obs_seq.gpsro'

local_operator = .true.

use_original_kuo_error = .false.

ray_ds = 5000.0

ray_htop = 13000.1

obs_levels = 0.2, 0.4, 0.6, 0.8,
1., 1.2, 1.4, 1.6, 1.8,
2.0, 2.2, 2.4, 2.6, 2.8,
3.0, 3.2, 3.4, 3.6, 3.8,
4.0, 4.2, 4.4, 4.6, 4.8,
5.0, 5.2, 5.4, 5.6, 5.8,
6.0, 6.2, 6.4, 6.6, 6.8,
7.0, 7.2, 7.4, 7.6, 7.8,
8.0, 8.2, 8.4, 8.6, 8.8,
9.0, 9.2, 9.4, 9.6, 9.8,
10.0, 10.2, 10.4, 10.6, 10.8,
11.0, 11.2, 11.4, 11.6, 11.8,
12.0, 12.2, 12.4, 12.6, 12.8,
13.0, 13.2, 13.4, 13.6, 13.8,
14.0, 14.2, 14.4, 14.6, 14.8,
15.0, 15.2, 15.4, 15.6, 15.8,
16.0, 16.2, 16.4, 16.6, 16.8,
17.0, 17.2, 17.4, 17.6, 17.8,
18.0, 19.0, 20.0, 21.0, 22.0,
23.0, 24.0, 25.0, 26.0, 27.0

(continues on next page)

192 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

28.0, 29
33.0, 34
38.0, 39
43.0, 44
48.0, 49
53.0, 54
58.0, 59

.0, 30.0, 31.0, 32.0,
.0, 35.0, 36.0, 37.0,
.0, 40.0, 41.0, 42.0,
.0, 45.0, 46.0, 47.0,
.0, 50.0, 51.0, 52.0,
.0, 55.0, 56.0, 57.0,
.0, 60.0

&convert_cosmic_ionosphe
input_£file
input_file_list
output_file

re_nml

= 'input_file_list.txt'
= 'obs_seq.out'

observation_error_file = 'none'
observation_error_method = 'scaled_lookup'
locations_only = .false.
obs_error_factor =1.0

verbose =0

obs_levels =-1.0
/

6.75. GPS Observations

193

DART, Release 9.16.0

ltem | Type| Description

in- char-| The input filename when converting a single profile. Only one of the input_file or

put_file ac- input_file_list items can have a valid value, so to use a single filename set input_file_list
ter(len=25%)

in- char- | To convert a series of profiles in a single execution create a text file which contains one filename

v

put_file_hist per line. Set this item to the name of that file, and set input_file =
ter(len=256)
out- char-| The output file to be created. If this file already exists the new data will be added to that file. DART

put_file ac- | observation sequences are linked lists. When the list is traversed, the observations are in ascending
ter(len=t#h6)order. The order they appear in the file is completely irrelevant.

ob- char- | This specifies a lookup table. The table created by I-Te Lee and Xinan Yue is called f3coerr.nc.

ser- ac-

va- ter(len=256)
tion_eryor_file

ob- char-| There are multiple ways of specifying the observation error variance. This character string al-
ser- ac- | lows you to select the method. The selection is not case-sensitive. Allowable values are: ‘con-
va- ter(len=sta&j, ‘scaled’, ‘lookup’, or ‘scaled_lookup’. Anything else will result in an error. Look in the
tion_error_methedlectron_density_error () routine for specifics.

loca- | log- | If locations_only = .true. then the actual observation values are not written to the output

tions_onligal | observation sequence file. This is useful for designing an OSSE that has a realistic observation
sampling pattern. Keep in mind that some methods of specifying the observation error variance
require knowledge of the observation value. If the observation value is bad or the entire profile is

bad, this profile is rejected - even if locations_only = .true.
obs_errorefda®iThis is the scalar that is used in several of the methods specifying the observation error variance.
ver- in- controls the amount of run-time output echoed to the screen. 0 is nearly silent, higher values write
bose | te- out more. The filenames of the profiles that are skipped are ALWAYS printed.
ger
obs_leveln- A series of heights, in kilometers, where observations from this profile should be interpolated.
te- (Note that the other distances and heights in the namelist are specified in meters.) The values must

ger(20(e listed in increasing height order.

A more useful example follows:

&convert_cosmic_ionosphere_nml

input_file ="

input_file_list = '"file_list.txt'

output_file = 'obs_seq.out'

observation_error_file = '"f3coeff.dat'

observation_error_method = 'scaled'

locations_only = .false.

obs_error_factor = 0.01

verbose =1

obs_levels = 160.0, 170.0, 180.0, 190.0, 200.0,
210.0, 220.0, 230.0, 240.0, 250.0,
260.0, 270.0, 280.0, 290.0, 300.0,
310.0, 320.0, 330.0, 340.0, 350.0,
360.0, 370.0, 380.0, 390.0, 400.0,
410.0, 420.0, 430.0, 440.0, 450.0

/

194 Chapter 6. References

DART, Release 9.16.0

6.75.5 Workflow for batch conversions

If you are converting only a day or two of observations you can download the files by hand and call the converter
programs from the command line. However if you are going convert many days/months/years of data you need an
automated script, possibly submitted to a batch queue on a large machine. The following instructions describe shell
scripts we provide as a guide in the shell_scripts directory. You will have to adapt them for your own system unless
you are running on an NCAR superscomputer.

Making DART Observations from Radio Occultation atmPrf Profiles:

Description of the scripts provided to process the COSMIC and
CHAMP GPS radio occultation data.

Summary of workflow:
1) cd to the ../work directory and run ./quickbuild.csh to compile everything.
2) Edit ./gpsro_to_obsseq.csh once to set the directory where the DART
code is installed, and your CDAAC web site user name and password.
3) Edit ./convert_many_gpsro.csh to set the days of data to download/convert/remove.
4) Run ./convert_many_gpsro.csh either on the command line or submit to a batch system.

More details:
1) quickbuild.csh:

Make sure your $DART/mkmf/mkmf.template is one that matches the
platform and compiler for your system. It should be the same as
how you have it set to build the other DART executables.

Run quickbuild.csh and it should compile all the executables needed
to do the GPS conversion into DART obs_sequence files.

2) gpsro_to_obsseq.csh:

Edit gpsro_to_obsseq.csh once to set the DART_DIR to where you have
downloaded the DART distribution. (There are a few additional options

in this script, but the distribution version should be good for most users.)
If you are downloading data from the CDAAC web site, set your

web site user name and password. After this you should be able to

ignore this script.

3) convert_many_gpsro.csh:

A wrapper script that calls the converter script a day at a time.
Set the days of data you want to download/convert/remove. See the
comments at the top of this script for the various options to set.
Rerun this script for all data you need. This script depends on
the advance_time executable, which should automatically be built
in the ../work directory, but you may have to copy or link to a

(continues on next page)

6.75. GPS Observations 195

DART, Release 9.16.0

(continued from previous page)

version from this dir. you also need a minimal input.nml here:

Qutilities_nml

/

is all the contents it needs.

It can be risky to use the automatic delete/cleanup option - if there are
any errors in the script or conversion (file system full, bad file format,
etc) and the script doesn't exit, it can delete the input files before
the conversion has succeeded. But if you have file quota concerns

this allows you to keep the total disk usage lower.

Making DART Observations from Ionospheric ionPrf Profiles:

0) run quickbuild.csh as described above

1) iono_to_obsseq.csh

set the start and stop days. downloads from the CDAAC and
untars into 100s of files per day. runs the converter to
create a single obs_seq.ion.YYYYMMDD file per day.

2) split_obs_seq.csh

split the daily files into X minute/hour files - set the
window times at the top of the file before running.

Notes on already converted observations on the NCAR supercomputers
GPS Radio Occultation Data:

See /glade/p/image/Observations/GPS

These are DART observation sequence files that contain
radio-occultation measurements from the COSMIC
(and other) satellites.

Uses temperature/moisture bending of the signals as they
pass through the atmosphere between GPS source satellites

(continues on next page)

196 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

and low-earth-orbit receiving satellites to compute the
delay in the arrival of data. the files also contain the
bending angle data, but we are not using that currently.

the subdirectories include:

local -- original processed files, single obs at nadir
local-cosmic2013 -- reprocessed by CDAAC in 2013
local-test2013 -- 2013 data, denser in vertical, diff errors

local-complete2013 - all satellites available for that time,
new errors (from lydia c), 2013 cosmic reprocessed data
nonlocal -- original processed files, ray-path integrated
rawdata -- netcdf data files downloaded from the CDAAC

local: the ob is at a single location (the tangent point
of the ray and earth) and the entire effect is assumed
to be impacting the state at that point.

non-local: computes the ob value by doing a line integral
along the ray path to accumulate the total effect.

(in our experiments we have compared both and did not see
a large difference between the two methods, and so have
mistly used the local version because it's faster to run.)

some directories contain only the gps obs and must be
merged (with the obs_sequence_tool) with the rest of
the conventional obs before assimilation.

some directories contain both the gps-only files and
the obs merged with NCEP and ACARS data.

if a directory exists but is empty, the files are
likely archived on the HPSS. see the README files
in the next level directory down for more info on
where they might be.

nsc
jan 2016

Ionosphere Data:

See /glade/p/image/Observation/ionosphere

These are COSMIC 'ionPrf' ionospheric profile observations.

(continues on next page)

6.75. GPS Observations 197

DART, Release 9.16.0

(continued from previous page)

They are downloaded from the CDAAC website as daily tar files
and unpacked into the 'raw' directory. They distribute these
observations with one profile per netcdf file. Each profile has
data at ~500-1000 different levels.

Our converter has a fixed number of levels in the namelist
and we interpolate between the two closest levels to get the
data for that level. If you give the converter a list of
input netcdf files it will convert all of them into a

single output file.

The 'daily' directory is a collection of all the profiles for
that day.

The 'convert' directory has the executables and scripting

for breaking up the daily files into 10 minute files which

are put in the '10min' directory. Change the 'split_obs_seq.csh'
script to change the width of this window, or the names of

the output files.

The 'verify.csh' script prints out any missing files, which
happens if there are no profiles in the given window.

Our convention is to make a ® length file for missing intervals
and we expect the filter run script to look at the file size

and loop if there is a file but with no contents. This will
allow us to distinguish between a time where we haven't converted
the observations and a time where there are no observations.

In that case the script should add time to the next model

advance request and loop to the next interval.

6.75.6 Modules used

convert_cosmic_gps_cdf and convert_cosmic_ionosphere use the same set of modules

assimilation_code/location/threed_sphere/location_mod. £90
assimilation_code/modules/assimilation/adaptive_inflate_mod. f90
assimilation_code/modules/assimilation/assim_model_mod. f90
assimilation_code/modules/io/dart_time_io_mod. f90
assimilation_code/modules/io/direct_netcdf_mod. f90
assimilation_code/modules/io/io_filenames_mod.f90
assimilation_code/modules/io/state_structure_mod. f90
assimilation_code/modules/io/state_vector_io_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod. f90
assimilation_code/modules/utilities/distributed_state_mod. f90

(continues on next page)

198 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

assimilation_code/modules/utilities/ensemble_manager_mod.£f90
assimilation_code/modules/utilities/netcdf_utilities_mod. £90
assimilation_code/modules/utilities/null_mpi_utilities_mod. f90
assimilation_code/modules/utilities/null_win_mod.£90
assimilation_code/modules/utilities/options_mod.£90
assimilation_code/modules/utilities/random_seq_mod.£f90
assimilation_code/modules/utilities/sort_mod.f90
assimilation_code/modules/utilities/time_manager_mod. {90
assimilation_code/modules/utilities/types_mod. f90
assimilation_code/modules/utilities/utilities_mod.f90
models/template/model_mod. 90
models/utilities/default_model_mod.f90
observations/forward_operators/obs_def_mod. £f90
observations/forward_operators/obs_def_utilities_mod.£90
observations/obs_converters/utilities/obs_utilities_mod.f90

6.75.7 Errors

The converters have a parameter declaring the maximum number of desired levels as 200. If more than 200 levels are
entered as input (to obs_levels), a rather uninformative run-time error is generated:

ERROR FROM:
routine: check_namelist_read
message: INVALID NAMELIST ENTRY: / in namelist convert_cosmic_ionosphere_nml

Your error may be different if obs_levels is not the last namelist item before the slash */

6.75.8 Known Bugs

Some COSMIC files seem to have internal times which differ from the times encoded in the filenames by as much as
2-3 minutes. If it is important to get all the observations within a particular time window files with filenames from a
few minutes before and after the window should be converted. Times really outside the window can be excluded in a
separate step using the program obs_sequence_tool.

6.76 Oklahoma Mesonet MDF Data

6.76.1 Overview

Program to convert Oklahoma Mesonet MDF files into DART observation sequence files.

6.76. Oklahoma Mesonet MDF Data 199

DART, Release 9.16.0

6.76.2 Data sources

The observation files can be obtained from the Oklahoma Mesonet archive using urls of the format: http://
www.mesonet.org/index.php/dataMdfMts/dataController/getFile/YYYYMMDDHHMM/mdf/TEXT where
YYYYMMDDHHMM is the date and time of the desired set of observations. Files are available every 5 minutes.

If you are located outside of Oklahoma or are going to use this for a non-research purpose see this web page for
information about access: http://www.mesonet.org/index.php/site/about/data_access_and_pricing

Static fields are drawn from the station description file provided by the OK Mesonet. Update the local file from:
http://www.mesonet.org/index.php/api/siteinfo/from_all_active_with_geo_fields/format/csv

6.76.3 Programs

The programs in the DART/observations/ok_mesonet/ directory extract data from the distribution files and create
DART observation sequence (obs_seq) files. Build them in the work directory by running the ./quickbuild.csh
script. In addition to the converters, the advance_time and obs_sequence_tool utilities will be built.

The converter is a preliminary version which has no namelist inputs. It has hard-coded input and output filenames. It
always reads a data file named okmeso_mdf.in and creates an output file named obs_seq.okmeso. The converter
also requires a text file with the location of all the observating stations, called geoinfo.csv.

The converter creates observations of the following types:
* LAND_SFC_ALTIMETER
LAND_SFC_U_WIND_COMPONENT
LAND_SFC_V_WIND_COMPONENT
LAND_SFC_TEMPERATURE
LAND_SFC_SPECIFIC_HUMIDITY
LAND_SFC_DEWPOINT
LAND_SFC_RELATIVE_HUMIDITY

Example data files are in the data directory. Example scripts for converting batches of these files are in the
shell_scripts directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized
for your use. There are comments at the top of the scripts saying what options they include, and should be commented
enough to indicate where changes will be likely to need to be made.

The expected usage pattern is that a script will copy, rename, or make a symbolic link from the actual input file (which
often contains a timestamp in the name) to the fixed input name before conversion, and move the output file to an
appropriate filename before the next invocation of the converter. If an existing observation sequence file of the same
output name is found when the converter is run again, it will open that file and append the next set of observations to it.

6.77 VIIRS/AQUA Satellite Ocean Color

6.77.1 Overview

The OCEAN COLOR (NASA’s ocean color web) supports the collection, processing, calibration, archive and distri-
bution of ocean-related products from a number of missions which are supported within the framework and facilities
of the NASA Ocean Data Processing System. This converter support ocean color data from two different missions:

1. AQUA/MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS
AM) and Aqua (EOS PM). Terra MODIS and Aqua MODIS view the entire Earth’s surface every 2 days.

200 Chapter 6. References

http://www.mesonet.org/index.php/site/about/data_access_and_pricing
http://www.mesonet.org/index.php/api/siteinfo/from_all_active_with_geo_fields/format/csv
https://oceandata.sci.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/data/aqua/

DART, Release 9.16.0

2. VIIRS (or Visible and Infrared Imager/Radiometer Suite) is a multi-disciplinary instrument that is being flown on
the Joint Polar Satellite System. VIIRS is the successor to MODIS for Earth Science data product generation.

6.77.2 Data source

In order to have access to the data, you will need a log in on: https://earthdata.nasa.gov/

Once a username and a password have been created, the ocean color data can be downloaded from: data-access-webpage
where a manual file search can be performed or using the provided script: shell_scripts/get_ocdata.sh

6.77.3 Programs and Scripts

The programs and scripts in the observations/obs_converters/ocean_color directory download the data and
create DART observation sequence (obs_seq) files. All programs are built in the ocean_color/work directory and can
be done by running . /quickbuild.csh In addition to the main converter (i.e., convert_sat_chl), other programs
such advance_time and preprocess utilities will be built.

Converter namelist convert_sat_chl_nml: This namelist is added to the rest of DART program namelists in file
input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash /.

&convert_sat_chl_nml

file_in = '../data/V2020350.L3m_DAY_SNPP_CHL_chlor_a_4km.nc'
file_out = '../data/obs_seq_chl'

chl_thresh = 0.03

subsample_intv =1

special_mask = .true.

debug = .false.

/

Con- Type | Description
tents
file_in char- | Name of the input netcdf data file. Example of absolute path: $DART/observations/
acter | obs_converters/ocean_color/data/V2020336.L3m_DAY_SNPP_CHL_4km.nc

file_out | char- | Partial filename for the output file. The date and time are appended to £ile_out to construct a
acter | unique filename reflecting the time of the observations in the file.

chl_thresh real(r8) When the observed chlorophyll values are small, a threshold value is used for the obs. Example:
chl_thresh = 0.03

subsam- | inte- | Itis possible to ‘thin’ the observations. subsample_intv allows one to take every nth obser-
ple_intv | ger vation.

spe- logi- | A simple procedure to ignore data in certain areas. Users can the code in convert_sat_chl.fo0
cial_mask| cal to change the mask location
debug logi- | Print extra information during the convert_sat_chl execution.

cal

It’s widely known that chlorophyll follows a log-normal distribution. After reading the observed chlorophyll data from
the input netcdf file, a LOG10 transformation is applied such that the resulting distribution is normal. The idea behind
this step is to prepare the data for the EnKF which assumes both the state and observations to be Gaussian.

The get_ocdata. sh script is placed inside the shell_scripts directory. Technically, this is the only the script that
the user needs to run. Prior to running the script, one should edit some parameters such as: date range, the resolution
of the data, the instrument, username and password to access the data site, frequency, domain area coordinates, etc.
These parameters are hard coded in the script. The tasks that this script do are:

6.77. VIIRS/AQUA Satellite Ocean Color 201

https://oceancolor.gsfc.nasa.gov/data/viirs-snpp/
https://earthdata.nasa.gov/
https://oceandata.sci.gsfc.nasa.gov/api/file_search

DART, Release 9.16.0

1. It Downloads ocean color data for the requested period and frequency one file at a time.

2. It retains the chlorophyll variable for the requested domain and gets rid of unnecessary information in the netcdf
data files.

3. It modifies the netcdf files by adding a time dimension with the necessary attributes.
4. It runs the obs converter convert_sat_chl for each data file.

So, each data file will have a corresponding obs_seq file. The observation sequence files are named such that the
observation time is part of the file name. For example: obs_seq_chl.2020-12-15-00000

This script is NOT intended to be turnkey script; it will certainly needs to be customized for your use. This script will
make use of some DART utilities and namelists such as advance_time and input.nml. If an existing observation
sequence file of the same output name is found when the converter is run again, it will replace that file.

6.78 QuikSCAT SeaWinds Data

6.78.1 Overview

NASA’s QuikSCAT mission is described in http://winds.jpl.nasa.gov/missions/quikscat/. “QuikSCAT” refers to the
satellite, “SeaWinds” refers to the instrument that provides near-surface wind speeds and directions over large bodies
of water. QuikSCAT has an orbit of about 100 minutes, and the SeaWinds microwave radar covers a swath under the
satellite. The swath is comprised of successive scans (or rows) and each scan has many wind-vector-cells (WVCs). For
the purpose of this document, we will focus only the Level 2B product at 25km resolution. If you go to the official
JPL data distribution site http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html , we are using the product
labelled L2B OWYV 25km Swath. Each orbit consists of (potentially) 76 WVCs in each of 1624 rows or scans. The
azimuthal diversity of the radar returns affects the error characteristics of the retrieved wind speeds and directions,
as does rain, interference of land in the radar footprint, and very low wind speeds. Hence, not all wind retrievals are
created equal.

The algorithm that converts the ‘sigma naughts’ (the measure of radar backscatter) into wind speeds and directions has
multiple solutions. Each candidate solution is called an ‘ambiguity’, and there are several ways of choosing ‘the best’
ambiguity. Beauty is in the eye of the beholder. At present, the routine to convert the original L2B data files (one per
orbit) in HDF format into the DART observation sequence file makes several assumptions:

1. All retrievals are labelled with a 10m height, in accordance with the retrieval algorithm.
2. Only the highest-ranked (by the MLE method) solution is desired.

3. Only the WVCs with a wvc_quality_flag of zero are desired.
4

. The mission specification of a wind speed rms error of 2 ms (for winds less than 20 m/s) and 10% for windspeeds
between 20 and 30 m/s can be extended to all winds with a qc flag of zero.

e

The mission specification of an error in direction of 20 degrees rms is applicable to all retrieved directions.
6. All retrievals with wind speeds less than 1.0 are not used.

7. The above error characterstics can be simplified when deriving the horizontal wind components (i.e. U,V). Note
: this may or may not be a good assumption, and efforts to assimilate the speed and direction directly are under
way.

202 Chapter 6. References

http://winds.jpl.nasa.gov/missions/quikscat/index.cfm
http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html

DART, Release 9.16.0

6.78.2 Data sources

The NASA Jet Propulsion Laboratory (JPL) data repository has a collection of animations and data sets from this
instrument. In keeping with NASA tradition, these data are in HDF format (specifically, HDF4), so if you want to read
these files directly, you will need to install the HDF4 libraries (which can be downloaded from http://www.hdfgroup.
org/products/hdf4/)

If you go to the official JPL data distribution site http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html, we
are using the product labelled L2B OWYV 25km Swath. They are organized in folders by day ... with each orbit (each
revolution) in one compressed file. There are 14 revolutions per day. The conversion to DART observation sequence
format is done on each revolution, multiple revolutions may be combined ‘after the fact’ by any obs_sequence_tool
in the work directory of any model.

6.78.3 Programs

There are several programs that are distributed from the JPL www-site, ftp://podaac.jpl.nasa.gov/pub/ocean_wind/
quikscat/LL2B/sw/; we specifically started from the Fortran file read_qgscat2b.f and modified it to be called as a sub-
routine to make it more similar to the rest of the DART framework. The original Makefile and read_gscat2b.f
are included in the DART distribution in the DART/observations/quikscat directory. You will have to modify the
Makefile to build the executable.

convert_L2b.f90

convert_L2b is the executable that reads the HDF files distributed by JPL. DART/observations/quikscat/work
has the expected mkmf_convert_L2b and path_names_convert_L2b files and compiles the executable in the typical
DART fashion - with one exception. The location of the HDF (and possible dependencies) installation must be conveyed
to the mkmf build mechanism. Since this information is not required by the rest of DART, it made sense (to me) to isolate
it in the mkmf_convert_L2b script. It will be necessary to modify the ““mkmf_convert_L2b™" script to be able to
build ““convert_L2b™". In particular, you will have to change the two lines specifying the location of the HDF (and
probably the JPG) libraries. The rest of the script should require little, if any, modification.

set JPGDIR = /contrib/jpeg-6b_gnu-4.1.2-64 set HDFDIR = /contrib/hdf-4.2r4_gnu-4.1.2-64

There are a lot of observations in every QuikSCAT orbit. Consequently, the observation sequence files are pretty large -
particularly if you use the ASCII format. Using the binary format (i.e. obs_sequence_nml:write_binary_obs_sequence
= .true.) will result in observation sequence files that are about half the size of the ASCII format.

Since there are about 14 QuikSCAT orbits per day, it may be useful to convert individual orbits to an observation
sequence file and then concatenate multiple observation sequence files into one file per day. This may be trivially
accomplished with the obs_sequence_tool program in any model/xxxx/work directory. Be sure to include the '
./../../obs_def/obs_def_QuikSCAT_mod.f90" string in input.nml&preprocess_nml:input_files when
you run preprocess.

Obs_to_table.f90, plot_wind_vectors.m

DART/diagnostics/threed_sphere/obs_to_table. £90 is a potentially useful tool. You can run the observation
sequence files through this filter to come up with a ‘X' YZ’-like file that can be readily plotted with DART/diagnostics/
matlab/plot_wind_vectors.m.

6.78. QuikSCAT SeaWinds Data 203

http://winds.jpl.nasa.gov/imagesAnim/quikscat.cfm
http://www.hdfgroup.org/products/hdf4/
http://www.hdfgroup.org/products/hdf4/
http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/FORTRAN/read_qscat2b.f

DART, Relea

se 9.16.0

6.78.4 Namelist

This namelist is read from the file input.nml. We adhere to the F90 standard of starting a namelist with an ampersand
‘&’ and terminating with a slash ‘/* for all our namelist input. Character strings that contain a /> must be enclosed
in quotes to prevent them from prematurely terminating the namelist. The following values are the defaults for these

namelist items

&convert_L2b_nml

12b_file

datadir =
outputdir

lonl
lon2
latl
lat2

0
3

90
along_tra
cross_tra

]
’

.0,
60.0,
90.0,

.0,
ck_thin
ck_thin

It is possible to restrict the output observation sequence to contain data from a region of interest throught the use of
the namelist parameters. If you need a region that spans the Prime Meridian lon1 can be a larger number than lon2, for
example, a region from 300 E to 40 E and 60 S to 30 S (some of the South Atlantic), would be lonl = 300, lon2 = 40,
lat] = -60, lat2 = -30.

Contents | Type Description
12b_file charac- name of the HDF file to read - NOT including the directory, e.g.
ter(len=128) | QS_S2B44444.20080021548
datadir charac- the directory containing the HDF files
ter(len=128)
outputdir charac- the directory for the output observation sequence files.
ter(len=128)
lonl real(r4) the West-most longitude of interest in degrees. [0.0, 360]
lon2 real(r4) the East-most longitude of interest in degrees. [0.0, 360]
latl real(r4) the South-most latitude of interest in degrees. [-90.0, 90.0]
lat2 real(r8) the North-most latitude of interest in degrees. [-90.0, 90.0]
along_track_thimeger provides ability to thin the data by keeping only every Nth row. e.g. 3 == keep every
3rd row.
cross_track_thinteger provides ability to thin the data by keeping only every Nth wind vector cell in a par-
ticular row. e.g. 5 == keep every 5th cell.

204

Chapter 6. References

DART, Release 9.16.0

Future Plans
1. There is one bit of error-checking that did not survive the conversion from F77 to F90. I need to restore the check
that the HDF file being read is a ‘Level 2B’ product.
There is a lot of error-checking that is not being done. I need to bulletproof the code more.
We need namelist options to select something other than the highest-ranked ambiguity.

We need namelist options to select more QC flags - not just the ones with the ‘perfect’” QC value of 0

A

Add an option to leave the observations as speed and direction instead of converting them to U,V components.
This is a natural implementation of the instrument error characteristics. However, it would require writing a
specialized forward operator in order to assimilate obs of this type (speed, direction), and there is still a numerical
problem with trying to do the statistics required during the assimilation of a cyclic direction value.

6.79 Even Sphere

It is frequently useful to generate a series of synthetic observations located at roughly evenly-distributed locations' on
a sphere.

There are three methods described here.
1. A Matlab script and the standard DART observation generation utilities.
2. A csh script with all the parts of 1. (Not available for all models).
3. A stand-alone Fortran program.

The Fortran program does not generate the nice plots that the Matlab process does, but it may be faster and easier to
automate for generating a large number of obs.

6.79.1 Matlab Scripts Plus Standard DART Observation Executables

This involves multiple steps:
1. determine how many locations are needed
2. determine the vertical levels needed
3. runthe MATLAB function even_sphere.m to create the text file containing the input for create_obs_sequence
4

. Tun program create_obs_sequence to create an observation sequence (usually set_def.out, although it is pos-
sible to create obs_seq.out files directly if you don’t really care about the observation values).

5. if desired, run program create_fixed_network_seq to create a longer observation sequence file.
6. run program perfect_model_obs to harvest the synthetic observations from a chosen model.

This directory contains a MATLAB function (even_sphere.m) that generates input for the program cre-
ate_obs_sequence . After executing create_obs_sequence, the resulting observation sequence file will
have a template for ‘RADIOSONDE_TEMPERATURE’RADIOSONDE_U_WIND_COMPONENT’,and ‘RA-
DIOSONDE_V_WIND_COMPONENT"’ observations at specified pressure levels and roughly evenly-distributed lo-
cations across the entire globe. Optionally, bogus observation values may also inserted; which may be useful in certain
circumstances.

I'A python example of the Golden Section spiral algorithm can be found in https:/stackoverflow.com/questions/9600801/
evenly-distributing-n-points-on-a-sphere See the contribution from Fab von Bellinghousen.

6.79. Even Sphere 205

https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere
https://stackoverflow.com/questions/9600801/evenly-distributing-n-points-on-a-sphere

DART, Release 9.16.0

6.79.2 even_sphere.m

even_sphere.m has many optional arguments to tailor its behavior. It has exactly 1 required argument - the number
of horizontal locations desired.

* It will create a text file even_create_input to be used as input to create_obs_sequence

* The choice of pressure levels is described Zere.

* The default number of pressure levels is 21. Argument nlevels specifies how many levels to use from the
beginning of the levels list.

* The default observation error variances for each observation type are level-dependent and are consistent with
DART/observations/obs_converters/obs_error/ncep_obs_err_mod. f90

* The default is to create ‘empty’ observation sequences - i.e. they have no actual observation values and are
suitable to be used with perfect_model_obs

¢ The default date of the observations is 2017-12-25 00:00:00

* A plot of the locations will be created. The number of gridlines is configurable but defaults to 288 in longitude

and 1

92 in latitude.

¢ All the defaults can be changed by specifying ‘variable-value’ pairs of options, as described below. Examples
of some options are also available via the normal MATLAB #help facility. (Documenting all of them in the help
makes the help page too long.)

Note that the number of observations will be the number of locations * the number of vertical levels * the number
of variables (i.e. 3) even_sphere.m also takes observation error variances and includes them in the observation

sequences.

6.79.3 Optional Argument Variable-Value pairs

The optional variable-value pairs can appear in any order.

op- example Description
tional value
vari-
able
‘nlevels’ | 5 number of pressure levels to use. May be less than the length of the ‘levels’ array, but
cannot be more.
levels [1000 500 | pressure levels desired. see Levels section for discussion.
300 200
100]
T_error_vai{1.44 0.64 | level-specific Temperature error variances. see Levels section for discussion.
0.81 1.44
0.64]
W_error_yarl.96 4.41 | level-specific error variances for both U, V wind components. see Levels section for
9.00 7.29 | discussion.
4.41]
‘YMD’ 2017-12- Date required for create_obs_sequence. If create_fixed_network_seq is run,
25’ this time is replaced.
fill_obs | false ‘true’ inserts a bogus observation value of 1.0 and a bogus QC value of 0.’false’ does
not insert bogus values and essentially creates an empty obs sequence file (typically
set_def.out)
‘nlon’ 288 number of longitude grid lines in plot
‘nlat’ 192 number of latitude grid lines in plot
206 Chapter 6. References

DART, Release 9.16.0

6.79.4 Examples

1. 30 horizontal locations at 6 pressure levels:

nprofiles = 30;
levels [1000 850 500 300 200 100];
T_error_var = [1.44 0.64 0.64 0.81 1.44 0.64];
W_error_var = [1.96 2.25 4.41 9.00 7.29 4.41];
even_sphere(nprofiles, 'levels', levels,
'T_error_var', T_error_var, 'W_error_var', W_error_var)

2. 30 horizontal locations at 3 pressure levels. Note that the nlevels argument specifies that only the first 3 pressure
levels are used even though there are 6 potential pressure levels. Similarly, only the matching error variances are

used.
nprofiles = 30;
nlevels =3 ;
levels = [1000 850 500 300 200 100];

T_error_var = [1.44 0.64 0.64 0.81 1.44 0.64];

W_error_var = [1.96 2.25 4.41 9.00 7.29 4.41];

even_sphere(nprofiles, 'nlevels', nlevels, 'levels',6 levels,
'T_error_var', T_error_var, 'W_error_var', W_error_var)

6.79.5 Levels

Attention: If you need realistic error variances attached to your observations, be careful to align your levels and
variances.

The default levels that this program generates are the mandatory pressure levels defined in the AMS glossary. The
corresponding error variances are from ncep_obs_err_mod. See Obs Error. Levels at the top can be excluded by
setting nprofiles < 21 (size(levels)).

levels = [1000 925 850 700 500 400 300 250 200 150 100 70 50 30 o
20 10 7 5 3 2 11;
T_error_var = [1.44 1.00 0.64 0.64 0.64 0.64 0.81 1.44 1.44 1.00 0.64 0.64 0.81 1.00 1.
69 2.25 2.25 2.25 2.25 2.25 2.25];
W_error_var = [1.96 2.25 2.25 2.56 4.41 6.76 9.00 10.24 7.29 5.76 4.41 4.41 4.41 4.41 4.
41 4.41 4.41 4.41 4.41 4.41 4.41];

Here’s an example of replacing the AMS levels with a set that has more levels near the surface and none above 150
hPa. Note that the error variances should change to be consistent with the levels.

levels = [1000 950 900 850 800 750 700 650 600 550 500 400 300 200 .
—150];
T_error_var = [1.44 1.21 0.81 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.81 1.44 1.
W_error_var = [1.96 2.25 2.25 2.25 2.56 2.56 2.56 3.24 3.61 4.00 4.41 6.76 9.00 7.29 5.
~76];

6.79. Even Sphere 207

https://glossary.ametsoc.org/wiki/Mandatory_level

DART, Release 9.16.0

6.79.6 Running Matlab in Batch Mode

If you would prefer to run even_sphere.m in batch mode (i.e. from within a shell script), here is an example syntax
that worked for me. The script ran in the same directory as even_sphere.m. There are many ways to construct the
input, naturally - but you don’t have to explicitly edit even_sphere.m this way.

#!/bin/csh
\rm -rf matlab_input.m

cat >> matlab_input.m << EndOfInput

nprofiles 30;
levels [1000 850 500 300 200 100];
T_error_var = [1.44 0.64 0.64 0.81 1.44 0.64];
W_error_var [1.96 2.25 4.41 9.00 7.29 4.41];
even_sphere(nprofiles, 'levels', levels,
'T_error_var', T_error_var, 'W_error_var', W_error_var)
fname = sprintf('even_sphere_%d_profiles',nprofiles);
orient landscape
print (fname, '-dpdf"')

EndOfInput

matlab -nosplash -nodesktop -r "try; cd $PWD; matlab_input; catch; end; exit";

6.79.7 Automation Scripts

Here there are also scripts (run_fixed_network_*.csh) which use the output from create_obs_sequence and
the program create_fixed_network_seq to generate a series of observation sequence files.

run_fixed_network_seq.csh

Calls create_fixed_network_seq to create a separate file for each time period. By default, it makes 2 files/day,
12 hours apart, single time per file. The intervals and dates can be changed by editing the script. It assumes that
create_fixed_network has any model-specific files it needs in this directory. It requires a set_def.out file (usually
created by create_obs_sequence).

run_fixed_network_daily.csh

Calls create_fixed_network_seq to create a separate file for each time period. By default it makes 1 file/day, single
time (noon) per file. The dates and time can be changed by editing the script. It assumes that create_fixed_network
has any model-specific files it needs in this directory. It requires a set_def.out file (usually created by
create_obs_sequence).

The process, end to end:
MATLAB:

Set the number of profiles, the levels, etc. and run even_sphere.m in MATLAB. It creates the necessary text file
even_create_input for the next step. It will also make a plot - which you can save.

DART:

208 Chapter 6. References

DART, Release 9.16.0

Then you have a choice about building and running the create_obs_sequence and create_fixed_network_seq
programs:

A. building them in the models/template/work directory
B. using the ones which were built in models/your_model/work directory by quickbuild.csh.

Choice A uses programs which have no model specific file dependencies, but may involve more separate steps than B.

A

1. Build the programs in template/work

2. Link (or copy) these files to the directory in which you want to create obs_seq files.

./even_create_sequence
./run_fixed_network_{seq or daily}.csh
models/template/work/create_fixed_network_seq
models/template/work/create_obs_sequence
models/template/work/input.nml

3. In your obs_seq directory, run create_obs_sequence, which creates a set_def. out file.

./create_obs_sequence < even_create_input > /dev/null

4. Edit and run your choice of run_fixed_network_*.csh for the desired dates. These call cre-
ate_fixed_network_seq, which creates an obs_seq. in file for each specified date.

B

This choice may involve fewer steps, if there is a model specific script which combines the steps in A). See the cam-fv
example (models/cam-fv/shell_scripts/synth_obs_locs_to_seqs.csh). If there is not a script like that for your model,
you can follow the steps in A), substituting your model name for the “template” in the pathnames. NOTE: you may need
to link any additional input files which your model requires into the directory where you will run the programs. These
typically contain grid information and are found in your_model /work. For example, cam-fv needs a caminput.nc
and cam_phis.nc.

6.79.8 Fortran program for generating obs directly

cd into the work directory and run quickbuild.csh.

This builds the create_even_sphere executable. Edit the input.nml to set the number of obs to generate and the
date in the namelist. Run the program and the output file will be generated.

DETAILS of generating points evenly-distributed on a sphere

This is the algorithm that’s being used"*¢¢ 29> I:

N := the number of profiles you want
dlong := pi*(3-sqrt(5)) /* ~2.39996323 */
dy = 2.0/N

phi =0

y =1 - dy/2

(continues on next page)

6.79. Even Sphere 209

DART, Release 9.16.0

(continued from previous page)

for k := 0 .. N-1

r = sqrt(1-y*y)

node[k] := (cos(phi)*r, sin(phi)*r, y)
y =y - dy

phi = phi + dlong

For the geometric and visually minded:
1. Picture a unit sphere in cartesion space (X,y,z).

2. Choose a value -1 <y < 1, which defines an x-z plane. That plane intersects with the unit sphere to form a circle
whose center is on the y axis. (The circle radius is small near y = +/-1 and is 1 at y=0.)

3. Choose an angle (“phi”’) and draw a ray from the center of the circle to a point on the circle using this angle relative
to the x positive direction. Where the ray intersects the circle (and sphere) is one of the evenly distributed points
on the sphere which we want.

4. Its x and z coordinates can then be combined with the already defined y coordinate to define the cartesian location
of the point.

5. The choice of the y and angle for each point is where the magic enters the algorithm. They are derived from the
Fibonacci or Golden Spiral formula (derived elsewhere).

6.80 Obs Error

This directory is where to add modules that compute/set the observational errors for different types of real-world
observations.

For the 2 existing files, the data source is:
ECMWEF errors: http://www.ecmwf.int/research/ifsdocs/CY25r1/Observations/Observations-03-3.html
NCEP errors: a 2005 version of the GFS observation error tables.

(Note that the return values from these modules should be the ERROR STANDARD DEVIATION. In the obs_seq files,
the value stored with each observation will be the variance.)

Each center uses different errors, and these separate files make it easy to collect these values in one place, and switch
them in and out depending on the needs of the user who is creating new obs_seq files for DART.

Anyone who wants to contribute another error module is more than welcome to add files here.

IMPORTANT: Each file should have the same module name; i.e. the source file names will differ but the module name
inside the file must be the same across all modules in this directory.

All the subroutines must also have the same names and calling sequence. They must return appropriate values for each
observation type that is required. If errors for a new observation type is added, it should be added to all the files in this
directory.

This way the user can change between error values by editing the filename in the path_names_xxx files and recompiling
without changing the code.

Thanks to Ryan Torn for the idea and initial contributions.

210 Chapter 6. References

http://www.ecmwf.int/research/ifsdocs/CY25r1/Observations/Observations-03-3.html

DART, Release 9.16.0

6.81 Radar observations

6.81.1 Overview
DART provides limited support for the conversion of radar observations to obs_seq format. As an end goal, you want
to assimilate radar observations that:

» Have been quality controlled to remove non-meteorological scatterers and other artifacts

* Have horizontal resolution that has been reduced to approximately twice the expected horizontal grid spacing of
your model. For example, if your model has 3 km grid spacing, you should reduce your radar observations to
every 6 km, interpolated along the sweep plane.

Reflectivity observations are often partitioned into two types:
1. Regular reflectivity observations
2. Clear-air reflectivity observations where no radar echoes are observed.

Quality control is best done with raw data. You should have an ability to perform quality control before converting
your observations to obs_seq format.

Synthetic radar observations

The create_obs_radar_sequence program generates one or more sets of synthetic WSR-88D (NEXRAD) radar
observations. It can generate reflectivity and/or doppler radial velocity observations with clear-air or storm sweep
patterns. These synthetic observations can be used for testing your assimilation setup or for conducting Observing
System Simulation Experiments (OSSEs).

To build create_obs_radar_sequence, change directory into the work subdirectory, ensure input.nml is config-
ured properly and run the build script:

cd work
./quickbuild.csh

Real radar observations

Once you have ensured that your data are quality controlled, use the Observation Processing And Wind Synthesis
(OPAWS) utility convert your data to obs_seq format. The OPAWS utility reads specific types of files as input, such as
DORADE sweep files and NCAR EOL Foray data.

OPAWS analyzes and grids data in either:
* two-dimensions (on the conical surface of each sweep), or
e three-dimensions (Cartesian).

If your raw data are not in such a format, additional utilities are available for conversion such as the RADX library
which is part of the LIDAR/RADAR Open Software Environment.

6.81. Radar observations 211

http://en.wikipedia.org/wiki/WSR-88D
http://code.google.com/p/opaws/
http://code.google.com/p/opaws/
https://github.com/NCAR/lrose-core
https://github.com/NCAR/lrose-core

DART, Release 9.16.0

6.81.2 Guidance for Weather Research and Forecasting (WRF) users

If you intend to assimilate radar observations into WRF, you’ll need to make some code modifications to allow for
forward operator calculations. For reflectivity, most of the available microphysics schemes have built-in capability to
output reflectivity, assuming a 10 cm wavelength. If you are not using an S-band radar, be aware that attenuation is not
accounted for in the built-in reflectivity operator.

For radial velocity, you will also need to generate a new diagnostic field: terminal fall velocity. There is very limited
support for fall velocity in WREF, although it is partially supported in the Thompson microphysics scheme.

Note: You will still need to modify WRF code to get this diagnostic output to history files.

With these two fields available in your WRF history files, you can add them to your DART wrf_state_variables list.

You should also use a special localization radius for radar observations, typically 12-24 km. If you leave range-folding
in your radar observations, you will need to build the special version of DART that unfolds the velocity observations
on-the-fly.

With all of those configurations in place, you will be ready to assimilate radar observations using WRF and DART.

For more information, see the WRF tests directory in DART/models/wrf/regression/Radar/ for pointers to data
to run a radar test case.

6.82 PROGRAM snow_to_obs

6.82.1 MODIS snowcover fraction observation converter

Overview

There are several satellite sources for snow observations. Generally the data is distributed in HDF-EOS format. The
converter code in this directory DOES NOT READ HDF FILES as input. It expects the files to have been preprocessed
to contain text, one line per observation, with northern hemisphere data only.

6.82.2 Data sources

not sure.

6.82.3 Programs

The snow_to_obs. £90 file is the source for the main converter program.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

This converter creates observations of the “MODIS_SNOWCOVER_FRAC” type.

There is another program in this directory called snow_to_obs_netcdf.f90 which is a prototype for reading netcdf
files that contain some metadata and presumably have been converted from the original HDF. THIS HAS NOT BEEN
TESTED but if you have such data, please contact dart @ucar.edu for more assistance. If you write something that reads
the HDF-EOS MODIS files directly, please, please contact us! Thanks.

212 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.16.0

6.82.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&snow_to_obs_nml

longrid = 360,

latgrid = 90,

year = 2000,

doy =1,
snow_input_file = 'snowdata.input',
missing_value = -20.0,

debug = .false.

/

Item Type Description
lon- integer The number of divisions in the longitude dimension.
grid

latgrid | integer The number of divisions in the latitude dimension. This converter assumes the data is for the
northern hemisphere only. A namelist item could be added to select northern verses southern
hemisphere if needed.

year integer The year number of the data.

doy integer The day number in the year. Valid range 1 to 365 in a non-leap year, 1 to 366 in a leap year.
snow_inputhditec- The name of the input file.

ter(len=128)

miss- real(r8) | The value used to mark missing data.

ing_value
debug | logical If set to .true. the converter will print out more information as it does the conversion.

Known Bugs

This program is hardcoded to read only northern hemisphere data. It should handle global values.

Future Plans
This program should use the HDF-EOS libraries to read the native MODIS granule files. Right now the ascii interme-

diate files contain no metadata, so if the namelist values don’t match the actual division of the globe, bad things will
happen.

6.83 PROGRAM text_to_obs

6.83.1 Text file to DART converter

Overview

If you have observations in spreadsheet or column format, in text, with a single line per observation, then the files this
directory are a template for how to convert these observations into a format suitable for DART use.

The workflow is usually:

6.83. PROGRAM text_to_obs 213

DART, Release 9.16.0

* read in the needed information about each observation - location, time, data value, observation type - from a data
source (usually a file)

* call a series of DART library routines to construct a derived type that contains all the information about a single
observation

* call another set of DART library routines to put it into a time-sorted series
* repeat the last 2 steps until all observations are processed
* finally, call a write subroutine that writes out the entire series to a file in a format that DART can read in

It is not recommended that you try to mimic the ascii file format by other means; the format is subject to change and
the library routines will continue to be supported even if the physical format changes.

If your input data is in some kind of format like netCDF or HDF, then one of the other converters (e.g. the MADIS
ones for netCDF) might be a better starting place for adapting code.

6.83.2 Data sources

This part is up to you. For each observation you will need a location, a data value, a type, a time, and some kind of
error estimate. The error estimate can be hardcoded in the converter if they are not available in the input data. See
below for more details on selecting an appropriate error value.

6.83.3 Programs

The text_to_obs. 90 file is the source for the main converter program. Look at the source code where it reads
the example data file. You will almost certainly need to change the “read” statement to match your data format. The
example code reads each text line into a character buffer and then reads from that buffer to parse up the data items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/observations/forward_operators directory. If you can find
an “obs_def_XXX_mod.f90” file with an appropriate set of observation types, change the ‘use’ lines in the converter
source to include those types. Then add that filename in the input .nml namelist file to the &preprocess_nml namelist,
the ‘input_files’ variable. Multiple files can be listed. Then run quickbuild.csh again. It remakes the table of supported
observation types before trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

6.83.4 Decisions you might need to make

See the discussion in the Creating an obs_seq file from real observations page about what options are available for
the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

214 Chapter 6. References

DART, Release 9.16.0

6.84 Total Precipitable Water Observations

6.84.1 Overview

Several satellites contain instruments that return observations of integrated Total Precipitable Water (TPW). There are
two MODIS Spectroradiometers, one aboard the TERRA satellite, and the other aboard the AQUA satellite. There is
also an AMSR-E instrument on the AQUA satellite.

These instruments produce a variety of data products which are generally distributed in HDF format using the HDF-
EOS libraries. The converter code in this directory IS NOT USING THESE FILES AS INPUT. The code is expecting
to read ASCII TEXT files, which contain one line per observation, with the latitude, longitude, TPW data value, and
the observation time. The Fortran read line is:

read(iunit, '(fl11.6, f13.5, f10.4, 4x, i4, 4i3, £7.3)") &
lat, lon, tpw, iyear, imonth, iday, ihour, imin, seconds

No program to convert between the HDF and text files is currently provided. Contact dart@ucar.edu for more informa-
tion if you are interested in using this converter.

6.84.2 Data sources

This converter reads files produced as part of a data research effort. Contact dart@ucar.edu for more information if you
are interested in this data.

Alternatively, if you can read HDF-EOS files and output a text line per observation in the format listed above, then you
can use this converter on TPW data from any MODIS file.

6.84.3 Programs

The programs in the DART/observations/tpw directory extract data from the distribution text files and create DART
observation sequence (obs_seq) files. Build them in the work directory by running the . /quickbuild. csh script. In
addition to the converters, several other general observation sequence file utilities will be built.

Generally the input data comes in daily files, with the string YYYYMMDD (year, month, day) as part of the name.
This converter has the option to loop over multiple days within the same month and create an output file per day.

Like many kinds of satellite data, the TWP data is dense and generally needs to be subsampled or averaged (super-ob’d)
before being used for data assimilation. This converter will average in both space and time. There are 4 namelist items
(see the namelist section below) which set the centers and widths of time bins for each day. All observations within a
single time bin are eligible to be averaged together. The next available observation in the bin is selected and any other
remaining observations in that bin that are within delta latitude and delta longitude of it are averaged in both time and
space. Then all observations which were averaged are removed from the bin, so each observation is only averaged into
one output observation. Observations that are within delta longitude of the prime meridian are handled correctly by
averaging observations on both sides of the boundary.

It is possible to restrict the output observation sequence to contain data from a region of interest using namelist settings.
If your region spans the Prime Meridian min_lon can be a larger number than max_lon. For example, a region from
300 E to 40 E and 60 S to 30 S (some of the South Atlantic), specify min_lon = 300, max_lon = 40, min_lat = -60,
max_lat = -30. So ‘min_lon’ sets the western boundary, ‘max_lon’ the eastern.

The specific type of observation created in the output observation sequence file can be select by namelist.
“MODIS_TOTAL_PRECIPITABLE_WATER?” is the most general term, or a more satellite-specific name can be cho-
sen. The choice of which observations to assimilate or evaluate are made using this name. The observation-space
diagnostics also aggregate statistics based on this name.

6.84. Total Precipitable Water Observations 215

http://modis.gsfc.nasa.gov/
http://terra.nasa.gov/
http://aqua.nasa.gov/
http://wwwghcc.msfc.nasa.gov/AMSR/
mailto:dart@ucar.edu
mailto:dart@ucar.edu

DART, Release 9.16.0

6.84.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_tpw_nml

start_year = 2008
start_month =1
start_day =1
total_days = 31
max_obs = 150000
time_bin_start =0.0
time_bin_interval = 0.50
time_bin_half_width = 0.25
time_bin_end = 24.0
delta_lat_box =1.0
delta_lon_box =1.0
min_lon = 0.0
max_lon = 360.
min_lat = -90.0
max_lat = 90.0
ObsBase = ',./data’
InfilePrefix = 'datafile.'
InfileSuffix = '.txt'
OutfilePrefix = 'obs_seq."'
OutfileSuffix ="
observation_name = "MODIS_TOTAL_PRECIPITABLE_WATER'
/

216 Chapter 6. References

DART, Release 9.16.0

ltem

Type

Description

start_year

integer

The year for the first day to be con-
verted. (The converter will option-
ally loop over multiple days in the
same month.)

start_month

integer

The month number for the first day
to be converted. (The converter will
optionally loop over multiple days in
the same month.)

start_day

integer

The day number for the first day to be
converted. (The converter will op-
tionally loop over multiple days in
the same month.)

total_days

integer

The number of days to be con-
verted. (The converter will option-
ally loop over multiple days in the
same month.) The observations for
each day will be created in a sep-
arate output file which will include
the YYYYMMDD date as part of
the output filename.

max_obs

integer

The largest number of obs in the out-
put file. If you get an error, increase
this number and run again.

time_bin_start

real(r8)

The next four namelist values de-
fine a series of time intervals that
define time bins which are used for
averaging. The input data from the
satellite is very dense and generally
the data values need to be subset-
ted in some way before assimilat-
ing. All observations in the same
time bin are eligible to be averaged
in space if they are within the lati-
tude/longitude box. The input files
are distributed as daily files, so use
care when defining the first and last
bins of the day. The units are in
hours. This item defines the mid-
point of the first bin.

time_bin_interval

real(r8)

Increment added the time_bin_start
to compute the center of the next
time bin. The units are in hours.

time_bin_half width

real(r8)

The amount of time added to and
subtracted from the time bin center
to define the full bin. The units are
in hours.

time_bin_end

real(r8)

The center of the last bin of the day.
The units are in hours.

delta_lat_box

real(r8)

For all observations in the same time
bin, the next available observation
is selected. All other observations
in that bin that are within delta lat-
itude or longitude of it are averaged

tocether-and-a—sincsle-observatiopn—is

6.84. Total Precipitable Water Ob

servations

together-and-a-single-observationis
output. Observations which are A17
eraged with others are removed from
the bin and so only contribute to the
output data once. The units are de-

DART, Release 9.16.0

6.84.5 Known Bugs

The input files are daily; be cautious of time bin boundaries at the start and end of the day.

6.84.6 Future Plans

* This program should use the HDF-EOS libraries to read the native MODIS granule files.

* This program could loop over arbitrary numbers of days by using the time manager calendar functions to incre-
ment the bins across month and year boundaries; it could also use the schedule module to define the bins.

6.85 PROGRAM tc_to_obs

6.86 Tropical Cyclone ATCF File to DART Converter

6.86.1 Overview

Tropical Cyclone data created by the ‘Automated Tropical Cyclone Forecast (ATCF) System’ can be converted into
DART observations of the storm center location, minimum sea level pressure, and maximum wind speed. Several of
the options can be customized at runtime by setting values in a Fortran namelist. See the namelist section below for
more details. In the current release of DART only the WRF has forward operator code to generate expected obs values
for these vortex observations.

This webpage documents many things about the ATCF system and the various file formats that are used for storm track
data and other characteristics.

The converter in this directory is only configured to read the packed “b-deck” format (as described on the webpage
referenced above). There are sections in the fortran code which can be filled in to read other format variants. This
should mostly be a matter of changing the read format string to match the data in the file.

6.86.2 Data sources

A collection of past storm ATCF information can be found here. For each observation you will need a location, a data
value, a type, a time, and some kind of error estimate. The error estimates will need to be hardcoded or computed in
the converter since they are not available in the input data. See below for more details on selecting an appropriate error
value.

218 Chapter 6. References

http://www.ral.ucar.edu/hurricanes/realtime/index.php#about_atcf_data_files
http://www.ral.ucar.edu/hurricanes/repository

DART, Release 9.16.0

6.86.3 Programs

The tc_to_obs. £90 file is the source for the main converter program. Look at the source code where it reads the
example data file. Given the variety of formatting details in different files, you may quite possibly need to change the
“read” statement to match your data format. There is a ‘select case’ section which is intended to let you add more
formats and select them at runtime via namelist.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

This converter creates observation types defined in the DART/observations/forward_operators/
obs_def_vortex_mod. f90 file. This file must be listed in the input.nml namelist file, in the &reprocess_nml
namelist, in the ‘input_files’ variable, for any programs which are going to process these observations. If you have
to change the &preprocess_nml namelist you will have to run quickbuild.csh again to build and execute the
preprocess program before compiling other executables. It remakes the table of supported observation types before
trying to recompile other source code.

There is an example b-deck data file in the data directory. This format is what is supported in the code as distributed.
There are other variants of this format which have more spaces so the columns line up, and variants which have many
more fields than what is read here.

6.86.4 Specifying expected error

The ATCF files DO NOT include any estimated error values. The source code currently has hardcoded values for
location, sea level pressure, and max wind errors. These may need to be adjusted as needed if they do not give the
expected results.

6.86.5 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/” must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&tc_to_obs_nml

input_atcf_file = 'input.txt'
fileformat = 'b-deck'
obs_out_file = 'obs_seq.out'
append_to_existing_file = .false.
debug = .false.

/

6.86. Tropical Cyclone ATCF File to DART Converter 219

DART, Release 9.16.0

ltem| Type Description

in- | char-| Name of the input ascii text file in ATCF format.
put_atcfcfile
ter(len=256)

file- | char-| Currently only supports ‘b-deck’ but if other format strings are added, can switch at runtime between
for- | ac- | reading different varieties of ATCF file formats.

mat | ter(len=128)

obs_outhfite Name of the output observation sequence file to create.

ac-
ter(len=256)

ap- | log- | If .false., this program will overwrite an existing file. If .true. and if a file already exists with the same
pend] ticadxistimgndikhe newly converted observations will be appended to that file. Useful if you have multiple
small input files that you want to concatenate into a single output file. However, there is no code
to check for duplicated observations. If this is .true. and you run the converter twice you will get
duplicate observations in the file which is bad. (It will affect the quality of your assimilation results.)
Use with care. You can concatenate multiple obs sequence files as a postprocessing step with the
program obs_sequence_tool which comes with DART and is built by the quickbuild.csh script in the
TC converter work directory.

de- | log- | Setto .true. to print out more details during the conversion process.

bug | ical

6.87 PROGRAM littler_tf_dart

6.87.1 Overview

Programs to convert littler data files into DART observation sequence files, and vice versa. The capability of the
program is limited to wind and temperature from radiosondes.

The littler data files do not contain observation errors. The observation errors are in a separate file called obserr. txt.
The littler file generated here has to be preprocessed by the program 3dvar_obs.exe before beeing ingested in the
WREF 3D-Var system.

6.87.2 Modules used

types_mod

obs_sequence_mod

obs_def_mod

obs_kind_mod
location/threed_sphere/location_mod
time_manager_mod

utilities_mod

220 Chapter 6. References

DART, Release 9.16.0

6.87.3 Modules indirectly used

assim_model_mod
models/wrf/model_mod
models/wrf/module_map_utils
random_seq_mod

6.87.4 Namelist

The program does not have its own namelist. However, an input.nml file is required for the modules used by the
program.

6.87.5 Files

e input namelist ; input.nml
* Input - output observation files; obs_seq.out and 1little-r.dat

¢ Input - output littler observation error files ; obserr.txt

File formats

If there are no observation error at a particular pressure level, the default value of -1 is written in obserr. txt.

6.87.6 References

* 3DVAR GROUP PAGE

6.87.7 Private components

call set_str_date(timestring, dart_time)

type(time_type), intent(in) :: dart_time
character(len=20), intent(out) :: timestring

Given a dart_time (seconds, days), returns date as bbbbbbyyyymmddhhmmss, where b is a blank space.

call set_dart_time(tstring, dart_time)

6.87. PROGRAM littler_tf_dart 221

http://www.mmm.ucar.edu/wrf/WG4/

DART, Release 9.16.0

character(len=20), intent(in) :: tstring
type(time_type), intent(out) :: dart_time

Given a date as bbbbbbyyyymmddhhmmss, where b is a blank space, returns the dart_time (seconds, days).

call StoreObsErr(obs_err_var, pres, plevel, nlev, obs_err_std)

integer, intent(in) :: nlev, pres
real(r8), intent(in) :: obs_err_var
integer, intent(in) i1 plevel(nlev)
real(r8), intent(inout) :: obs_err_std(nlev)

If the incoming pres corresponds exactly to a pressure level in plevel, then transfers the incoming obs_err_var into the
array obs_err_std at the corresponding level.

level_index = GetClosestLevel(ilev, viev, nlev)

integer, intent(in) :: nlev, ilev
integer, intent(in) :: vlev(nlev)

Returns the index of the closest level in vlev to the incoming ilev.

call READ_OBSERR(filein, platform, sensor_name, err, nlevels)

CHARACTER (LEN=80), intent(in) :: filein
CHARACTER (LEN=80), intent(in) :: platform
CHARACTER (LEN=80), intent(in :: sensor_name
INTEGER, intent(in) :: nlevels
REAL(r8), intent(out) :: err(nlevels)

Read observational error on pressure levels (in hPa) from the incoming filein and store the result in the array err. It is
assumed that filein has the same format as WRF 3D-Var obserr. txt file. It reads observational error for a specific
platform (e.g. RAOBS) and a specific sensor (e.g. WIND SENSOR ERRORS).

[f_obstype = obstype(line)

CHARACTER (LEN= 80), intent(in) :: 1line

222 Chapter 6. References

DART, Release 9.16.0

Read in a line the string present after keyword ‘BOGUS’, which should be the sensor name.

f_sensor = sensor(line)

CHARACTER (LEN= 80), intent(in) :: 1line

Read in a line the string present after numbers, which should be the platform name.

val = intplin(x,xx,yy)

INTEGER, DIMENSION (:), intent(in) :: =xx
REAL(r8), DIMENSION (:), intent(in) :: vyy
REAL (r8), intent(in) :: x

Do a linear interpolation.

val = intplog(x,xx,yy)

INTEGER, DIMENSION (:), intent(in) :: =xx
REAL(r8), DIMENSION (:), intent(in) :: vyy
REAL(r8), intent(in) :: x
Do a log-linear interpolation.

index = locate(x,xx)

INTEGER, DIMENSION (:), intent(in) :: XX
REAL(r8), intent(in) :: x

Return the index in xx such that xx(index) < x < xx(index+1).

6.87. PROGRAM littler_tf_dart

223

DART, Release 9.16.0

6.88 PROGRAM rad_3dvar_to_dart

6.88.1 Overview

Programs to convert MMS5 3D-VAR 2.0 Radar data files into DART observation sequence files. The capability of the
program is limited to DOPPLER_RADIAL_VELOCITY and RADAR_REFLECTIVITY.

6.88.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a /> must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&rad_3dvar_to_dart_nml
var_file = 'qc_radr_3dvar_2002083100.dat’,
obs_seq_out_file_name = 'obs_seq.out',
calendar_type = 3

/
Item Type Description
var_file charac- This is the name of the file containing MMS5 3D-VAR 2.0 Radar obser-
ter(len=129) vations.
obs_seq_out_file_name charac- File name for output observation sequence file.
ter(len=129)
calendar_type integer Calendar type. We recommend using 3 (GREGORIAN).

6.88.3 Modules directly used

types_mod

obs_sequence_mod

obs_def_mod
obs_def/obs_def_radar_mod
obs_kind_mod
location/threed_sphere/location_mod
time_manager_mod

utilities_mod

224 Chapter 6. References

DART, Release 9.16.0

6.88.4 Modules indirectly used

assim_model_mod
models/wrf/model_mod
models/wrf/module_map_utils
random_seq_mod

6.88.5 Files

* input namelist ; input.nml
* Input observation file; qc_radr_3dvar_2002083100.dat

* Qutput observation file; obs_seq.out

File formats

input.nml and qc_radr_3dvar_2002083100.dat are ASCII files. obs_seq.out is either ASCII or binary, de-
pending on the logical write_binary_obs_sequence, which is the namelist entry for obs_sequence_mod.

6.88.6 References

* 3DVAR GROUP PAGE

6.89 3DVAR/4DVAR Observation Converters

6.89.1 Overview
The programs in this directory help convert data which is formatted for input into the 3DVAR/4DVAR programs into
DART obs_seq observation files.
This directory contains conversion programs for various obs formats related to 3D-Var, WRF-Var, and MM5:
* PROGRAM littler_tf _dart to and back from little-r format, temperature and winds only.
* PROGRAM rad_3dvar_to_dart the radar 3d-var obs only to dart format.
e gts_to_dart.f90 from GTS to dart format.

You need to add some WREF-Var source files to the 3DVAR_OBSPROC directory, and then you can go into the work
directory and run the ‘quickbuild.csh’ script.

The little-r converter may need changes to the code to convert from the original quality control flags into QC flags
compatible with DART. (in DART, 0 is good data.)

The GTS converter does not support SATEM thickness data but there are versions around which do; write
dart@ucar.edu if you are interested in more about this.

And a final disclaimer: Whether these work with the latest 3D-Var format is untested at this point. Please contact the
DART Development group if you are interested in using these tools.

6.89. 3DVAR/4ADVAR Observation Converters 225

https://www.mmm.ucar.edu/wrf-administration
mailto:dart@ucar.edu

DART, Release 9.16.0

6.90 Checking your initial assimilation

You may require several attempts to get your assimilation configured correctly. The next section, Computing filter
increments, describes how to take the difference between two assimilation stages to determine whether your initial
assimilation worked as intented.

If your assimilation does not change anything in the model state, you may need to rerun filter multiple times to
understand what is wrong.

Thus you should make filter very fast to run. You can do this by:
1. Making an observation sequence file containing a single observation.

2. Configuring your run so that filter does a single assimilation and exits without having to advance the ensemble
of models or do other work.

6.90.1 Making an observation sequence file containing a single observation

You can use one of these methods to make an obs_seq with just a single observation:
1. Run create_obs_sequence to make a new, short, observation sequence file.

2. Use the obs_sequence_tool to cut an existing obs_seq.out file down to just a few obs by selecting only
a subset of the types and setting a very short time window, such as a second or two when you know there are
observations available.

These programs are described in the Programs directory.

6.90.2 Configuring your run so that filter does a single assimilation and exits

To configure filter to only do a single assimilation:

1. Edit the &filter_nml namelist in input.nml to set the init_time_days and init_time_seconds to match
the observation time in your truncated observation sequence file. This overrides any times in the input files and
ensures that £ilter will only assimilate and not try to advance the model.

2. Make sure the truncated observation sequence file contains only a single observation or observations close enough
together in time to fit into a single assimilation window.

6.91 Computing filter increments

Note: This document is written as if your experiment was run with single_file_out = .true.. The potential
permutations of filenames output by filter is enormous, so it isn’t feasible to write documentation for all possible cases.

After filter executes without error and produces an obs_seq. final file, a preassim.nc file, and an analysis.nc
file, the first questions to ask are:

1. Is the model state output from filter different from the input?
2. Were any observations successfully assimilated?

You can check check if the output model state data was changed by the assimilation by using the ncdiff tool to create a
file containing the difference of the preassim.nc and analysis.nc files. If you are running with single_file_in
= .true. and single_file_out = .true. use ncdiff on the files output for the analysis and preassim stages:

226 Chapter 6. References

DART, Release 9.16.0

$ ncdiff analysis.nc preassim.nc increments.nc

Otherwise, if you are running with single_file_in = .false. and single_file_out = .false.,use ncdiff
on the ensemble mean files for the analysis and preassim stages:

$ ncdiff analysis_mean.nc preassim_mean.nc increments.nc

ncdiff generates a file, increments.nc, that contains the increments, or innovations, created by filter. You can
view the increments using ncview:

$ ncview increments.nc

to examine the ensemble mean variables. If all values are 0, then the assimilation changed nothing in the state.

6.92 Computing filter increments using a complex model

The innovations to the model state are easy to derive. Use the NCO Operator ncdiff to difference the two DART
diagnostic netCDF files to create the innovations. Be sure to check the CopyMetaData variable to figure out what copy
is of interest. Then, use ncview to explore the innovations or the inflation values or ...

If the assimilation used state-space inflation, the inflation fields will be added as additional ‘copies’. A sure sign of
trouble is if the inflation fields grow without bound. As the observation network changes, expect the inflation values to
change.

The only other thing I look for in state-space is that the increments are ‘reasonable’. As the assimilation ‘burns in’,
the increments are generally larger than increments from an assimilation that has been cycling for a long time. If the
increments keep getting bigger, the ensemble is continually drifting away from the observation. Not good. In ncview,
it is useful to navigate to the copy/level of interest and re-range the data to values appropriate to the current data and
then hit the ‘>>’ button to animate the image. It should be possible to get a sense of the magnitude of the innovations
as a function of time.

6.92.1 Example from a model of intermediate complexity: the bgrid model

I ran a perfect model experiment with the bgrid model in the DART-default configuration and turned on some
adaptive inflation for this example. To fully demonstrate the adaptive inflation, it is useful to have an observa-
tion network that changes through time. I created two observation sequence files: one that had a single ‘RA-
DIOSONDE_TEMPERATURE’ observation at the surface with an observation error variance of 1.5 degrees Kelvin
- repeated every 6 hours for 6 days (24 timesteps); and one that had 9 observations locations clustered in about the
same location that repeated every 6 hours for 1.5 days (6 timesteps). I merged the two observation sequences into one
using obs_sequence_tool and ran them through perfect_model_obs to derive the observation values and create
an obs_seq.out file to run through filter.

Note: Other models may have their ensemble means and spreads and inflation values in separate files. See the table
of possible filenames.

cd DARTROOT }/models/bgrid_solo/work
ncdiff analysis.nc preassim.nc Innov.nc
ncview preassim.nc &

ncview Innov.nc &

ncdump -v MemberMetadata preassim.nc

P A A A A

(continues on next page)

6.92. Computing filter increments using a complex model 227

http://nco.sourceforge.net/

DART, Release 9.16.0

(continued from previous page)

netcdf preassim {
dimensions:
metadatalength = 64 ;
member = 20 ;
time = UNLIMITED ; // (24 currently)

NMLlinelen = 129 ;
NMLnlines = 303 ;
StateVariable = 28200 ;
TmpI = 60 ;
Tmpl = 30 ;
lev = 5 ;
Vell = 60 ;
Vell = 29 ;

variables:

char MemberMetadata(member, metadatalength)
MemberMetadata:long_name =

double

"Metadata for each copy/member" ;

ps(time, member, Tmpl, TmpI) ;
ps:long_name = "surface pressure" ;
ps:units = "Pa" ;
ps:units_long_name = "pascals" ;
double t(time, member, lev, Tmpl, TmpI) ;
t:long_name = "temperature" ;
t:units = "degrees Kelvin" ;
double u(time, member, lev, Vell, Vell) ;
u:long_name = "zonal wind component" ;
u:units = "m/s" ;
double v(time, member, lev, Vell, Vell) ;
v:long_name = "meridional wind component' ;
v:units = "m/s" ;
double ps_mean(time, TmpJ, TmpI) ; The ensemble mean is now a separate.
—variable.
double t_mean(time, lev, Tmpl, TmpI) ; The ensemble spread is now a separate.
—variable.
double u_mean(time, lev, Vell, Vell) ; If I was using inflation, they would.
—~also be separate variables.
double v_mean(time, lev, Vell, Vell) ;
double ps_sd(time, TmpJ, TmpI) ;
double t_sd(time, lev, Tmpl, TmpI) ;
double u_sd(time, lev, Vell, VelI) ;
double v_sd(time, lev, Vel], VelI) ;
data:
MemberMetadata =
"ensemble member 1",
"ensemble member 2",
"ensemble member 3",
"ensemble member 4 ",
"ensemble member 5",
"ensemble member 6",
"ensemble member 7",
"ensemble member 8 ",
(continues on next page)
228 Chapter 6. References

DART, Release 9.16.0

(continued from previous page)

"ensemble member 9"
"ensemble member 10 "
"ensemble member 11"
"ensemble member 12 "
"ensemble member 13 "
"ensemble member 14 "
"ensemble member 15 "
"ensemble member 16 "
"ensemble member 17 "
"ensemble member 18 "
"ensemble member 19 "
"ensemble member 20 "

This is an exploration of the preassim.nc file. Note that I selected the ‘t’ field, turned the coastlines ‘off” under the
‘Opts’ button, used the ‘Repl’ instead of ‘Bi-lin’ (to more faithfully represent the model resolution), navigated to copy
23 of 24 (in this case, the inflation mean) select the inflation mean variable of your choice and advanced to the last
timestep. The image plot is pretty boring, but does indicate that the inflation values are restricted to where I put the
observations. Right-clicking on the ‘Range’ button automatically re-ranges the colorbar to the min/max of the current
data. Clicking on any location generates a time series figure.

This is an exploration of the Innov.nc file as created by ncdiff. Note that the titles are somewhat misleading because
they reflect information from the first file given to ncdiff. This time I left the rendering as ‘Bi-lin’ (which obfuscates
the model resolution), navigated to copy 1 of 24 (in this case, the ensemble mean) selected the t_mean variable and
advanced to the 6th timestep. Right-click on the ‘Range’ button to reset the colorbar. The image plot confirms that the
innovations are restricted to a local region. Clicking on any location generates a time series.

This is fundamentally the same as the previous panel except that I have now selected the ‘u” u_mean variable. Despite
the fact the observations were only of ‘t’, the assimilation has generated (rightly so) increments to the ‘u’ state variable.

6.93 DART missing data value

If all the prior and posterior mean values are -888888.0 (which is the DART “missing data” value), those observations
were not assimilated.

Note: Some observations have precomputed values and the posterior values for these will always be -888888.0, no
matter if the observation was assimilated or not.

If it is not already set, edit the &filter_nml name list in input.nml to set num_output_obs_members to be the
same as the ensemble size.

This will give you all the forward operator values for all the ensemble members. You can determine if all ensemble
members are failing in the same way, or if only a few are problematic.

6.93. DART missing data value 229

DART, Release 9.16.0

6.94 DART quality control field

DART has a quality control (QC) field in the obs_seq.final file to report on the status of the assimilation of the variable.
The most common reason for exploring the DART QC value is to help determine if the observation was assimilated (or
evaluated) - or if the observation was rejected or ...

To learn more about how to intepret the QC field as well as other values in an observation sequence file, see Detailed
structure of an obs_seq file. The ‘DART QC’ field is usually the second of the 2 “quality control” copies.

A list of all the DART QC values can be found in the QC table in MODULE quality_control_mod.

If the DART QC values are 4, the forward operators have failed. Look at the model_interpolate() routine in
your model_mod.f90 file, or the forward operator code in observations/forward_operators/obs_def _xxx_mod.f90
for your observation type. A successful forward operator must return a valid obs_val and an istatus = 0.
If the forward operator code returns different istatus values for different error types, you can set &fil-
ter_nml::output_forward_op_errors = .true. and rerun filter to see exactly what error istatus codes are being
set. See MODULE filter_mod for more information on how to use the ‘output_forward_op_errors’ option. Neg-
ative istatus values are reserved for the system, istatus = 0 is success, and any positive value indicates a failed
forward operator. The code is free to use different positive values to signal different types of errors.

If the DART QC values are 5, those observation types were intentionally ignored because they were not listed in
the &obs_kind_nml namelist, in the ‘assimilate_these_obs_types’ stringlist.

If the DART QC values are 6, the data quality control that came with the original observation data indicates this
is a bad quality observation and it was skipped for this reason.

If the DART QC values are 7, the observation value is too far away from the ensemble mean. Set &fil-
ter_nml::outlier_threshold = -1 to ignore this for now and rerun. In general, this is not the optimal strategy
as the number of observations inconsistent with the ensemble is a very powerful indicator of the success or
failure of the assimilation.

If the DART QC values are 8, it was not possible to convert the observation to the required vertical coordinate
system.

If the prior and posterior values in the obs_seq.final are not -888888.0 but are identical, your obs are being assim-
ilated but are having no impact.

The most common reasons assimilated obs have no impact on the model state include:

Zero spread in ensemble members Your initial ensemble members must have different values for each state
item. If all members have identical values, the observations cannot make a change. To diagnose this con-
dition, look at the prior ensemble spread. This is either in preassim.nc or preassim_sd.nc, depending
on your model. If all the values are O, this is your problem. One way to generate an ensemble with some
spread is to set &filter_nml::perturb_from_single_instance = .false., (which will still require a single filter ini-
tial condition file) but then the filter code will add random gaussian perturbations to each state vector item to
generate an initial ensemble with spread. The magnitude of the gaussian noise added is controlled by the &fil-
ter_nml::perturbation_amplitude. 1t is also possible to write your own perturbation routine in your model_mod.
£90 code.

Cutoff value too small If the localization radius is too small, the observation may not be ‘close enough’ to the
model grid to be able to impact the model. Check the localization radius (&assim_tools_nml::cutoff’). Setitto a
very large number (e.g. 100000) and rerun. If there is now an impact, the cutoff was restricting the items in the
state vector so your obs had no impact before. Cutoff values are dependent on the location type being used. It is
specified in radians for the threed_sphere locations module (what most large models use), or in simple distance
(along a unit circle) if using a low order model (lorenz, ikeda, etc).

Obs error values too large (less likely) If the observation error is very large, it will have no impact on the model
state. This is less likely a cause than other possibilities.

230

Chapter 6. References

DART, Release 9.16.0

* No correlation (unlikely) If there is no correlation between the distribution of the forward observation values
and the state vector values, the increments will be very tiny. However there are generally still tiny increments
applied, so this is also a low likelyhood case.

¢ Errors in forward operator location computations, or get_close_obs() If there is an error in the
model_mod. £90 code in either get_state_meta_data(), model_interpolate(), or the vertical conversion code in
get_close_obs(), it is possible for the forward operators to appear to be working correctly, but the distances com-
puted for the separation between the obs and the state vector values can be incorrect. The most frequent problem
is that the wrong locations are being passed back from get_state_meta_data(). This can result in the increments
being applied in the wrong locations or not at all. This is usually one of the things to test carefully when de-
veloping a new model interface, and usually why we recommend starting with a single observation at a known
location.

* Incorrect vertical conversion If the model is using 3d coordinates and needs the capability to convert between
pressure, height, and/or model level, the conversion may be incorrect. The state vector locations can appear
to be too high or too low to be impacted by an observation. Some models have a height limit built into their
model_mod code to avoid trying to assimilate observations at the model top. The observations cannot make
meaningful changes to the model state there and trying to assimilate them can lead to problems with the inflation.
If the code in the model_mod is excluding observations incorrectly, or you are testing with observations at the
model top, this can result in no impact on the model state.

6.95 Examining the obs_seq.final file

1. If you are testing with a single observation, just look in the file. If this file is in binary format, edit the
&obs_sequence_nml namelist in input.nml so the output observation sequence file will be written in ASCII:

&obs_sequence_nml
write_binary_obs_sequence = .false.

/

Then rerun filter to regenerate an obs_seq.final file in ASCII. For an explanation of the contents of your
obs_seq.final file, see Detailed structure of an obs_seq file.

2. If you are using many observations, run the obs_diag program appropriate for your model. The MATLAB®
observation space diagnostics will help to summarize your output and to explore what is going on.

If there are no changes in the model state after assimilation and a visual examination of obs_segq.final was not infor-
mative, convert the obs_seq.final file to netCDF with obs_seq_to_netcdf and either use the Matlab tools distributed
with DART or something of your own. Actually, obs_seq_to_netcdf works on all observation sequence files, not just
obs_seq.final files.

6.96 MATLAB® observation space diagnostics

The observation-space functions are in the $DARTROOT/diagnostics/matlab directory. Once you have processed
the obs_seq. final files into a single obs_diag_output.nc, you can use that as input to your own plotting routines
or use the following DART MATLAB® routines:

plot_evolution.m plots the temporal evolution of any of the quantities above for each variable for specified levels. The
number of observations possible and used are plotted on the same axis.

fname 'POP11/0obs_diag_output.nc'; % netcdf file produced by 'obs_diag'
copystring = 'rmse’; % 'copy' string == quantity of interest

(continues on next page)

6.95. Examining the obs_seq.final file 231

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_evolution.m

DART, Release 9.16.0

(continued from previous page)

plotdat
plotdat

plot_evolution(fname, copystring); % -- OR --
plot_evolution(fname, copystring, 'obsname’', 'RADIOSONDE_TEMPERATURE');

232 Chapter 6. References

DART, Release 9.16.0

Tropics Southern Hemisphere Northern Hemisphere

North America

rmse

rmse

rmse

RADIOSONDE_TEMPERATURE @ 700 hPa
Northern Hemisphere forecast: mean=1.3052 analysis: mean=0.85293

2000

3 T ! ! 1 T \ g
: : =+ forecast %
: @ y 0002 analysis +
o 9999%%999%@9%%% QQQQQQQ%QQQ %0 QQQQQQQQQ@@ Y22 13333 g
; ; : a
Y i "&M U ¥ PR 3
T ey ;..\H\ P ‘_‘ Y e ;I ‘_‘_7“.‘““ e N~ ke - 666.7 m
RGO L e 2
%%@@?@%@@@@%%@@W@@@?@@@%%?%@@@%@@@&wm@@@@@ E
0 0
12/01 12/06 1211 1216 1221 12426 12¢31 01705
Southern Hemisphere forecast: mean=1.3942 analysis: mean=0.71895
3 T ! T ! I | T 400 2
' ' —+ forecast 5
I'I
286.7 @
Q
[+ 1
n
Q
133.3 4
L
(=]
5
2 0 H
12101 12/08 1211 1218 1221 12/28 12/31 01705
Tropics forecast: mean=1.2168 analysis: mean=0.76714
3 T T T T T T -
: : g
... éHalu}éis 400 iﬁ
2 g
Q
0
......... _200 °
1 - wn
S
0 s e G P Ot e R e SN P 3 0 ™
12001 12/06 1211 1216 12121 12126 1231 01705
North America forecast: mean=1.3631 analysis: mean=0.93408
3 ! T | T T T g
' : —+— forecast 3
o400 W
analysis +
= 0
0w
Q
I
.................. _200 O
7 n
s
5
0 LD T ik = 4E 0
12101 12/06 1211 1216 1221 12/26 12¢31 01705

month/day - Dec.01,1999 03:00:00 start

data file: fisfimagethomefthoar/DAR T/modelsicamiwork/POP11/obs_diag_output.nc

plot_profile.m plots the spatial and temporal average of any specified quantity as a function of height. The number of

6.96. MATLAB® observation space diagnostics

233

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_profile.m

DART, Release 9.16.0

observations possible and used are plotted on the same axis.

fname = 'POP11/obs_diag_output.nc'; % netcdf file produced by 'obs_diag'
copystring = 'rmse'; % 'copy' string == quantity of interest
plotdat = plot_profile(fname, copystring);

234 Chapter 6. References

DART, Release 9.16.0

hPa

Northern Hemisphere Southern Hemisphere
of obs (o=poss, +=used) # of obs (o=poss, +=used)
0 20000 40000 60000 80000 100000 0 5000 10000 15000 20000 25000
: _'_ r‘irnse pr= 53.5261 _'_ r‘irnse pr= 53.5928
3 ke imse po=2.5313 : -k imse po=2.2906
1007 : . 10 1100 1007 3 . : 1100
1507 : : : 1150 1507 : L : 1150
200 1200 200 ! LBt 1200
250 1250 250 ! e * 1250
300 1300 300 ! LB 1300
400+ 1400 400 i LN 1400
o : o :
500 1500 = 5007 : ¥ 1500
7001 a700 700" J +0 1700
850 - 1850 850" S 1850
925 : 1925 9257 -+ + 02 : 1925
10000 + 11000 10000+ | O i i 11000
0 1 2 3 4 .5 0 1 2 3 4 .5
rmse rmse

01-Dec-1999 00:00:01 through 01-Jan-2000 06:00:00 01-Dec-1999 00:00:01 through 01-Jan-2000 06:00:00
TropRADIOSONDE_V_WIND_COMPONEN®rth America

of obs (o=poss, +=used) # of obs (o=poss, +=used)
8000 16000 24000 _ 32000 0 6000 12000 18000 24000 30000
: _'_ rimse pr= 53.0944 _'_ rimse pr= 53.6232
ok imse po=2.1423 !
1007 ; : 1100 1007 100
15071 1150 15071 150
2001 1200 2001 200
250 1250 250 250
300 1300 300 300
4001 1400 . 4001 400
o
5001 1500 = 5007 500
7001 1700 7001 700
8501 1850 8501 850
925 1925 925 925
1000 + 11000 10000+ 1000
0 1 2 3 a .5 0
mmse mmse

01-Dec-1999 00:00:01 through 01-Jan-2000 06:00:00 01-Dec-1999 00:00:01 through 01-Jan-2000 06:00:00

data file: ffsfimagefhomethoar/DART/modelsicamivork/POP 1 1/obs_diag_output.nc

plot_rmse_xxx_evolution.m same as plot_evolution.m but will overlay rmse on the same axis.

6.96. MATLAB® observation space diagnostics 235

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_rmse_xxx_evolution.m

DART, Release 9.16.0

plot_rmse_xxx_profile.m same as plot_profile.m with an overlay of rmse.

plot_bias_xxx_profile.m same as plot_profile.m with an overlay of bias.

two_experiments_evolution.m same as plot_evolution.m but will overlay multiple (more than two, actually) exper-
iments (i.e. multiple obs_diag_output.nc files) on the same axis. A separate figure is created for each region in the

obs_diag_output.nc file.

files = {'POP12/0obs_diag_output.nc', 'POP11/obs_diag_output.nc'};
titles = {'CAM4"','CAM3.6.71"'};

varnames = {'ACARS_TEMPERATURE'};

qtty = 'rmse';

prpo = 'prior';

levelind = 5;

two_experiments_evolution(files, titles,{'ACARS_TEMPERATURE'}, qtty, prpo, levelind)

Nornern Hemispnere
ACARS_TEMPERATURE @ 500 hPa

y §f01 12106 1211 1216 12021 12026 12131 01/05
. I I T T o T T 800
o —e— CAM4
170 g “e—CAM3.6.71 |,
16 -1622.2
150 -1533.3
£14- addd T
% 2
S 3
o 1.3 13856 @
2 2
120 —266.7
1140 —1177.8
1r -1 889
0.9 0
12/01 12/06 12/11 12/16 12/21 12/26 12/31 01/05

01-Dec-1999 00:00:01 through 01-Jan-2000 06:00:00

data file: fsfimagerhomesthoarDART/models/cam/work/POP 12/obs_diag_output.nc
data file: fsfimagefhomefthoarDART/models/cam/work/POP 11/obs_diag_output.nc

two_experiments_profile.m same as plot_profile.mbut will overlay multiple (more than two, actually) experiments
(i.e. multiple obs_diag_output.nc files) on