
DART
Release 9.10.3

Data Assimilation Research Section

May 06, 2021

GETTING STARTED

1 Ensemble Data Assimilation 3

2 Organization of the documentation 5

3 Manhattan Release 7

4 Quick-start 9
4.1 Quick-start for developers . 10

5 Citing DART 11

6 References 13
6.1 System requirements . 13
6.2 Fortran90 compiler . 14
6.3 Locating netCDF library . 14
6.4 Downloading DART . 15
6.5 Compiling DART . 15
6.6 Verifying installation . 19
6.7 Introduction to ensemble data assimilation . 22
6.8 The Lorenz 63 model and its relevance to data assimilation . 23
6.9 Data assimilation in DART using the Lorenz 63 model . 25
6.10 What is DART? . 35
6.11 The benefits of using DART . 35
6.12 A brief history of DART . 36
6.13 High-level data assimilation workflows in DART . 39
6.14 DART’s design philosophy . 46
6.15 Important capabilities of DART . 47
6.16 Working with collaborators on porting new models . 51
6.17 Assimilation in a complex model . 56
6.18 Message Passing Interface . 59
6.19 Filters . 62
6.20 Inflation . 62
6.21 Required model_mod routines . 65
6.22 Suggestions for a “simple” model . 68
6.23 Suggestions for a “complex” model . 69
6.24 How to test your model_mod routines . 71
6.25 Controlling which files are output by filter . 71
6.26 Advice for models with multiple vertical coordinate options . 74
6.27 Data management in DART . 76
6.28 Programs included with DART . 77
6.29 Adding your observations to DART . 80

i

6.30 How DART supports different types of observations: the preprocess program 80
6.31 How DART stores observations: observation sequence (obs_seq) files 82
6.32 Detailed structure of an obs_seq file . 84
6.33 Creating an obs_seq file of synthetic observations . 88
6.34 Creating an obs_seq file from real observations . 90
6.35 Available observation converter programs . 95
6.36 Manipulating obs_seq files with the obs_sequence_tool . 96
6.37 The difference between observation TYPE and QUANTITY . 96
6.38 Adding support for a new observation TYPE . 97
6.39 Introduction to DART’s support for RTTOV . 97
6.40 DART Observations . 99
6.41 Converter programs . 104
6.42 AIRS and AMSU . 105
6.43 Program convert_airs_L2 . 107
6.44 Program convert_amsu_L1 . 111
6.45 Aviso+/CMEMS Observations . 117
6.46 PROGRAM level4_to_obs . 119
6.47 CHAMP . 122
6.48 PROGRAM cice_to_obs . 122
6.49 CONAGUA . 123
6.50 PROGRAM COSMOS_to_obs . 123
6.51 PROGRAM COSMOS_development . 129
6.52 PROGRAM dwl_to_obs . 134
6.53 GMI Brightness Temperatures . 135
6.54 NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances 137
6.55 GPSPW . 138
6.56 GSI2DART . 138
6.57 GTSPP Observations . 141
6.58 MADIS Data Ingest System . 143
6.59 PROGRAM MIDAS_to_obs . 145
6.60 DART observations and MODIS products. 147
6.61 PROGRAM MOD15A2_to_obs . 147
6.62 PROGRAM MOD15A2_to_obs . 152
6.63 MPD . 153
6.64 PROGRAM prepbufr . 153
6.65 PROGRAM create_real_obs . 159
6.66 ROMS observations to DART observation sequences . 163
6.67 SSEC Data Center . 168
6.68 PROGRAM sst_to_obs, oi_sst_to_obs . 169
6.69 SSUSI F16 EDR-DSK format to observation sequence converters 173
6.70 WOD Observations . 175
6.71 GND GPS VTEC . 179
6.72 GPS Observations . 180
6.73 Oklahoma Mesonet MDF Data . 189
6.74 QuikSCAT SeaWinds Data . 191
6.75 Even Sphere . 194
6.76 Obs Error . 195
6.77 Radar Observations . 195
6.78 PROGRAM snow_to_obs . 196
6.79 PROGRAM text_to_obs . 197
6.80 Total Precipitable Water Observations . 198
6.81 PROGRAM tc_to_obs . 202
6.82 Tropical Cyclone ATCF File to DART Converter . 202
6.83 PROGRAM littler_tf_dart . 204

ii

6.84 PROGRAM rad_3dvar_to_dart . 208
6.85 3DVAR/4DVAR Observation Converters . 209
6.86 Checking your initial assimilation . 210
6.87 Computing filter increments . 210
6.88 Computing filter increments using a complex model . 211
6.89 DART missing data value . 213
6.90 DART quality control field . 213
6.91 Examining the obs_seq.final file . 215
6.92 MATLAB® observation space diagnostics . 215
6.93 DART Tutorial . 229
6.94 Conditional probability and Bayes’ theorem . 230
6.95 DART_LAB Tutorial . 234
6.96 WRF/DART Tutorial Materials for the Manhattan Release. 235
6.97 Supported Models . 246
6.98 9-variable . 251
6.99 AM2 . 252
6.100 bgrid_solo . 252
6.101 Atmospheric Models in CESM . 256
6.102 The CAM-FV DART Interface . 258
6.103 Community Earth System Model . 267
6.104 CICE . 272
6.105 CLM . 273
6.106 CM1 . 291
6.107 COAMPS Nest . 297
6.108 COAMPS . 298
6.109 ECHAM . 305
6.110 FESOM . 305
6.111 GITM . 308
6.112 PROGRAM netcdf_to_gitm_blocks . 313
6.113 gitm_blocks_to_netcdf`` . 316
6.114 Ikeda . 319
6.115 LMDZ . 326
6.116 Lorenz 05 . 327
6.117 Lorenz 63 . 328
6.118 Lorenz 84 . 330
6.119 Lorenz 96 . 331
6.120 Lorenz 96 2-scale . 333
6.121 Forced Lorenz 96 . 334
6.122 MITgcm_ocean . 337
6.123 MPAS_ATM . 359
6.124 PROGRAM mpas_dart_obs_preprocess . 368
6.125 MPAS OCN . 371
6.126 PROGRAM model_to_dart for MPAS OCN . 388
6.127 NCOMMAS . 391
6.128 NOAH, NOAH-MP . 405
6.129 null_model . 410
6.130 PBL_1D . 412
6.131 pe2lyr . 412
6.132 POP . 419
6.133 MODULE dart_pop_mod (POP) . 426
6.134 ROMS . 433
6.135 ROSE . 438
6.136 Simple advection . 439
6.137 SQG . 440

iii

6.138 TIEGCM . 447
6.139 WRF-Hydro . 460
6.140 WRF . 464
6.141 PROGRAM replace_wrf_fields . 469
6.142 PROGRAM wrf_dart_obs_preprocess . 471
6.143 MODULE model_mod . 474
6.144 MODULE model_mod . 485
6.145 Contributors’ guide . 495
6.146 Requesting features and reporting bugs . 496
6.147 Mailing list . 496
6.148 DART Manhattan Differences from Lanai Release Notes . 496
6.149 Forward Operator . 506
6.150 Netcdf Inflation Files . 507
6.151 State Stucture . 508
6.152 Filter async modes . 509
6.153 Distributed State . 510
6.154 MODULE location_mod (channel) . 511
6.155 MODULE location_mod . 525
6.156 MODULE (1D) location_mod . 526
6.157 MODULE location_mod (threed_cartesian) . 537
6.158 MODULE location_mod (threed_sphere) . 552
6.159 program obs_seq_verify . 572
6.160 PROGRAM wakeup_filter . 579
6.161 PROGRAM compare_states . 580
6.162 PROGRAM gen_sampling_err_table . 582
6.163 PROGRAM perturb_single_instance . 584
6.164 system simulation programs . 586
6.165 PROGRAM compute_error . 587
6.166 PROGRAM preprocess . 588
6.167 PROGRAM obs_impact_tool . 591
6.168 program create_fixed_network_seq . 594
6.169 program obs_loop . 595
6.170 program perfect_model_obs . 597
6.171 program obs_selection . 600
6.172 program obs_sequence_tool . 603
6.173 PROGRAM integrate_model . 613
6.174 PROGRAM obs_diag (for 1D observations) . 614
6.175 PROGRAM obs_diag (for observations that use the threed_cartesian location module) 621
6.176 PROGRAM obs_diag (for observations that use the threed_sphere location module) 637
6.177 PROGRAM fill_inflation_restart . 653
6.178 program obs_seq_coverage . 656
6.179 PROGRAM advance_time . 666
6.180 program model_mod_check . 668
6.181 PROGRAM closest_member_tool . 675
6.182 PROGRAM restart_file_tool . 678
6.183 PROGRAM filter . 678
6.184 program obs_keep_a_few . 683
6.185 program create_obs_sequence . 685
6.186 PROGRAM obs_seq_to_netcdf . 686
6.187 program obs_common_subset . 697
6.188 MODULE ensemble_manager_mod . 701
6.189 MODULE random_seq_mod . 723
6.190 MODULE mpi_utilities_mod . 730
6.191 MODULE time_manager_mod . 740

iv

6.192 MODULE utilities_mod . 752
6.193 MODULE types_mod . 765
6.194 MODULE schedule_mod . 769
6.195 MODULE obs_kind_mod . 772
6.196 MODULE DEFAULT_obs_kind_mod . 780
6.197 MODULE obs_sequence_mod . 781
6.198 MODULE smoother_mod . 801
6.199 MODULE assim_model_mod . 809
6.200 MODULE assim_tools_mod . 823
6.201 MODULE cov_cutoff_mod . 832
6.202 MODULE obs_model_mod . 834
6.203 MODULE reg_factor . 837
6.204 MODULE adaptive_inflate_mod . 840
6.205 MODULE quality_control_mod . 847
6.206 MODULE filter_mod . 852
6.207 MODULE location_mod . 862
6.208 forward operator test README . 863
6.209 PROGRAM PrecisionCheck . 865
6.210 MODULE obs_def_gps_mod . 868
6.211 MODULE obs_def_dew_point_mod . 873
6.212 MODULE obs_def_ocean_mod . 875
6.213 MODULE obs_def_1d_state_mod . 878
6.214 MODULE obs_def_radar_mod . 886
6.215 MODULE DEFAULT_obs_def_mod . 899
6.216 MODULE obs_def_mod . 900
6.217 MODULE obs_def_rttov_mod . 913
6.218 Manhattan . 921
6.219 Multi-Component CESM+DART Setup . 929
6.220 PROGRAM cam_to_dart . 932
6.221 CAM . 934
6.222 PROGRAM dart_to_cam . 945
6.223 PROGRAM trans_pv_sv . 947
6.224 PROGRAM create_ocean_obs . 949
6.225 PROGRAM trans_sv_pv . 951
6.226 PROGRAM dart_to_ncommas . 953
6.227 PROGRAM ncommas_to_dart . 956
6.228 mkmf . 958
6.229 Copyright . 964
6.230 Changelog . 964
6.231 404 Error . 980

v

vi

DART, Release 9.10.3

The Data Assimilation Research Testbed (DART) is an open-source, freely available community facility for ensemble
data assimilation (DA).1 DART is developed and maintained by the Data Assimilation Research Section (DAReS) at
the National Center for Atmospheric Research (NCAR).

1 Anderson, J. L., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn and A. Arellano, 2009 The Data Assimilation Research Testbed: A Community
Facility. Bulletin of the American Meteorological Society, 90, 1283-1296, doi:10.1175/2009BAMS2618.1

GETTING STARTED 1

https://dart.ucar.edu/about/
https://ncar.ucar.edu
http://dx.doi.org/10.1175/2009BAMS2618.1

DART, Release 9.10.3

2 GETTING STARTED

CHAPTER

ONE

ENSEMBLE DATA ASSIMILATION

Ensemble DA is a technique for combining observations with numerical models to estimate the state of a physical
system.

It enables modelers, observational scientists, and geophysicists to:

• Generate initial conditions for forecasts.

• Create a retrospective estimate of the state of a system, a practice known as producing a reanalysis.

• Assess the relative value of specific observations on forecast skill, a practice known as conducting an observing
system experiment (OSE).

• Estimate the value of hypothetical observations in order to inform the design of an observing system, a practice
known as conducting an observing system simulation experiment (OSSE).

• Determine a model’s systematic bias in estimating the state of a system, a practice known as diagnosing model
error.

The DART software environment makes it easy to explore a variety of data assimilation methods and observations
with different numerical models. It provides powerful, flexible DA tools that are easy to use and customize to support
efficient and reliable DA applications. While DART is primarily oriented for DA research, it has also been used in
operational settings.

DART includes:

• A comprehensive tutorial introducing the concepts of ensemble DA.

• Extensive documentation of its source code.

• Interfaces to a variety of models and observation sets that can be used to introduce new users or graduate students
to ensemble DA.

DART is also designed to facilitate the combination of assimilation algorithms, models, and real or synthetic observa-
tions to allow increased understanding of all three. It provides a framework for developing, testing, and distributing
advances in ensemble DA to a broad community of users by removing the implementation-specific peculiarities of
one-off DA systems.

These tools are intended for use by the full range of geosciencies community: beginners and experts; students and
teachers; national centers and university research labs.

3

DART, Release 9.10.3

4 Chapter 1. Ensemble Data Assimilation

CHAPTER

TWO

ORGANIZATION OF THE DOCUMENTATION

Because of DART’s extensive scope, this documentation is detailed and carefully organized, enabling you to easily
find the information you need. If you have any questions or suggestions for improvements, please contact DAReS staff
by emailing dart@ucar.edu.

The documentation is partitioned into three parts:

• a user guide that explains how to install DART and perform data assimilation

• source code documentation that provides a detailed description of the programs and modules in the repository

• a comprehensive description of data assimilation theory

5

mailto:dart@ucar.edu

DART, Release 9.10.3

6 Chapter 2. Organization of the documentation

CHAPTER

THREE

MANHATTAN RELEASE

DART releases are named based on the major version number. The current version, 9.x.x, is the Manhattan release.
Email dart@ucar.edu for advice if you are interested in a model which has not been converted from the previous Lanai
release.

7

mailto:dart@ucar.edu

DART, Release 9.10.3

8 Chapter 3. Manhattan Release

CHAPTER

FOUR

QUICK-START

DART is available through GitHub. To download the latest version of DART, use:

git clone https://github.com/NCAR/DART.git

Go into the build_templates directory and copy over the closest mkmf.template._compiler.system_ file into
mkmf.template.

Edit it to set the NETCDF directory location if not in /usr/local or comment it out and set $NETCDF in your
environment. This NetCDF library must have been compiled with the same compiler that you use to compile DART
and must include the F90 interfaces.

Go into models/lorenz_63/work and run quickbuild.csh.

$ cd models/lorenz_63/work
$./quickbuild.csh

If it compiles, run this series of commands to do a very basic test:

$./perfect_model_obs
$./filter

If that runs and you have Matlab installed on your system add DART/diagnostics/matlab to your matlab search
path and run the plot_total_err diagnostic script while in the models/lorenz_63/work directory. If the
output plots and looks reasonable (error level stays around 2 and doesn’t grow unbounded) you have successfully
installed DART and completed your first assimilation with it.

If you are planning to run one of the larger models and want to use the Lorenz 63 model as a test, run ./
quickbuild.csh -mpi. It will build filter and any other MPI-capable executables with MPI.

Important: The mpif90 command you use must have been built with the same version of the compiler as you are
using.

If any of these steps fail or you don’t know how to do them, go to the DART project web page listed above for very
detailed instructions that should get you over any bumps in the process.

9

https://github.com/NCAR/DART

DART, Release 9.10.3

4.1 Quick-start for developers

To create a fork of DART for your own development you will need a GitHub account.

1. fork the NCAR/DART repo on GitHub

2. clone your (new) fork to your machine - this will set up a remote named ‘origin’.

git clone https://github.com/USERNAME/DART.git

where USERNAME is your GitHub username.

3. create a remote to point back to the NCAR/DART repo. Convention dictates that this remote should be called
‘upstream’

git remote add upstream https://github.com/NCAR/DART.git

Use ‘upstream’ to keep your fork up to date with NCAR/DART. GitHub has documentation on working with forks.

4. Download one of the tar files (listed below) of ‘large’ files so you can test your DART installation.

5. If you want to contribute your work back to the DART community, create a feature branch with your work, then
issue a pull request to propose changes to NCAR/DART.

There are several large files that are needed to run some of the tests and examples but are not included in order to keep
the repository as small as possible. If you are interested in running bgrid_solo, cam-fv, or testing the NCEP/prep_bufr
observation converter, you will need these files. These files are available at:

Release Size Filename
“Manhattan” 189M Manhattan_large_files.tar.gz
“wrf-chem.r13172” 141M wrf-chem.r13172_large_files.tar.gz
“Lanai” 158M Lanai_large_files.tar.gz
“Kodiak” 158M Kodiak_large_files.tar.gz
“Jamaica” 32M Jamaica_large_files.tar.gz
“Hawaii” 32M Hawaii_large_files.tar.gz

Download the appropriate tar file and untar it into your DART repository. Ignore any warnings about tar:
Ignoring unknown extended header keyword.

10 Chapter 4. Quick-start

https://github.com/
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/working-with-forks
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork
https://www.image.ucar.edu/pub/DART/Release_datasets/Manhattan_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/wrf-chem.r13172_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Lanai_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Kodiak_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Jamaica_large_files.tar.gz
https://www.image.ucar.edu/pub/DART/Release_datasets/Hawaii_large_files.tar.gz

CHAPTER

FIVE

CITING DART

Cite DART using the following text:

The Data Assimilation Research Testbed (Version X.Y.Z) [Software]. (2019). Boulder, Colorado:
UCAR/NCAR/CISL/DAReS. http://doi.org/10.5065/D6WQ0202

Update the DART version and year as appropriate.

11

http://doi.org/10.5065/D6WQ0202

DART, Release 9.10.3

12 Chapter 5. Citing DART

CHAPTER

SIX

REFERENCES

6.1 System requirements

The DART software is intended to compile and run on many different Unix/Linux operating systems with little to
no change. At this point we have no plans to port DART to Windows machines, although Windows 10 users may
be interested in the free Windows Subsystem For Linux which allows developers to “run a GNU/Linux environment
– including most command-line tools, utilities, and applications – directly on Windows, unmodified, without the
overhead of a virtual machine” (see https://docs.microsoft.com/en-us/windows/wsl/about for more details)

Note: We have tried to make the DART code as portable as possible, but we do not have access to all compilers on
all platforms, so unfortunately we cannot guarantee that the code will work correctly on your particular system.

We are genuinely interested in your experience building the system, so we welcome you to send us an email with your
experiences to dart@ucar.edu.

We will endeavor to incorporate your suggestions into future versions of this guide.

Minimally, you will need:

1. a Fortran90 compiler,

2. the netCDF libraries built with the F90 interface,

3. perl (just about any version),

4. an environment that understands csh, tcsh, sh, and ksh

5. the long-lived Unix build tool make

6. and up to 1 Gb of disk space for the DART distribution.

History has shown that it is a very good idea to remove the stack and heap limits in your run-time environment with
the following terminal commands:

> limit stacksize unlimited
> limit datasize unlimited

Additionally, the following tools have proven to be nice (but are not required to run DART):

1. ncview: a great visual browser for netCDF files.

2. the netCDF Operators (NCO): tools to perform operations on netCDF files like concatenating, slicing, and dicing

3. Some sort of MPI environment. In other words, DART does not come with MPICH, LAM-MPI, or OpenMPI,
but many users of DART rely on these MPI distributions to run DART in a distributed-memory parallel setting.
In order to use MPI with DART, please refer to the DART MPI introduction.

13

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
mailto:dart@ucar.edu
http://www.unidata.ucar.edu/software/netcdf/
http://meteora.ucsd.edu/~pierce/ncview_home_page.html
http://nco.sourceforge.net/

DART, Release 9.10.3

4. If you want to use the DART diagnostic scripts, you will need a basic MATLAB® installation. No additional
toolboxes are required, and no third-party toolboxes are required.

6.2 Fortran90 compiler

The DART software is written in standard Fortran 90, with no compiler-specific extensions. It has been compiled and
run with several versions of each of the following:

• GNU Fortran Compiler (known as “gfortran”) (free)

• Intel Fortran Compiler for Linux and OSX

• IBM XL Fortran Compiler

• Portland Group Fortran Compiler

• Lahey Fortran Compiler

• NAG Fortran compiler

• PathScale Fortran compiler

Since recompiling the code is a necessity to experiment with different models, there are no DART binaries to distribute.

If you are unfamiliar with Fortran and/or wonder why we would choose this language, see the Why Fortran? discussion
for more information.

6.3 Locating netCDF library

DART uses the netCDF self-describing data format for storing the results of assimilation experiments. These files
have the extension .nc and can be read by a number of standard data analysis tools. In particular, DART also makes
use of the F90 netCDF interface which is available through the netcdf.mod and typesizes.mod modules and
the libnetcdf library. Depending on the version, the libnetcdff library is also often required.

If the netCDF library does not exist on your system, you must build it (as well as the F90 interface modules).

Warning: You must build netCDF with the same compiler (including version) you plan to use for compiling
DART. In practice this means that even if you have a netCDF distribution on your system, you may need to
recompile netCDF in a separate location to match the compiler you will use for DART. The library and instructions
for building the library or installing from a package manager may be found at the netCDF home page.

Important: The normal location for the netCDF Fortran modules and libraries would be in the include and lib
subdirectories of the netCDF installation. However, different compilers or package managers sometimes place the
modules and/or libraries into non-standard locations. It is required that both modules and the libraries be present.

Note: The location of the netCDF library, libnetcdf.a, and the locations of both netcdf.mod and
typesizes.mod will be needed later. Depending on the version of netCDF and the build options selected, the
Fortran interface routines may be in a separate library named libnetcdff.a (note the two F’s). In this case both
libraries are required to build executables.

14 Chapter 6. References

http://gcc.gnu.org/fortran
http://software.intel.com/en-us/intel-composer-xe
http://www-01.ibm.com/software/awdtools/fortran/
http://www.pgroup.com/
http://www.lahey.com/
https://www.nag.com/nag-compiler
https://en.wikipedia.org/wiki/PathScale
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/

DART, Release 9.10.3

6.4 Downloading DART

The DART source code is distributed on the GitHub repository NCAR/DART with the documentation served through
readthedocs.

Go to https://github.com/NCAR/DART and clone the repository or get the ZIP file according to your preference. See
the github help page on cloning for more information on how to clone a repository. Take note of the directory you
installed into, which is referred to as DART throughout this documentation.

To checkout the latest release of DART:

git clone https://github.com/NCAR/DART.git

If you have forked the DART repository, replace NCAR with your Github username.

Note: If you are interested in contributing to DART, see the Contributors’ guide for more information. In short, you
will need to be familiar with the GitHub workflow.

Unzip or clone the distribution in your desired directory, which we refer to as DART in this document. Compiling the
code in this tree (as is usually the case) may require a large amount of additional disk space (up to the 1 Gb required
for DART), so be aware of any disk quota restrictions before continuing.

6.4.1 Organization of the repository

The top level DART source code tree contains the following directories and files:

Directory Purpose
assimilation_code/ assimilation tools and programs
build_templates/ Configuration files for installation
developer_tests/ regression testing
diagnostics/ routines to diagnose assimilation performance
guide/ General documentation and DART_LAB tutorials
models/ the interface routines for the models
observations/ routines for converting observations and forward operators
theory/ pedagogical material discussing data assimilation theory
Files Purpose
CHANGELOG.rst Brief summary of recent changes
copyright.rst terms of use and copyright information
README.rst Basic Information about DART

6.5 Compiling DART

Now that the DART code has been downloaded and the prerequisites have been verified, you can now begin building
and verifying the DART installation.

6.4. Downloading DART 15

https://github.com/NCAR/DART
https://github.com/NCAR/DART
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://guides.github.com/introduction/flow/

DART, Release 9.10.3

6.5.1 Customizing the build scripts — overview

DART executable programs are constructed using two tools: mkmf, and make. The make utility is a very commonly
used tool that requires a user-defined input file (a Makefile) that records dependencies between different source
files. make then performs actions to the source hierarchy, in order of dependence, when one or more of the source
files is modified. mkmf is a perl script that generates a make input file (named Makefile) and an example namelist
input.nml.<program>_default with default values.

mkmf (think “make makefile”) requires two separate input files. The first is a template file which specifies the com-
mands required for a specific Fortran90 compiler and may also contain pointers to directories containing pre- compiled
utilities required by the DART system. This template file will need to be modified to reflect your system as detailed
in the next section.

The second input file is a path_names file which is supplied by DART and can be used without modification. An
mkmf command is executed which uses the path_names file and the mkmf template file to produce a Makefile
which is subsequently used by the standard make utility.

Shell scripts that execute the mkmf command for all standard DART executables are provided with the standard DART
distribution. For more information on the mkmf tool please see the mkmf documentation.

6.5.2 Building and Customizing the ‘mkmf.template’ file

A series of templates for different compilers/architectures can be found in the DART/build_templates directory
and have names with extensions that identify the compiler, the architecture, or both. This is how you inform the
build process of the specifics of your system. Our intent is that you copy one that is similar to your system into
DART/build_templates/mkmf.template and customize it.

For the discussion that follows, knowledge of the contents of one of these templates (e.g. DART/
build_templates/mkmf.template.intel.linux) is needed. Note that only the LAST lines of the file
are shown here. The first portion of the file is a large comment block that provides valuable advice on how to cus-
tomize the mkmf template file if needed.

MPIFC = mpif90
MPILD = mpif90
FC = ifort
LD = ifort
NETCDF = /usr/local
INCS = -I$(NETCDF)/include
LIBS = -L$(NETCDF)/lib -lnetcdf -lnetcdff
FFLAGS = -O2 $(INCS)
LDFLAGS = $(FFLAGS) $(LIBS)

16 Chapter 6. References

https://github.com/NOAA-GFDL/mkmf
https://github.com/NOAA-GFDL/mkmf

DART, Release 9.10.3

FC the Fortran compiler
LD the name of the loader; typically, the same as the Fortran compiler
MPIFC the MPI Fortran compiler; see the DART MPI introduction for more info
MPILD the MPI loader; see the DART MPI introduction for more info
NETCDFthe location of your root netCDF installation, which is assumed to contain netcdf.mod and typesizes.mod

in the include subdirectory. Note that the value of the NETCDF variable will be used by the “INCS” and
“LIBS” variables.

INCS the includes passed to the compiler during compilation. Note you may need to change this if your netCDF
includes netcdf.mod and typesizes.mod are not in the standard location under the include subdirectory of
NETCDF.

LIBS the libraries passed to “FC” (or “MPIFC”) during compilation. Note you may need to change this if the
netCDF libraries libnetcdf and libnetcdff are not in the standard location under the “lib” subdirectory of
NETCDF.

FFLAGSthe Fortran flags passed to “FC” (or “MPIFC”) during compilation. There are often flags used for optimized
code versus debugging code. See your particular compiler’s documentation for more information.

LD-
FLAGS

the linker flags passed to LD during compilation. See your particular linker’s documentation for more
information.

6.5.3 Customizing the path names files

Several path_names_* files are provided in the “work” directory for each specific model. In this case, the directory
of interest is DART/models/lorenz_63/work (see the next section). Since each model comes with its own set
of files, the path_names_* files typically need no customization. However, modifying these files will be required
if you wish to add your model to DART. See How do I run DART with my model? for more information.

6.5.4 Building the Lorenz_63 DART project

In order to get started with DART, here we use the Lorenz 63 model, which is a simple ODE model with only three
variables. DART supports models with many orders of magnitude more variables than three, but if you can compile
and run the DART code for any ONE of the models, you should be able to compile and run DART for ANY of the
models. For time-dependent filtering known as cycling, where observations are iteratively assimilated at multiple time
steps, DART requires the ability to move the model state forward in time. For low-order models, this may be possible
with a Fortran function call, but for higher-order models, this is typically done outside of DART’s execution control.
However, the assimilation itself is conducted the same way for all models. For this reason, here we focus solely on the
Lorenz 63 model. If so desired, see The Lorenz 63 model: what is it and why should we care? for more information
on this simple yet surprisingly relevant model. See A high-level workflow of DA in DART for further information
regarding the DART workflow if you prefer to do so before building the code.

There are seven separate, stand-alone programs that are typically necessary for the end-to-end execution of a DART
experiment; see below or the What is DART? section for more information on these programs and their interactions.
All DART programs are compiled the same way, and each model directory has a directory called work that has the
components necessary to build the executables.

Note: some higher-order models have many more than seven programs; for example, the Weather Research and
Forecasting (WRF) model, which is run operationally around the world to predict regional weather, has 28 separate
programs. Nonetheless, each of these programs are built the same way.

The quickbuild.csh in each directory builds all seven programs necessary for Lorenz 63. Describing what the
quickbuild.csh script does is useful for understanding how to get started with DART.

6.5. Compiling DART 17

DART, Release 9.10.3

The following shell commands show how to build two of these seven programs for the lorenz_63 model: preprocess
and obs_diag. preprocess is a special program that needs to be built and run to automatically generate Fortran code
that is used by DART to support a subset of observations - which are (potentially) different for every model. Once
preprocess has been run and the required Fortran code has been generated, any of the other DART programs may
be built in the same way as obs_diag in this example. Thus, the following runs mkmf to make a Makefile for
preprocess, makes the preprocess program, runs preprocess to generate the Fortran observation code, runs mkmf to
make a Makefile for obs_diag, then makes the obs_diag program:

$ cd DART/models/lorenz_63/work
$./mkmf_preprocess
$ make
$./preprocess
$./mkmf_obs_diag
$ make

The remaining executables are built in the same fashion as obs_diag: run the particular mkmf script to generate a
Makefile, then execute make to build the corresponding program.

Currently, DART executables are built in a work subdirectory under the directory containing code for the given model.
The Lorenz_63 model has seven mkmf_xxxxxx files for the following programs:

Pro-
gram

Purpose

prepro-
cess

creates custom source code for just the observations of interest

cre-
ate_obs_sequence

specify a (set) of observation characteristics taken by a particular (set of) instruments

cre-
ate_fixed_network_seq

specify the temporal attributes of the observation sets

per-
fect_model_obs

spinup and generate “true state” for synthetic observation experiments

filter perform data assimilation analysis
obs_diag creates observation-space diagnostic files in netCDF format to support visualization and quantification.
obs_sequence_toolmanipulates observation sequence files. This tool is not generally required (particularly for low-order

models) but can be used to combine observation sequences or convert from ASCII to binary or vice-
versa. Since this is a rather specialized routine, we will not cover its use further in this document.

As mentioned above, quickbuild.csh is a script that will build every executable in the directory. There is an
optional argument that will additionally build the MPI-enabled versions which will not be covered in this set of
instructions. See The DART MPI introduction page for more information on using DART with MPI.

Running quickbuild.csh will compile all the executables mentioned above for the lorenz_63 model:

$ cd DART/models/lorenz_63/work
$./quickbuild.csh

The result (hopefully) is that seven executables now reside in your work directory.

Note: The most common problem is that the netCDF libraries and/or include files were not found in the specified
location(s). The second most common problem is that the netCDF libraries were built with a different compiler
than the one used for DART. Find (or compile) a compatible netCDF library, edit the DART/build_templates/
mkmf.template to point to the correct locations of the includes and library files, recreate the Makefiles, and try
again.

18 Chapter 6. References

../assimilation_code/programs/preprocess/preprocess.html
../assimilation_code/programs/preprocess/preprocess.html
../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
../assimilation_code/programs/create_fixed_network_seq/create_fixed_network_seq.html
../assimilation_code/programs/create_fixed_network_seq/create_fixed_network_seq.html
../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../assimilation_code/programs/filter/filter.html
../assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html
../assimilation_code/programs/obs_sequence_tool/obs_sequence_tool.html

DART, Release 9.10.3

6.6 Verifying installation

Note: These verification steps require MATLAB®. UCAR Member Institutions have access to institutional licenses
for MATLAB, thus we have created verification tools using it.

The Lorenz model is notoriously sensitive to very small changes; in fact, the story of Lorenz discovering this sensitivity
is a classic in the annals of the study of chaos, which in turn was instrumental in the development of data assimilation
as a field of study. See The Lorenz 63 model: what is it and why should we care? or What is data assimilation? for
more information.

This sensitivity is of practical interest for verifying these results. The initial conditions files and observations sequences
are provided in ASCII, which is portable across systems, but there may be some machine-specific round-off error in
the conversion from ASCII to machine binary. As Lorenz 63 is such a nonlinear model, extremely small differences
in the initial conditions may eventually result in noticeably different model trajectories. Even different compiler flags
may cause tiny differences that ultimately result in large differences. Your results should start out looking VERY
SIMILAR and may diverge with time.

The simplest way to determine if the installation is successful is to run some of the functions available in DART/
diagnostics/matlab/. Usually, we launch MATLAB from the DART/models/lorenz_63/work directory
and use the MATLAB addpath command to make the DART/matlab/ functions available for execution in any
working directory.

In the case of this Lorenz model, we know the “true” (by definition) state of the model that is consistent with the
observations, which was generated by the perfect_model_obs program as described in Checking the build — running
something. The following MATLAB scripts compare the ensemble members with the truth and can calculate the error
in the assimilation:

$ cd DART/models/lorenz_63/work
$ matlab -nodesktop
(Skipping startup messages)

[matlab_prompt] addpath ../../../diagnostics/matlab
[matlab_prompt] plot_total_err
Input name of true model trajectory file;
(cr) for perfect_output.nc
perfect_output.nc
Input name of ensemble trajectory file;
(cr) for preassim.nc
preassim.nc
Comparing true_state.nc and

preassim.nc
[matlab_prompt] plot_ens_time_series
Input name of ensemble trajectory file;
(cr) for preassim.nc

Comparing true_state.nc and
preassim.nc

Using Variable state IDs 1 2 3

pinfo =

struct with fields:

model: 'Lorenz_63'
def_var: 'state'

(continues on next page)

6.6. Verifying installation 19

https://www.ucar.edu/who-we-are/membership-governance/member-institutions

DART, Release 9.10.3

(continued from previous page)

num_state_vars: 1
num_copies: 20

num_ens_members: 20
ensemble_indices: [1 2 3 ... 18 19 20]

min_state_var: 1
max_state_var: 3

def_state_vars: [1 2 3]
fname: 'preassim.nc'

truth_file: 'true_state.nc'
diagn_file: 'preassim.nc'
truth_time: [1 200]
diagn_time: [1 200]

vars: {'state'}
time: [200x1 double]

time_series_length: 200
var: 'state'

var_inds: [1 2 3]

20 Chapter 6. References

DART, Release 9.10.3

From the above plot_ens_time_series graphic, you can see the individual green ensemble members becoming
more constrained with less spread as time evolves. If your figures look similar to these, you should feel confident
that everything is working as intended. Don’t miss the opportunity to rotate the “butterfly” plot for that classic chaos
theory experience (perhaps while saying, “life, uh, finds a way”).

Congratulations! You have now successfully configured DART and are ready to begin the next phase of your interac-
tion with DART. You may wish to learn more about:

• What is data assimilation? — a brief introduction to ensemble data assimilation. This section includes more
information about the Lorenz 63 model and how to configure the input.nml file to play with DA experiments
in DART using the Lorenz 63 model.

• What is DART? — This section includes more information about DART and a basic flow chart of the overall
DART workflow.

• How do I run DART with my model?

• How do I add my observations to DART?

• How would I use DART for teaching students and/or myself?

• How can I contribute to DART?

Note: In the case that the above instructions had one or more issues that either did not work for you as intended or
were confusing, please contact the DART software development team at dart@ucar.edu. We value your input to make
getting started as smooth as possible for new DART users!

6.6. Verifying installation 21

mailto:dart@ucar.edu

DART, Release 9.10.3

6.7 Introduction to ensemble data assimilation

Data assimilation is a powerful and widely used computational technique that has many application areas throughout
mathematics and science. At a very high level, data assimilation refers to the process of merging prior forecasts with
new observations, creating a new analysis that is an “optimal” blending of the two by taking into account their relative
uncertainties.

The following animated graphic describes the data assimilation process at a high level:

Shown here are three ensemble members, each of which gives a different initial prediction at the time 𝑡𝑘. Moving
these predictions forward in time to 𝑡𝑘+1 will give a new forecast distribution called a prior.

Suppose at this time there is also an observation, which will have some uncertainty due to instrument noise, etc.
Mapping each of the ensemble members to the observations with a function ℎ and applying Bayes’ theorem will
generate an update to the prior distribution, called here the state increment. Adding the state increment to the ensemble
members will give the new analysis (also known as the posterior) at time 𝑡𝑘+1. This process can then be repeated
for each set of observations as many times as necessary. For an introduction to Bayes’ theorem, see Conditional
probability and Bayes’ theorem in the Theory section.

Expanding on this somewhat, the 𝑖𝑡ℎ ensemble member is denoted 𝑥𝑖 at the present time step. In the above graphic,
there were three ensemble members, but in general there are usually many more, typically in the range of 20-1000
depending on the application. Each member 𝑥𝑖 can have 𝑛 components which together make up the model state.
Each member contains all the variables you want to find the best fit for at a particular time. These variables are usually
physically meaningful quantities; for example, this might include the 3D values of water vapor, temperature, wind
speed, etc. for an atmospheric model. These values are expected to be advanced forward in time by a model, which is
why they are called the “model state.”

Note: In data assimilation, the “model state” is the minimum amount of information necessary to restart the model
for a new forecast.

At any particular time step there may be 𝑚 observations available. These observations are assumed to relate to the
model state and provide “real world” checks against the model forecast. A “forward operator”, represented in the above
diagram by ℎ, is a relationship that computes what an observation is most likely to be given a model state. In other
words, ℎ maps between 𝑥𝑖 and 𝑦𝑗 , giving the “expected observation” of the 𝑗𝑡ℎ observation given the 𝑖𝑡ℎ ensemble
member. An observation may be of the same quantity as one found in the model state at a particular location, in
which case the ℎ function mapping them is trivial and the comparison is simple. The vector 𝑦 may also contain more
complex derived functions of the state 𝑥 (for example, radar observations of precipitation), in which case the ℎ function
that models this mapping between 𝑥 (in this example precipitation) and 𝑦 (in this example radar returns) may be an
algorithm that is quite complicated.

In practice, observations are never 100% reliable. The observations themselves will have some uncertainty for ex-
ample arising from instrument noise. The instrument noise error variances are typically published by the instrument
manufacturer, and these observation errors are usually assumed to be independent as true instrument “noise” should
not be correlated in time or space. Furthermore, since models have a finite resolution (i.e. they are “fuzzy”), there is
almost always an error that arises when comparing the model to the observations. This is called the representative-
ness error. Put together, the potential “likelihood” of the possible values of the observation forms the observational
error distribution in the above graphic.

Finally, note that in real-world applications there are typically many fewer observations than state variables, i.e. 𝑚 is
typically much much less than 𝑛. In practice this means that the observations alone cannot be relied upon to predict
the model state; the ensemble approach with Bayes’ theorem is necessary.

DART makes it easy to find the optimal solution to the above problem using an ensemble filter algorithm (the most
typically used algorithm is the Ensemble Adjustment Kalman Filter; see Important capabilities of DART for more

22 Chapter 6. References

DART, Release 9.10.3

information). The user specifies which state variables make up the 𝑥 ensemble vectors, which observations make up
the 𝑦 vector, and the observation error variances. The ensemble of model states is assumed to be representative of the
uncertainty or spread in the model state. Finally, the user tells DART how to advance the model from one forecast
to the next. Once DART has this information, it can proceed with optimally blending the observations and model
forecasts — in other words, performing data assimilation.

The spread of the ensemble informs DART of the uncertainty in the model state. This allows for as rich, complex,
and meaningful relationships as the data contained within the ensemble itself. By default, no implicit assumptions
about the relative uncertainties are required, as the data can speak for itself. Areas of large uncertainty will naturally
have large spread, as the ensemble members will contain very different values at those locations, while areas of low
uncertainty will naturally have low spread due to the ensemble having relatively similar values at those locations.
Furthermore, relationships in space and between variables can also be meaningfully derived. Of course this means that
the quality of the ensemble is crucial to the success of the DA process, as uncertainty can only be accurately quantified
if the ensemble is representative of the “true” uncertainty inherent in the system. Due to the fact that a relatively
small number of ensemble members are typically used, estimated correlations between two distant locations may
become unreliable due to sampling error. Thus, various techniques such as covariance localization may be employed
to improve the quality of estimated relationships and increase skill in prediction. Furthermore, the ensemble spread
may sometimes be deemed “too small” or “too large” by various criteria, in which case a multiplicative or additive
inflation or deflation, respectively, may be applied. In practice the ensemble method is usually far more accurate and
less error-prone than the main alternative of manually specifying uncertainty by some manually-designed algorithm,
and it is certainly less labor-intensive to develop.

This was a brief introduction to the important concepts of DA. For more information, see the DART Tutorial and the
DART_LAB Tutorial.

6.8 The Lorenz 63 model and its relevance to data assimilation

This section describes a consequential model in the development of humanity’s understanding of the limits of predict-
ing nature: the three-variable model of Lorenz (1963).1 This model captures the essence of chaotic systems and will
serve as an example to deepen your understanding of DART and data assimilation.

In 1963, Edward Lorenz developed a simplified three-variable model to investigate atmospheric convection. By mak-
ing several simplifications to the Boussinesq approximation, the Lorenz model was derived for a single thin layer of
fluid uniformly heated from below and cooled from above. The original paper has been cited over 20,000 times. The
relatively simple, yet nonlinear, system of ordinary differential equations is:

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑥(𝑟 − 𝑧) − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧

Here, 𝑥 is proportional to the rate of convection, 𝑦 is related to the horizontal temperature variation, and 𝑧 is the
vertical temperature variation.

There are three constant parameters:

𝜎 = 10, 𝑟 = 28, 𝑏 = 8/3

• 𝜎 relates to the Prandtl number

• 𝑟 relates to the Rayleigh number

1 Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141, doi:0.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2

6.8. The Lorenz 63 model and its relevance to data assimilation 23

https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

• 𝑏 relates to the physical dimensions of the layer

Note that two of the equations have nonlinear terms: 𝑑𝑦
𝑑𝑡 has the −𝑥𝑧 term and 𝑑𝑧

𝑑𝑡 has the 𝑥𝑦 term.

Lorenz 63 is a consequential model in the history of science because the numerical investigation of the chaos arising
from this system of ordinary differential equations unexpectedly launched a revolution in humanity’s understanding of
nature. These investigations lead to numerous mathematical and scientific breakthroughs.

While the chaotic nature of certain systems such as the three-body problem had been investigated previously, it was
the electronic computer, which could compute thousands of calculations per second, that allowed these ideas to be
formalized.

In particular, Lorenz’s model made it clear for the first time how an infinitesimally small change in the initial conditions
of a system could end up having a dramatic effect on the subsequent behavior of the system. Lorenz discussed the
strange behavior of this model in a popular science lecture, The Essence of Chaos2:

At one point I decided to repeat some of the computations in order to examine what was happening in
greater detail. I stopped the computer, typed in a line of numbers that it had printed out a while earlier,
and set it running again. I went down the hall for a cup of coffee and returned after about an hour, during
which the computer had simulated about two months of weather. The numbers being printed out were
nothing like the old ones. I immediately suspected a weak vacuum tube or some other computer trouble,
which was not uncommon, but before calling for service I decided to see just where the mistake had
occurred, knowing that this could speed up the servicing process. Instead of a sudden break, I found that
the new values at first repeated the old ones, but soon afterward had differed by one and then several units
in the last decimal place. . . The numbers I had typed in were not the exact original numbers, but were the
rounded-off values that appeared in the original printout. The initial round-off errors were the culprits;
they were steadily amplifying until they dominated the solution. In today’s terminology, there was chaos.

Lorenz discovered that even in a model with just three variables, a very small change in the initial conditions (in this
case, the numbers he typed back into the computer, which were very slightly different from the original numbers)
could cause the entire large-scale behavior to change. Lorenz’s discovery has many important practical implications:

1. If tiny changes can grow to dominate a system, it is no longer possible to find the one set of “perfect” initial
conditions and hope to allow the system to run forever with perfect forecasts. Instead, forecasting chaotic
systems must be approached statistically.

2. There is a practical limit of predictability inherent in chaotic systems. In other words, the nonlinear dynamics of
a chaotic model are inherently difficult to predict. Multiple evaluations (an ensemble) can be run with different
plausible initial conditions to quantify this error growth.

3. In order to forecast chaotic systems effectively, periodic observations of the state are required to effectively
guide the forecast and narrow the uncertainty. Since in real-world applications observations are almost always
sparse compared to the number of state variables, merging observations and forecasts (i.e. data assimilation) is
required to effectively forecast chaotic systems.

While Lorenz 63 is a simple example of a chaotic system, there are many other chaotic systems of real practical interest
in areas such as weather prediction, climate, oceanography, hydrology, ecology, biology, and many other disciplines.

In short, while the Lorenz model is a simple set of equations that can easily be run on even the most basic of computers
today, it is representative of the same problem of predictability that can be found throughout science. DART supports
the investigation of forecasting chaotic systems in any field where periodic observations can be used to constrain the
uncertainty using an ensemble.

2 Lorenz, Edward N. The Essence of Chaos. University of Washington Press, 1995.

24 Chapter 6. References

DART, Release 9.10.3

6.8.1 References

6.9 Data assimilation in DART using the Lorenz 63 model

In this section we open the “black box” of the Lorenz model that was previously used in Compiling DART . This section
assumes you have successfully run the Lorenz 63 model with the example observation files that were distributed with
the DART repository. In this section you will learn in more detail how DART interacts with the Lorenz 63 model to
perform data assimilation.

6.9.1 The input.nml namelist

The DART/models/lorenz_63/work/input.nml file is the Lorenz model namelist, which is a standard For-
tran method for passing parameters from a text file into a program without needing to recompile. There are many
sections within this file that drive the behavior of DART while using the Lorenz 63 model for assimilation. Within
input.nml, there is a section called model_nml, which contains the model-specific parameters:

&model_nml
sigma = 10.0,
r = 28.0,
b = 2.6666666666667,
deltat = 0.01,
time_step_days = 0,
time_step_seconds = 3600,
solver = 'RK2'
/

Here, you can see the values for the parameters sigma, r, and b that were discussed in the previous section. These
are the original values Lorenz used in the 1963 paper to create the classic butterfly attractor.

6.9.2 The Lorenz 63 model code

The Lorenz 63 model code, which is under DART/models/lorenz_63/model_mod.f90, contains the lines:

subroutine comp_dt(x, dt)

real(r8), intent(in) :: x(:)
real(r8), intent(out) :: dt(:)

! compute the lorenz model dt from standard equations

dt(1) = sigma * (x(2) - x(1))
dt(2) = -x(1)*x(3) + r*x(1) - x(2)
dt(3) = x(1)*x(2) - b*x(3)

end subroutine comp_dt

which directly translates the above ODE into Fortran.

Note that the routine comp_dt does not explicitly depend on the time variable, only on the state variables (i.e. the
Lorenz 63 model is time invariant).

Note: By default, the model_mod.f90 follows the Lorenz 63 paper to use the Runge-Kutta 2 scheme (otherwise
known as RK2 or the midpoint scheme) to advance the model.

6.9. Data assimilation in DART using the Lorenz 63 model 25

DART, Release 9.10.3

Since the Lorenz 63 model is time invariant, the RK2 code to advance the ODE in time can be written as follows,
again following the Lorenz 63 paper, for a fract fraction of a time-step (typically equal to 1):

!--
!> does single time step advance for lorenz convective 3 variable model
!> using two step rk time step

subroutine adv_single(x, fract)

real(r8), intent(inout) :: x(:)
real(r8), intent(in) :: fract

real(r8) :: x1(3), x2(3), dx(3)

call comp_dt(x, dx) ! compute the first intermediate step
x1 = x + fract * deltat * dx

call comp_dt(x1, dx) ! compute the second intermediate step
x2 = x1 + fract * deltat * dx

! new value for x is average of original value and second intermediate

x = (x + x2) / 2.0_r8

end subroutine adv_single

Together, these two code blocks describe how the Lorenz 63 model is advanced in time. You will see how DART uses
this functionality shortly.

6.9.3 The model time step and length of the data assimilation

In the original Lorenz 63 paper, the model is run for 50 “days” using a non-dimensional time-step of 0.01, which is
reproduced in the namelist above. This time-step was assumed equal to 3600 seconds, or one hour, in dimensional
time. This is also set in the namelist above. The Lorenz 63 model observation file included with the DART repository
uses observations of all three state variables every six hours (so every six model steps) to conduct the assimilation.

If you were previously able to run the Matlab diagnostic scripts, you may have noticed that the butterfly attractor for
the included example does not look as smooth as might be desired:

26 Chapter 6. References

DART, Release 9.10.3

This is because the model output was only saved once every six “hours” at the observation times. As an exercise, let’s
make a nicer-looking plot using the computational power available today, which even on the most humble of computers
is many times greater than what Lorenz had in 1963. Let’s change Lorenz’s classic experiment to the following:

1. Make the non-dimensional timestep 0.001, a factor of 10 smaller, which will correspond to a dimensional
timestep of 360 seconds (6 minutes). This smaller time-step will lead to a smoother model trajectory.

2. Keep the original ratio of time steps to observations included in the DART repository of assimilating observa-
tions every six time steps, meaning we now need observations every 36 minutes.

Therefore, in order to conduct our new experiment, we will need to regenerate the DART observation sequence files.

To change the time-step, change the input.nml file in DART/models/lorenz_63/work to the following:

&model_nml
sigma = 10.0,
r = 28.0,
b = 2.6666666666667,
deltat = 0.001,
time_step_days = 0,
time_step_seconds = 360
/

Note: The changes are to deltat and time_step_seconds. Additionally: you do not need to recompile the

6.9. Data assimilation in DART using the Lorenz 63 model 27

DART, Release 9.10.3

DART code as the purpose of namelist files is to pass run-time parameters to a Fortran program without recompilation.

6.9.4 Updating the observation sequence

Let’s now regenerate the DART observation files with the updated timestep and observation ratio. In a typical large-
scale application, the user will provide observations to DART in a standardized format called the Observation Sequence
file. Since there are no real observations of the Lorenz 63 system, we must create our own synthetic observations -
which may be done using create_obs_sequence, create_fixed_network_seq, and perfect_model_obs programs; each of
which we will explain below. These helpful interactive programs are included with DART to generate these observation
sequence files for typical research or education-oriented experiments. In such setups, observations (with noise added)
will be generated at regular intervals from a model “truth”. This “truth” will only be available to the experiment
through the noisy observations but can later be used for comparison purposes. The number of steps necessary for the
ensemble members to reach the true model state’s “attractor” can be investigated and, for example, compared between
different DA methods. This is an example of an “OSSE” — see High-level data assimilation workflows in DART for
more information.

The three programs used in this example to create an observation sequence again are create_obs_sequence, cre-
ate_fixed_network_seq, and perfect_model_obs. create_obs_sequence creates a template for the observations, cre-
ate_fixed_network_seq repeats that template at multiple times, and finally perfect_model_obs harvests the observation
values. These programs have many additional capabilities; if interested, see the corresponding program’s documenta-
tion.

Let’s now run the DART program create_obs_sequence to create the observation template that we will later replicate
in time:

Make sure you are in the DART/models/lorenz_63/work directory ./create_obs_sequence

The program create_obs_sequence will ask for the number of observations. Since we plan to have 3 observations at
each time step (one for each of the state variables), input 3:

set_nml_output Echo NML values to log file only

--
-------------- ASSIMILATE_THESE_OBS_TYPES --------------

RAW_STATE_VARIABLE
--
-------------- EVALUATE_THESE_OBS_TYPES --------------

none
--
---------- USE_PRECOMPUTED_FO_OBS_TYPES --------------

none
--

Input upper bound on number of observations in sequence
3

For this experimental setup, we will not have any additional copies of the data, nor will we have any quality control
fields. So use 0 for both.

Input number of copies of data (0 for just a definition)
0
Input number of quality control values per field (0 or greater)
0

We now will setup each of the three observations. The program asks to enter -1 if there are no additional observations,
so input anything else instead (1 below). Then enter -1, -2, and -3 in sequence for the state variable index (the

28 Chapter 6. References

DART, Release 9.10.3

observation here is just the values of the state variable). Use 0 0 for the time (we will setup a regularly repeating
observation after we finish this), and 8 for the error variance for each observation.

Finally, after inputting press enter to use the default output file set_def.out.

Input your values as follows:

input a -1 if there are no more obs
1

Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...

1 RAW_STATE_VARIABLE
-1
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1

Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...

1 RAW_STATE_VARIABLE
-2
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
input a -1 if there are no more obs
1

Input -1 * state variable index for identity observations
OR input the name of the observation kind from table below:
OR input the integer index, BUT see documentation...

1 RAW_STATE_VARIABLE
-3
input time in days and seconds (as integers)
0 0
Input the error variance for this observation definition
8
Input filename for sequence (<return> for set_def.out)

write_obs_seq opening formatted observation sequence file "set_def.out"
write_obs_seq closed observation sequence file "set_def.out"
create_obs_sequence Finished successfully.

6.9.5 Creating a regular sequence of observations

We will now utilize another DART program that takes this set_def.out file as input. The interactive program
create_fixed_network_seq is a helper tool that can be used to generate a DART observation sequence file
made of a set of regularly repeating observations.

Make sure you are in the DART/models/lorenz_63/work directory ./create_fixed_network_seq

We want to use the default set_def.out file, so press return. We also want a regularly repeating time sequence, so
input 1.

6.9. Data assimilation in DART using the Lorenz 63 model 29

DART, Release 9.10.3

set_nml_output Echo NML values to log file only

--
-------------- ASSIMILATE_THESE_OBS_TYPES --------------

RAW_STATE_VARIABLE
--
-------------- EVALUATE_THESE_OBS_TYPES --------------

none
--
---------- USE_PRECOMPUTED_FO_OBS_TYPES --------------

none
--

Input filename for network definition sequence (<return> for set_def.out)

To input a regularly repeating time sequence enter 1
To enter an irregular list of times enter 2
1

We now will input the number of observations in the file. The purpose of this exercise is to refine the time step used
by Lorenz in 1963 by a factor of 10. Since we want to keep the ratio of six model steps per observation and run for 50
days, we will need 2000 model observations (360 seconds × 6 × 2000 = 50 days).

As we specified in set_def.out, there are 3 observations per time step, so a total of 6000 observations will be
generated.

Note: The Lorenz 63 model dimensional time-step is related to the observational time only through this mechanism.
In other words, deltat in the namelist could relate to virtually any dimensional time step time_step_seconds
if the observation times were not considered. However, DART will automatically advance the model state to the
observation times in order to conduct the data assimilation at the appropriate time, then repeat this process until no
additional observations are available, thus indirectly linking deltat to time_step_seconds.

Enter 2000 for the number of observation times. The initial time will be 0 0, and the input period will be 0 days and
2160 seconds (36 minutes).

Input number of observation times in sequence
2000
Input initial time in sequence
input time in days and seconds (as integers)
0 0
Input period of obs in sequence in days and seconds
0 2160

The numbers 1 to 2000 will then be output by create_fixed_network_seq. Press return to accept the default
output name of obs_seq.in. The file suffix is .in as this will be the input to the next program, perfect_model_obs.

1
2

...
1998
1999
2000
What is output file name for sequence (<return> for obs_seq.in)

write_obs_seq opening formatted observation sequence file "obs_seq.in"

(continues on next page)

30 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

write_obs_seq closed observation sequence file "obs_seq.in"
create_fixed_network_seq Finished successfully.

6.9.6 Running perfect_model_obs

We are now ready to run perfect_model_obs, which will read in obs_seq.in and generate the observations as
well as create the “perfect” model trajectory. “Perfect” here is a synonym for the known “true” state which is used
to generate the observations. Once noise is added (to represent observational uncertainty), the output is written to
obs_seq.out.

Make sure you are in the DART/models/lorenz_63/work directory
./perfect_model_obs

The output should look like the following:

set_nml_output Echo NML values to log file only
initialize_mpi_utilities: Running single process

--
-------------- ASSIMILATE_THESE_OBS_TYPES --------------

RAW_STATE_VARIABLE
--
-------------- EVALUATE_THESE_OBS_TYPES --------------

none
--
---------- USE_PRECOMPUTED_FO_OBS_TYPES --------------

none
--

quality_control_mod: Will reject obs with Data QC larger than 3
quality_control_mod: No observation outlier threshold rejection will be done
perfect_main Model size = 3
perfect_read_restart: reading input state from file
perfect_main total number of obs in sequence is 6000
perfect_main number of qc values is 1

perfect_model_obs: Main evaluation loop, starting iteration 0
move_ahead Next assimilation window starts at: day= 0 sec= 0
move_ahead Next assimilation window ends at: day= 0 sec= 180
perfect_model_obs: Model does not need to run; data already at required time
perfect_model_obs: Ready to evaluate up to 3 observations

perfect_model_obs: Main evaluation loop, starting iteration 1
move_ahead Next assimilation window starts at: day= 0 sec= 1981
move_ahead Next assimilation window ends at: day= 0 sec= 2340
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to 3 observations

...

perfect_model_obs: Main evaluation loop, starting iteration 1999
move_ahead Next assimilation window starts at: day= 49 sec= 84061
move_ahead Next assimilation window ends at: day= 49 sec= 84420
perfect_model_obs: Ready to run model to advance data ahead in time
perfect_model_obs: Ready to evaluate up to 3 observations

(continues on next page)

6.9. Data assimilation in DART using the Lorenz 63 model 31

DART, Release 9.10.3

(continued from previous page)

perfect_model_obs: Main evaluation loop, starting iteration 2000
perfect_model_obs: No more obs to evaluate, exiting main loop
perfect_model_obs: End of main evaluation loop, starting cleanup
write_obs_seq opening formatted observation sequence file "obs_seq.out"
write_obs_seq closed observation sequence file "obs_seq.out"

You can now see the files true_state.nc, a netCDF file which has the perfect model state at all 2000 observation
times; obs_seq.out, an ASCII file which contains the 6000 observations (2000 times with 3 observations each)
of the true model state with noise added in; and perfect_output.nc, a netCDF file with the final true state that
could be used to “restart” the experiment from the final time (49.75 days in this case).

We can now see the relationship between obs_seq.in and obs_seq.out: obs_seq.in contains a “template”
of the desired observation locations and types, while obs_seq.out is a list of the actual observation values, in this
case generated by the perfect_model_obs program.

Important: create_obs_seq is used for this low-order model because there are no real observations for Lorenz
63. For systems that have real observations, DART provides a variety of observation converters available to convert
from native observation formats to the DART format. See Available observation converter programs for a list.

6.9.7 Running the filter

Now that obs_seq.out and true_state.nc have been prepared, DART can perform the actual data assimila-
tion. This will generate an ensemble of model states, use the ensemble to estimate the prior distribution, compare to
the “expected” observation of each member, and update the model state according to Bayes’ rule.

Make sure you are in the DART/models/lorenz_63/work directory ./filter

set_nml_output Echo NML values to log file only
initialize_mpi_utilities: Running single process

--
-------------- ASSIMILATE_THESE_OBS_TYPES --------------

RAW_STATE_VARIABLE
--
-------------- EVALUATE_THESE_OBS_TYPES --------------

none
--
---------- USE_PRECOMPUTED_FO_OBS_TYPES --------------

none
--

quality_control_mod: Will reject obs with Data QC larger than 3
quality_control_mod: No observation outlier threshold rejection will be done
assim_tools_init: Selected filter type is Ensemble Adjustment Kalman Filter (EAKF)
assim_tools_init: The cutoff namelist value is 1000000.000000
assim_tools_init: ... cutoff is the localization half-width parameter,
assim_tools_init: ... so the effective localization radius is 2000000.000000
filter_main: running with an ensemble size of 20
parse_stages_to_write: filter will write stage : preassim
parse_stages_to_write: filter will write stage : analysis
parse_stages_to_write: filter will write stage : output
set_member_file_metadata no file list given for stage "preassim" so using default
→˓names

(continues on next page)

32 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

set_member_file_metadata no file list given for stage "analysis" so using default
→˓names
Prior inflation: None
Posterior inflation: None
filter_main: Reading in initial condition/restart data for all ensemble members from
→˓file(s)

filter: Main assimilation loop, starting iteration 0
move_ahead Next assimilation window starts at: day= 0 sec= 0
move_ahead Next assimilation window ends at: day= 0 sec= 180
filter: Model does not need to run; data already at required time
filter: Ready to assimilate up to 3 observations
comp_cov_factor: Standard Gaspari Cohn localization selected
filter_assim: Processed 3 total observations

filter: Main assimilation loop, starting iteration 1
move_ahead Next assimilation window starts at: day= 0 sec= 21421
move_ahead Next assimilation window ends at: day= 0 sec= 21780
filter: Ready to run model to advance data ahead in time
filter: Ready to assimilate up to 3 observations
filter_assim: Processed 3 total observations
...

filter: Main assimilation loop, starting iteration 199
move_ahead Next assimilation window starts at: day= 49 sec= 64621
move_ahead Next assimilation window ends at: day= 49 sec= 64980
filter: Ready to run model to advance data ahead in time
filter: Ready to assimilate up to 3 observations
filter_assim: Processed 3 total observations

filter: Main assimilation loop, starting iteration 200
filter: No more obs to assimilate, exiting main loop
filter: End of main filter assimilation loop, starting cleanup
write_obs_seq opening formatted observation sequence file "obs_seq.final"
write_obs_seq closed observation sequence file "obs_seq.final"

Based on the default Lorenz 63 input.nml namelist for filter included in the DART repository, the assimilation will
have three stages:

1. The preassim stage, where the ensemble is updated by advancing the model. The filepreassim.nc, which
contains the pre-assimilation model trajectories for all the ensemble members, will be written.

2. The analysis stage, where the data assimilation is conducted. The post-assimilation model trajectories for all the
ensemble members will be written to analysis.nc

3. The output stage, which writes the file obs_seq.final containing the actual observations as assimilated
plus the ensemble forward-operator expected values and any quality-control values. This stage also writes the
filter_output.nc file containing the ensemble state from the final cycle, which could be used to restart
the experiment.

DART has now successfully assimilated our updated observations with a 6 minute model time step and assimilation
every 36 minutes. :tada:

6.9. Data assimilation in DART using the Lorenz 63 model 33

DART, Release 9.10.3

6.9.8 Verifying the nicer-looking results

You can now run the verification scripts (as in the section Verifying installation) in Matlab with the following com-
mands:

>> addpath ../../../diagnostics/matlab
>> plot_ens_time_series

Some additional commands to view the attractor from the ZY plane were used:

>> set(findall(gca, ‘Type’, ‘Line’),‘LineWidth’,2);
>> set(gca,‘FontSize’,18)
>> xlabel(‘x’)
>> ylabel(‘y’)
>> zlabel(‘z’)
>> view([90 0])

We can now see the following smooth Lorenz 63 true state and ensemble mean comparison with a 6 minute model
time step and assimilation every 36 minutes:

As you can see, the ensemble mean in red matches the true state almost exactly, although it took a number of assimi-
lation cycles before the blue ensemble mean was able to reach the red true state “attractor.”

You should now be able to tinker with the Lorenz 63 model and other models in DART. For more detailed information
on the theory of ensemble data assimilation, see the DART Tutorial. For more concrete information regarding DART’s

34 Chapter 6. References

DART, Release 9.10.3

algorithms and capabilities, see the next section The benefits of using DART . To add your own model to DART, see
Assimilation in a complex model. Finally, if you want to add your own observations to DART, see Adding your
observations to DART .

6.10 What is DART?

The Data Assimilation Research Testbed (DART) is an open-source community facility that provides software tools
for data assimilation research, development, and education. Using DART’s carefully engineered ensemble data as-
similation algorithms and diagnostic tools, atmospheric scientists, oceanographers, hydrologists, chemists, and other
geophysicists can construct state-of-the-art data assimilation systems with unprecedented ease.

In this section we will introduce DART in further detail. This includes:

1. The benefits of using DART

2. A brief history of DART

3. High-level data assimilation workflows in DART

4. DART’s design philosophy

5. Important capabilities of DART

6.11 The benefits of using DART

A common pitfall for graduate students and professionals alike is to look at the simplicity of data assimilation, in
particular ensemble data assimilation, and decide they can easily write their own DA system. Indeed, this is true.
After learning of the core algorithms, a talented programmer using their favorite language could write a functional DA
system in a manner of weeks if not days. However, he or she will soon find that while the core of DA systems are easy
to write, the more “real” the system needs to be, the more complex it will become. Writing a parallel DA system that
can efficiently utilize multiple cores with MPI is not straight-forward, and adding covariance localization, observation
operators, multiple models, and auxiliary tools such as quality control and pre-processing will quickly dwarf the
amount of core DA code, not to mention the headaches involved in supporting multiple computing environments,
compilers, etc.

DART employs a modular programming approach to apply an algorithm to move the underlying models toward a
state that is more consistent with information from a set of observations. Models may be swapped in and out, as can
different DA algorithms. The method requires running multiple instances of a model to generate an ensemble of states.
A forward operator appropriate for the type of observation being assimilated is applied to each of the states to generate
the model’s estimate of the observation.

DART remains the top choice for scientists, educators, and mathematicians seeking mature and robust ensemble DA
solutions without reinventing the wheel. Here are some of the many benefits of using DART:

1. DART is freely available, open source, and released under the Apache 2.0 License . In short this means that
you are granted a copyright license stating you are free to use, modify, and redistribute any derivative works
derived from the DART system provided that you maintain the license and copyright information. Of course,
we also ask that you credit DART in your publications, and kindly ask that you contribute your modifications
so that other users may benefit. See How should I cite DART? and How can I contribute to DART? for more
information.

2. DART is fully parallel and carefully engineered to run on systems ranging from single-core research comput-
ers to the top performing multicore supercomputers in the world. Writing scalable parallel code is arguably the
most difficult and time-consuming task in scientific computing today, but DART has already carefully imple-
mented and tested this project, and the code is available for you to use out-of-the-box. For more information on
how DART was written (and continues to be developed), see DART’s design philosophy.

6.10. What is DART? 35

https://www.apache.org/licenses/LICENSE-2.0

DART, Release 9.10.3

3. DART contains numerous tools that accelerate getting started on both research and “real-world” problems.
Multiple rigorously tested inflation, localization, perturbation, and other auxiliary data assimilation algorithms
are available for immediate use and testing. See Important capabilities of DART for more information.

4. DART makes adding a new model straightforward. A new model only needs to implement a list of (at most)
18 core functions or use the default behavior if applicable to take advantage of DART’s mature and robust DA
algorithms. A basic data assimilation system for a large model can be built in person-weeks, and comprehensive
systems have been built in a few months. See How do I run DART with my model? for more information.

5. DART makes it easy to add new observations in order to test their potential beneficial impact. Incorporat-
ing new observation types only requires creating a forward operator that computes the expected value of an
observation given a model’s state. See How do I add my observations to DART? for more information.

6. DART can be used to test new DA algorithms. Many such algorithms have been successfully implemented,
tested, and published using DART. This is not covered in this getting started guide as this is an “advanced user”
functionality, so for this purpose it is best to first get in touch with the DART team at dart @ ucar.edu to make
the process as smooth as possible.

7. Finally, and perhaps most importantly, DART has world-class support available from the DART team at
NCAR. A talented team of dedicated software engineers and data assimilation scientists work together to con-
tinually improve DART and support user needs. See the About page for more information about the DART
team.

6.12 A brief history of DART

The DART project was initiated in August 2001, and in 2003, the Data Assimilation Research Section (DAReS) was
officially formed at NCAR. In 2004, the first officially supported version of DART was released. Consistent version
control history is available back to 2005, making DART an extremely long-lived and well-supported software project.
Since 2004, there have been more than a dozen releases. The first release, Easter, began the trend of naming the major
releases after islands in alphabetical order in the following sequence:

36 Chapter 6. References

https://dart.ucar.edu/about/

DART, Release 9.10.3

Release Date Brief description
Easter 8 Mar 2004 Initial release
Fiji 29 Apr

2004
Enhanced portability; support for CAM and WRF

Guam 12 Aug
2004

New observation modules

Pre-Hawaii 20 Dec
2004

New filtering algorithms

Hawaii 28 Feb
2005

New filtering algorithms

DA Workshop
2005

13 Jun 2005 Tutorial, observation preprocessing

Pre-Iceland 20 Oct 2005 Huge expansion of real observation capability
Iceland 23 Nov

2005
Huge expansion of real observation capability

Post-Iceland 20 Jun 2006 Observation-space adaptive inflation
Pre-J 02 Oct 2006 Updated scalable filter algorithm
Jamaica 12 Apr

2007
Vertical localization, extensive MPI testing

Kodiak 30 Jun 2011 New obs types, new diagnostics, new utilities
Lanai 13 Dec

2013
Support for many new models, chemistry/aerosol types, new diagnostics, new
utilities

Manhattan 15 May
2017

Native netCDF support, better scaling/performance

In September 2009, DART was featured on the cover of the Bulletin of the American Meteorological Society (BAMS):

6.12. A brief history of DART 37

DART, Release 9.10.3

To access the issue, see the September 2009 issue here. To read the DART article directly see the article here.

38 Chapter 6. References

https://journals.ametsoc.org/view/journals/bams/90/9/1520-0477-90_9_fmi.xml
https://journals.ametsoc.org/doi/full/10.1175/2009BAMS2618.1

DART, Release 9.10.3

On the Publications page there are over 40 example publications that use DART, although there are many additional
publications using DART not listed. The seminal BAMS paper has over 400 citations according to Google Scholar.
The core algorithms used in DART have also been cited many more times. For example, the core EAKF algorithm
(Anderson 2001) used in DART has over 1500 citations according to Google scholar.

6.13 High-level data assimilation workflows in DART

In this section we present two high-level data assimilation workflows that show the relevant DART programs with their
inputs and outputs. These two workflows represent two different types of DA experiments typically run.

It is possible to run DART in Observation System Simulation Experiment (OSSE) mode. In OSSE mode, a perfect
“true” model trajectory is created, and synthetic observations are generated from the “truth” with added noise. This
is useful to test the theoretical capability of DA algorithms, observations, and/or models. In this document so far, we
have conducted only OSSEs.

It is also possible to run DART in a more realistic Observation System Experiment (OSE) mode. In an OSE, there
is no perfect model truth, which is similar to real-world situations where the true values of the model state will likely
never be perfectly known. The observations (which again themselves are noisy and imperfect) are the only way to
get a look at the “truth” that is estimated by the model state. In OSE mode, the user must provide observations to
DART, which are usually from real-world observation systems (which come with all of their own idiosyncrasies and
imperfections). DART can help generate ensemble perturbations, or the user can specify their own.

The filtering aspect is the same for both OSSE and OSE experiments, and many of the same tools for data assimilation
are available in OSSE and OSE modes. The core difference, therefore, is the existence of the perfect model “truth.”

For a simple model such as Lorenz 63 investigated above, DART can typically advance the model time explicitly
through a Fortran function call, allowing the filtering to compute all necessary time steps in sequence without exiting
the DART program. However, for larger models (or those that DART cannot communicate with through Fortran), a
shell-script may be necessary to run the model and advance the time forward. For the largest models, the model state
is typically advanced in parallel over many computing nodes on a supercomputer. In this more complex case, DART
only considers one step at a time in order to combine the observations and the prior ensemble to find the posterior
analysis, which will then be used to restart the model and continue the forecast.

For efficiency reasons, data from models with large states may be written in separate files for every ensemble member
at every stage of the assimilation process. Data from models with small states may be conveniently be written as
variables inside a single netCDF file.

6.13. High-level data assimilation workflows in DART 39

https://dart.ucar.edu/publications/
http://scholar.google.com
https://journals.ametsoc.org/doi/full/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2

DART, Release 9.10.3

6.13.1 Simple model workflow with an OSSE

The first example DA workflow is for a model that can be advanced by DART with all ensemble members stored in a
single file running an OSSE. Details of the executables mentioned below can be found in Programs included in DART .

40 Chapter 6. References

DART, Release 9.10.3

6.13. High-level data assimilation workflows in DART 41

DART, Release 9.10.3

As shown, the program preprocess takes the input.nml namelist file and generates Fortran code for the observations.
This code, along with the namelist, is used by all subsequent programs. create_obs_seq is used to define a set of
observations in set_def.out, which can be replicated through the program create_fixed_network_seq to create a
obs_seq.in file. There are two inputs to perfect_model_obs: the obs_seq.in file and perfect_input.nc
(which here is generated by perfect_input.cdl via ncgen). obs_seq.in provides perfect_model_obs with
the observation template (i.e. the location and type of observations), while perfect_input.nc provides the initial
state that will be used to advance the model. On output, the “perfect” model state at the final time, which can be used
as a restart for running this procedure again, will be written to perfect_output.nc (i.e. perfect_output.
nc could be renamed to perfect_input.nc to extend the OSSE), while the entire state trajectory will be stored
in true_state.nc. The noisy synthetic observations and noise-free truth (for verification only) will be stored in
obs_seq.out. The observation values of obs_seq.out will be input to filter along with the filter_input.
nc (generated by filter_input.cdl via ncgen), which contains the initial state for all the ensemble members.
The output of filter is preassim.nc, which contains the prior state for all the ensemble members just before applying
DA (so including prior inflation if it is being used); analysis.nc, which contains the posterior state for all the
ensemble members after assimilation (and including inflation if it is being used); filter_output.nc, which is
the final posterior that could be used to restart the OSSE process; and obs_seq.final, which adds the forward-
calculated expected values h(x) for each observation. The obs_seq.final file can be analyzed and binned by the
obs_diag program, producing the file obs_diag_output.nc which can be used for diagnostics.

6.13.2 Complex model workflow with an OSE

The second workflow is for a complex model with all ensemble members stored in separate files running an OSE. In
this case, DART will only operate on one model output at a time. External programs will advance the model states,
generate the observations, and call DART again. Details of DART’s internal programs, which are mentioned below,
can be found in Programs included in DART . The following diagram in shows the high-level DART flow in this case:

42 Chapter 6. References

DART, Release 9.10.3

Within a single time step, DART will use the filter program to run the “Assimilate” portion of the above diagram and/or
the “diagnostics” as follows:

6.13. High-level data assimilation workflows in DART 43

DART, Release 9.10.3

The single time-step workflow for an OSE experiment within a single step is slightly simpler than the OSSE equivalent
as DART handles less of the process. Like the OSSE case, the namelist and preprocessed observation source files are
input to all other DART programs. In the OSE case, however, the user must provide an obs converter that will
output a obs_seq.out file. There are many DART utilities to make this process easier, but for the OSE case

44 Chapter 6. References

DART, Release 9.10.3

the obs_seq.out file is ultimately the user’s responsibility (to avoid duplicating effort, see the list of existing
observation types in Important capabilities of DART). Here, the option to run with one file for each ensemble member
is demonstrated. There are k ensemble members used as input to filter, which also outputs k members for the prior and
posterior. The obs_seq.final and obs_diag_output.nc are used in the same way as in the OSSE case. The
names of the input files and output files can be controlled by the user through the filter_input_list.txt and
filter_output_list.txt files, which can contain the user-specified list of the ensemble input or output files,
respectively.

Another view of the stages of filter is shown in the following diagram:

As shown here, an ensemble forecast is stored in forecast.nc , to which prior inflation can be applied and stored
in preassim.nc. Once assimilation is applied, the output can be stored in postassim.nc, and finally if posterior
inflation is applied, the final analysis can be written in analysis.nc . The model forecast will start from the analysis
to advance the model in order to start the cycle over again.

Note: The “forecast” will be the same as the “preassim” if prior inflation is not used, and the “postassim” will be the
same as the “analysis” if posterior inflation is not used. The stages_to_write variable in the “&filter_nml” section of
the input.nml namelist controls which stages are output to file. For a multi-file case, the potential stages_to_write
are “input, forecast, preassim, postassim, analysis, output” while for a single file the same stages are available with the
exception of “input.”

Note: In the above cycling diagram, there will actually be one file per member, which is not shown here in order to
simplify the process.

Important: The decision to store ensemble members as separate files and whether to run an OSSE or OSE are
independent. An OSSE can be run with multiple files and an OSE can be run with all ensemble members stored in a

6.13. High-level data assimilation workflows in DART 45

DART, Release 9.10.3

single file.

6.14 DART’s design philosophy

In this section we cover DART’s design philosophy. Understanding this philosophy will make it easier to get started
with DART, as you will quickly be able to predict how and where to find a particular feature of DART.

The main design goals of DART are to:

1. Create a system that is coherent and easy to understand. DART is carefully engineered to have self-contained
programs that each do one job and do it well. Likewise, DART just does DA, and does it well.

2. Release source code that is as compatible as possible with the widest possible number of systems. The code
is written in Fortran 90, which is one of the lowest possible common denominators available on virtually all
systems. See the section Why Fortran? if this seems like a questionable decision to you in this modern world of
Matlab, C++, Java, Python, Go, etc.

3. Strive to limit library dependencies. There is only one required dependency of DART: netCDF. Many modern
systems have 10s or 100s of dependencies, each of which introduces complexity and the potential for bugs, lack
of support, broken backwards compatibility, etc. If you’ve ever been frustrated struggling to debug relationships
to packages you’ve never even heard of, you are likely to appreciate this DART design goal. Of course, there is
nothing to stop you from using whatever dependencies you require, for example, to collect observations for the
obs_seq.out in an OSE case, but DART by design will remain separate from that dependency for you and
all other users.

4. Only compile the code you need. If you are only using a single model for your experiments, there is no reason
to compile or even touch code for another model you never plan to use. Likewise, if you are not using a particular
observation operator in your experiment, there is also no need to compile it or let it cause you headaches. DART
recognizes this fact, and through the use of the mkmf utility and the preprocess program, only what you need
will ever be compiled.

5. Use explicit interfaces to enforce contract programming. In practice this means that it is easy to add new
models, observations operators, data assimilation algorithms, etc. as long as they can implement the required
interface. This approach allows all of the benefits of object-oriented programming without the added complexity
for the end user.

6. Provide results that are reliable and meaningful. The DART algorithms are carefully tested and maintained in
order to be quickly published along with appropriate analysis. In a world of chaos, being able to quantify and
shrink forecast uncertainty via data assimilation in a reliable way is a valuable tool for research and operations
and everything in between.

In short, DART is designed at each step to make it as easy as possible for users to get up and running with their models,
observations, and possibly even data assimilation algorithm advances.

6.14.1 Why Fortran?

Many users new to scientific computing such as graduate students raise their eyebrows when they first hear that a
program uses Fortran for active development. Fortran is considered by many outside (and some inside) of the scientific
computing community to be a dinosaur, old and decrepit, and not worthy of serious attention. However, this view is
short-sighted. There is a Chinese idiom , which means “to love the new and loathe the old,” indicating that just because
something is old does not automatically make it bad.

While Fortran does have some outdated features that are far removed from the mainstream of software engineering
(such as implicit typing by first initial of the variable), these can all be disabled, and the stylistic rules for easy-to-read,
modern Fortran are always followed by DART. On the other hand, Fortran has many other attractive features that make

46 Chapter 6. References

DART, Release 9.10.3

it a top choice for modern scientific computing. In particular, Fortran offers vectorization of matrices that make it
possible to operate on entire elements of an array at once or perform linear algebra operations on multi-dimensional
arrays. With or without the use of the colon operator (:), Fortran multi-dimensional array support makes mathematical
algorithms easier to read than the equivalent code written in many other languages. This highly intuitive Fortran syntax
was adopted by Matlab, NumPy, and other languages. Furthermore, for parallel programs using distributed memory in
MPI, Fortran remains a top choice along with C and C++ when considering performance. Python code, for example,
remains difficult to parallelize via MPI, not to mention the difficulties in supporting Python 2, Python 3, pip, anaconda,
virtualenv, . . .

Altogether, for large mathematically-oriented programs that need to be parallel, Fortran remains a top choice, espe-
cially considering the needs of DART:

1. DART does data assimilation, which is primarily mathematically-oriented operations on large data sets.

2. DART needs to be parallel with MPI to run on modern supercomputers.

3. Many users of DART are not software development professionals and appreciate straightforward and easily
understandable code.

4. DART source distributions should be easy to compile and run reliably on many different systems. In practice
this means avoiding software features that might not be supported on all compilers or systems.

With these considerations in mind, the choice of Fortran for DART development is clear. DART remains highly
successful by keeping things simple and not fixing what is not broken even if it isn’t shiny and new.

6.15 Important capabilities of DART

In this section we discuss the capabilities of DART that may be of interest to the user. This is a partial list of all of the
functionality that is available in DART, and additional capabilities and improvements are continually being added.

As mentioned above, DART allows for both OSSE and OSE systems of models large and small. This allows users to
test both theoretical limits of DA, models, and observations with idealized experiments as well as to improve actual
real-world forecasts of chaotic systems with real observations.

6.15.1 Models supported by DART

A full list of models can be found here, but in brief the models supported by DART include:

6.15. Important capabilities of DART 47

DART, Release 9.10.3

Model Latest version Model Latest version
lorenz_63 Manhattan lorenz_84 Manhattan
lorenz_96 Manhattan lorenz_96_2scale Manhattan
lorenz_04 Manhattan simple_advection Manhattan
bgrid_solo Manhattan WRF Manhattan
MPAS Manhattan ATM Manhattan
ROMS Manhattan CESM Manhattan
CAM-FV Manhattan CAM-CHEM Manhattan
WACCM Manhattan WACCM-X Manhattan
CICE Manhattan CM1 Manhattan
FESOM Manhattan NOAH-MP Manhattan
WRF-Hydro Manhattan GCCOM Lanai
LMDZ Lanai MITgcm_ocean Lanai
NAAPS Lanai AM2 Lanai
CAM-SE Lanai CLM Lanai
COAMPS Lanai COSMO Lanai
Dynamo Lanai GITM Lanai
Ikeda Lanai JULES Lanai
MPAS_ocean Lanai null_model Lanai
openggcm Lanai PARFLOW Lanai
sqg Lanai TIE-GCM Lanai
WRF-CHEM Lanai ECHAM Prior to Lanai
PBL_1d Prior to Lanai MITgcm_annulus Prior to Lanai
forced_barot Prior to Lanai pe2lyr Prior to Lanai
ROSE Prior to Lanai CABLE Prior to Lanai

The models listed as “Prior to Lanai” will take some additional work to integrate with a supported version of DART;
please contact the dart @ ucar.edu team for more information. The versions listed as “Lanai” will be ported to the
Manhattan version of DART depending on the needs of the user community as well as the availablity of resources on
the DART team.

6.15.2 Observation converters provided by DART

Given a way to compute the expected observation value from the model state, in theory any and all observations
can be assimilated by DART through the obs_seq.out file. In practice this means a user-defined observation
converter is required. DART provides many observation converters to make this process easier for the user. Under the
directory DART/observations/obs_converters there are multiple subdirectories, each of which has at least
one observation converter. The list of these directories is as follows:

Observation Directory Format
Atmospheric Infrared Sounder satellite retrievals AIRS HDF-EOS
Advanced Microwave Sounding Unit brightness temperatures AIRS netCDF
Aviso: satellite derived sea surface height Aviso netCDF
Level 4 Flux Tower data from AmeriFlux Ameriflux Comma-separated text
Level 2 soil moisture from COSMOS COSMOS Fixed-width text
Doppler wind lidar DWL ASCII text
GPS retrievals of precipitable water GPSPW netCDF
GSI observation file GSI2DART Fortran binary
Global Temperature-Salinity Profile Program (GTSPP) GTSPP netCDF
Meteorological Assimilation Data Ingest System (MADIS) MADIS netCDF

continues on next page

48 Chapter 6. References

https://airs.jpl.nasa.gov/
https://aqua.nasa.gov/content/amsu
https://www.aviso.altimetry.fr/en/home.html
http://ameriflux.lbl.gov/
http://cosmos.hwr.arizona.edu/
http://www.nodc.noaa.gov/GTSPP/index.html
http://madis.noaa.gov/

DART, Release 9.10.3

Table 1 – continued from previous page
Observation Directory Format
MIDAS ionospheric obs MIDAS netCDF
MODIS satellite retrievals MODIS Comma-separated text
NCEP PREPBUFR NCEP/prep_bufr PREPBUFR
NCEP ASCII observations NCEP/ascii_to_obs NCEP text files
ROMS verification observations ROMS netCDF
Satellite winds from SSEC SSEC ASCII text
Sea surface temperature SST netCDF
Special Sensor Ultraviolet Spectrographic Imager (SSUSI) retrievals SSUSI netCDF
World Ocean Database (WOD) WOD World Ocean Database packed ASCII
National Snow and Ice Data Center sea ice obs cice Binary sea ice
VTEC Madrigal upper atmospheric obs gnd_gps_vtec ASCII text
GPS obs from COSMIC gps netCDF
Oklahoma Mesonet MDF obs ok_mesonet Oklahoma Mesonet MDF files
QuikSCAT scatterometer winds quikscat HDF 4
Radar reflectivity/radial velocity obs Radar WSR-88D (NEXRAD)
MODIS Snowcover Fraction obs snow General text
Text file (e.g. spreadsheet) obs Text General text
Total precipitable water from AQUA tpw HDF-EOS
Automated Tropical Cyclone Forecast (ATCF) obs Tropical Cyclones Fixed width text
LITTLE_R obs var little-r
MM5 3D-VAR radar obs var MM5 3D-VAR 2.0 Radar data files

6.15.3 Data assimilation algorithms available in DART

DART allows users to test the impact of using multiple different types of algorithms for filtering, inflation/deflation,
and covariance localization.

DART offers numerous filter algorithms. These determine how the posterior distribution is updated based on the
observations and the prior ensemble. The following table lists the filters supported in DART along with their type (set
by filter_kind in input.nml under the “assim_tools_nml” section):

Filter
#

Filter Name References

1 EAKF (Ensemble Adjustment Kalman
Filter)

Anderson, J. L., 2001.1 Anderson, J. L., 2003.2 Anderson,
J., Collins, N., 2007.3

2 ENKF (Ensemble Kalman Filter) Evensen, G., 2003.4

3 Kernel filter
4 Observation Space Particle filter
5 Random draw from posterior None. IMPORTANT: (contact dart @ ucar.edu before using)
6 Deterministic draw from posterior with

fixed kurtosis
None. IMPORTANT: (contact dart @ ucar.edu before using)

7 Boxcar kernel filter
8 Rank Histogram filter Anderson, J. L., 2010.5

9 Particle filter Poterjoy, J., 2016.6

1 Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Monthly Weather Review, 129, 2884-2903.
doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

2 Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Monthly Weather Review, 131, 634-642. doi:10.1175/1520-
0493(2003)131<0634:ALLSFF>2.0.CO;2

3 Anderson, J., Collins, N., 2007: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation. Journal of Atmospheric and

6.15. Important capabilities of DART 49

https://www.sciencedirect.com/science/article/pii/S0273117712001135
https://modis.gsfc.nasa.gov/
https://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/document.htm
https://www.myroms.org/
https://www.ssec.wisc.edu/data/
https://ssusi.jhuapl.edu/
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html
http://nsidc.org/
http://millstonehill.haystack.mit.edu/
http://www.cosmic.ucar.edu/
http://www.mesonet.org/
http://winds.jpl.nasa.gov/missions/quikscat/index.cfm
https://modis.gsfc.nasa.gov/data/dataprod/mod10.php
https://www.nrlmry.navy.mil/atcf_web/
http://www2.mmm.ucar.edu/mm5/On-Line-Tutorial/little_r/little_r.html
http://www2.mmm.ucar.edu/mm5/
https://doi.org/10.1175/1520-0493(2001)129\T1\textless {}2884:AEAKFF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131\T1\textless {}0634:ALLSFF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0493(2003)131\T1\textless {}0634:ALLSFF\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

DART also has several inflation algorithms available for both prior (the first value in the namelist) and posterior (the
second value in the namelist). The following table lists the inflation “flavors” supported in DART along with their type
number (set by inf_flavor in input.nml under the “filter_nml” section):

Flavor # Inflation flavor name References
0 No inflation n/a
1 (Not Supported) n/a
2 Spatially-varying state-space (Gaussian) Anderson, J. L., 2009.7

3 Spatially-fixed state-space (Gaussian) Anderson, J. L., 2007.8

4 Relaxation to prior spread (posterior inflation only) Whitaker, J.S. and T.M. Hamill, 2012.9

5 Enhanced spatially-varying state-space (inverse gamma) El Gharamti M., 2018.10

DART has the ability to correct for sampling errors in the regression caused by finite ensemble sizes. DART’s sam-
pling error correction algorithm (and localization algorithm) is described in Anderson, J.L., 201211 Sampling error
correction can be turned on or off via the sampling_error_correction variable in the input.nml under the “as-
sim_tools_nml” section.

The following covariance localization options are available (set by select_localization in input.nml under the
“cov_cutoff_nml” section):

Loc # Localization type References
1 Gaspari-Cohn eq. 4.10 Gaspari, G. and Cohn, S. E., 1999.12

2 Boxcar None
3 Ramped boxcar None

The following image depicts all three of these options:

Oceanic Technology, 24, 1452-1463. doi:10.1175/JTECH2049.1
4 Evensen, G., 2003: The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dynamics. 53(4), 343–367.

doi:10.1007%2Fs10236-003-0036-9
5 Anderson, J. L., 2010: A Non-Gaussian Ensemble Filter Update for Data Assimilation. Monthly Weather Review, 139, 4186-4198.

doi:10.1175/2010MWR3253.1
6 Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Monthly Weather Review, 144 59-76. doi:10.1175/MWR-

D-15-0163.1
7 Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A, 61, 72-83,

doi:10.1111/j.1600-0870.2008.00361.x
8 Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A, 59, 210-224,

doi:10.1111/j.1600-0870.2006.00216.x
9 Whitaker, J.S. and T.M. Hamill, 2012: Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. Monthly Weather

Review, 140, 3078–3089, doi:10.1175/MWR-D-11-00276.1
10 El Gharamti M., 2018: Enhanced Adaptive Inflation Algorithm for Ensemble Filters. Monthly Weather Review, 2, 623-640, doi:10.1175/MWR-

D-17-0187.1
11 Anderson, J.L., 2012: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation. Monthly Weather Review,

140, 2359–2371. doi:10.1175/MWR-D-11-00013.1
12 Gaspari, G. and Cohn, S. E., 1999: Construction of correlation functions in two and three dimensions. Quarterly Journal of the Royal

Meteorological Society, 125, 723-757. doi:10.1002/qj.49712555417

50 Chapter 6. References

https://doi.org/10.1175/JTECH2049.1
https://doi.org/10.1007%2Fs10236-003-0036-9
https://doi.org/10.1175/2010MWR3253.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://doi.org/10.1175/MWR-D-15-0163.1
https://onlinelibrary.wiley.com/doi/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1111/j.1600-0870.2006.00216.x
https://doi.org/10.1175/MWR-D-11-00276.1
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-11-00013.1
https://doi.org/10.1002/qj.49712555417

DART, Release 9.10.3

References

6.16 Working with collaborators on porting new models

The DART team often collaborates with other groups to help write the interface code to a new model. The most
efficient way to get started is to meet with DAReS staff either virtually or in person, to discuss what is involved in
supporting a different model.

If part of your team isn’t familiar with data assimilation yet, you should review the introductory material in this
documentation and and also look at work through the concepts in the DART Tutorial.

6.16. Working with collaborators on porting new models 51

DART, Release 9.10.3

6.16.1 Goals of using DART

DART is the Data Assimilation Research Testbed. It is a collection of tools and routines and scripts that allow users
to built custom solutions and explore a variety of DA related efforts. It is not a turnkey system; it must be built before
use and is often customized based on needs and goals.

DART is often used for the following types of projects:

• Learning about Data Assimilation (DA)

• Using DART with an existing model and supported observations

• Adding a DART interface to a new model

• Using new observations with DART in an existing model

• Using both a new model and new observations with DART

• Using DART to teach DA

Everything on this “possible goals” list except adding support for a new model can generally be done by a single user
with minimal help from the DART team. Therefore this discussion focuses only on adding a new model to DART.

6.16.2 Should I consider using DART?

DART is an ensemble-based DA system. It makes multiple runs of a model with slightly different inputs and uses the
statistical distribution of the results to decide how to adjust the model state to be more consistent with the observations.

The advantage of ensemble systems is that no changes to the model itself are required. The disadvantage is that
multiple runs of the model are needed and this can be computationally expensive.

Simple models can be added to DART with a single person effort, but larger, more complex models can require multiple
person-months with support from the DART team to add the interfaces and scripts needed to perform a large-scale DA
experiment.

The DART code is in Fortran. The supporting scripts and tools are a mix of shell scripts and python. The model can
be written in any language; it will only be run and the input and output files will be used by DART.

6.16.3 Things to discuss before beginning

Is your model appropriate for any kind of DA?

If your model isn’t chaotic, you don’t need data assimilation. In non-chaotic models, you can improve your predictions
by running the model, examining the difference between the prediction and the observations, inverting the equations
inside the model to compute how different inputs would have produced outputs closer to the observations.

Chaotic models do not have a simple relationship between inputs and outputs. There are internal feedbacks and non-
linear behaviors that make it difficult to adjust the inputs to make the outputs better match the observations.

52 Chapter 6. References

DART, Release 9.10.3

What is your model state?

“Model state” has a very specific definition that can be the source of much confusion if someone running a model has
not thought about DA before. Formally it is the minimal set of variables that must be saved when a model stops so it
can be restarted again exactly.

At first glance this means all the variables on the right side of the equals sign for the governing equations of the system.
However many models which have not been designed with DA in mind may have no clear time when all parts of the
model are at a consistent time. e.g. some variables may be 1/2 timestep ahead or behind others. Some derived variables
may be expensive to compute and so are precomputed and stored and not recomputed. If the DA process changes the
state variables all derived variables must be recomputed before proceeding.

Restart files often store many more variables than the minimal set needed to restart the model. Often other variables
are used in diagnostic routines or are of interest on their own. Generally these are not considered part of the model
state.

How is your model execution controlled?

Generally larger and more complex models have an environment they are expecting to run in/with. e.g. scripts to
control the execution parameters, or input parameter files; how many processors are used in a parallel system, how the
tasks are distributed over the hardware; how long does the execution run, in model time, and what variables are written
to the output files.

For DA, at a minimum there must be a way to control how long the model runs before it writes out the results and
exits.

For large models, the DA filter process is a large parallel program generally requiring a multi-processor supercomputer
or cluster. Many models themselves are large parallel programs, so there can be issues with how the switch between
model and DA process is done.

New or adjusted scripting is generally required to include the DA process in the overall execution flow.

Cycling with a DA system

The DA process is generally a cycle of running the model for a certain amount of model time, then running the DA
filter to adjust the model state before continuing.

These two steps happen over and over as observations are available to guide the adjustments to the model state.

Models may be written with the assumption that startup costs are only done once and then the model runs for a long
period of time. When used with DA models are generally started and stopped after running a relatively short amount
of model time. If model startup time is long this can result in unacceptably slow performance.

A small amount of round-off error is often introduced when a model writes restart files before stopping. So running a
model N timesteps forward vs. running N/2, stopping, writing restart files, starting, reading restart files, and finishing
the last N/2 timesteps will may not result in identical values. Large changes suggest that the model is not a good
candidate for a cycling DA system.

The goal is to minimize the differences. This can require small or large changes to make the model behave as expected
with repeated starting and stopping.

Some models include external forcing, for example boundary conditions from a separate model. If cycling the forcing
files may need to be updated periodically outside of the DA system.

6.16. Working with collaborators on porting new models 53

DART, Release 9.10.3

What coordinate system is used by your model?

Coordinate systems use a series of numbers to describe the relationship in space between parts of the model state
and where observations are located. In Earth-system models, often a latitude-longitude-vertical coordinate system is
used. X,Y,Z Cartesian coordinates are also used to describe 3D space. Other options include cyclindrical or spherical
coordinates, and unit-line, -square or -cube coordinates with cyclical boundaries.

Only a single coordinate system can be selected and it applies to both the model state locations as well as the observa-
tions.

If the model coordinate system is based on some other space it may be necessary to transform it into physical coordi-
nates before running DA. For example, some models compute in spectral space and the output must be translated into
a physical space before DA can be done.

What file format is used for model restart files?

DART reads and writes NetCDF file format. Many earth-system models already use this format. If the model does
not, converter programs from the native format to NetCDF and back are needed. NetCDF is a self-describing format
with metadata that allows DART to read and process model data without additional configuration files.

What quantities are in the model state?

DART defines a “Quantity” as the fundamental physical object a value is measuring. Examples are Temperature,
Pressure, Salinity, etc. Each value in a model state must be associated with a defined quantity.

What observations are you intending to assimilate?

Any observation you intend to assimilate requires a method to compute an “expected value” based on the model state.
Often the observation is of the same quantity as exists in the model state, so computing the expected value is a direct
process.

Other times the expected value is a function of quantities in the model state, and code called a “forward operator” uses
one or more quantities from the model state and computes the expected value.

If the model state does not contain quantities that are needed to compute an expected value, auxiliary data values can
be read and used to compute the expected value. But if the expected value cannot be computed or is not in some way
a function of the model state, the observations cannot be assimilated.

How are you going to generate your initial ensemble?

Most models don’t have an existing ensemble of states ready for ingestion into an ensemble DA system. Options for
generating the initial ensemble include adding random perturbations to a single variable in a single state, perturbing
forcing variables differently for each ensemble member, or perturbing the entire state.

For models which have a lot of error growth it may be enough to add a very small amount of noise to a single variable
in the state to generate an ensemble of states and then run them forward in time with the model to generate states
which have sufficient differences.

For models with slower error growth, larger perturbations may be needed, a longer model advance time before starting
assimilation, or perturbations of forcing or boundary files may be needed.

The goal is to generate a set of model states which are different but contain internally-consistent values.

An ensemble of states without sufficient differences (spread) will reject assimilating observations.

54 Chapter 6. References

DART, Release 9.10.3

6.16.4 What code is required to interface a model with DART?

There is a single FORTRAN module that hides the model details from the rest of the DART system. Generally the
routines which require the most work are the interpolation routine, followed by the metadata routine and the “get
close” localization routines.

Interpolation

Given an observation quantity and location, the model interface routines must return an array of values, one for each
ensemble member. The values must be the best estimate of what a real instrument would return if the real state of the
system were each of the ensemble values.

For a regular grid this can be computed fairly simply with routines already provided in the DART system. It involves
locating the grid values that enclose the observation location, and doing bi- or tri-linear interpolation to the actual
location.

However, many models have non-regular grid, especially in the vertical coordinates for an earth-system-based model.
Or the grid can be an irregular mesh or deformed mesh. It may take searching or transforms to identify the closest
values in the model state to use for interpolation.

Metadata

Given an offset into the model state, the model interface routines must return the location in the selected coordinate
system, and the quantity at that offset.

There are routines provided which simplify this for regular or deformed grids, so this generally is not too complex but
may require additional arrays for irregular grids or unstructured grids.

Localization

DART bases the impact of observations on the model state on the correlation between the array of predicted observation
values, the actual observation value and error, and the array of model state values.

In practice observations are only correlated with model state values “close” to the observation. Spurrious correlations
can occur which degrade the results after assimilation. Also there are efficiency gains if only parts of the model state
which are “close” to the observation are processed.

DART includes routines which can compute what part of the state are close to a given observation. However some
models have special considerations for whether they want to control the impact of observations on parts of the model
state and this can be adjusted based on code added to the model-specific parts of getting close observations and model
state.

Vertical issues

Most Earth System models use Latitude and Longitude for horizontal coordinates or can generate them if needed
(e.g. spectral models can transform their state into Lat/Lon coords). But often vertical coordinates pose additional
complications.

If the model and the observations both use the same coordinates for vertical, e.g. pressure or height, then there are
no need for conversion routines. But some models use terrain-following coordinates, or a mix of pressure and terrain
coordinates. Observation vertical locations can be reported in height or in pressure.

Additionally, if vertical localization is to be done in a different coordinate than the model or observations (e.g. scale
height), then conversion routines are needed.

6.16. Working with collaborators on porting new models 55

DART, Release 9.10.3

The interface code may need to read in additional arrays from the model in order to convert the vertical coordinates
accurately.

During the run of filter there are two options for when vertical conversion is done: all at the start, or on demand. If
the observations to be assimilated are expected to impact all or almost all of the state, doing all vertical conversion
at the start is more efficient. If the observations are expected to impact only a small percentage of the state variables
then doing it on demand is more efficient. The options here are namelist selectable at runtime and the impact on total
runtime can be easily measured and compared.

6.16.5 Reuse code when possible

The models/template directory has files that can be used to start porting code to support a new model, but we
also recommend looking at the existing supported models and reusing code from them if possible. Models with similar
grid types or vertical coordiates are good candidates.

6.17 Assimilation in a complex model

6.17.1 Introduction

Running a successful assimilation takes careful diagnostic work and experiment iterations to find the best settings for
your specific case.

The basic Kalman filter can be coded in only a handful of lines. The difficulty in getting an assimilation system
working properly involves making the right choices to compensate for sampling errors, model bias, observation error,
lack of model forecast divergence, variations in observation density in space and time, random correlations, etc. There
are tools built into DART to deal with most of these problems but it takes careful work to apply them correctly.

6.17.2 Your first attempt

If you are adding a new model or a new observation type, you should assimilate exactly one observation, with no
model advance, with inflation turned off, with a large cutoff, and with the outlier threshold off (see below for how to
set these namelist items).

Run an assimilation. Look at the obs_seq.final file to see what the forward operator computed. Use ncdiff to dif-
ference the preassim_mean.nc and postassim_mean.nc (or output_mean.nc) diagnostic NetCDF files
and look at the changes (the “innovations”) in the various model fields. Is it in the right location for that observation?
Does it have a reasonable value?

Then assimilate a group of observations and check the results carefully. Run the observation diagnostics and look at
the total error and spread. Look carefully at the number of observations being assimilated compared to how many are
available.

Assimilations that are not working can give good looking statistics if they reject all but the few observations that happen
to match the current state. The errors should grow as the model advances and then shrink when new observations are
assimilated, so a timeseries plot of the RMSE should show a sawtooth pattern. The initial error entirely depends on
the match between the initial ensemble and the observations and may be large but it should decrease and then reach a
roughly stable level. The ensemble spread should ultimately remain relatively steady, at a value around the expected
observation error level. Once you believe you have a working assimilation, this will be your baseline case.

If the ensemble spread is too small, several of the DART facilities described below are intended to compensate for
ensemble members getting too close to each other. Then one by one enable or tune each of the items below, checking
each time to see what is the effect on the results.

56 Chapter 6. References

DART, Release 9.10.3

6.17.3 Next attempts

High-level data assimilation workflows gives an overview of a variety of complete assimilation experiments, including
the programs which need to be run and their input and output.

6.17.4 Important features of assimilations

Suggestions for the most common namelist settings and features built into DART for running a successful assimilation
include:

Ensemble size

In practice, ensemble sizes between 20 and 100 seem to work best. Fewer than 20-30 members leads to statistical
errors which are too large. More than 100 members takes longer to run with very little benefit, and eventually the
results get worse again. Often the limit on the number of members is based on the size of the model since you have
to run N copies of the model each time you move forward in time. If you can, start with 50-60 members and then
experiment with fewer or more once you have a set of baseline results to compare it with. The namelist setting for
ensemble size is &filter_nml :: ens_size

Localization

There are two main advantages to using localization. One is it avoids an observation impacting unrelated state variables
because of spurious correlations. The other is that, especially for large models, it improves run-time performance
because only points within the localization radius need to be considered. Because of the way the parallelization was
implemented in DART, localization was easy to add and using it usually results in a very large performance gain. See
here for a discussion of localization-related namelist items.

Inflation

Since the filter is run with a number of members which is usually small compared to the number of degrees of freedom
of the model (i.e. the size of the state vector or the number of EOFs needed to characterize the variability), the model
uncertainty is under-represented. Other sources of error and uncertainty are not represented at all. These factors lead
to the ensemble being ‘over-confident’, or having too little spread. More observations leads to more over-confidence.
This characteristic can worsen with time, leading to ensemble collapse to a single solution. Inflation increases the
spread of the members in a systematic way to overcome this problem. There are several sophisticated options on
inflation, including spatial and temporal adaptive and damping options, which help deal with observations which vary
in density over time and location. See Inflation for a discussion of inflation-related namelist items.

Outlier rejection

Outlier rejection can be used to avoid bad observations (ones where the value was recorded in error or the processing
has an error and a non-physical value was generated). It also avoids observations which have accurate values but the
mean of the ensemble members is so far from the observation value that assimilating it would result in unacceptably
large increments that might destablize the model run. If the difference between the observation and the prior ensemble
mean is more than N standard deviations from the square root of the sum of the prior ensemble and observation error
variance, the observation will be rejected. The namelist setting for the number of standard deviations to include is
&filter_nml :: outlier_threshold and we typically suggest starting with a value of 3.0.

6.17. Assimilation in a complex model 57

../assimilation_code/modules/assimilation/assim_tools_mod.html#Localization

DART, Release 9.10.3

Sampling error

For small ensemble sizes a table of expected statistical error distributions can be generated before running
DART. Corrections accounting for these errors are applied during the assimilation to increase the ensemble spread
which can improve the assimilation results. The namelist item to enable this option is &assim_tools_nml
:: sampling_error_correction. Additionally you will need to have the precomputed correction file
sampling_error_correction_table.nc, in the run directory. See the description of the namelist item in
the &assim_tools_nml namelist, and PROGRAM gen_sampling_err_table for instructions on where to find (or how to
generate) the auxiliary file needed by this code. See Anderson (2011).

Free run/forecast after assimilation

Separate scripting can be done to support forecasts starting from the analyzed model states. After filter exits, the
models can be run freely (with no assimilated data) further forward in time using one or more of the last updated
model states from filter. Since all ensemble members are equally likely a member can be selected at random, or a
member close to the mean can be chosen. See the PROGRAM closest_member_tool for one way to select a “close”
member. The ensemble mean is available to be used, but since it is a combination of all the member states it may not
have self-consistent features, so using a single member is usually preferred.

Evaluating observations without assimilation

Filter can be used to evaluate the accuracy of a single model state based on a set of available observations. Either
copy or link the model state file so there appear to be 2 separate ensemble members (which are identical). Set the filter
namelist ensemble size to 2 by setting ens_size to 2 in the &filter_nml namelist. Turn off the outlier threshold and
both Prior and Posterior inflation by setting outlier_threshold to -1, and both the inf_flavor values to 0 in
the same &filter_nml namelist. Set all observation types to be ‘evaluate-only’ and have no types in the ‘assimilate’ list
by listing all types in the evaluate_these_obs_types list in the &obs_kind_nml section of the namelist,
and none in the assimilation list. Run filter as usual, including model advances if needed. Run observation diagnostics
on the resulting obs_seq.final file to compute the difference between the observed values and the predicted
values from this model state.

Verification/comparison with and without assimilation

To compare results of an experiment with and without assimilating data, do one run assimilating the observations.
Then do a second run where all the observation types are moved to the evaluate_these_obs_types list in
the &obs_kind_nml section of the namelist. Also turn inflation off by setting both inf_flavor values to 0 in
the &filter_nml namelist. The forward operators will still be called, but they will have no impact on the model state.
Then the two sets of diagnostic state space netcdf files can be compared to evaluate the impact of assimilating the
observations, and the observation diagnostic files can also be compared.

DART quality control flag added to output observation sequence file

The filter adds a quality control field with metadata ‘DART quality control’ to the obs_seq.final file. At present,
this field can have the following values:

58 Chapter 6. References

../assimilation_code/modules/assimilation/assim_tools_mod.html#Namelist

DART, Release 9.10.3

0: Observation was assimilated successfully
1: Observation was evaluated (as specified in namelist) and not used in the assimilation
2: The observation was used but one or more of the posterior forward observation operators failed
3: The observation was evaluated AND one or more of the posterior forward observation operators failed
4: One or more prior forward observation operators failed so the observation was not used
5: The observation was not used because it was not selected in the namelist to be assimilated or evaluated
6: The prior quality control value was too high so the observation was not used.
7: Outlier test failed (see below)
8: Vertical conversion failed

The outlier test computes the difference between the observation value and the prior ensemble mean. It then computes
a standard deviation by taking the square root of the sum of the observation error variance and the prior ensemble
variance for the observation. If the difference between the ensemble mean and the observation value is more than the
specified number of standard deviations, then the observation is not used and the DART quality control field is set to
7.

6.18 Message Passing Interface

6.18.1 Introduction

DART programs can be compiled using the Message Passing Interface (MPI). MPI is both a library and run-time
system that enables multiple copies of a single program to run in parallel, exchange data, and combine to solve a
problem more quickly.

DART does NOT require MPI to run; the default build scripts do not need nor use MPI in any way. However, for larger
models with large state vectors and large numbers of observations, the data assimilation step will run much faster in
parallel, which requires MPI to be installed and used. However, if multiple ensembles of your model fit comfortably
(in time and memory space) on a single processor, you need read no further about MPI.

MPI is an open-source standard; there are many implementations of it. If you have a large single-vendor system it
probably comes with an MPI library by default. For a Linux cluster there are generally more variations in what might
be installed; most systems use a version of MPI called MPICH. In smaller clusters or dual-processor workstations a
version of MPI called either LAM-MPI or OpenMPI might be installed, or can be downloaded and installed by the
end user.

Note: OpenMP is a different parallel system; OpenMPI is a recent effort with a confusingly similar name.

An “MPI program” makes calls to an MPI library, and needs to be compiled with MPI include files and libraries.
Generally the MPI installation includes a shell script called mpif90 which adds the flags and libraries appropriate
for each type of fortran compiler. So compiling an MPI program usually means simply changing the fortran compiler
name to the MPI script name.

These MPI scripts are built during the MPI install process and are specific to a particular compiler; if your system has
multiple fortran compilers installed then either there will be multiple MPI scripts built, one for each compiler type, or
there will be an environment variable or flag to the MPI script to select which compiler to invoke. See your system
documentation or find an example of a successful MPI program compile command and copy it.

6.18. Message Passing Interface 59

DART, Release 9.10.3

DART use of MPI

To run in parallel, only the DART ‘filter’ program (possibly the companion ‘wakeup_filter’ program), and the
‘GSI2DART’ observation converter need to be compiled with the MPI scripts. All other DART executables should be
compiled with a standard F90 compiler and are not MPI enabled. (And note again that ‘filter’ can still be built as a
single executable like previous releases of DART; using MPI and running in parallel is simply an additional option.)
To build a parallel version of the ‘filter’ program, the ‘mkmf_filter’ command needs to be called with the ‘-mpi’ option
to generate a Makefile which compiles with the MPI scripts instead of the Fortran compiler.

See the quickbuild.csh script in each $DART/models/*/work directory for the commands that need to be
edited to enable the MPI utilities. You will also need to edit the $DART/mkmf/mkmf.template file to call the
proper version of the MPI compile script if it does not have the default name, is not in a standard location on the
system, or needs additional options set to select between multiple Fortran compilers.

MPI programs generally need to be started with a shell script called ‘mpirun’ or ‘mpiexec’, but they also interact
with any batch control system that might be installed on the cluster or parallel system. Parallel systems with multiple
users generally run some sort of batch system (e.g. LSF, PBS, POE, LoadLeveler, etc). You submit a job request to
this system and it schedules which nodes are assigned to which jobs. Unfortunately the details of this vary widely
from system to system; consult your local web pages or knowledgeable system admin for help here. Generally the
run scripts supplied with DART have generic sections to deal with LSF, PBS, no batch system at all, and sequential
execution, but the details (e.g. the specific queue names, accounting charge codes) will almost certainly have to be
adjusted.

The data assimilation process involves running multiple copies (ensembles) of a user model, with an assimilation
computation interspersed between calls to the model. There are many possible execution combinations, including:

• Compiling the assimilation program ‘filter’ with the model, resulting in a single executable. This can be either
a sequential or parallel program.

• Compiling ‘filter’ separately from the model, and having 2 separate executables. Either or both can be sequential
or parallel.

The choice of how to combine the ‘filter’ program and the model has 2 parts: building the executables and then
running them. At build time, the choice of using MPI or not must be made. At execution time, the setting of the
‘async’ namelist value in the filter_nml section controls how the ‘filter’ program interacts with the model.
Choices include:

• async = 0 The model and filter programs are compiled into a single executable, and when the model needs to
advance, the filter program calls a subroutine. See a diagram which illustrates this option.

• async = 2 The model is compiled into a sequential (single task) program. If ‘filter’ is running in parallel,
each filter task will execute the model independently to advance the group of ensembles. See a diagram which
illustrates this option.

• async = 4 The model is compiled into an MPI program (parallel) and only ‘filter’ task 0 tells the startup script
when it is time to advance the model. Each ensemble is advanced one by one, with the model using all the
processors to run in parallel. See a diagram which illustrates this option.

• async ignored (sometimes referred to as ‘async 5’, but not a setting in the namelist) This is the way most large
models run now. There is a separate script, outside of filter, which runs the N copies of the model to do the
advance. Then filter is run, as an MPI program, and it only assimilates for a single time and then exits. The
external script manages the file motion between steps, and calls both the models and filter in turn.

This release of DART has the restriction that if the model and the ‘filter’ program are both compiled with MPI and
are run in ‘async=4’ mode, that they both run on the same number of processors; e.g. if ‘filter’ is run on 16

60 Chapter 6. References

filter_async_modes.html#async0
filter_async_modes.html#async2
filter_async_modes.html#async4

DART, Release 9.10.3

processors, the model must be started on 16 processors as well. Alternatively, if the user model is compiled as a
single executable (async=2), ‘filter’ can run in parallel on any number of processors and each model advance can be
executed independently without the model having to know about MPI or parallelism.
Compiling and running an MPI application can be substantially more complicated than running a single executable.
There are a suite of small test programs to help diagnose any problems encountered in trying to run the new version
of DART. Look in DART/developer_tests/mpi_utilities/tests/README for instructions and a set of
tests to narrow down any difficulties.

Performance issues and timing results

Getting good performance from a parallel program is frequently difficult. Here are a few of reasons why:

• Amdahl’s law You can look up the actual formula for this “law” in the Wikipedia, but the gist is that the amount
of serial code in your program limits how much faster your program runs on a parallel machine, and at some
point (often much sooner than you’d expect) you stop getting any speedup when adding more processors.

• Surface area to volume ratio Many scientific problems involve breaking up a large grid or array of data and
distributing the smaller chunks across the multiple processors. Each processor computes values for the data
on the interior of the chunk they are given, but frequently the data along the edges of each chunk must be
communicated to the processors which hold the neighboring chunks of the grid. As you increase the number of
processors (and keep the problem size the same) the chunk size becomes smaller. As this happens, the ‘surface
area’ around the edges decreases slower than the ‘volume’ inside that one processor can compute independently
of other processors. At some point the communication overhead of exchanging edge data limits your speedup.

• Hardware architecture system balance Raw CPU speeds have increased faster than memory access times, which
have increased faster than access to secondary storage (e.g. I/O to disk). Computations which need to read
input data and write result files typically create I/O bottlenecks. There are machines with parallel filesystems,
but many programs are written to have a single processor read in the data and broadcast it to all the other
processors, and collect the data on a single node before writing. As the number of processors increases the
amount of time spent waiting for I/O and communication to and from the I/O node increases. There are also
capacity issues; for example the amount of memory available on the I/O node to hold the entire dataset can be
insufficient.

• NUMA memory Many machines today have multiple levels of memory: on-chip private cache, on-chip shared
cache, local shared memory, and remote shared memory. The approach is referred as Non-Uniform Memory
Access (NUMA) because each level of memory has different access times. While in general having faster
memory improves performance, it also makes the performance very difficult to predict since it depends not just
on the algorithms in the code, but is very strongly a function of working-set size and memory access patterns.
Beyond shared memory there is distributed memory, meaning multiple CPUs are closely connected but cannot
directly address the other memory. The communication time between nodes then depends on a hardware switch
or network card, which is much slower than local access to memory. The performance results can be heavily
influenced in this case by problem size and amount of communication between processes.

Parallel performance can be measured and expressed in several different ways. A few of the relevant definitions are:

• Speedup Generally defined as the wall-clock time for a single processor divided by the wall-clock time for N
processors.

• Efficiency The speedup number divided by N, which for perfect scalability will remain at 1.0 as N increases.

• Strong scaling The problem size is held constant and the number of processors is increased.

• Weak scaling The problem size grows as the number of processors increases so the amount of work per processor
is held constant.

We measured the strong scaling efficiency of the DART ‘filter’ program on a variety of platforms and problem sizes.
The scaling looks very good up to the numbers of processors available to us to test on. It is assumed that for MPP

6.18. Message Passing Interface 61

DART, Release 9.10.3

(Massively-Parallel Processing) machines with 10,000s of processors that some algorithmic changes will be required.
These are described in this paper.

User considerations for their own configurations

Many parallel machines today are a hybrid of shared and distributed memory processors; meaning that some small
number (e.g. 2-32) of CPUs share some amount of physical memory and can transfer data quickly between them,
while communicating data to other CPUs involves slower communication across either some kind of hardware switch
or fabric, or a network communication card like high speed ethernet.
Running as many tasks per node as CPUs per shared-memory node is in general good, unless the total amount of
virtual memory used by the program exceeds the physical memory. Factors to consider here include whether each
task is limited by the operating system to 1/Nth of the physical memory, or whether one task is free to consume more
than its share. If the node starts paging memory to disk, performance takes a huge nosedive.
Some models have large memory footprints, and it may be necessary to run in MPI mode not necessarily because the
computation is faster in parallel, but because the dataset size is larger than the physical memory on a node and must
be divided and spread across multiple nodes to avoid paging to disk.

6.19 Filters

The different types of assimilation algorithms (EAKF, ENKF, Kernel filter, Particle filter, etc.) are determined by the
&assim_tools_nml:filter_kind entry, described in MODULE assim_tools_mod. Despite having ‘filter’ in
the name, they are assimilation algorithms and so are implemented in assim_tools_mod.f90.

6.20 Inflation

In pre-Manhattan DART, there were two choices for the basic type of inflation: observation-space or state-space.
Observation-space inflation is no longer supported. (If you are interested in observation-space inflation, talk to Jeff
first.) The rest of this discussion applies to state-space inflation.

State-space inflation changes the spread of an ensemble without changing the ensemble mean. The algorithm
computes the ensemble mean and standard deviation for each variable in the state vector in turn, and then moves the
member’s values away from the mean in such a way that the mean remains unchanged. The resulting standard
deviation is larger than before. It can be applied to the Prior state, before observations are assimilated (the most
frequently used case), or it can be applied to the Posterior state, after assimilation. See Anderson (2007), Anderson
(2009).

Historically, inflation was first introduced to address sampling errors (the fact that we are limited to a small ensemble
size). Latest research, e.g. El Gharamti et al. (2019) suggests that prior and posterior inflation can be used to address
different issues in the filtering problem. Prior inflation is able to address issues in the forecast step such as model
errors while posterior inflation can help mitigate sampling errors in the analysis step.

Inflation values can vary in space and time, depending on the specified namelist values. Even though we talk about
a single inflation value, the inflation has a probability density with a mean and standard deviation. We use the mean
value when we inflate, and the standard deviation indicates how sure of the value we are. Larger standard deviation
values mean “less sure” and the inflation value can increase more quickly with time. Smaller values mean “more sure”
and the time evolution will be slower since we are more confident that the mean (inflation value) is correct.

62 Chapter 6. References

http://www.image.ucar.edu/DAReS/DART/scalable_paper.pdf
http://dx.doi.org/10.1175/JTECH2049.1
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1175/MWR-D-18-0389.1

DART, Release 9.10.3

The standard deviation of inflation allows inflation values to increase with time, if required by increasing density or
frequency of observations, but it does not provide a mechanism to reduce the inflation when the frequency or density
of observations declines. So there is also an option to damp inflation through time. In practice with large geophysical
models using damped inflation has been a successful strategy.

The following namelist items which control inflation are found in the input.nml file, in the &filter_nml namelist.
The detailed descriptions are in the filter_mod page. Here we try to give some basic advice about commonly used
values and suggestions for where to start. Spatial variation is controlled by inf_flavor, which also controls
whether there’s any inflation, inf_initial_from_restart, and inf_initial, as described below. Time
variation is controlled by inf_sd_initial_from_restart, inf_sd_initial, inf_sd_lower_bound,
inf_damping, inf_lower_bound and inf_upper_bound.

In the namelist each entry has two values. The first is for Prior inflation and the second is for Posterior inflation.

&filter_nml :: inf_flavor valid values:0, 2, 3, 4, 5

Set the type of Prior and Posterior inflation applied to the state vector. Values mean:

• 0: No inflation (Prior and/or Posterior) and all other inflation variables are ignored

• [1: Deprecated: Observation space inflation]

• 2: Spatially-varying state space inflation (gaussian)

• 3: Spatially-uniform state space inflation (gaussian)

• 4: Relaxation To Prior Spread (Posterior inflation only)

• 5: Enhanced Spatially-varying state space inflation (inverse gamma)

Spatially-varying state space inflation stores an array of inflation values, one for each item in the state vector.
If time-evolution is enabled, each value can evolve independently. Spatially-uniform state space inflation uses
a single inflation value for all items in the state vector. If time-evolution is enabled, that single value can
evolve. See inf_sd_* below for control of the time-evolution behavior. Enhanced spatially-varying inflation
uses an inverse-gamma distribution which allows the standard deviation of the inflation to increase or decrease
through time and may produce better results (see El Gharamti (2018)). In practice we recommend starting with
no inflation (both values 0). Then try inflation type 2 or 5 prior inflation and no inflation (0) for posterior.
WARNING: even if inf_flavor is not 0, inflation will be turned off if inf_damping is set to 0.

Important: Relaxation to prior spread (aka RTPS, i.e., inf_flavor=4) is a spatially varying posterior
inflation algorithm.

When using RTPS you cannot set the prior inflation flavor to 4. The code will exit with an error messge.
Unlike all other flavors, RTPS does not use files to handle inflation in time. So, if the user supplies
input_postinf_{mean,sd}.nc, these will be ignored. The ONLY namelist option that RTPS uses
(other than inf_flavor=4) is the second entry of inf_initial. This value is technically not the pos-
terior inflation value but rather a weighting factor (denoted by 𝛼; in Whitaker and Hamill (2012)) that is used
to relax the posterior spread to the prior spread. For instance, if 𝛼 = 0.3 then the inflated posterior spread is as
follows: 70% of the analysis spread plus 30% of the prior spread. If 𝛼 = 1.0, then the inflated posterior spread
is simply set to the prior spread. Using 𝛼, RTPS calculates the effective posterior inflation under the hood and
writes out the inflation values to the user. These can be looked at for diagnostic purposes. The algorithm disre-
gards them for the next data assimilation cycle. In short, RTPS is adaptive in time but unlike flavors 2, 3 and 5 it
has no memory. The recommendation is to set the second entry of inf_initial to any number between 0.0
and 1.0.

&filter_nml :: inf_initial_from_restart valid values: .true. or .false.

If true, read the inflation values from an inflation restart file named input_{prior,post}inf_mean.nc.
An initial run could be done to let spatially-varying inflation values evolve in a spinup phase, and then the saved

6.20. Inflation 63

../assimilation_code/modules/assimilation/filter_mod.html#Namelist
https://doi.org/10.1175/MWR-D-17-0187.1
https://doi.org/10.1175/MWR-D-11-00276.1

DART, Release 9.10.3

values can be read back in and used as fixed values in further runs. Or if time-varying inflation is used, then the
restart file from the previous job step must be supplied as an input file for the next step.

&filter_nml :: inf_initial valid values: real numbers, usually 1.0 or slightly larger If not reading in
inflation values from a restart file, the initial value to set for the inflation. Generally we recommend starting
with just slightly above 1.0, maybe 1.02, for a slight amount of initial inflation.

&filter_nml :: inf_lower_bound valid values: real numbers, usually 1.0 or slightly larger

If inflation is time-evolving (see inf_sd_* below), then this sets the lowest value the inflation can evolve to.
Setting a number less than one allows for deflation but generally in a well-observed system the ensemble needs
more spread and not less. We recommend a setting of 1.0.

&filter_nml :: inf_upper_bound valid values: real numbers, larger than 1.0

If inflation is time-evolving (see inf_sd_* below), then this sets the largest value the inflation can evolve to.
We recommend a setting of 100.0, although if the inflation values reach those levels there is probably a problem
with the assimilation.

&filter_nml :: inf_damping valid values: 0.0 to 1.0

Applies to all state-space inflation types, but most frequently used with time-adaptive inflation variants. The
difference between the current inflation value and 1.0 is multiplied by this factor before the next assimilation
cycle. So the inflation values are pushed towards 1.0, from above or below (if inf_lower_bound allows inflation
values less than 1.0). A value of 0.0 turns all inflation off by forcing the inflation value to 1.0. A value of
1.0 turns damping off by leaving the original inflation value unchanged. We have had good results in large
geophysical models using time- and space-adaptive state-space inflation and setting the damping to a value of
0.9, which damps slowly.

&filter_nml :: inf_sd_initial_from_restart valid values: .true. or .false.

If true, read the inflation standard deviation values from an restart file named input_{prior,
post}inf_sd.nc. See the comments above about inflation_initial_from_restart.

&filter_nml :: inf_sd_initial valid values: 0.0 to disable evolution of inflation, > 0.0 otherwise

The initial value to set for the inflation standard deviation, IF not reading in inflation standard deviation values
from a file. This value (or these values) control whether the inflation values evolve with time or not. A negative
value or 0.0 prevents the inflation values from being updated, so they are constant throughout the run. If positive,
the inflation values evolve through time. We have had good results setting this and inf_sd_lower_bound
to 0.6 for large geophysical models.

&filter_nml :: inf_sd_lower_bound valid values: 0.0 to disable evolution of inflation, > 0.0 otherwise

If the setting of inf_sd_initial is 0 (to disable time evolution of inflation) then set this to the same value.

Otherwise, the standard deviation of the inflation cannot fall below this value. Smaller values will restrict
the inflation to vary more slowly with time; larger values will allow the inflation to adapt more quickly. We
have had good results setting this and inf_sd_initial to 0.6 for large geophysical models. Since the
inf_sd_lower_bound is a scalar, it is not possible to set different lower bounds for different parts of the
state vector.

Time-varying inflation with flavor 2 generally results in the inflation standard deviation for all state variables
shrinking to the lower bound and staying there. For flavor 5, the inflation standard deviation value is allowed to
increase and decrease.

&filter_nml :: inf_sd_max_change valid values: 1.0 to 2.0

Used only with the Enhanced inflation (flavor 5). The Enhanced inflation algorithm allows the standard deviation
to increase as well as decrease. The inf_sd_max_change controls the maximum increase of the standard
deviation in an assimilation cycle. A value of 1.0 means it will not increase, a value of 2.0 means it can double;

64 Chapter 6. References

DART, Release 9.10.3

a value inbetween sets the percentage it can increase, e.g. 1.05 is a limit of 5%. Suggested value is 1.05 (max
increase of 5% per cycle).

Because the standard deviation for original flavor 2 could never increase, setting the inf_sd_initial value
equal to the inf_sd_lower_bound value effectively fixed the standard deviation at a constant value. To
match the same behavior, if they are equal and Enhanced inflation (flavor 5) is used it will also use that fixed
value for the standard deviation of the inflation. Otherwise the standard deviation will adapt as needed during
each assimilation cycle.

&filter_nml :: inf_deterministic valid values: .true. or .false.

Recommend always using .true..

6.20.1 Guidance regarding inflation

First and foremost, if you are using one of the temporally-varying inflation options, save the entire series of inflation
files to explore how inflation evolves through time. As part of the workflow, you have to take the output of one
assimilation cycle and rename it to be the input for the next assimilation cycle. That is the time to make a copy that
has a unique name - usually with some sort of date or timestamp. This also makes it possible to restart an experiment.

The suggested procedure for testing inflation options is to start without any (both inf_flavor values set to 0
and inf_damping > 0.). Then enable Prior state space, spatially-varying inflation, with no Posterior inflation
(set inf_flavor to [2, 0]). Then try damped inflation (set inf_damping to 0.9 and set inf_sd_initial and
inf_sd_lower_bound to 0.6). The inflation values and standard deviation are written out to files with _{prior,
post}inf_{mean,sd} in their names. These NetCDF files can be viewed with common tools (we often use ncview
). Expected inflation values are generally in the 1 to 30 range; if values grow much larger than this it usually indicates
a problem with the assimilation.

PROGRAM fill_inflation_restart may be used to create netCDF files with initial values such that the input.nml settings
for reading from file vs. reading from namelist can stay constant throughout the entire experiment.

It is possible to set inflation values in an existing netCDF file by using one of the standard NCO utilities like “ncap2”
on a copy of a restart file. Inflation mean and sd values look exactly like restart values, arranged by variable type like
T, U, V, etc.

Here’s an example of using ncap2 to set the T,U and V inf values:

ncap2 -s 'T=1.0;U=1.0;V=1.0' wrfinput_d01 input_priorinf_mean.nc
ncap2 -s 'T=0.6;U=0.6;V=0.6' wrfinput_d01 input_priorinf_sd.nc
-or-
ncap2 -s 'T(:,:,:)=1.0;U(:,:,:)=1.0;V(:,:,:)=1.0' wrfinput_d01 input_priorinf_mean.nc
ncap2 -s 'T(:,:,:)=0.6;U(:,:,:)=0.6;V(:,:,:)=0.6' wrfinput_d01 input_priorinf_sd.nc

Some versions of the NCO utilities change the full 3D arrays into a single scalar. If that’s your result (check your
output with ncdump -h) use the alternate syntax or a more recent version of the NCO tools.

6.21 Required model_mod routines

There are 18 Fortran subroutines necessary to implement in order to successfully integrate a model in DART. You will
place these routines in your model_mod.f90 in a subdirectory with the name of your model in DART/models.
There is often a sensible default implementation that can be used for each of these routines. For example, in the case
of a model that starts at a time of “0”, for the required routine init_time() the following code will use this default
implementation:

use default_model_mod, only : init_time

6.21. Required model_mod routines 65

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.10.3

As in all Fortran programs, a comma-separated list of routines can be listed after the colon.

The following table lists each of the 18 routines, their default modules relative to DART, and the default behavior.
If the default behavior is not desired, see the section Suggestions for a “simple” model for a model that DART can
advance, or Suggestions for a “complex” model for a model that is advanced externally from DART.

66 Chapter 6. References

DART, Release 9.10.3

Routine # / name Purpose Default module / direc-
tory

Default behavior

1. init_time()
Set the initial time if not
read from the restart file.

default_model_mod
/ models/utilities

Sets the initial time to 0
days, 0 seconds

2. init_conditions()
For a “cold start” fill in
an empty state vector with
initial conditions. Many
models cannot just make
up values from thin air and
thus choose to fail when
this is requested.

default_model_mod
/ models/utilities

Sets the initial state
to 0. To fail use
init_conditions
=>
fail_init_conditions.

3. get_model_size()
Return the number of
items in the state vector.

default_model_mod
/ models/utilities

Returns 1; i.e. there is
only one item in the state.

4.
static_init_model()

Initialize DART with
information about the
model that will be
used by the remaining
model_mod routines.
The procedure for doing
this will depend on how
complex the model is; see
below for suggestions for
implementation.

default_model_mod
/ models/utilities

Does nothing.

5.
get_state_meta_data()

Takes an index into the
state vector and returns
the location correspond-
ing to that value and op-
tionally the variable type.
See below for suggestions
on implementation.

default_model_mod
/ models/utilities

Sets a missing location
and the default variable
type.

6. end_model()
Deallocate any ar-
rays allocated in
static_init_model().

default_model_mod
/ models/utilities

Does nothing.

7. adv_1step()
If possible, advance the
model state from one time
to another. Complex mod-
els will be unable to im-
plement this method and
should fail.

default_model_mod
/ models/utilities

Call the error handler with
the message “unable to
advance model”.

8. short-
est_time_between_assimilations()

Return a namelist or a
fixed value for the mini-
mum model advance time
between assimilations.
Note that complex models
will handle advancing the
time externally.

default_model_mod
/ models/utilities

Returns a time period of 1
day.

9.
model_interpolate()

Interpolate a requested
quantity to the given loca-
tion to get an array of ex-
pected values for all en-
semble members. NOTE:
this is often the most time
consuming method to im-
plement.

default_model_mod
/ models/utilities

Fail and set the expected
observation to “missing.”

10.
nc_write_model_atts()

Add any additional in-
formation to the netCDF
output diagnostic files.
NOTE: the state will
already be output by other
routines, so this method
should not create or write
the state variables.

default_model_mod
/ models/utilities

Does nothing.

11.
read_model_time()

Read the model time from
a state vector netCDF file.

dart_time_io /
assimilation_code/
io/utilities

Attempt to read the “time”
variable from a state file in
an intelligent way.

12.
write_model_time()

Write the model time to a
state vector netCDF file.

dart_time_io /
assimilation_code/
io/utilities

Write the “time” variable
from the file according to
the DART calendar.

13.
pert_model_copies()

Perturb a state vector in
order to create an ensem-
ble.

default_model_mod
/ models/utilities

Add Gaussian noise with a
specified amplitude to all
parts of the state vector.

14. con-
vert_vertical_obs()

Some 3D models have
multiple vertical coor-
dinates (e.g. pressure,
height, or model level);
this method converts
observations between dif-
ferent vertical coordinate
systems.

location_mod/
assimilation_code/
location/XXX

Do no conversion.
NOTE: the particu-
lar sub-directory of
location to use is set in
path_names_<program>
for each DART program.

15. con-
vert_vertical_state()

Some 3D models have
multiple vertical coor-
dinates (e.g. pressure,
height, or model level);
this method converts state
between different vertical
coordinate systems.

location_mod/
assimilation_code/
location/XXX

Do no conversion.
NOTE: the particu-
lar sub-directory of
location to use is set in
path_names_<program>
for each DART program.

16. get_close_obs()
Calculate which observa-
tions are “close” to a
given location and, op-
tionally, the distance. This
is used for localization to
reduce sampling error.

location_mod/
assimilation_code/
location/XXX

Uses the default be-
havior for determining
distance. NOTE: the
particular sub-directory of
location to use is set in
path_names_<program>
for each DART program.

17. get_close_state()
Calculate which state
points are “close” to a
given location and, op-
tionally, the distance. This
is used for localization to
reduce sampling error.

location_mod/
assimilation_code/
location/XXX

Uses the default be-
havior for determining
distance. NOTE: the
particular sub-directory of
location to use is set in
path_names_<program>
for each DART program.

18.
nc_write_model_vars()

This method is not cur-
rently called, so just use
the default routine for
now. This method will
be used in a future imple-
mentation.

default_model_mod
/ models/utilities

Does nothing.

6.21. Required model_mod routines 67

DART, Release 9.10.3

6.22 Suggestions for a “simple” model

A “simple” model is one where DART can advance the model through a function call. As we saw above, Lorenz 63
falls into this category and can be used as a reference. Here we provide some further advice on how to add this kind
of model to DART.

The primary consideration with a simple model is how you will store the state. If you have only a single type of
variable in your state vector (for example, the Lorenz 63 model), here are some hints on how to implement your
initialization and meta data routines:

Routine # / name Suggested implementation

4. static_init_model()
Your model_size will likely be set by namelist, so read
it, allocate an array of that size, and precompute all the
locations for each state vector item. Call add_domain()
with the model size so DART knows how long the state
vector is.

5. get_state_meta_data()
Return QTY_STATE_VARIABLE as the quantity, and
return the location for that index through a look-up into
the location array created during static_init_ model().

If you have more than a single type of variable in the state vector (for example, “concentration”, “wind”, etc. as in the
DART/models/simple_advection model):

Routine # / name Suggested implementation

4. static_init_model()
Read from the namelist the number of fields to be used
in the state vector. Use add_domain() to indicate which
netCDF vars should be read. Read in any auxiliary
data needed by interpolation code (for example, the grid
topology). Cache the grid locations of the state variables
as appropriate, and use get_domain_size() to compute
the model_size.

5. get_state_meta_data()
Call get_model_variable_indices() and
get_state_kind() to figure out the (i,j,k) indices
and which variable this offset is. Use the (i,j,k) index to
compute the grid location and return it along with the
quantity.

Now, for either type of simple model, the following applies:

68 Chapter 6. References

DART, Release 9.10.3

Routine # / name Suggested implementation

6. end_model()
Deallocate any arrays allocated in static_init_model()

7. adv_1step()
If possible, embed the code that computes x(t+1) =
F(x(t)) or call a separate subroutine to advance the
model state from one time to another.

8. shortest_time_between_assimilations()
Return a namelist or a fixed value for the minimum
model advance time.

9. model_interpolate()
Find the (i,j,k) indices which enclose that location, or
search for the cell number. For some models you can
compute (i,j) directly from a regular lat/lon grid, and in
others you may have to search over a deformed grid.
Any model code or utilities available for this purpose
may prove very helpful as a starting point. In the end,
you will use get_state() to retrieve an ensemble-sized
array of values for each offset into the state vector, and
then do interpolation to get an array of expected values.

10. nc_write_model_atts()
Optionally add any desired attributes to the output diag-
nostic files.

The remaining routines can mostly use the defaults, except possibly for 11. read_model_time() and 12.
write_model_time(), which may need to be customized if using a model restart file that already stores time in a
particular format.

Note that there is often no need to convert vertical obs or states in a simple model without vertical coordinate choices.

6.23 Suggestions for a “complex” model

A “complex” model is typically a large geophysical model where the model must be advanced outside of DART
execution control. Here we provide some advice on how to integrate this kind of model with DART.

First of all, the 4. static_init_model, 5. get_state_meta_data() and 6. end_model() suggestions will match the
multiple state variable in the previous section as complex models will typically have multiple fields.

An additional twist is that complex models may have different grid locations for different variables, (i.e. grid stagger-
ing), but the above instructions still apply.

The 7. adv_1step() method for a complex model should fail, so the default behavior is sufficient.

The advice for the 8. shortest_time_between_assimilations() routine is similar to the advice for a simple model:
read the value from the namelist or return a fixed time as appropriate.

Note: Since the model will not be advanced by DART, the value returned here is irrelevant except for user information
purposes.

For the remaining routines, we give the following implementation suggestions:

6.23. Suggestions for a “complex” model 69

DART, Release 9.10.3

Routine # / name Suggested implementation

9. model_interpolate()
Find the (i,j,k) indices which enclose that location, or
search for the cell number. For some models you can
compute (i,j) directly from a regular lat/lon grid, and in
others you may have to search over a deformed grid.
Any model code or utilities available for this purpose
may prove very helpful as a starting point. In the end,
you will use get_state() to retrieve an ensemble-sized
array of values for each offset into the state vector, and
then do interpolation to get an array of expected values.

10. nc_write_model_atts()
It is very helpful (but optional) to add grid information
to assist in plotting your results.

11. read_model_time()
(see write_model_time() below)

12. write_model_time()
If the model time is stored in the netCDF files, sup-
ply routines that can read and write it in the correct
format. The default routines will work if the model
time matches what those routines expect: a time vari-
able with an optional calendar variable. If no calendar
is provided, the routine assumes fractional days. If the
time variable is an array (i.e. more than one time step is
stored in the file), read/write the last one.

13. pert_model_copies()
The default of adding Gaussian noise to all state vari-
ables may be undesirable. Complex models often have
a method to perturb a state according to a particular for-
mula or method. Otherwise, it may be necessary to per-
turb each variable with separate noise levels, only per-
turb certain variables, etc.

14. convert_vertical_obs()
(see convert_vertical_state() below)

15. convert_vertical_state()
Add code to convert between vertical coordinates
(e.g. pressure, height, sigma levels, etc.) if appropri-
ate. Code from the model or a model utility may be a
very helpful starting point.

16. get_close_obs()
(see get_close_state() below)

17. get_close_state()
If you want to change the localization impact based on
something other than the type or kind, put code here.
You should test for vertical type and do the conversion
on demand if it hasn’t already been done.

As mentioned above, the most difficult routine to implement for a complex model is typically 9. model_interpolate().

70 Chapter 6. References

DART, Release 9.10.3

6.24 How to test your model_mod routines

The program model_mod_check.f90 can be used to test the routines individually before running them with
filter. Add a mkmf_model_mod_check and path_names_model_mod_check to your DART/models/
your_model/work subdirectory. You might find it helpful to consult another model matching your model type
(simple or complex). See the documentation for model_mod_check in DART/assimilation_code/programs/
model_mod_check for more information on the tests available.

6.25 Controlling which files are output by filter

DART provides you with fine-grained control over how and when files are output. You can instruct DART whether
or not to output files after each stage in an assimilation cycle. Since most experiments are run for more than one
assimilation cycle, you can also instruct DART to aggregate all of the output for a specific stage into a single file.

These options are controlled by three settings in the filter_nml namelist in input.nml:

• stages_to_write specifies the stages during an assimilation cycle during which state files may be out-
put. The possible stages are 'input', 'forecast', 'preassim', 'postassim', 'analysis' and
'output'. The input strings are case-insensitive, but the corresponding output files are always lowercase.

• single_file_in specifies how input state files are structured. If .true. the state of all ensemble members
is expected to be read from single file. If .false. the state of each ensemble member expected to be read
from its own file.

• single_file_out specifies how output state files are structured. If .true. the state of all ensemble
members is output to a single file. If .false. the state of each ensemble members is output to its own file.

Caution: single_file_out only refers to the output for a particular stage. So even if you
set single_file_out = .true., you can get several output files - one per stage. If you set
single_file_out = .false. filter will output a deluge of files. Be careful about what stages you choose
to write.

6.25.1 Two common assimilation workflows

There are many ways to configure your data assimilation workflows. However, the following two workflows are
sensible for small models and large models, respectively.

Small models

For models that read and write small state files and complete their numerical integrations relatively quickly, it makes
sense to configure filter to:

1. complete multiple assimilation cycles

2. read from and write to a single output file for all ensemble members

This workflow requires setting single_file_in = .true. and single_file_out = .true..

When filter is used for a long assimilation experiment, setting single_file_out = .true.will consolidate
all the information for a particular stage into a single file that contains all the ensemble members, the mean, spread,
inflation, etc.

6.24. How to test your model_mod routines 71

DART, Release 9.10.3

This results in far fewer files, and each file may contain multiple timesteps to encompass the entirety of the experiment.
Take note: since a single task must write each file, this setting engenders some computational overhead.

Large models

For models that read and write large state files and complete their numerical integrations relatively slowly, it make
sense to configure filter to:

1. complete a single assimilation cycle at a time

2. read from and write to a seperate output file for each ensemble member

This workflow requires setting single_file_out = .false. and makes sense for large models or in cases
where it is beneficial to run different number of MPI tasks for the model advances and the assimilation. In this case,
there can be a substantial computational efficiency to have each ensemble member write its information to a separate
file, and each file can be written simultaneously by different tasks. The tradeoff (at the moment) is that each of the
files can only have a single timestep in them. Consequently, some files are redundant and should not be output.

6.25.2 Output and diagnostic files produced by filter

In the case when single_file_out = .false.

from perfect_model_obs
obs_seq.out the synthetic observations at some predefined times and locations
perfect_output.nc 1 timestep a netCDF file containing the model trajectory - the true state

There are some namelist settings that control what files are output. Depending on the settings for in-
put.nml&filter_nml:stages_to_write and others . . .

72 Chapter 6. References

DART, Release 9.10.3

from filter
forecast_member_####.
nc

1 timestepthe ensemble forecast, each ensemble member is a separate file

forecast_[mean,sd].
nc

1 timestepthe mean and standard deviation (spread) of the ensemble forecast

forecast_priorinf_[mean,
sd].nc

1 timestepthe prior inflation information before assimilation

forecast_postinf_[mean,
sd].nc

1 timestepthe posterior inflation information before assimilation

preassim_member_####.
nc

1 timestepthe model states after any prior inflation but before assimilation

preassim_[mean,sd].
nc

1 timestepthe mean and standard deviation (spread) of the ensemble after any
prior inflation but before assimilation

preassim_priorinf_[mean,
sd].nc

1 timestepthe prior inflation information before assimilation

preassim_postinf_[mean,
sd].nc

1 timestepthe posterior inflation information before assimilation

postassim_member_####.
nc

1 timestepthe model states after assimilation but before posterior inflation

postassim_[mean,sd].
nc

1 timestepthe mean and standard deviation (spread) of the ensemble after assim-
ilation but before posterior inflation

postassim_priorinf_[mean,
sd].nc

1 timestepthe (new) prior inflation information after assimilation

postassim_postinf_[mean,
sd].nc

1 timestepthe (new) posterior inflation information after assimilation

analysis_member_####.
nc

1 timestepthe model states after assimilation and after any posterior inflation

analysis_[mean,sd].
nc

1 timestepthe mean and standard deviation (spread) of the ensemble after assim-
ilation and after posterior inflation

analysis_priorinf_[mean,
sd].nc

1 timestepthe (new) prior inflation information after assimilation

analysis_postinf_[mean,
sd].nc

1 timestepthe (new) posterior inflation information after assimilation

output_[mean,sd].nc 1 timestepthe mean and spread of the posterior ensemble
output_priorinf_[mean,
sd].nc

1 timestepthe (new) prior inflation information after assimilation

output_priorinf_[mean,
sd].nc

1 timestepthe (new) posterior inflation information after assimilation

obs_seq.final the model estimates of the observations (an integral part of the data
assimilation process)

from both
dart_log.
out

the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the
bottom to see the latest values)

dart_log.
nml

the input parameters used for an experiment

6.25. Controlling which files are output by filter 73

DART, Release 9.10.3

In the case when single_file_out = .true.

All the information for each stage is contained in a single file that may have multiple timesteps.

from perfect_model_obs
obs_seq.out the synthetic observations at some predefined times and locations
perfect_output.nc N timesteps a netCDF file containing the model trajectory - the true state

There are some namelist settings that control what files are output. Depending on the settings for input.nml
&filter_nml:stages_to_write and others.

from filter
filter_input.
nc

1 timestepThe starting condition of the experiment. All ensemble members, [optionally] the input
mean and standard deviation (spread), [optionally] the prior inflation values, [optionally] the
posterior inflation values

forecast.
nc

N timestepsThe ensemble forecast. All ensemble members, the mean and standard deviation (spread),
the prior inflation values, the posterior inflation values

preassim.
nc

N timestepsAfter any prior inflation but before assimilation. All ensemble members, the mean and stan-
dard deviation (spread) of the ensemble, the prior inflation values, the posterior inflation
values

postassim.
nc

N timestepsAfter assimilation but before posterior inflation. All ensemble members, the mean and stan-
dard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) posterior
inflation values

analysis.
nc

N timestepsAfter assimilation and after any posterior inflation. All ensemble members, the mean and
standard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) pos-
terior inflation values

filter_output.
nc

1 timestepAfter assimilation and after any posterior inflation. All ensemble members, the mean and
standard deviation (spread) of the ensemble, the (new) prior inflation values, the (new) pos-
terior inflation values

obs_seq.
final

the model estimates of the observations (an integral part of the data assimilation process)

from both
dart_log.
out

the ‘important’ run-time output (each run of filter appends to this file; remove it or start at the
bottom to see the latest values)

dart_log.
nml

the input parameters used for an experiment

6.26 Advice for models with multiple vertical coordinate options

6.26.1 DART vertical types for the 3D sphere locations type (threed_sphere)

A location when using the MODULE location_mod (threed_sphere) location module consists of a Latitude (-90 to 90),
a Longitude (0 to 360), and a vertical value and type. The value is a real number. Possible types are:

• Height (in meters)

• Pressure (in Pascals)

• Model Level (index number)

• Scale Height (unitless)

74 Chapter 6. References

DART, Release 9.10.3

• Surface (if value used, elevation of surface in meters)

• Undefined (entire vertical column)

If the model grid locations, all observation locations, and the choice of localization coordinate are all using the identical
vertical type then no vertical conversion routines are needed. However, this is seldom the case.

6.26.2 Multiple vertical coordinate types

Most Earth System models and observations use latitude and longitude for horizontal coordinates or can generate
them if needed (e.g. spectral models can transform their state into Lat/Lon coords). But often vertical coordinates
pose additional complications.

Some models use terrain-following vertical coordinates, or a mix of pressure and terrain coordinates. Observation
vertical locations are frequently reported in height or in pressure.

Additionally, if vertical localization is to be done in a different coordinate than the model or observations (e.g. scale
height), then conversion routines are needed.

Vertical conversion routines typically take a DART location_type derived type and a desired output vertical
coordinate type as inputs, and either update the location derived type or return a separate location type with the value
converted to the requested type.

The conversion code may require additional auxilliary arrays from the model in order to convert the vertical coordinates
accurately.

6.26.3 Varying vertical levels

If the computation of the vertical location depends on any of the fields in the state (e.g. pressure), then different
ensemble members may compute different vertical locations.

Forward operators

During computation of expected values (Forward Operators), each ensemble member should compute the most accu-
rate value regardless of whether the location in the model grid is consistent from member to member.

Localization

During assimilation the distance between model state values and the observation must be computed and only a single
value can be returned, not an ensemble of distances. If part of the state is needed to compute the vertical location the
ensemble mean is available to compute a single value which is representative of the entire state.

6.26.4 Choice of when conversion is done

During the assimilation phase of filter there are two options for when vertical conversion is done: all at the start, or
on demand. If the observations to be assimilated are expected to impact all or almost all of the state, doing all vertical
conversion at the start is more efficient. If the observations are expected to impact only a small percentage of the state
variables then doing it on demand is more efficient.

The options here are namelist selectable at runtime and the impact on total runtime can be easily measured and
compared.

6.26. Advice for models with multiple vertical coordinate options 75

DART, Release 9.10.3

6.27 Data management in DART

One of the more challenging aspects of an ensemble Data Assimilation (DA) system is the need to manage large
amounts of memory to store ensembles of the model state.

Most contemporary large models run in parallel on multi-processor computer systems and distribute the data across
multiple memory nodes to support finer grids, smaller timesteps and longer modeling time periods. Common computer
science strategies include using shared memory on individual nodes and using the Message Passing Interface (MPI)
libraries on distributed memory nodes.

Ensemble DA exacerbates this memory problem by requiring multiple copies, often 20-100x, of the model data to do
the assimilation.

DART uses the MPI libraries to distribute ensembles of model state data across distributed memory nodes. For models
with small amounts of data the code can be compiled and run as a serial program but when compiled with MPI it can
scale up to 10,000s of nodes using Giga to Petabytes of memory.

Memory usage and internode communication time are mutually incompatible items to minimize. DART has different
strategies that can be selected at runtime to use less memory per node at the cost of more time spent in communication
of data between nodes, or use more memory per node and minimize communication time.

The following descriptions detail the different phases of the main assimilation program in DART, called filter, and
what options exist for memory layout and management.

6.27.1 Ensembles of data

State data

• N ensemble members times X items in the state vector, always resident.

• 6 additional copies of X items for inflation, ensemble mean & sd, etc.

Observations

Allocated and deallocated if looping over multiple assimilation windows within a single run of filter.

• Only observations within the current assimilation window, O

• O observations times N ensemble members for the Forward Operator (FO) results

• O observations times N ensemble members for the QC results

Delayed writing option

If selected in the namelist, up to P phases (input, forecast, preassim, postassim, analysis, output) of the state data are
stored in memory and written out at the end of filter.

76 Chapter 6. References

DART, Release 9.10.3

6.27.2 Filter run phases

FO computation, prior and posterior

Run-time options include allocating spaces for two layouts and transposing between them, or running distributed in
‘all copies’ mode.

Assimilation

Distributed FO and QC observation ensembles

Runtime option to either replicate the model state ensemble mean on each MPI task or run with that ensemble fully
distributed.

6.27.3 Ensemble memory usage and layout

Transposable

Data is distributed over T MPI tasks but during the program execution the data is communicated between tasks to
alternate between two different data layouts.

Allocations are needed for two different 2D arrays:

• N ensemble members times (X items/T tasks)

• X items times (N ensemble members/T tasks)

Distributed

Data is distributed over T MPI tasks but only a single data array is used:

• N ensemble members times (X items/T tasks)

Replicated

The same data array is replicated on each MPI task:

• X items per task

6.28 Programs included with DART

This list of programs is separated into groups which have similar functionality. Within each group they are sorted by
the order in which they might be used and/or by how widely they are used.

6.28. Programs included with DART 77

DART, Release 9.10.3

6.28.1 Setting Up Experiments

In many cases, you won’t need to use any programs in Setting Up Experiments except for preprocess, because
you’re using an existing model interface and have the observation sequence files. In that case, you the programs you’re
looking for are probably in Assimilation Programs.

preprocess Program to insert observation specific code into DART before filter or perfect_model_obs is compiled.

fill_inflation_restart Create inflation restart files with constant values taken from
fill_inflation_restart_nml.

obs_impact_tool Construct a table that is read by filter at run-time to localize the impact of sets of observation types
on sets of state vector quantities.

model_mod_check Program to test some of the more fundamental routines in any model_mod, especially a for a
new model.

perturb_single_instance Generate an ensemble of perturbed ensemble member restart files. (Alternatively, you might
perturb the model state using model_nml variables).

gen_sampling_err_table Computes a table of values needed to apply Sampling Error Correction (SEC), which cor-
rects covariances based on small sample size statistics.

6.28.2 Creating Observation Sequence Files

create_obs_sequence Creates a short andor synthetic observation sequence file using values read from standard input.

create_fixed_network_seq Reads observation sequence file information from standard input and replicates it multiple
times in a second observation sequence file, at user specified dates.

obs_utils/create_obs_grid Create a set of observations located on a regular grid. Obs have no data values, but they
are time ordered.

obs_utils/obs_timejitter Randomly perturb the times of the observations in a (usually) set_def.out file. Writes the
results to (usually) obs_seq.in.

6.28.3 Querying Observation Sequence Files

obs_utils/obs_info Summarize obs types, times, counts found in observation sequence file(s).

obs_utils/obs_assim_count Prints out a quick table of obs types and counts, overall start and stop times, and metadata
strings and counts. See obs_diag for more. There is an older version in the obs_assim_count directory.

obs_seq_coverage Queries a set of observation sequence files to determine which observation locations report fre-
quently enough to be useful for a verification study.

obs_total_error Prints the total error in the mean and spread from an obs_seq file which has been through both
perfect_model_obs and filter, so it has copies ‘truth’, ‘ensemble mean’, and ‘ensemble spread’. You can get
more information by running the obs_diag program.

78 Chapter 6. References

DART, Release 9.10.3

6.28.4 Changing Observation Sequence Files

obs_sequence_tool Subsets, combines, or alters observations from one or more observation sequence files and op-
tionally writes them into a single output obs_seq file.

obs_loop A template to read in observations from one obs_seq file and write them, optionally modified by user
supplied code, to another obs_seq file.

obs_utils/obs_sort Do a complete sort of an obs_seq file by location, observation type, then variance. An ancestor of
obs_remove_dups.

obs_utils/obs_remove_dups Removes duplicate observations from an obs_seq file, which involves a complete sort
by time, location, observation type, then variance.

obs_selection Extracts observations out of one or more obs_sequence files according to a list of observation types,
times, and locations. The list is usually created by obs_seq_coverage, but can be an observation sequence file.

obs_common_subset Select the subset of observations, which were successfully assimilated, from two or more as-
similation cases (which used the same obs_seq.out file).

obs_keep_a_few Creates an output observation sequence file that is shorter than the input obs_seq file.

obs_seq_verify Reorders the observations from a forecast run of DART into a structure that is amenable for the
evaluation of the forecast.

obs_utils/obs_data_denial THIS IS NOT YET DONE! Help implement a data-denial experiment by randomly
changing the error variance of N of each obs type in an observation sequence file to a huge value.

6.28.5 Assimilation Programs

perfect_model_obs Creates synthetic observation sequences from a hindcast model.

filter Main Fortran program for driving ensemble filter assimilations.

advance_time Provides a shell-scripting-friendly way to increment and decrement calendar dates and times.

integrate_model Generic main program which advances a single ensemble member in perfect_model_obs or
the serial or parallel version of the filter program.

6.28.6 Evaluating Results

obs_diag Reads obs_seq.final files, calculates statistics, and writes them to NetCDF files for use by Matlab (or other)
plotting scripts. There are separate versions for models with different coordinate systems:

• 1D

• 3D Cartesian

• 3D spherical

• 3D spherical with streamflow.

obs_seq_to_netcdf Extracts the observation components from observation sequence files and writes out netCDF files
that can be used by other applications. such as diagnostics/matlab/plot_obs_netcdf* There are
two versions; the standard version and one which filters out radiance metadata which is not needed by the scripts
which use the resulting NetCDF file.

compare_states Compare fields in two NetCDF files and print out the min and max values from each file and of the
difference between the two files.

6.28. Programs included with DART 79

DART, Release 9.10.3

compute_error Compute the time-mean ensemble error and spread in the same manner as the DART MATLAB
diagnostic routine plot_total_err; in state space from true_state.nc and preassim.nc (or analysis.nc).

closest_member_tool Prints out a sorted order of which ensemble members are ‘closest’ to the mean, where the
method for computing the ‘close’ metric is selectable by namelist option.

6.28.7 Historical and Deprecated

system_simulation A collection of standalone programs for simulating various properties of ensembles. Talk to Jeff
Anderson about the programs in this directory.

restart_file_tool Deprecated, since in Manhattan all DART initial and restart files are in NetCDF format.

wakeup_filter For use in the “async=4” case where both the main filter program and the hindcast model are MPI
programs. The main MPI job script runs each of the model advances for the ensemble members, and then runs
this program to restart the filter program.

6.29 Adding your observations to DART

First, you should understand that DART already supports a tremendous variety of observations. To fully support an
observation means that the observation can be converted from its native format to the DART observation sequence
format and that the observation forward operator is already implemented. Keep in mind that forward operators are not
specific to any one model.

The observation converters are in the observations/obs_converter directory and you should look there for the docu-
mentation describing which converters are available.

The forward operators are functionally or logically grouped into Fortran modules in the observa-
tions/forward_operator directory. DART employs a ‘contractual’ style of programming in that the forward operator
requests information from the model, and if the model cannot provide it, the forward operator may request different
information in an attempt to collect the information needed to apply the operator. If the model cannot provide any of
the required information, the forward operator fails, the DART QC for that observation is set to the appropriate value,
and the program continues.

6.30 How DART supports different types of observations: the prepro-
cess program

DART’s preprocess program actually writes the source code that supports observations. This source code is then used
by other modules.

6.30.1 The rationale for preprocess

Certain types of data require additional metadata in order to be assimilated. For example, while radiosondes only
require the observation location in order to be assimilated, radar observations need extra metadata to specify the
location of the radar in addition to the location of the observation. GPS occultations need the locations of the two
satellites so the forward operator can integrate along the raypath. Cosmic ray soil moisture sensors have forward
operators that require site-specific calibration parameters that are not part of the model and must be included in the
observation metadata.

The potential examples are numerous.

80 Chapter 6. References

DART, Release 9.10.3

Since each ‘observation quantity’ may require different amounts of metadata to be read or written, any routine to read
or write an observation sequence must be compiled with support for those particular observations. This is the rationale
for the inclusion of preprocess in DART. The supported observations are listed in the obs_kind_nml namelist
in input.nml.

For this reason, we strongly recommend that you use the DART routines to read and process DART observation
sequence files.

Important: You must actually run preprocess before building any executables. It is an essential part of DART
that enables the same code to interface with multiple models and observation types. For example, preprocess
allows DART to assimilate synthetic observations for the Lorenz_63 model and real radar reflectivities for WRF
without needing to specify a set of radar operators for the Lorenz_63 model.

preprocess combines multiple obs_def and obs_quantity modules into one obs_def_mod.f90 that is
then used by the rest of DART. Additionally, a new obs_kind_mod.f90 is built that will provide support for
associating the specific observation TYPES with corresponding (generic) observation QUANTITIES.

The list of obs_def and obs_quantity module source codes are contained in the &preprocess_nml namelist
in input.nml. These modules determine what observations and operators are supported.

Warning: If you want to add another obs_def module, you must rerun preprocess and recompile the rest
of your project.

6.30.2 Example preprocess namelist

As an example, if a preprocess_nml namelist in input.nml looks like:

&preprocess_nml
input_obs_kind_mod_file = '../../../assimilation_code/modules/observations/

→˓DEFAULT_obs_kind_mod.F90'
output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_

→˓kind_mod.f90'
quantity_files = '../../../assimilation_code/modules/observations/

→˓atmosphere_quantities_mod.f90',
input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT_obs_

→˓def_mod.F90'
obs_type_files = '../../../observations/forward_operators/obs_def_gps_

→˓mod.f90',
'../../../observations/forward_operators/obs_def_

→˓QuikSCAT_mod.f90',
'../../../observations/forward_operators/obs_def_GWD_

→˓mod.f90',
'../../../observations/forward_operators/obs_def_

→˓altimeter_mod.f90',
'../../../observations/forward_operators/obs_def_

→˓reanalysis_bufr_mod.f90'
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.

→˓f90'
/

preprocess will combine the following modules:

• DEFAULT_obs_def_mod.F90

• obs_def_gps_mod.f90

6.30. How DART supports different types of observations: the preprocess program 81

DART, Release 9.10.3

• obs_def_QuikSCAT_mod.f90

• obs_def_GWD_mod.f90

• obs_def_altimeter_mod.f90

• and obs_def_reanalysis_bufr_mod.f90

into obs_def_mod.f90. This resulting module can be used by the rest of the project.

6.30.3 Building and running preprocess

Since preprocess is an executable, it must be compiled following the procedure of all DART executables:

1. The DART/build_templates/mkmf.template must be correct for your environment.

2. The preprocess_nml namelist in input.nml must be set properly with the modules you want to use.

If those two conditions are met, you can build and run preprocess using these commands:

$ csh mkmf_preprocess
$ make
$./preprocess

The first command generates an appropriate Makefile and the input.nml.preprocess_default file.
The second command results in the compilation of a series of Fortran90 modules which ultimately produces the
preprocess executable file. The third command actually runs preprocess - which builds the new obs_kind_mod.
f90 and obs_def_mod.f90 source code files. Once these source code files are created, you can now build the rest
of DART.

6.31 How DART stores observations: observation sequence
(obs_seq) files

Since DART is designed to assimilate observations from any data source, it includes a set of programs to convert
observations from their original format to DART’s own observation sequence, or obs_seq, format. The obs_seq
format is designed to allow DART to accomodate a myriad of source observation file formats, structure and metadata.
Many original source observation files don’t contain the necessary information about the error characteristics and
spatial structure of the data needed to perform an assimilation.

There are three types of obs_seq files.

6.31.1 obs_seq.in

An obs_seq.in file actually contains no observation quantities. It may be best thought of as a perfectly laid-out
notebook waiting for an observer to fill in the actual observation quantities.

All the rows and columns are ready, labelled, and repeated for every observation time and platform. The obs_seq.
in file is generally the start of a “perfect model” experiment.

In a perfect model experiment, one instance of the model is run through the DART program perfect_model_obs
- which applies the appropriate forward operators to the model state and writes down the observations generated by
the model in the writes them down in the perfectly laid-out notebook.

The completed notebook is then renamed obs_seq.out.

82 Chapter 6. References

DART, Release 9.10.3

6.31.2 obs_seq.out

An obs_seq.out file contains a linked list of observations. The observations can potentially be (and usually are)
from different platforms and of different quantities, each with their own error characteristics and metadata.

An obs_seq.out file containing real data can be generated by using one of DART’s many observation con-
verter programs. Additionally, an obs_seq.out file containing synthetic data can be created by running DART’s
perfect_model_obs program.

The observations in the obs_seq.out files are assimilated into the model ensemble by DART’s filter program.

To learn more about the structure of the obs_seq.out file, see Detailed structure of an obs_seq file.

If you want to create an observation sequence file from real observations, you should contact DAReS staff by emailing
dart@ucar.edu for advice regarding your specific types of observations.

6.31.3 obs_seq.final

When running an assimilation, DART’s filter program assimilates the observations contained in the obs_seq.
out file and generates an obs_seq.final file.

The obs_seq.final file contains everything in the obs_seq.out file and also contains a few additional ‘copies’
of the observation.

Since DART is an ensemble algorithm, each ensemble member must compute its own estimate of the observation for
the algorithm. You can save the ensemble members’ estimates of the observation in the obs_seq.final file by
setting the num_output_obs_members entry in the filter_nml namelist of input.nml to a value greater
than zero.

Minimally, filter will record the mean and spread of the ensemble estimates in the obs_seq.final file.

To learn more about the structure of the obs_seq.final file, see Detailed structure of an obs_seq file.

6.31.4 Using obs_seq.final for observation-space diagnostics

The best method to determine the performance of an experiment in which you assimilate data from real-world sources
is to compare the ensemble estimates of the observation to your real-world data. You can estimate the bias and error of
the ensemble mean or gauge how many of the real-world observations are actually being assimilated. These diagnostics
are known as observation-space diagnostics.

DART provides programs obs_diag and MATLAB® observation space diagnostics for you use to quickly assess the
performance of your experiment.

Note: Since each ‘observation type’ may require different amounts of metadata to be read or written, any routine to
read or write an observation sequence must be compiled with support for those particular observations. The supported
observations are listed in the obs_kind_nml namelist of input.nml. For more information, see How DART
supports different types of observations: the preprocess program.

6.31. How DART stores observations: observation sequence (obs_seq) files 83

mailto:dart@ucar.edu

DART, Release 9.10.3

6.32 Detailed structure of an obs_seq file

Since the configuration of model ensembles and the characteristics of assimilated observations are highly variable,
observation sequence files are highly adjustable to accomodate these variations.

There are many extensible parts of an observation sequence file. The following aspects of an observation sequence file
can be adjusted:

• the number of observation kinds contained in the file

• whether the locations have one or more components

• how many quality control values are available for each observation

• where those quality control values come from

• how many copies of each observation there are

The following two diagrams demonstrate the structure of an obs_seq.out and an obs_seq.final file, respec-
tively.

Note: These example files are from entirely separate experiments. They were selected to demonstrate the flexibility
of the observation sequence file format.

84 Chapter 6. References

DART, Release 9.10.3

6.32.1 obs_seq.out structure

6.32. Detailed structure of an obs_seq file 85

DART, Release 9.10.3

86 Chapter 6. References

DART, Release 9.10.3

6.32.2 obs_seq.final structure

6.32. Detailed structure of an obs_seq file 87

DART, Release 9.10.3

6.33 Creating an obs_seq file of synthetic observations

There are several steps to create an observation sequence file, which follows directly from the modular nature of the
DART programming philosophy. This procedure may be used to create synthetic observations from any model.

1. Decide what observations you want to investigate and edit the input.nml&obs_kind_nml block.

2. Build and run preprocess to create code that supports the observations you want.

3. Build and run create_obs_sequence to define the specifics about the observation you want.

4. Build and run create_fixed_network_sequence to replicate those specifics through time.

5. Build and run perfect_model_obs to create an observation consistent with the model state and specified error
distribution at the requested times and locations.

These programs are described in Programs included in DART .

6.33.1 Example: generating observations for the Lorenz ’63 model.

While this procedure works with any model, the responses in ‘create_obs_sequence’ will vary based on what obser-
vations are supported. You should not expect the responses for observations for L63 can be used to produce radar
observations from WRF, for example. When compiled with support for radar observations, create_obs_sequence will
prompt you for the required metadata.

1) There are no ‘real’ observations for the Lorenz ’63 model, so the appropriate namelist settings are:

&obs_kind_nml
assimilate_these_obs_types = 'RAW_STATE_VARIABLE' /

&preprocess_nml
input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT_obs_

→˓def_mod.F90'
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90

→˓'
input_obs_kind_mod_file = '../../../assimilation_code/modules/observations/

→˓DEFAULT_obs_kind_mod.F90'
output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_

→˓kind_mod.f90'
input_files = '../../../observations/forward_operators/obs_def_1d_

→˓state_mod.f90'
/

2) Run preprocess in the normal fashion.

3) create_obs_sequence creates an observation set definition (typically named set_def.out), the time-independent
part of an observation sequence. It may help to think of it as trying to define what sorts of observations will be taken
at one ‘reading’ . . . you walk out to the box and take temperature, humidity, and wind observations all at the same
time and place, for example. You can think of it as one page in an observer’s notebook, and only contains the location,
type, and observational error characteristics (normally just the diagonal observational error variance) for a related set
of observations. There are no actual observation values, nor are there any times associated with the definition. The
program is interactive and queries the user for the information it needs. Begin by creating a minimal observation set
definition in which each of the 3 state variables of L63 is directly observed with an observational error variance of 1.0
for each observation. To do this, use the following input sequence (the text including and after # is a comment and
does not need to be entered):

The following is a screenshot (much of the verbose logging has been left off for clarity), the user input looks like this.

88 Chapter 6. References

DART, Release 9.10.3

[unixprompt]$./create_obs_sequence
Starting program create_obs_sequence
Initializing the utilities module.
Trying to log to unit 10
Trying to open file dart_log.out

Starting ... at YYYY MM DD HH MM SS =

2017 3 28 10 15 30
Program create_obs_sequence

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
--

-------------- ASSIMILATE_THESE_OBS_TYPES --------------
RAW_STATE_VARIABLE
-------------- EVALUATE_THESE_OBS_TYPES --------------
--

---------- USE_PRECOMPUTED_FO_OBS_TYPES --------------
--

Input upper bound on number of observations in sequence
4
Input number of copies of data (0 for just a definition)

0
Input number of quality control values per field (0 or greater)

0
input a -1 if there are no more obs

0
Input -1 * state variable index for identity observations
OR input the name of the observation type from table below:
OR input the integer index, BUT see documentation...

1 RAW_STATE_VARIABLE
-1
input time in days and seconds

0 0
Input error variance for this observation definition

1.0
input a -1 if there are no more obs

0

{ this gets repeated ... until you tell it to stop ... }

input a -1 if there are no more obs
-1
Input filename for sequence (set_def.out usually works well)
set_def.out
write_obs_seq opening formatted file set_def.out
write_obs_seq closed file set_def.out

Rest assured that if you requested to assimilate more realistic observation types, you will be queried for appropriate
information by create_obs_sequence. Below is a table that explains all of the input you should need to supply for
observations of the L63 model state.

6.33. Creating an obs_seq file of synthetic observations 89

DART, Release 9.10.3

4 # upper bound on num of observations in sequence
0 # number of copies of data (0 for just a definition)
0 # number of quality control values per field (0 or greater)
0 # -1 to exit/end observation definitions

-1 # observe state variable 1
0 0 # time -- days, seconds
1.0 # observational variance
0 # -1 to exit/end observation definitions

-2 # observe state variable 2
0 0 # time -- days, seconds
1.0 # observational variance
0 # -1 to exit/end observation definitions

-3 # observe state variable 3
0 0 # time -- days, seconds
1.0 # observational variance
-1 # -1 to exit/end observation definitions

set_def.out # Output file name

4) create_fixed_network_sequence takes the observation set definition and repeats it in time, essentially making multi-
ple pages in our notebook. Again, the program is interactive and queries the user for information. You should be able
to simply follow the prompts. The table below represents the input needed for the L63 example:

set_def.out # Input observation set definition file
1 # Regular spaced observation interval in time
1000 # 1000 observation times
0, 43200 # First observation after 12 hours (0 days, 12 * 3600 seconds)
0, 43200 # Observations every 12 hours
obs_seq.in # Output file for observation sequence definition

5) perfect_model_obs advances the model from the state defined by the initial conditions file specified in the input.
nml and ‘applies the forward operator’ to harvest observations to fill in the observation sequence specified in
obs_seq.in. The observation sequence finally has values for the observations and is saved in a file generally
named obs_seq.out. perfect_model_obs is namelist-driven, as opposed to the previous two (whose input is a lot harder
to specify in a namelist). Take a look at (and modify if you like) the input.nml&perfect_model_obs_nml
section of the namelist.

The End. Not only should you have an observation sequence file (usually obs_seq.out) , you also have a file
containing the exact evolution of the model consistent with those observations - the true state: perfect_output.
nc.

6.34 Creating an obs_seq file from real observations

Real observations come in a mind-boggling diversity of formats. We have converters for many formats in the DART/
observations/obs_converters directory. The documentation for that directory is listed in DART Observa-
tions.

The converters are designed to work on one input file format and create (or add to) an output observation sequence.
It may be desirable to post-process multiple observation sequence files with the program obs_sequence_tool to select
for timeframe, geographic region, etc.

Many of the formats require their own libraries (like HDF), and require intimate knowledge of the data format to
extract the portions required for the DART observation sequence file.

90 Chapter 6. References

DART, Release 9.10.3

You should feel free to browse the converters and their companion documentation. If you create a new observation
coverter for a format that DART doesn’t already support, please follow the Contributors’ guide to add your code to
DART. These types of contributions are greatly appreciated by DAReS staff and by the geoscience community!

The DART framework enforces a clean separation between observations and the models used for assimilation. The
same observations can be used in any model which understands how to generate a value for the requested type of
observation from the models’ state-space values (i.e. the forward observation operator must exist - DART provides
many for the most common state variables).

In many cases, the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data. The DART software distribution includes Fortran
subroutines and functions to help create a sequence of observations in memory, and then a call to the DART observation
sequence write routine will create an entire obs_seq file in the correct format.

In many cases, a single, self-contained program can convert directly from the observation location, time, value, and
error into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR),
there is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards
single-step conversions but either approach can be used for new programs.

The DART system comes with several types of location modules for computing distances appropriately. The two
most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. All the programs
in the DART/observations directory assume the assimilation_code/location/threed_sphere/
location_mod.f90 3D sphere location module is being used.

With the myriad of observation file formats, HDF, Grib, BUFR, netCDF, . . . we simply have not had the time nor
need to support all of them. The converters are a work in progress. There are currently about 10 other observation
sources and types which we are in the process of collecting information and conversion programs for and which will
eventually be added to this directory. In the meantime, if you have converters for data or interest in something that
is not in the repository, please email the DART group. Your best bet is to contact our group at dart@ucar.edu with a
specific request and we can steer you to the most similar process.

6.34.1 Overview

Real-world observations of earth-system data come from a variety of sources, including radiosondes, satellites, ships,
aircraft, weather stations, etc. The files in this observations directory can be used to convert data from a variety
of native formats into a common DART observation sequence format.

Synthetic observations are those not based on an actual instrument reading of a system, but instead are fabricated to
have a known value, or have values computed by running a model, possibly with a fixed amount of simulated noise
added. These observations can be used for testing, determining the sensitivity of the model to assimilation, and for
designing new observation systems. The DART system includes several ways to create synthetic observations. For
more information, see Creating an obs_seq file of synthetic observations.

The DART framework enforces a clean separation between observations and the models they are assimilated into. The
same observations can be used in any model which understands how to generate a value for the requested type of
observation from its state space values.

In many cases a single, self-contained program can convert directly from the observation location, time, value, and
error into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR),
there is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards
single-step conversions but either approach can be used for new programs.

Frequently the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data.

The DART software distribution includes Fortran subroutines and functions to help create a sequence of observations
in memory, and then a call to the DART observation sequence write routine will create an entire obs_seq file in the
correct format.

6.34. Creating an obs_seq file from real observations 91

DART, Release 9.10.3

The DART system comes with several types of location modules for computing distances appropriately. Two of the
ones most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. All the
programs here assume the location/threed_sphere/location_mod.f90 3D sphere location module is
being used.

There are currently some additional observation sources and types which we are in the process of collecting infor-
mation and conversion programs for and which will eventually be added to this directory. In the meantime, if you
have converters for data or interest in something that is not in the repository, please contact DAReS staff by emailing
dart@ucar.edu.

6.34.2 Data sources and formats

See the various subdirectories here, which generally include information on where the example data was obtained and
in what format it is distributed. Most data is available for download off the web. The Data Support Section (DSS) at
NCAR has large data repositories, the MADIS data center distributes observations in netCDF format, GTS real-time
weather data is available from various sources. For new converters, if you can find what format the data is distributed in
you may be able to adapt one of the existing converters here for your own use. Formats read by the existing converters
include netCDF, HDF, little-r, text, Prepbufr, amongst others.

See the current list of converter programs

If you have looked and none of the existing converters are right for your data, here are some suggestions for where
to start creating a new converter. Create a new subdirectory in the observations directory. Copy with the recursive
option (cp -r) one of the existing converters and adapt to your needs. Our suggestions for which converter to start from
depends on the format of your input observations to be converted. If your input data format is:

format advice
netCDF Start with the MADIS converters, and in particular try the convert_madis_profiler.

f90 file because it is the most straightforward. Another good option is SST/
oi_sst_to_obs.f90.

Comma separated
text

Start with the Ameriflux converter.

Generic text Start with the text converter.
HDF-EOS5 Start with the AIRS converter.
BUFR or prep-
BUFR

Start with the NCEP converter.

Dense data, like
Satellite swaths

Start with the tpw converter, which includes code that averages the raw data in space and time.

Ray-path inte-
grated data

Start with the GPS converter, which includes code that traces a path and integrates values
along the ray.

World Ocean
Database packed
ASCII

Start with the WOD converter.

92 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

6.34.3 Decisions you might need to make

Time

Time enters into the assimilation system in 3 places: the timestamp of the state vector data (the current model time
when this data was produced), the time of each observation, and the minimum time period the model should be called
to advance (the assimilation window size). The internal timestepping of the model is unrelated to any of these times
and is outside the scope of the assimilation system.

The basic time type in DART is a pair of integers; one for the day number and one for the number of seconds. Generally
the low order models, which aren’t direct geophysical models, use time directly as a sequence of days starting at 0 and
incrementing in any appropriate number of seconds or days. The observations assimilated into these systems do not
need to use a calendar.

Observations of a real-world system usually are distributed with a year/month/day, hour/min/seconds timestamp.
There are routines in DART to convert back and forth between the (day-number/seconds) format and a variety of
(year/month/day) calendars. For more details on how DART stores time information and the types of available calen-
dars, see MODULE time_manager_mod.

Some climate models which do long runs (100s or 1000s of years) use a modified calendar for simplicity in computa-
tion, e.g. months which always have 30 days, or no leap years. When trying to assimilate real observations into these
models there may be calendar issues to solve.

The smallest resolvable unit of time in DART is a second. To model a system which operates on sub-second time
scales the time can be scaled up by some factor. As long as the observation time, the state data time, and the minimum
model advance time are expressed in the same scaled time units, there is no problem.

Error variances

Observations must specify an associated expected error variance. Each individual observation stores its own error
variance value, so it can be a constant value for all observations of that type or it can vary by location, by height, by
magnitude of the observed value, etc. This value is the expected instrument error variance plus the representativeness
error variance of the model. The model error variance includes deficiencies in the equations representing the processes
of the system as well as errors introduced by representing a continuous system as a series of discrete points. While
the instrument error and the representativeness error could be specified separately, they each have the same impact on
the assimilation and can be difficult to determine with any real accuracy. For simplicity, in DART (and most current
assimilation software) they are combined and specified as a single value, which we frequently call the ‘observation
error’. Keep in mind we really mean ‘observation error variance’.

The instrument error is generally supplied by the instrument maker. Sadly, it is frequently surprisingly difficult to
find these values. For the representativeness error, you can generate a set of artificial observations with the program
perfect_model_obs and then run an assimilation experiment to generate an estimate of the error in the model.

In practice, however, most people make an educated guess on the values of the error and then start with a larger than
expected value and decrease it based on the results of running some test assimilations.

For these tests, the namelist for the outlier threshold in the filter_nml namelist of input.nml should be disabled
by setting it to -1 (the default value is 3). This value controls whether the observation is rejected because the observed
value is too far from the ensemble mean.

If the diagnostics show that the difference between the mean of the forward operators and the observed value is
consistently smaller than the specified observation error, then the error is probably too large. A error that is too
large reduces the impact of an observation on the state. If the specified observation error is too small it is likely the
observation will be rejected when the outlier threshold is enabled, and the observation will not be assimilated. It is
important to look at the output observation sequence files after an assimilation to see how many observations were
assimilated or rejected, and also at the RMSE (root mean squared error) versus the total spread. DART includes
Matlab diagnostic routines to create these types of plots. The observation RMSE and total spread should be roughly

6.34. Creating an obs_seq file from real observations 93

http://www.wikipedia.org/wiki/RMSE

DART, Release 9.10.3

commensurate. The total spread includes contributions from both the ensemble variance and the observational error
variance, so it can be adjusted by changing the error values on the incoming observations.

There are other ways to adjust the ensemble spread, including Inflation, so the observation error is not the only factor
to consider.

One last recommendation: if possible, the Prior forward operator values should be compared against the observations
after several assimilation cycles. If you plot results using the Posterior values it is always possible for the assimilation
to overfit the observations and look good on the diagnostic plots. But the actual test is to then advance the model and
look at how the forecast of the state compares to the observations.

Observation types

All observations have to have a specific ‘type’. There are namelist controls to turn on and off the assimilation of
observations at run-time by type, or to only evaluate the forward operator for an observation but have no impact on
the state. Several of the diagnostics also group observations by type to give aggregate statistics after an assimila-
tion. Generally types are based on both the observing platform or instrument as well as the ‘kind’ of observation,
e.g. RADIOSONDE_TEMPERATURE, ARGO_SALINITY, etc. Each type is associated with a single underlying
generic ‘kind’, which controls what forward operator code is called inside the model, e.g. QTY_TEMPERATURE,
QTY_DENSITY, etc.

For more details on how to use and add new DART types, see the MODULE obs_def_mod.

The DART obs_kind_mod.f90 defines a list of already defined observation types, and users can either use existing
observation types in ‘obs_def_xxx_mod.f90’ files, or define their own. Be aware that obs_kind_mod.f90 is
autogenerated by the PROGRAM preprocess, so until you configure and run preprocess, obs_kind_mod.f90
will not exist.

Observation locations

The two most common choices for specifying the location of an observation are the MODULE location_mod
(threed_sphere) and the MODULE (1D) location_mod locations.

For observations of a real-world system, the 3D Sphere is generally the best choice. For low-order, 1D models, the
1D locations are the most commonly used. The observation locations need to match the type of locations used in the
model in that you cannot read observations on a unit circle (1D) when using models that require 3D Sphere locations.

The choice of the vertical coordinate system may also be important. For the 3D Sphere, the vertical coordinate system
choices are:

string integer value meaning
VERTISUNDEF -2 has no specific vertical location (undefined)
VERTISSURFACE -1 surface value (value is surface elevation in m)
VERTISLEVEL 1 by model level
VERTISPRESSURE 2 by pressure (in pascals)
VERTISHEIGHT 3 by height (in meters)
VERTISSCALEHEIGHT 4 by scale height (unitless)

The choice of the vertical coordinate system may have ramifications for vertical localization, depending on your
model’s ability to convert from one coordinate system to another. VERTISUNDEF is typically used for column-
integrated quantities. VERTISLEVEL only makes sense for synthetic observations.

When observations are declared to be VERTISSURFACE or VERTISUNDEF it is not possible to compute a vertical
distance between the observation and anything else. Consequently, the distance between that observation and every-
thing else (state, other observations) is strictly a horizontal distance, and the observation will impact the entire column
(all levels) within the horizontal localization radius.

94 Chapter 6. References

DART, Release 9.10.3

6.35 Available observation converter programs

The DART/observations/obs_converters directory contains a variety of converter programs to read various
external formats and convert the observations into the format required by DART.

Each directory has at least one converter:

• AIRS: AIRS and AMSU

• Aviso+/CMEMS: Aviso+/CMEMS Observations

• Ameriflux: PROGRAM level4_to_obs

• cice: PROGRAM cice_to_obs

• COSMOS: PROGRAM COSMOS_to_obs

• DWL: PROGRAM dwl_to_obs

• GOES: NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances

• GPSPW: GPSPW

• GSI2DART: GSI2DART

• GTSPP: GTSPP Observations

• MADIS: MADIS Data Ingest System

• MIDAS: PROGRAM MIDAS_to_obs

• MODIS: PROGRAM MOD15A2_to_obs

• NCEP: (prepbufr -> ascii) PROGRAM prepbufr

• NCEP: (ascii -> obs_seq) PROGRAM create_real_obs

• ROMS: ROMS observations to DART observation sequences

• SSEC: SSEC Data Center

• SST: PROGRAM sst_to_obs, oi_sst_to_obs

• SSUSI: SSUSI F16 EDR-DSK format to observation sequence converters

• WOD: WOD Observations

• gnd_gps_vtec: GND GPS VTEC

• GPS: GPS Observations

• ok_mesonet: Oklahoma Mesonet MDF Data

• QuikSCAT: QuikSCAT SeaWinds Data

• Radar: Radar Observations

• snow: PROGRAM snow_to_obs

• Text: PROGRAM text_to_obs

• tpw: Total Precipitable Water Observations

• Tropical Cyclones: PROGRAM tc_to_obs

• Var (little-r): PROGRAM littler_tf_dart

• Var (radar): PROGRAM rad_3dvar_to_dart

There are also a couple utilities of note:

6.35. Available observation converter programs 95

DART, Release 9.10.3

• Even Sphere - a utility for generating evenly-spaced observation locations that can then be used in a perfect
model experiment.

• Obs Error - modules that specify observation errors based on what is used by ECMWF and NCEP

In addition the following external program produces DART observation sequence files:

• Observation Processing And Wind Synthesis (OPAWS): OPAWS can process NCAR Dorade (sweep) and
NCAR EOL Foray (netCDF) radar data. It analyzes (grids) data in either two-dimensions (on the conical sur-
face of each sweep) or three-dimensions (Cartesian). Analyses are output in netCDF, Vis5d, and/or DART (Data
Assimilation Research Testbed) formats.

For generating synthetic observations, see the documentation for the program create_obs_sequence. You can also
generate observation files based on text input. See the documentation for the PROGRAM text_to_obs. Or for simulating
a large complex observing system, you can use the DART library routines in a Fortran program to compute the
observation information and have the DART routines write the output file.

To learn how to run a model with a set of observations that have only locations, types, and times, and have the forward
operators compute the observation values, see the documentation for the program perfect_model_obs.

6.36 Manipulating obs_seq files with the obs_sequence_tool

Please see the program obs_sequence_tool document for detailed information and examples.

The obs_sequence_tool is the primary means to manipulate observation sequence files.

Observations sequence files are linked lists of observations organized by time. The observations may appear in any
order in the file, but traversing the linked list will result in observations ordered by time.

The obs_sequence_tool can be used to combine observation sequences, convert from ASCII to binary or vice-
versa, extract a subset of observations, etc.

When you are testing your DA application, you should use the obs_sequence_tool to extract one or a small
number of observations from an existing observation sequence file for assimilation. Testing your application using a
small number of observations will allow you to test and troubleshoot problems much faster than performing a full-scale
assimilation.

6.37 The difference between observation TYPE and QUANTITY

Since DART is designed to assimilate data from any data source into any model, the assimilation algorithms need a
way to define how observational data sources relate to model state variables.

DART does this by defining a single generic observation QUANTITY, such as zonal wind, and mapping many specific
observation TYPEs, corresponding to source observations, to the single QUANTITY.

For example, QuikSCAT and radiosondes are both capable of measuring zonal wind. DART defines two observation
TYPEs:

• QKSWND_U_WIND_COMPONENT for the QuikSCAT observations of zonal wind

• RADIOSONDE_U_WIND_COMPONENT for the radiosonde observations of zonal wind

and relates both of these TYPES to a single QUANTITY: QTY_U_WIND_COMPONENT.

Thus TYPE and QUANTITY have a many-to-one relationship. This distinction enables you to assimilate or evaluate
observation platforms independently of one another with a single observation sequence file; reducing the possibility
of error.

96 Chapter 6. References

http://code.google.com/p/opaws/

DART, Release 9.10.3

The forward observation operators are implemented based on observation QUANTITY. When requested, the model
generates a QTY_U_WIND_COMPONENT, it doesn’t need to know that it will be compared to an observation from
QuikSCAT or one from a radiosonde.

Tip: It is usually scientifically very interesting to be able to compare the assimilations one TYPE of observation
verus another. An observation sequence file can have many types of observations. DART has the capability to as-
similate (or evaluate) any combination of observation types without getting bogged down in dataset management.
The same observation sequence can be used for experiments that include or exclude certain observation types. This
procedure can ensure that you are actually performing the experiment that you think you are performing.

6.38 Adding support for a new observation TYPE

If you would like to add support for a new observation TYPE, see MODULE obs_def_mod for detailed information.

6.39 Introduction to DART’s support for RTTOV

This document serves as an orientation for DART’s support for satellite radiance assimilation. At the current time,
only ECMWF’s RTTOV radiative transfer model is supported.

DART now includes the ability to use the RTTOV forward operators for satellite radiance assimilation. This is a new
capability for DART, please submit issues with the DART Issues facility.

Note that DART support for RTTOV does not mean that all issues regarding satellite data assimilation with an ensemble
system have been solved. Rather, the DART team hopes to provide the tools necessary for researchers to investigate
the relevant issues with multiple models and data assimilation methodologies.

DART supports RTTOV version 12.3. Both RTTOV-direct for visible/infrared/microwave without scattering as well as
RTTOV-scatt for microwave computations with full scattering are supported. DART supports all features of RTTOV
12.3 as a pass-through from the models to RTTOV. This includes aerosols, trace gases, clouds, and atmospheric
variables. It also includes directly specifying scattering properties.

However, a particular model may not have all of the variables necessary for these functions depending on the model
and model setup. In some cases RTTOV default climatologies can be used, but at a minimum the following quantities
must be supplied by the model_mod interpolate:

Quantity Description
QTY_PRESSURE atmospheric pressure in hPa at the model levels
QTY_TEMPERATURE atmospheric temperature in K at the model levels
QTY_VAPOR_MIXING_RATIO atmospheric humidity mixing ratio in kg/kg at the model levels
QTY_SURFACE_PRESSURE the surface pressure in hPa
QTY_SURFACE_ELEVATION the surface elevation in km
QTY_2M_TEMPERATURE the atmospheric temperature in K at 2 m above the surface
QTY_SKIN_TEMPERATURE the surface (skin) temperature in K
QTY_SURFACE_TYPE 0 = land, 1 = water, 2 = sea ice

If a DART model_mod cannot provide these required quantities, the RTTOV forward operator will fail and cannot
be used. It may be possible to look up surface elevation or surface type through an look-up table or “atlas,” although
DART does not yet provide such functionality. 2M temperature in theory could be interpolated based on skin temper-
ature and the lowest-level model temperature.

6.38. Adding support for a new observation TYPE 97

https://github.com/NCAR/DART/issues

DART, Release 9.10.3

Beyond these fields, there are many other optional fields (such as clouds, trace gases, and aerosols) that can be spec-
ified. See the obs_def_rttov_mod.html page in the observations/forward_operators directory for a complete list of
values.

6.39.1 Setting up DART+RTTOV

The RTTOV code and coefficients can be downloaded from this page:

https://www.nwpsaf.eu/site/software/rttov

Be aware that there are more coefficient files available once you download the RTTOV package. There is a
rtcoef_rttov12/rttov_coef_download.sh script that assists in the process and you can select specific
coefficient files or large batches. There is also a website https://nwp-saf.eumetsat.int/site/software/rttov/download/
coefficients/rttov-v12-coefficient-download/

You will need to register for a free account before downloading the code.

You should read the RTTOV user guide carefully as DART primarily acts as a pass through. Refer to the setup
instructions included with the RTTOV documentation.

It may also be useful to refer to:

https://github.com/NCAR/DART/wiki/Getting-Started-with-DART-RTTOV

Once you have successfully installed RTTOV, you should customize the mkmf.template.rttov.gfortran file to your own
build system, possibly referring to the other mkmf.template examples for additional information if you are not using
gfortran.

There are many namelist options available through input.nml that control the run-time behavior of the RTTOV model.
These are documented in obs_def_rttov_mod.html in the observations/forward_operators directory.

To get RTTOV to work with your model, you will need to follow these steps:

1. Install RTTOV as above

2. Customize your mkmf.template to include the RTTOV libraries and include directories

3. Go into the models//work directory for your model of choice

4. Add your observation types (which are listed in obs_def_rttov_mod.html/f90) to the input.nml namelist (assim-
ilate_ / evaluate_these_obs_types)

5. Include observations/forward_operators/obs_def_rttov_mod.f90 in the input_files section under &preprocess

6. In your model of choice, run ./quickbuild.csh and ensure the RTTOV libraries are built

7. For OSSE runs with perfect_model_obs:

• Create an observation sequence file using ./create_obs_sequence and ./create_fixed_network_seq as de-
tailed in the DART Getting_Started documentation

• Run perfect_model_obs

• Setup your ensemble as appropriate

• Run filter and analyze the results in the usual way

8. For OSE runs:

• Run the observation converter for your desired observations

• Setup your ensemble as appropriate

• Run filter and analyze the results in the usual way

98 Chapter 6. References

https://www.nwpsaf.eu/site/software/rttov
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/rttov-v12-coefficient-download/
https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/rttov-v12-coefficient-download/
https://github.com/NCAR/DART/wiki/Getting-Started-with-DART-RTTOV

DART, Release 9.10.3

Note that currently obervation converters are only provided for AIRS, AMSU/A, GOES, and GMI. These converters
can be found in the observations/obs_converters directories. The L1 converters are the appropriate converters for the
radiance or brightness temperatures (rather than retrievals). If you need real L1 data for another satellite (as opposed
to running an OSSE with perfect_model_obs where you can generate your own data), you may be able to use one of
these converters to get you started. We welcome your contributions back to the DART public repository. Please issue
a pull request to https://github.com/NCAR/DART.

Note that some of the observation converters may require the HDF-EOS libraries. See the BUILDME script in each
directory for help in building these observation converters.

6.39.2 Current list of known issues

DART support for satellite radiances cannot be considered 100% complete. The following details the known issues
that are being considered with DART’s support for satellite radiances.

• DART does not yet provide satellite bias correction capabilities. This will be released in the near future.

• Cross-channel error correlations are not yet supported. A principal component approach has been discussed.
For now, the best bet is to use a subset of channels that are nearly independent of one another.

• Vertical localization is an issue for satellite radiances. The main choices are to turn off vertical localization, use
the maximum peak of the weighting function or the cloud-top may be appropriate, or explore other options. We
consider this an open research problem.

6.40 DART Observations

6.40.1 Overview

Real-world observations of earth-system data come from a variety of sources, including radiosondes, satellites, ships,
aircraft, weather stations, etc. The files in this observations directory can be used to convert data from a variety of
native formats into a common DART observation sequence format.

Synthetic observations are those not based on an actual instrument reading of a system, but instead are fabricated to
have a known value, or have values computed by running a model, possibly with a fixed amount of simulated noise
added. These observations can be used for testing, determining the sensitivity of the model to assimilation, and for
designing new observation systems. The DART system includes several ways to create synthetic observations. See the
programs section below for more details.

The DART framework enforces a clean separation between observations and the models they are assimilated into. The
same observations can be used in any model which understands how to generate a value for the requested type of
observation from its state space values.

In many cases a single, self-contained program can convert directly from the observation location, time, value, and
error into the DART format. In other cases, especially those linking with a complicated external library (e.g. BUFR),
there is a two-step process with two programs and an ASCII intermediate file. We are currently leaning towards
single-step conversions but either approach can be used for new programs.

Frequently the original datasets are in a standard scientific format like netCDF, HDF, or BUFR, and library routines
for those formats can be used to read in the original observation data.

The DART software distribution includes Fortran subroutines and functions to help create a sequence of observations
in memory, and then a call to the DART observation sequence write routine will create an entire obs_seq file in the
correct format.

6.40. DART Observations 99

https://github.com/NCAR/DART

DART, Release 9.10.3

The DART system comes with several types of location modules for computing distances appropriately. Two of the
ones most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. Most of the
programs here assume the location/threed_sphere/location_mod.f90 3D sphere location module is being used.

There are currently some additional observation sources and types which we are in the process of collecting informa-
tion and conversion programs for and which will eventually be added to this directory. In the meantime, if you have
converters for data or interest in something that is not in the repository, please email the DART group.

6.40.2 Data Sources and Formats

See the various subdirectories here, which generally include information on where the example data was obtained and
in what format it is distributed. Most data is available for download off the web. The Data Support Section (DSS) at
NCAR has large data repositories, the MADIS data center distributes observations in NetCDF format, GTS real-time
weather data is available from various sources. For new converters, if you can find what format the data is distributed in
you may be able to adapt one of the existing converters here for your own use. Formats read by the existing converters
include NetCDF, HDF, little-r, text, Prepbufr, amongst others.

See the programs section below for a list of the current converter programs. It might save you from reinventing
the wheel.

If you have looked and none of the existing converters are right for your data, here are some suggestions for where
to start creating a new converter. Create a new subdirectory in the observations directory. Copy with the recursive
option (cp -r) one of the existing converters and adapt to your needs. Our suggestions for which converter to start from
depends on the format of your input observations to be converted. If your input data format is:

Start with the MADIS converters, and in particular try the convert_madis_profiler.f90 file because it is the most
straightforward. Another good option is SST/oi_sst_to_obs.f90

netCDF Start with the MADIS converters, and in particular try the convert_madis_profiler.f90 file
because it is the most straightforward. Another good option is SST/oi_sst_to_obs.f90

Comma separated
text

Start with the Ameriflux converter.

Generic text Start with the text converter.
HDF-EOS Start with the AIRS converter.
BUFR or prep-
BUFR

Start with the NCEP converter.

Dense data, like
Satellite swaths

Start with the tpw converter, which includes code that averages the raw data in space and
time.

Ray-path integrated
data

Start with the GPS converter, which includes code that traces a path and integrates values
along the ray.

World Ocean
Database packed
ASCII

Start with the WOD converter.

100 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

6.40.3 Decisions You May Need to Make

Time

Time enters into the assimilation system in 3 places: the time of the state vector data (the current model time when
this data was produced), the time of each observation, and the assimilation window length. The window length is set
by the model-dependent routine shortest_time_between_assimilations(). The internal timestepping of
the model is unrelated to any of these times and is outside the scope of the assimilation system.

The basic time type in DART is a pair of integers; one for the day number and one for the number of seconds. Generally
the low order models, which aren’t direct geophysical models, use time directly as a sequence of days starting at 0 and
incrementing in any appropriate number of seconds or days. The observations assimilated into these systems do not
need to use a calendar.

Observations of a real-world system usually are distributed with a year/month/day, hour/min/seconds timestamp.
There are routines in DART to convert back and forth between the (day-number/seconds) format and a variety of
(year/month/day) calendars. See the time manager documentation for more details on how DART stores time infor-
mation and the types of available calendars. Some climate models which do long runs (100s or 1000s of years) use
a modified calendar for simplicity in computation, e.g. months which always have 30 days, or no leap years. When
trying to assimilate real observations into these models there may be calendar issues to solve.

The smallest resolvable unit of time in DART is a second. To model a system which operates on sub-second time
scales the time can be scaled up by some factor. As long as the observation time, the state data time, and the minimum
model advance time are expressed in the same scaled time units, there is no problem.

Error

Observations must specify an associated expected error. Each individual observation stores its own error value, so
it can be a constant value for all observations of that type or it can vary by location, by height, by magnitude of
the observed value, etc. This value is the expected instrument error plus the representativeness error of the model.
The model error includes deficiencies in the equations representing the processes of the system as well as errors
introduced by representing a continuous system as a series of discrete points. While the instrument error and the
representativeness error could be specified separately, they each have the same impact on the assimilation and can be
difficult to determine with any real accuracy. For simplicity, in DART (and most current assimilation software) they
are combined and specified as a single value.

The instrument error is generally supplied by the instrument maker. Sadly, it is frequently surprisingly difficult to
find these values. For the representativeness error, a set of artificial observations could be generated with the per-
fect_model_obs program and an assimilation experiment could be run to generate an estimate of the error in the
model. In practice however most people make an educated guess on the values of the error and then start with a larger
than expected value and decrease it based on the results of running some test assimilations. For these tests the namelist
for the outlier threshold should be disabled by setting it to -1 (the default value is 3). This value controls whether the
observation is rejected because the observed value is too far from the ensemble mean.

If the diagnostics show that the difference between the mean of the forward operators and the observed value is
consistently smaller than the specified observation error, then the error is probably too large. A too-large error reduces
the impact of an observation on the state. If the specified observation error is too small it is likely the observation will
be rejected when the outlier threshold is enabled, and the observation will not be assimilated. It is important to look at
the output observation sequence files after an assimilation to see how many observations were assimilated or rejected,
and also at the RMSE (root mean squared error) versus the total spread. DART includes Matlab diagnostic routines to
create these types of plots. The observation RMSE and total spread should be roughly commensurate. The total spread
includes contributions from both the ensemble variance and the observational error variance, so it can be adjusted by
changing the error values on the incoming observations. There are other ways to adjust the ensemble spread, including
inflation, so the observation error is not the only factor to consider.

6.40. DART Observations 101

../../assimilation_code/modules/utilities/time_manager_mod.html#time_type
../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
../../assimilation_code/programs/filter/filter.html#Namelist
http://www.wikipedia.org/wiki/RMSE
../../assimilation_code/programs/filter/filter.html#Inflation

DART, Release 9.10.3

One last recommendation: if possible, the Prior forward operator values should be compared against the observations
after several assimilation cycles. If you plot results using the Posterior values it is always possible for the assimilation
to overfit the observations and look good on the diagnostic plots. But the actual test is to then advance the model and
look at how the forecast of the state compares to the observations.

Types

All observations have to have a specific ‘type’. There are namelist controls to turn on and off the assimilation of
observations at run-time by type, or to only evaluate the forward operator for an observation but have no impact on
the state. Several of the diagnostics also group observations by type to give aggregate statistics after an assimila-
tion. Generally types are based on both the observing platform or instrument as well as the kind of observation,
e.g. RADIOSONDE_TEMPERATURE, ARGO_SALINITY, etc. Each type is associated with a single underlying
generic ‘kind’, which controls what forward operator code is called inside the model, e.g. QTY_TEMPERATURE,
QTY_DENSITY, etc.

See here for more details on how to use and add new DART types. The DART obs_kind_mod.f90 defines a list of
already defined observation kinds, and users can either use existing observation types in ‘obs_def_xxx_mod.f90’ files,
or define their own.

Locations

The two most common choices for specifying the location of an observation are the threed_sphere and the oned
locations. For observations of a real-world system, the 3D Sphere is generally the best choice. For low-order, 1D
models, the 1D locations are the most commonly used. The observation locations need to match the type of locations
used in the model.

6.40.4 Converting a series of observations

If you are running a series of assimilation steps you may need a separate observation sequence (obs_seq) file per step.
The suggested process is to create the first few files by hand to check the resulting obs_seq files and then write scripts
(python, shell) to automate the creation of the remainder of the files. The following are some of the considerations to
take into account when creating scripts for a series of obs_seq files.

Looping in Time

Often observations are distributed in files that contain observations from a particular time period, e.g. a file per day
or per week. The output obs_seq files need to include observations from the same time period as the assimilation
window; how often the assimilation is stopped and the model is advanced in time. The conversion process can either
convert all the observations from an input file into a single output file and in a subsequent step break the file into the
required time ranges, or the conversion process can extract and convert only the observations required for a single
output file and loop multiple times over the same input file.

Generally earth system models use calendar dates, including months, days, years, hours, minutes and seconds. The
advance_time program is very useful in adding or subtracting time periods from calendar dates taking into account
changing months and years, accounting for leap days, etc.

Observation conversion programs usually take one of two strategies for their input and output filenames.

• Have fixed input and output filenames for the converter. Have the script make symbolic links from the actual
filenames to the fixed names for the files for each conversion run.

• Have a Fortran namelist variable that sets the input and output filenames for the converter. Have the script
generate or edit the namelist file (e.g. with the sed stream editor) to set the actual filenames for each conversion
run.

102 Chapter 6. References

../forward_operators/obs_def_mod.html
../../assimilation_code/location/threed_sphere/location_mod.html
../../assimilation_code/location/oned/location_mod.html

DART, Release 9.10.3

Generally it is a good idea to encode the date information in the output filename so each file is guarenteed to be unique.
This can also make it simpler at filter runtime to generate the required input observation sequence filenames using a
program like advance_time.

Multiple Observation Files

It is common that an assimilation will want to use observations from different sources. Generally it is easier to convert
observations from each source separately and then merge them together with the obs_sequence_tool.

Creating filenames and directory names which follow a pattern that can be generated with the advance_time
program makes this easier to do.

The obs_sequence_tool can read the input filenames from a separate ascii file. This makes generating the
filenames easy from a script; it can simply concatinate the input filenames echo’d to an ascii file and then run the
obs_sequence_tool. The output file can either be set by using sed on the namelist, or a fixed output filename can be
used and then the file renamed after the tool has run.

Conversion Run Time for Large File Counts

If 100s of files need to be generated and a supercomputer or other multiple-CPU resource is available, batch files
which convert multiple files at the same time can be a large time savings. Care must be taken that each conversion has
its own settings and unique filenames. Often a separate working directory from other conversions running at the same
time simplifies the scripting needed.

Verification

Observations taken from real-world sources can have missing values, illegal values, missing files, duplicated data, etc.
The list is as long as your imagination. It can be very useful to write or adapt programs like obs_info to print out
the first and last obs times in a file, the count of each obs type, etc. Especially for observations which are close to the
start/end of a month or year, it is easy to find truncated data files.

If converting a large number of files it is also common for computer system failures to occur at random times. File
systems fill up, batch jobs exit early, power glitches stop programs before they finish. Look for anomolous observation
counts, unexpected first and last times of obs in a file, missing files, files with many fewer bytes than others, and
anything else you can think of.

Output Formats

There are options to write output obs_seq files in binary, which are roughly half the size of ascii files. However it
greatly increases the effort to examine the contents of a file for problems. Generally we have used the ascii format. It
is portable between systems of different “endians” (order of bytes in a multi-byte number) and can be browsed much
more easily.

6.40. DART Observations 103

DART, Release 9.10.3

6.41 Converter programs

The DART/observations/obs_converters directory contains a variety of converter programs to read various external
formats and convert the observations into the format required by DART.

The current list of converters (some directories contain multiple converters) include:

• AIRS atmospheric variables and AMSUA radiances

• AURA (uses a combination of IDL and Fortran)

• Aviso+/CMEMS

• Ameriflux

• CHAMP

• cice

• CNOFS

• CONAGUA

• COSMOS

• DWL

• GMI

• GOES

• GPSPW

• GRACE

• GSI2DART

• GTSPP

• MADIS

• MIDAS

• MODIS

• MPD

• NCEP (prepbufr->ascii)

• NCEP (ascii->obs_seq)

• ROMS

• SSEC

• SST

• SSUSI

• WOD

• gnd_gps_vtec

• GPS

• ok_mesonet

• QuikSCAT

• Radar

104 Chapter 6. References

AIRS/README.html
AIRS/convert_airs_L2.html
AIRS/convert_amsu_L1.html
AVISO/AVISO.html
Ameriflux/level4_to_obs.html
CHAMP/work/README.html
cice/cice_to_obs.html
CONAGUA/README.html
COSMOS/COSMOS_to_obs.html
DWL/dwl_to_obs.html
GMI/README.html
GOES/README.html
GPSPW/README.html
GSI2DART/readme.html
GTSPP/GTSPP.html
MADIS/MADIS.html
MIDAS/MIDAS_to_obs.html
MODIS/MOD15A2_to_obs.html
MPD/README.html
NCEP/prep_bufr/prep_bufr.html
NCEP/ascii_to_obs/create_real_obs.html
ROMS/ROMS.html
SSEC/SSEC.html
SST/SST.html
SSUSI/convert_f16_edr_dsk.html
WOD/WOD.html
gnd_gps_vtec/README.html
gps/gps.html
ok_mesonet/ok_mesonet.html
quikscat/QuikSCAT.html
radar/radar.html

DART, Release 9.10.3

• snow

• Text

• text_GITM

• tpw

• Tropical Cyclones

• Var (little-r)

• Var (radar)

There are also a couple utilities of note:

• Even Sphere - a utility for generating evenly-spaced observation locations that can then be used in a perfect
model experiment.

• obs_error - modules that specify observation errors based on what is used by ECMWF and NCEP

In addition the following external program produces DART observation sequence files:

• Observation Processing And Wind Synthesis (OPAWS): OPAWS can process NCAR Dorade (sweep) and
NCAR EOL Foray (netcdf) radar data. It analyzes (grids) data in either two-dimensions (on the conical sur-
face of each sweep) or three-dimensions (Cartesian). Analyses are output in netcdf, Vis5d, and/or DART (Data
Assimilation Research Testbed) formats.

For generating synthetic observations, see the create_obs_sequence program documentation. You can also generate
observation files based on text input. See the text_to_obs program documentation. Or for simulating a large complex
observing system, you can use the DART library routines in a Fortran program to compute the observation information
and have the DART routines write the output file.

See the perfect_model program documentation on how to run a model with a set of observations that have only
locations, types, and times, and have the forward operators compute the observation values.

Contact the DART development group if you have observations in a different format that you want to convert. We can
give you advice and pointers on how to approach writing the code.

6.42 AIRS and AMSU

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The
NASA Earthdata Data Access Services website is the download site for the necessary libraries. An example build
script (AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

This directory covers two observation converters:

• Program convert_airs_L2 for temperature and moisture retrievals.

• Program convert_amsu_L1 for radiances.

Both converters are in the AIRS directory because of the complicated history of the data used to create the AIRS L2
product (which includes some AMSU observations). Since both datasets are HDF - it was believed that some of the
routines could be used by both converters. Alas, that has not proven to be the case.

6.42. AIRS and AMSU 105

snow/snow_to_obs.html
text/text_to_obs.html
tpw/tpw.html
tropical_cyclone/tc_to_obs.html
var/littler_tf_dart.html
var/rad_3dvar_to_dart.html
even_sphere/README.html
obs_error/README.html
http://code.google.com/p/opaws/
../../assimilation_code/programs/create_obs_sequence/create_obs_sequence.html
text/text_to_obs.html
../../assimilation_code/programs/perfect_model_obs/perfect_model_obs.html
mailto:dart@ucar.edu
https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads

DART, Release 9.10.3

6.42.1 Atmospheric Infrared Sounder (AIRS) Level 2 observations

The AIRS instrument is an Atmospheric Infrared Sounder flying on the Aqua spacecraft. Aqua is one of a group of
satellites flying close together in a polar orbit, collectively known as the “A-train”. The programs in this directory help
to extract the data from the distribution files and put them into DART observation sequence (obs_seq) file format.

AIRS data includes atmospheric temperature in the troposphere, derived moisture profiles, land and ocean surface
temperatures, surface emissivity, cloud fraction, cloud top height, and ozone burden in the atmosphere.

6.42.2 Advanced Microwave Sounding Unit (AMSU-A) L1B Brightness Tempera-
tures

The DART/observations/obs_converters/AIRS directory contains the code to convert the L1B AMSU-A Brightness
Temperatures in HDF-EOS2 format to the DART observation sequence file format.

There is a little bit of confusing history to be aware of for AMSU/A:

https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History

AMSU/A was flown on NOAA 15-17. It is also on the Aqua satellite (that also houses AIRS) as well as the European
MetOp. It has been replaced by ATMS on NOAA-20.

6.42.3 Dependencies

Both convert_airs_L2 and convert_amsu_L1 require the HDF-EOS libraries. convert_amsu_L1 also requires HDF5
support because of the RTTOV libraries. HDF5 is incompatible with HDF-EOS, so a two-step conversion is
necessary for the AMSU observations. The data must be converted from HDF to netCDF (which can be done
without HDF5) and then the netCDF files can be converted to DART radiance observation format - which re-
quires obs_def_rttov_mod.f90, which depends on HDF5. To simplify things, An example build script
(DART/observations/obs_converters/AIRS/Build_HDF-EOS.sh) is supplied and may provide some guidance on down-
loading and building the libraries required by NASA.

The NASA Earthdata Data Access Services website is the download site, at press time, the following packages were
required to build HDF-EOS Release v2.20:

• hdf-4.2.13.tar.gz

• HDF-EOS2.20v1.00.tar.Z

• HDF-EOS2.20v1.00_TestDriver.tar.Z

• HDF-EOS_REF.pdf

• HDF-EOS_UG.pdf

• jpegsrc.v9b.tar.gz

• zlib-1.2.11.tar.gz

Similarly for HDF-EOS5 Release v5.1.16:

• HDF-EOS5.1.16.tar.Z

• HDF-EOS5.1.16_TESTDRIVERS.tar.Z

• HDF-EOS5_REF.pdf

• HDF-EOS5_UG.pdf

• hdf5-1.8.19.tar.gz

106 Chapter 6. References

http://airs.jpl.nasa.gov/
http://aqua.nasa.gov
https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History
https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads

DART, Release 9.10.3

• szip-2.1.1.tar.gz

BUILD_HDF-EOS.sh may help you build these libraries. You will have to modify it for your system, and you probably
will have to iterate on that process. The script takes the stance that if you have to build HDF4, HDF-EOS, HDF5 . . .
you might as well build HDF-EOS5 too. The HDF-EOS5 is entirely optional. The HDF5 will be needed by RTTOV.

6.42.4 Converting from HDF4 to netCDF

There are multiple ways to convert from HDF4 to netCDF. The HDF-EOS Tools and Information Center provides
binaries for several common platforms as well as source code should you need to build your own.

HDF4 CF CONVERSION TOOLKIT

The HDF-EOS Tools and Information Center provides the HDF4 CF CONVERSION TOOLKIT

The HDF4 CF (H4CF) Conversion Toolkit can access various NASA HDF4 external and HDF-EOS2
external files by following the CF conventions external. The toolkit includes a conversion library for
application developers and a conversion utility for NetCDF users. We have translated the information
obtained from various NASA HDF-EOS2 and HDF4 files and the corresponding product documents into
the information required by CF into the conversion library. We also have implemented an HDF4-to-
NetCDF (either NetCDF-3 or NetCDF-4 classic) conversion tool by using this conversion library. In this
web page, we will first introduce how to build the conversion library and the tool from the source. Then,
we will provide basic usage of the tool and the conversion library APIs. The information for the supported
NASA HDF-EOS2 and HDF4 products and visualization screenshots of some converted NetCDF files will
also be presented.

If you download a binary, it’s a good habit to verify the checksum. The download page has a link to a .pdf that has the
known checksums. Here’s how to generate the checksum. Be aware that when I downloaded the file (via Chrome or
‘wget’) on an OSX system, the checksum did not match. When I downloaded the file on a linux system, the checksum
did match.

If you download the source, the tar file comes with a README and an INSTALL. Please become familiar with them.
DART also has a build script: AIRS/shell_scripts/Build_HDF_to_netCDF.csh that you can customize
after you read the INSTALL document.

6.43 Program convert_airs_L2

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The
NASA Earthdata Data Access Services website is the download site for the necessary libraries. An example build
script (AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

6.43.1 Overview

The Atmospheric Infrared Sounder (AIRS) is a facility instrument aboard the second Earth Observing System (EOS)
polar-orbiting platform, EOS Aqua. In combination with the Advanced Microwave Sounding Unit (AMSU) and the
Humidity Sounder for Brazil (HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared,
and microwave sensors. AIRS data will be generated continuously. Global coverage will be obtained twice daily (day
and night) on a 1:30pm sun synchronous orbit from a 705-km altitude.

The AIRS Standard Retrieval Product consists of retrieved estimates of cloud and surface properties, plus profiles of
retrieved temperature, water vapor, ozone, carbon monoxide and methane. Estimates of the errors associated with

6.43. Program convert_airs_L2 107

http://hdfeos.org/software/h4cflib.php
https://security.stackexchange.com/questions/189000/how-to-verify-the-checksum-of-a-downloaded-file-pgp-sha-etc
https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads

DART, Release 9.10.3

these quantities will also be part of the Standard Product. The temperature profile vertical resolution is 28 levels total
between 1100 mb and 0.1 mb, while moisture profile is reported at 14 atmospheric layers between 1100 mb and 50
mb. The horizontal resolution is 50 km. An AIRS granule has been set as 6 minutes of data, 30 footprints cross track
by 45 lines along track. The Shortname for this product is AIRX2RET. (AIRS2RET is the same product but without
the AMSU data.)

Atmospheric Infrared Sounder (AIRS) Level 2 observations

Several types of AIRS data, with varying levels of processing, are available. The following descriptions are taken from
the V5_Data_Release_UG document:

The L1B data product includes geolocated, calibrated observed microwave, infrared and visible/near in-
frared radiances, as well as Quality Assessment (QA) data. The radiances are well calibrated; however,
not all QA data have been validated. Each product granule contains 6 minutes of data. Thus there are 240
granules of each L1B product produced every day.

The L2 data product includes geolocated, calibrated cloud-cleared radiances and 2-dimensional and 3-
dimensional retrieved physical quantities (e.g., surface properties and temperature, moisture, ozone, car-
bon monoxide and methane profiles throughout the atmosphere). Each product granule contains 6 minutes
of data. Thus there are 240 granules of each L2 product produced every day.

The L3 data are created from the L2 data product by binning them in 1°x1° grids. There are three products:
daily, 8-day and monthly. Each product provides separate ascending (daytime) and descending (nighttime)
binned data sets.

The converter in this directory processes level 2 (L2) data files, using data set AIRS_DP and data product AIRX2RET
or AIRS2RET without HSB (the instrument measuring humidity which failed).

Getting the data currently means putting in a start/stop time at this web page. The keyword is AIRX2RET and put
in the time range of interest and optionally a geographic region. Each file contains 6 minutes of data, is about 2.3
Megabytes, and globally there are 240 files/day (about 550 Megabytes/day). There are additional options for getting
only particular variables of interest, but the current reader expects whole files to be present. Depending on your
connection to the internet, there are various options for downloading. We have chosen to download a wget script
which is created by the web page after adding the selected files to a ‘cart’ and ‘checking out’. The script has a series
of wget commands which downloads each file, one at a time, which is run on the machine where you want the data.

6.43.2 convert_airs_L2.f90

The convert_airs_L2 converter is for temperature and moisture retrievals from the L2 data. The temperature
observations are at the corresponding vertical pressure levels. However, the moisture obs are the mean for the layer,
so the location in the vertical is the midpoint, in log space, of the current layer and the layer above it. There is an
alternative computation for the moisture across the layer which may be more accurate, but requires a forward operator
subroutine to be written and for the observation to contain metadata. The observation could be defined with a layer
top, in pressure, and a number of points to use for the integration across the layer. Then the forward operator would
query the model at each of the N points in the vertical for a given horizontal location, and compute the mean moisture
value. This code has not been implemented yet, and would require a different QTY_xxx to distinguish it from the
simple location/value moisture obs. See the GPS non-local operator code for an example of how this would need to
be implemented.

The temperature observations are located on standard levels; there is a single array of heights in each file and all
temperature data is located on one of these levels. The moisture observations, however, are an integrated quantity
for the space between the levels; in their terminology the fixed heights are ‘levels’ and the space between them are
‘layers’. The current converter locates the moisture obs at the midpoint, in log space, between the levels.

The hdf files need to be downloaded from the data server, in any manner you choose. The converter program reads
each hdf granule and outputs a DART obs_seq file containing up to 56700 observations. Only those with a quality

108 Chapter 6. References

http://disc.sci.gsfc.nasa.gov/AIRS/documentation/v5_docs/AIRS_V5_Release_User_Docs/V5_Data_Release_UG.pdf
http://mirador.gsfc.nasa.gov/cgi-bin/mirador/homepageAlt.pl?keyword=AIRX2RET

DART, Release 9.10.3

control of 0 (Best) are kept. The resulting obs_seq files can be merged with the program obs_sequence_tool into larger
time periods.

It is possible to restrict the output observation sequence to contain data from a region of interest throught the use of
the namelist parameters. If you need a region that spans the Prime Meridian lon1 can be a larger number than lon2,
for example, a region from 300 E to 40 E and 60 S to 30 S (some of the South Atlantic), would be lon1 = 300, lon2 =
40, lat1 = -60, lat2 = -30.

The DART/observations/obs_converters/AIRS/shell_scripts directory includes scripts
(download_L2.sh and oneday_down.sh) that make use of the fact that the AIRS data is also archived
on the NCAR HPSS (tape library) in daily tar files. oneday_down.sh has options to download a day of granule
files, convert them, merge them into daily files, and remove the original data files and repeat the process for any
specified time period.

6.43.3 Namelist

This namelist is read in a file called input.nml. We adhere to the F90 standard of starting a namelist with an
ampersand ‘&’ and terminating with a slash ‘/’ for all our namelist input. Character strings that contain a ‘/’ must be
enclosed in quotes to prevent them from prematurely terminating the namelist. The default values are shown below.
More realistic values are provided in AIRS/work/input.nml

&convert_airs_L2_nml
l2_files = ''
l2_file_list = ''
outputfile = ''
lon1 = 0.0
lon2 = 360.0
lat1 = -90.0
lat2 = 90.0
min_MMR_threshold = 1.0e-30
top_pressure_level = 0.0001
cross_track_thin = 0
along_track_thin = 0
use_NCEP_errs = .false.
version = 6

/

6.43. Program convert_airs_L2 109

DART, Release 9.10.3

Con-
tents

Type Description

l2_files charac-
ter(len=256),
dimen-
sion(512)

A list of one or more names of the HDF file(s) to read, NOT including the directory. If
multiple files are listed, each will be read and the results will be placed in a separate file
with an output filename constructed based on the input filename.

l2_file_listcharac-
ter(len=256)

The name of an ascii text file which contains one filename per line, NOT including the
directory. Each file will be read and the observations converted into an output file where the
output filename is based on the input filename. Only one of ‘l2_files’ and ‘l2_file_list’ can
be specified. The other must be ‘ ‘ (empty).

out-
put-
file

charac-
ter(len=256)

The name of the output observation sequence file.

lon1 real(r8) the West-most longitude of interest in degrees. [0.0, 360]
lon2 real(r8) the East-most longitude of interest in degrees. [0.0, 360]
lat1 real(r8) the South-most latitude of interest in degrees. [-90.0,90.0]
lat2 real(r8) the North-most latitude of interest in degrees. [-90.0,90.0]
min_MMR_thresholdreal(r8) The data files contains ‘Retrieved Water Vapor Mass Mixing Ratio’. This is the minimum

threshold, in gm/kg, that will be converted into a specific humidity observation.
top_pressure_levelreal(r8) The highest pressure level of interest (in mb).
cross_track_thininteger provides ability to thin the data by keeping every Nth data value in the cross-track scan.

[0,30] e.g. 3 == keep every third value. 0 is no thinning.
along_track_thininteger provides ability to thin the data by keeping every Nth data value in the along-track scan.

[0,45] e.g. 4 == keep only every 4th row. 0 is no thinning.
use_NCEP_errslogical if .true. use the maximum observation error from either the granule or the NCEP equivalent

(from obs_error_mod.f90)
ver-
sion

integer The AIRS file format version.

Dependencies

See the Dependencies Section of the AIRS/README.

Known Bugs

Earlier versions of this converter mistakenly put the moisture obs at level heights, in the same location as the temper-
ature observations. The moisture observations are in fact an integrated value across the distance between two levels.
This means the location was shifted 1/2 level in the vertical from the center of the layer. The fixed converter outputs
the location at the center, in log space, of each layer.

Future Plans

If a more accurate moisture observation was needed, the observation value could be computed by actually integrating
multiple values between the levels. At this point it doesn’t seem necessary.

110 Chapter 6. References

DART, Release 9.10.3

6.44 Program convert_amsu_L1

Caution: Before you begin: Installing the libraries needed to read these files can be fairly troublesome. The
NASA Earthdata Data Access Services website is the download site for the necessary libraries. An example build
script (AIRS/Build_HDF-EOS.sh) is intended to provide some guidance.

6.44.1 Overview

There is a little bit of confusing history to be aware of for AMSU/A:

https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History

AMSU/A was flown on NOAA 15-17. It is also on the Aqua satellite (that also houses AIRS) as well as the European
MetOp. It has been replaced by ATMS on NOAA-20.

The datset of interest is: “AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005
(AIRABRAD) at GES DISC” The short name for this dataset is ‘AIRABRAD’

The introductory paragraph for the dataset is:

Version 5 is the current version of the data set.tmospheric Infrared Sounder (AIRS) is a grating spectrom-
eter (R = 1200) aboard the second Earth Observing System (EOS) polar-orbiting platform, EOS Aqua. In
combination with the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil
(HSB), AIRS constitutes an innovative atmospheric sounding group of visible, infrared, and microwave
sensors. The AMSU-A instrument is co-aligned with AIRS so that successive blocks of 3 x 3 AIRS
footprints are contained within one AMSU-A footprint. AMSU-A is primarily a temperature sounder
that provides atmospheric information in the presence of clouds, which can be used to correct the AIRS
infrared measurements for the effects of clouds. This is possible because non-precipitating clouds are for
the most part transparent to microwave radiation, in contrast to visible and infrared radiation which are
strongly scattered and absorbed by clouds. AMSU-A1 has 13 channels from 50 - 90 GHz and AMSU-A2
has 2 channels from 23 - 32 GHz. The AIRABRAD_005 products are stored in files (often referred to as
“granules”) that contain 6 minutes of data, 30 footprints across track by 45 lines along track.

The citation information for this dataset is:

Title: AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005 Ver-
sion: 005 Creator: AIRS project Publisher: Goddard Earth Sciences Data and Information Services
Center (GES DISC) Release Date: 2007-07-26T00:00:00.000Z Linkage: https://disc.gsfc.nasa.gov/
datacollection/AIRABRAD_005.html

NASA provides a README.AIRABRAD.pdf through the Goddard Earth Sciences Data and Information Services
Center.

6.44.2 convert_amsua_L1.f90

convert_amsua_L1 converts the L1B AMSU-A Brightness Temperatures in netCDF format to the DART obser-
vation sequence file format. The native HDF-EOS2 format files must be converted to netCDF. The conversion from
HDF-EOS2 to netCDF is easily performed by the h4tonccf_nc4 converter.

As you can imagine, you need to download each satellite’s data in a different way. Also, just for your information,
AMSU/B has been replaced on newer satellites by MHS and HSB, but especially MHS is almost identical.

6.44. Program convert_amsu_L1 111

https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads
https://en.wikipedia.org/wiki/Advanced_microwave_sounding_unit#History
https://disc.gsfc.nasa.gov/datacollection/AIRABRAD_005.html
https://disc.gsfc.nasa.gov/datacollection/AIRABRAD_005.html
https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/README.AIRABRAD.pdf
http://hdfeos.org/software/h4cflib.php

DART, Release 9.10.3

Namelist

DARTs design structure has the support for radiance observations (like brightness temperatures) provided by the
MODULE obs_def_rttov_mod which depends on HDF5 libraries. Consequently, the obs_def_rttov_mod_nml
namelist must appear in the input.nml. However, only two options are used when converting the observations:
use_zeeman and rttov_sensor_db_file.

Be aware that if the RTTOV namelist option use_zeeman = .true. certain metadata must be available in the
observation. This is not fully implemented in the AMSU-A observation converter. For more information, please see
GitHub Issue 99 “AIRS AMSUA observation converter . . . Zeeman coefficients and channels”

Namelists are read in a file called input.nml. We adhere to the F90 standard of starting a namelist with an am-
persand ‘&’ and terminating with a slash ‘/’ for all our namelist input. Character strings that contain a ‘/’ must be
enclosed in quotes to prevent them from prematurely terminating the namelist. The default values are shown below.
More realistic values are provided in AIRS/work/input.nml

&convert_amsua_L1_nml
l1_files = ''
l1_file_list = ''
outputfile = ''
append_output = .false.
channel_list = 'null'
along_track_thin = 0
cross_track_thin = 0
lon1 = 0.0
lon2 = 360.0
lat1 = -90.0
lat2 = 90.0
verbose = 0

/

112 Chapter 6. References

https://github.com/NCAR/DART/issues/99

DART, Release 9.10.3

Con-
tents

Type Description

l1_filescharac-
ter(len=256),
dimen-
sion(512)

A list of one or more names of the netCDF file(s) to read.

l1_file_listcharac-
ter(len=256)

The name of an ascii text file which contains one filename per line. Each file will be read and
the observations converted into a single output file. Only one of ‘l1_files’ and ‘l1_file_list’ can
be specified. The other must be ‘ ‘ (empty).

out-
put-
file

charac-
ter(len=256)

The name of the output observation sequence file.

ap-
pend_output

logical If the output observation sequence file exists it is possible to add to it. The observations
are added consistent with the paradigm that the observation linked list will be traversed in
temporally-ascending fashion, no matter the physical location of the observation in the file.
.true. adds the new observations to the existing file, .false. will cause an existing output
file to be overwritten.

chan-
nel_list

charac-
ter(len=8),
dimen-
sion(15)

The AMSU channels desired. See the table below for valid input.

along_track_thininteger provides ability to thin the data by keeping every Nth data value in the along-track scan. [0,45]
e.g. 4 == keep only every 4th row. 0 is no thinning.

cross_track_thininteger provides ability to thin the data by keeping every Nth data value in the cross-track scan. [0,30]
e.g. 3 == keep every third value. 0 is no thinning.

lon1 real(r8) the West-most longitude of interest in degrees. [0.0, 360]
lon2 real(r8) the East-most longitude of interest in degrees. [0.0, 360]
lat1 real(r8) the South-most latitude of interest in degrees. [-90.0,90.0]
lat2 real(r8) the North-most latitude of interest in degrees. [-90.0,90.0]
ver-
bose

integer Controls the amount of run-time output. 0 == bare minimum. 3 is very verbose. Only use 3 if
converting one or two files for testing.

Channel Specification

“AMSU-A primarily provides temperature soundings. It is a 15-channel microwave temperature sounder
implemented as two independently operated modules. Module 1 (AMSU-A1) has 12 channels in the
50-58 GHz oxygen absorption band which provide the primary temperature sounding capabilities and
1 channel at 89 GHz which provides surface and moisture information. Module 2 (AMSU-A2) has 2
channels: one at 23.8 GHz and one at 31.4 GHz which provide surface and moisture information (total
precipitable water and cloud liquid water).”

To facilitate the selection of channels, either the ‘Integer’ or ‘String’ values may be used to specify channel_list.
The ‘Documentation’ and ‘netCDF’ values are provided for reference only. The ‘Documentation’ values are from the
README.AIRABRAD.pdf document.

6.44. Program convert_amsu_L1 113

https://docserver.gesdisc.eosdis.nasa.gov/repository/Mission/AIRS/3.3_ScienceDataProductDocumentation/3.3.4_ProductGenerationAlgorithms/README.AIRABRAD.pdf

DART, Release 9.10.3

Integer String Documentation Frequency netCDF center_freq
Module 2 - surface and moisture information
1 ‘A2-1’ 23.8 23.8
2 ‘A2-2’ 31.4 31.4
Module 1 - primary temperature sounding capability
3 ‘A1-1’ 50.3 50.3
4 ‘A1-2’ 52.8 52.8
5 ‘A1-3’ 53.596 53.596
6 ‘A1-4’ 54.4 54.4
7 ‘A1-5’ 54.94 54.94
8 ‘A1-6’ 55.5 55.5
9 ‘A1-7’ 57.29034 57.29034
10 ‘A1-8’ 57.29034
11 ‘A1-9’ 57.29034
12 ‘A1-10’ 57.29034
13 ‘A1-11’ 57.29034
14 ‘A1-12’ 57.29034
15 ‘A1-13’ 89 89

Known Bugs

None.

Future Plans

None.

Instructions to download the AIRABRAD dataset

1. Go to https://earthdata.nasa.gov

2. Log in (or create an account if necessary)

3. Search for AIRABRAD

4. Scroll down past datasets to “Matching results.”

• Follow the link to “AIRS/Aqua L1B AMSU (A1/A2) geolocated and calibrated brightness temperatures V005
(AIRABRAD) at GES DISC”

5. You should now be at ‘https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.html’ (unless
they’ve changed the site).

• Select the ‘Download data’ tab

• Select ‘Earthdata search’

• Select the AIRS link under ‘Matching datasets’ (I have not tested the NRT products)

6. You can now select ‘Granule filters’ to choose your start and end dates.

7. Select the granules you want, then click ‘download all’ and ‘download data’

8. Click download access script

114 Chapter 6. References

https://earthdata.nasa.gov
https://cmr.earthdata.nasa.gov/search/concepts/C1243477366-GES_DISC.html

DART, Release 9.10.3

9. Follow the instructions on that page to download the data.

Each granule is about 560K and has names like

AIRS.2019.06.22.236.L1B.AMSU_Rad.v5.0.0.0.G19174110442.hdf

Build

See the Dependencies Section of the AIRS/README.

Because the data are distributed in HDF-EOS format, and the RTTOV libraries require HDF5 (incompatible with
HDF-EOS) a two-step conversion is necessary. The data must be converted from HDF to netCDF (which can be done
without HDF5) and then the netCDF files can be converted to DART radiance observation format - which is the part
that requires obs_def_rttov_mod.f90, which is the part that requires HDF5.

The NASA Earthdata Data Access Services website is the download site, at press time, the following packages were
required to build HDF-EOS Release v2.20:

• hdf-4.2.13.tar.gz

• HDF-EOS2.20v1.00.tar.Z

• HDF-EOS2.20v1.00_TestDriver.tar.Z

• HDF-EOS_REF.pdf

• HDF-EOS_UG.pdf

• jpegsrc.v9b.tar.gz

• zlib-1.2.11.tar.gz

Similarly for HDF-EOS5 Release v5.1.16:

• HDF-EOS5.1.16.tar.Z

• HDF-EOS5.1.16_TESTDRIVERS.tar.Z

• HDF-EOS5_REF.pdf

• HDF-EOS5_UG.pdf

• hdf5-1.8.19.tar.gz

• szip-2.1.1.tar.gz

DART provides a script DART/observations/obs_converters/AIRS/BUILD_HDF-EOS.sh that may
help provide support for these libraries. You will have to modify it for your system, and you probably will have
to iterate on that process. The script takes the stance that if you have to build HDF4, HDF-EOS, HDF5 . . . you might
as well build HDF-EOS5 too. The HDF-EOS5 is entirely optional. The HDF5 will be needed by RTTOV.

6.44. Program convert_amsu_L1 115

https://wiki.earthdata.nasa.gov/display/DAS/Toolkit+Downloads

DART, Release 9.10.3

6.44.3 Converting from HDF4 to netCDF

There are multiple ways to convert from HDF4 to netCDF. The HDF-EOS Tools and Information Center provides
binaries for several common platforms as well as source code should you need to build your own.

HDF4 CF CONVERSION TOOLKIT

The HDF-EOS Tools and Information Center provides the HDF4 CF CONVERSION TOOLKIT

The HDF4 CF (H4CF) Conversion Toolkit can access various NASA HDF4 external and HDF-EOS2
external files by following the CF conventions external. The toolkit includes a conversion library for
application developers and a conversion utility for NetCDF users. We have translated the information
obtained from various NASA HDF-EOS2 and HDF4 files and the corresponding product documents into
the information required by CF into the conversion library. We also have implemented an HDF4-to-
NetCDF (either NetCDF-3 or NetCDF-4 classic) conversion tool by using this conversion library. In this
web page, we will first introduce how to build the conversion library and the tool from the source. Then,
we will provide basic usage of the tool and the conversion library APIs. The information for the supported
NASA HDF-EOS2 and HDF4 products and visualization screenshots of some converted NetCDF files will
also be presented.

If you download a binary, it’s a good habit to verify the checksum. The download page has a link to a .pdf that has the
known checksums. Here’s how to generate the checksum. Be aware that when I downloaded the file (via Chrome or
‘wget’) on an OSX system, the checksum did not match. When I downloaded the file on a linux system, the checksum
did match.

If you download the source, the tar file comes with a README and an INSTALL. Please become familiar with them.
DART also has a build script: AIRS/shell_scripts/Build_HDF_to_netCDF.csh that you can customize
after you read the INSTALL document.

Actually converting to netCDF

While the converter creates very nice netCDF files, there are two global attributes that are exceedingly large and
uninformative. Should you want to remove them, I suggest using the ncatted command from NCO.

h4tonccf_nc4 AIRS.2019.06.22.236.L1B.AMSU_Rad.v5.0.0.0.G19174110442.hdf bob.nc
ncatted -a coremetadata,global,d,,, -a StructMetadata_0,global,d,,, bob.nc bill.nc

The DART L1_AMSUA_to_netcdf.f90 program

Before I became aware of h4tonccf_nc4, I was in the process of writing my own converter
L1_AMSUA_to_netcdf.f90. It is not finished. Furthermore, at this stage, I don’t know which variables are
needed to be a viable DART observation sequence file, and I don’t see the point in converting EVERYTHING.

116 Chapter 6. References

http://hdfeos.org/software/h4cflib.php
https://security.stackexchange.com/questions/189000/how-to-verify-the-checksum-of-a-downloaded-file-pgp-sha-etc
http://nco.sourceforge.net/nco.html

DART, Release 9.10.3

6.45 Aviso+/CMEMS Observations

6.45.1 Overview

This short description of the SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018 product is repeated
from the INFORMATION tab from the Copernicus Marine Environment Monitoring Service online catalogue (in
April 2017).

For the Global Ocean- Mono altimeter satellite along-track sea surface heights computed with respect to a
twenty-year mean. Previously distributed by Aviso+, no change in the scientific content. All the missions
are homogenized with respect to a reference mission which is currently Jason-2. This product is computed
with an optimal and centered computation time window (6 weeks before and after the date). Two kinds
of datasets are proposed: filtered (nominal dataset) and unfiltered.

The main researcher for this project was Fred Castruccio.

The convert_aviso.f90 program is designed to read a netCDF file containing the (Level 3) sea surface anomalies
from any of the following platforms: “Jason-1”, “Envisat”, or “Geosat Follow On”. One of those platforms must be
listed in the netCDF file global attribute: platform

The data files have names like:

• dt_global_j1_sla_vfec_20080101_20140106.nc,

• dt_global_en_sla_vfec_20080101_20140106.nc, or

• dt_global_g2_sla_vfec_20080101_20140106.nc

corresponding to the “Jason-1”, “Envisat”, and the “Geosat Follow On” platforms. The DART observation TYPE
corresponding to each of these platforms are J1_SEA_SURFACE_ANOMALY, EN_SEA_SURFACE_ANOMALY, and
GFO_SEA_SURFACE_ANOMALY, respectively and are defined in obs_def_ocean_mod.f90.

Fred wrote a python script (shell_scripts/convert_aviso.py) to repeatedly call convert_aviso and
decided it was easiest to simply provide the input file name as a command line argument and always have the output
file have the name obs_seq.aviso. As such, there is no input namelist specifically for these parameters, but other
DART modules still require run-time crontrol specified by input.nml.

After creating a large number of output observation sequence files, it is usually necessary to consolidate the
files and subset them into files containing just the timeframe required for a single assimilation. NOTE: the
obs_sequence_tool is constructed for just this purpose.

The shell_scripts/makedaily.sh script attempts to consolidate all the SLA observations and those that may
have been (separately) converted from the World Ocean Database into 24-hour segments centered at midnight GMT.
You will have to modify the makedaily.sh script to suit your filesystem and naming convention. It is provided as
a starting point.

Reminder: (according to the data providers): In order to compute Absolute Dynamic Topography, the Mean Dy-
namic Topography (MDT) can be added. It is distributed by Aviso+ (http://www.aviso.altimetry.fr/en/data/products/
auxiliary-products/mdt.html). Fred was using this product in assimilations with POP, so he chose a different source
for MDT - consistent with POP’s behavior.

6.45. Aviso+/CMEMS Observations 117

http://marine.copernicus.eu/about-us/about-your-copernicus-marine-service/
http://www.unidata.ucar.edu/software/netcdf
../../forward_operators/obs_def_ocean_mod.html
http://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html
http://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt.html

DART, Release 9.10.3

6.45.2 Data sources

The Copernicus Marine and Environment Monitoring Service (CMEMS) has taken over the processing and distribution
of the Ssalto/Duacs multimission altimeter products formerly administered by Aviso+. After a registration process, the
along-track sea level anomalies (SLA) may be downloaded from http://marine.copernicus.eu/services-portfolio/access-
to-products/ - search for the SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018 if it does not come up
directly.

6.45.3 Programs

convert_aviso.
f90

does the actual conversion from netCDF to a DART observation sequence file, which may be
ASCII or binary.

shell_scripts/
convert_aviso.
py

python script to convert a series of input files and datestamp the output files.

shell_scripts/
makedaily.
sh

shell script to repeatedly call obs_sequence_tool to consolidate multiple observation se-
quence files into an observation sequence file that has ALL the observations from ALL platforms
in a single file. makedaily.sh is capable of looping over time ranges and creating observation
sequences for each time range.

6.45.4 Namelist

There is no namelist for convert_aviso, but other namelists control aspects of the execution, namely
&obs_sequence_nml:write_binary_obs_sequence. see MODULE obs_sequence_mod.

6.45.5 Modules used

assimilation_code/location/threed_sphere/location_mod.f90
assimilation_code/modules/assimilation/assim_model_mod.f90
assimilation_code/modules/io/dart_time_io_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod.f90
assimilation_code/modules/utilities/ensemble_manager_mod.f90
assimilation_code/modules/utilities/null_mpi_utilities_mod.f90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/sort_mod.f90
assimilation_code/modules/utilities/time_manager_mod.f90
assimilation_code/modules/utilities/types_mod.f90
assimilation_code/modules/utilities/utilities_mod.f90
models/template/model_mod.f90
observations/forward_operators/obs_def_mod.f90
observations/obs_converters/AVISO/convert_aviso.f90
observations/obs_converters/utilities/obs_utilities_mod.f90

118 Chapter 6. References

http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018
http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_SLA_L3_REP_OBSERVATIONS_008_018

DART, Release 9.10.3

6.46 PROGRAM level4_to_obs

6.46.1 Overview

AmeriFlux level 4 data to DART observation sequence converter

This routine is designed to convert the flux tower Level 4 data from the AmeriFlux network of observations from
micrometeorological tower sites. AmeriFlux is part of FLUXNET and the converter is hoped to be a suitable starting
point for the conversion of observations from FLUXNET. As of May 2012, I have not yet tried to work with any
other observations from FLUXNET.
The AmeriFlux Level 4 products are recorded using the local time. DART observation sequence files use GMT. For
more information about AmeriFlux data products, go to http://ameriflux.lbl.gov.

Warning: There was a pretty severe bug in the converter that swapped latent heat flux and sensible heat flux. The
bug was present through revision 7200. It was corrected on 30 Dec 2016.

The workflow is usually:

1. download the Level 4 data for the towers and years in question (see DATA SOURCES below)

2. record the TIME ZONE, latitude, longitude, and elevation for each tower

3. build the DART executables with support for the tower observations. This is done by running preprocess
with obs_def_tower_mod.f90 in the list of input_files for preprocess_nml.

4. provide basic tower information via the level4_to_obs_nml namelist since this information is not con-
tained in the Level 4 data file

5. convert each Level 4 data file individually using level4_to_obs

6. combine all output files for the region and timeframe of interest into one file using program obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a series of files
that contains ONLY the observations for each assimilation. This can be achieved with the makedaily.sh script.

6.46.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&level4_to_obs_nml
text_input_file = 'textdata.input',
obs_out_file = 'obs_seq.out',
year = -1,
timezoneoffset = -1,
latitude = -1.0,
longitude = -1.0,
elevation = -1.0,
flux_height = -1.0,
maxgoodqc = 3,
verbose = .false.
/

6.46. PROGRAM level4_to_obs 119

http://ameriflux.lbl.gov
http://fluxnet.ornl.gov
http://ameriflux.lbl.gov
makedaily.sh

DART, Release 9.10.3

Con-
tents

Type Description

text_input_filechar-
ac-
ter(len=128)

Name of the Level 4 ASCII file of comma-separated values. This may be a relative or absolute
filename.

obs_out_filechar-
ac-
ter(len=128)

Name of the output observation sequence file.

year integer The year of the observations in the Level 4 text file.
time-
zone-
off-
set

real the time zone offset (in hours) of the station. The tower observation times are local time, we
need to convert them to GMT.

lati-
tude

real Latitude (in degrees N) of the tower.

lon-
gi-
tude

real Longitude (in degrees E) of the tower. For internal consistency, DART uses longitudes in the
range [0,360]. An input value of -90 will be converted to 270, for example.

ele-
va-
tion

real surface elevation (in meters) of the tower.

flux_heightreal height (in meters) of the flux instrument on the tower.
max-
goodqc

real maximum value of any observation quality control flag to pass through to the output observation
sequence. Keep in mind that filter has the ability to discriminate on the value, so there is
really little to be gained by rejecting them during the conversion.

ver-
bose

logical Print extra information during the level4_to_obs execution.

6.46.3 Data sources

The data was acquired from http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/Sites_ByName
and have names like

USBar2004_L4_h.txt, USHa12004_L4_h.txt, USNR12004_L4_h.txt,
USSP32004_L4_h.txt, USSRM2004_L4_h.txt, USWCr2004_L4_h.txt,
USWrc2004_L4_h.txt, ...

The Level 4 products in question are ASCII files of comma-separated values taken every 30 minutes for an entire
year. The first line is a comma-separated list of column descriptors, all subsequent lines are comma-separated
numerical values. The converter presently searches for the columns pertaining to NEE_or_fMDS, H_f, LE_f, their
corresponding quality control fields, and those columns pertaining to the time of the observation. These values are
mapped as follows:

120 Chapter 6. References

http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/Sites_ByName

DART, Release 9.10.3

Level 4
units

Level 4
variable

description DART type DART kind DART
units

W/m^2 LE_f Latent Heat Flux TOWER_LATENT_HEAT_FLUXQTY_LATENT_HEAT_FLUXW/m^2
[0-3] LE_fqc QC for LE_f N/A N/A same
W/m^2 H_f Sensible Heat

Flux
TOWER_SENSIBLE_HEAT_FLUXQTY_SENSIBLE_HEAT_FLUXW/m^2

[0-3] H_fqc QC for H_f N/A N/A same
umolCO2/m^2/sNEE_or_fMDSNet Ecosystem

Production
TOWER_NETC_ECO_EXCHANGEQTY_NET_CARBON_PRODUCTIONgC/m^2/s

[0-3] NEE_or_fMDSqcQC for
NEE_or_fMDS

N/A N/A same

The LE_fqc, H_fqc, and NEE_or_fMDSqc variables use the following convention:

0 = original, 1 = category A (most reliable), 2 = category B (medium), 3 = category C (least reliable).
(Refer to Reichstein et al. 2005 Global Change Biology for more information)

I am repeating the AmeriFlux Data Fair-Use Policy because I believe it is important to be a good scientific citizen:

“The AmeriFlux data provided on this site are freely available and were furnished by individual Amer-
iFlux scientists who encourage their use. Please kindly inform in writing (or e-mail) the appropriate
AmeriFlux scientist(s) of how you intend to use the data and of any publication plans. It is also impor-
tant to contact the AmeriFlux investigator to assure you are downloading the latest revision of the data
and to prevent potential misuse or misinterpretation of the data. Please acknowledge the data source as
a citation or in the acknowledgments if no citation is available. If the AmeriFlux Principal Investigators
(PIs) feel that they should be acknowledged or offered participation as authors, they will let you know
and we assume that an agreement on such matters will be reached before publishing and/or use of the
data for publication. If your work directly competes with the PI’s analysis they may ask that they have
the opportunity to submit a manuscript before you submit one that uses unpublished data. In addition,
when publishing please acknowledge the agency that supported the research. Lastly, we kindly request
that those publishing papers using AmeriFlux data provide reprints to the PIs providing the data and to
the AmeriFlux archive via ameriflux.lbl.gov.”

6.46.4 Programs

The level4_to_obs.f90 file is the source for the main converter program. Look at the source code where it reads
the example data file. You will almost certainly need to change the “read” statement to match your data format. The
example code reads each text line into a character buffer and then reads from that buffer to parse up the data items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/obs_def directory. If you can find an obs_def_XXX_mod.f90
file with an appropriate set of observation types, change the ‘use’ lines in the converter source to include those types.
Then add that filename in the input.nml namelist file to the &preprocess_nml namelist, the ‘input_files’ variable.
Multiple files can be listed. Then run quickbuild.csh again. It remakes the table of supported observation types before
trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

6.46. PROGRAM level4_to_obs 121

http://ameriflux.lbl.gov/Data/Pages/DataUsagePolicy.aspx

DART, Release 9.10.3

6.46.5 Decisions you might need to make

See the discussion in the Creating an obs_seq file from real observations page about what options are available for
the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

6.47 CHAMP

This is just a modification of a standard “text” converter that comes with DART.

It reads CHAMP and GRACE text Density files (which used to be at sisko.colorado.edu/sutton/data.html) and outputs
DART obs_seq.out files.

Be aware that if obs_seq.out already exists, it automatically adds new observations to that file without deleting it. This
is done to allow the wrapper script (work/convert.sh) to process sequentially numbered Density_*.ascii files (read
comments inside convert.sh). If this is not the behavior you want, comment out lines 129-132 in text_to_obs.f90 and
rebuild.

Please check out work/input.nml:&text_to_obs_nml as it specifies the name of the input and the output

The work/Density_3deg_02_335.ascii is truncated to 2 datapoints to demonstrate the format and is not to be used for
real experiments.

Author: Alexey Morozov

6.48 PROGRAM cice_to_obs

6.48.1 Overview

Sea ice percentage observations to DART converter

This converter reads the binary sea ice observations from the snow and ice data center files and outputs DART obs_seq
format files. It will loop over multiple days inside a single run of the converter program.

6.48.2 Data sources

The National Snow and Ice Data Center supplies the data files read by this converter. (I believe it is this format?)

6.48.3 Programs

The cice_to_obs.f90 file is the source for the main converter program. More documentation is in the source
code file especially around where the namelist variables are declared.

122 Chapter 6. References

http://nsidc.org/
http://nsidc.org/data/NSIDC-0051

DART, Release 9.10.3

6.49 CONAGUA

The streamflow observations from CONAGUA are naturally in a Microsoft database format. Mirce converts these
one-at-a-time to a csv format. The filenames have a gage identifier in them, there is another file that has the lat/lon of
the gage.

/glade/scratch/mirce/LaSierra/Observations/

The existing DART csv readers are:

vi -R Ameriflux/level4_to_obs.f90 \
CHAMP/CHAMP_density_text_to_obs.f90 \
CNOFS/CNOFS_text_to_obs.f90 \
COSMOS/COSMOS_development.f90 \
COSMOS/COSMOS_to_obs.f90 \
MODIS/MOD15A2_to_obs.f90 \
ROMS/convert_roms_obs.f90 \
gnd_gps_vtec/gnd_gps_vtec_text_to_obs.f90 \
gps/convert_cosmic_gps_cdf.f90 \
gps/convert_cosmic_ionosphere.f90 \
quikscat/quikscat_JPL_mod.f90 \
snow/snow_to_obs.f90 \
text/text_to_obs.f90 \
text_GITM/text_to_obs.f90

One of these should be close enough. Some are more sophisticated in that they try to determine which column contains
the string that identifies the year, mondy, day, etc. - as opposed to hardcoding the knowledge about which column is
which.

These are the meanings for each of the column headers in the daily observation files: pk_anio = Year pk_mes = Month
ngasto_d01, d02 . . . and so on up to d31 = Streamflow in day 01, day 02 . . . day 31 The streamflow is in cms

6.50 PROGRAM COSMOS_to_obs

6.50.1 Overview

COSMOS “level 2” text file to DART converter

COSMOS is an NSF supported project to measure soil moisture on the horizontal scale of hectometers and depths of
decimeters using cosmic-ray neutrons. The data for each station is available from the COSMOS data portal with
several levels of processing. The metadata for each station (location, height, etc) is also available from the data portal.
The Level 2 Data is most suited for use with DART.
Since each site has a separate input data file, and the metadata for each site must essentially be hand-input to the
converter program, it is generally easiest to convert the observations for each site separately and then use the program
obs_sequence_tool to combine the observations from multiple sites and restrict the DART observation sequence file
to contain just the observations of the timeframe of interest.
FYI - in DART, the soil moisture profile is converted to expected neutron counts using the COsmic-ray Soil Moisture
Interaction Code (COSMIC), developed at the University of Arizona by Rafael Rosolem and Jim Shuttleworth.
The workflow is usually:

1. get the site metadata and enter it in the input.nml &COSMOS_to_obs_nml

6.49. CONAGUA 123

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/Probes/probemap.php

DART, Release 9.10.3

2. download the Level 2 Data and prefix the filename with the station name (or else they all get named
corcounts.txt) and enter the filename into &COSMOS_to_obs_nml

3. make sure the station soil parameters and COSMIC parameters are contained in the observations/
COSMOS/data/COSMIC_parlist.nc (more on this in the section on COSMIC parameters)

4. run COSMOS_to_obs to generate a DART observation sequence file for the station and rename the output file
if necessary (you can explicity name the output file via the namelist).

5. repeat steps 1-4 for this converter to generate a DART observation sequence file for each station.

6. use the program obs_sequence_tool to combine the observations from multiple sites

6.50.2 Data sources

The COSMOS data portal can be found at: http://cosmos.hwr.arizona.edu/Probes/probemap.php The data for each
station is available from the data portal with several levels of processing. The metadata for each station (location,
height, etc) is also available from the data portal. The Level 2 Data is most suited for use with DART. An example of
the Level 2 Data follows:

YYYY-MM-DD HH:MM MOD PROBE PRESS SCALE SANPE INTEN OTHER CORR ERR
2009-10-23 18:34 5996 0.800 1.087 06.901 2.486 1.062 1.000 1768 022
2009-10-23 19:34 5885 0.800 1.080 06.901 2.486 1.059 1.000 1729 022
2009-10-23 20:34 6085 0.800 1.072 06.901 2.486 1.059 1.000 1774 022
2009-10-23 21:34 6339 0.800 1.068 06.901 2.486 1.059 1.000 1843 023
...

6.50.3 Programs

The COSMOS_to_obs.f90 file is the source code for the main converter program. At present there is an uncomfort-
able assumption that the order of the columns in the Level 2 data is fixed. I hope to relax that requirement in the near
future. COSMOS_to_obs reads each text line into a character buffer and then reads from that buffer to parse up the
data items. The items are then combined with the COSMIC parameters for that site and written to a DART-format ob-
servation sequence file. The DART format allows for the additional COSMIC parameters to be contained as metadata
for each observation.

To compile and test, go into the COSMOS/work subdirectory and run the quickbuild.csh script to build the
converter and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e. combines, sub-
sets) DART observation files once they have been created. The default observations supported are those defined in
DART/observations/forward_operators/obs_def_land_mod.f90 and DART/observations/
forward_operators/obs_def_COSMOS_mod.f90. If you need additional observation types, you will have
to add the appropriate obs_def_XXX_mod.f90 file to the input.nml &preprocess_nml:input_files
variable and run quickbuild.csh again. It rebuilds the table of supported observation types before compiling the
source code.

124 Chapter 6. References

http://cosmos.hwr.arizona.edu/Probes/probemap.php

DART, Release 9.10.3

Guidance on COSMIC parameters

Additional information is needed by DART to convert soil moisture profiles to neutron counts. Each COSMOS
instrument has site-specific parameters describing soil properties etc. Those parameters have been inserted into the
observation file as metadata for each observation to simplify the DART observation operator. It is a bit redundant as
currently implemented, but it is convenient.
COSMOS_to_obs reads the site name from the input namelist and the known station information from
COSMIC_parlist.nc. The simplest way to add a new station to COSMIC_parlist.nc is probably to:

1. manually enter the information into the “data” section of COSMIC_parlist_station.txt

2. then use ncgen to convert COSMIC_parlist_station.txt to a netCDF file.

3. That netCDF file can be concatenated onto COSMIC_parlist.nc with a simple ncrcat command.

Listing the sites already supported is easy:

observations/COSMOS/data % ncdump -v sitenames COSMIC_parlist.nc
netcdf COSMIC_parlist {
dimensions:

nsites = UNLIMITED ; // (42 currently)
strlength = 21 ;

variables:
char sitenames(nsites, strlength) ;

sitenames:long_name = "COSMOS Site Names" ;
double longitude(nsites) ;

longitude:long_name = "Longitude" ;
longitude:units = "degrees" ;

double latitude(nsites) ;
latitude:long_name = "Latitude" ;
latitude:units = "degrees" ;

double elevation(nsites) ;
elevation:long_name = "Elevation" ;
elevation:units = "m" ;

double bd(nsites) ;
bd:long_name = "Dry Soil Bulk Density" ;
bd:units = "g cm{-3}" ;

double lattwat(nsites) ;
lattwat:long_name = "Lattice Water Content" ;
lattwat:units = "m{3} m{-3}" ;

double N(nsites) ;
N:long_name = "High Energy Neutron Intensity" ;
N:units = "relative counts" ;

double alpha(nsites) ;
alpha:long_name = "Ratio of Fast Neutron Creation Factor (Soil to

→˓Water)" ;
alpha:units = "-" ;

double L1(nsites) ;
L1:long_name = "High Energy Soil Attenuation Length" ;
L1:units = "g cm{-2}" ;

double L2(nsites) ;
L2:long_name = "High Energy Water Attenuation Length" ;
L2:units = "g cm{-2}" ;

double L3(nsites) ;
L3:long_name = "Fast Neutron Soil Attenuation Length" ;
L3:units = "g cm{-2}" ;

double L4(nsites) ;
L4:long_name = "Fast Neutron Water Attenuation Length" ;

(continues on next page)

6.50. PROGRAM COSMOS_to_obs 125

DART, Release 9.10.3

(continued from previous page)

L4:units = "g cm{-2}" ;

// global attributes:
:website = "COsmic-ray Soil Moisture Observing System (COSMOS) -

http://cosmos.hwr.arizona.edu" ;
data:

sitenames =
"ARM-1 ",
"Austin_Cary ",
"Bondville ",
"Brookings ",
"Chestnut_Ridge_NOAA ",
"Coastal_Sage_UCI ",
"Daniel_Forest ",
"Desert_Chaparral_UCI ",
"Fort_Peck ",
"Harvard_Forest ",
"Hauser_Farm_North ",
"Hauser_Farm_South ",
"Howland ",
"Iowa_Validation_Site ",
"Island_Dairy ",
"JERC ",
"Kendall ",
"KLEE ",
"Manitou_Forest_Ground",
"Metolius ",
"Morgan_Monroe ",
"Mozark ",
"Mpala_North ",
"Neb_Field_3 ",
"P301 ",
"Park_Falls ",
"Pe-de-Gigante ",
"Rancho_No_Tengo ",
"Reynolds_Creek ",
"Rietholzbach ",
"Rosemount ",
"San_Pedro_2 ",
"Santa_Rita_Creosote ",
"Savannah_River ",
"Silver_Sword ",
"SMAP-OK ",
"Soaproot ",
"Sterling ",
"Tonzi_Ranch ",
"UMBS ",
"UVA ",
"Wind_River " ;

}

The observation sequence files will look something like the following, the attributes on the “cosmic” record are the
information from COSMIC_parlist.nc (in their closes 64-bit real representation):

obs_sequence

(continues on next page)

126 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

obs_kind_definitions
1

20 COSMOS_NEUTRON_INTENSITY
num_copies: 1 num_qc: 1
num_obs: 3840 max_num_obs: 3840

observation
COSMOS QC

first: 1 last: 3840
OBS 1
1048.0000000000000
1.0000000000000000

-1 2 -1
obdef
loc3d

4.154723123116714 0.7997185899100618 0.000000000000000 -1
kind

20

cosmic 0.88500000000000001 5.84099999999999966E-002 336.95696938999998 0.
→˓31918025877000000

161.98621864285701 129.14558984999999 55.311849408000000 3.
→˓8086191933000002

1

77340 150034
1225.0000000000000
...

6.50.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&COSMOS_to_obs_nml
site_metadata_file = 'COSMIC_parlist.nc'
text_input_file = 'textdata.input',
obs_out_file = 'obs_seq.out',
sitename = 'missing',
maxgoodqc = 3,
verbose = .false.
/

6.50. PROGRAM COSMOS_to_obs 127

DART, Release 9.10.3

Con-
tents

Type Description

site_metadata_filecharac-
ter(len=256)

The netCDF file containing the parameter values for each site.

text_input_filecharac-
ter(len=128)

The text file containing the raw observations for each site.

obs_out_filecharac-
ter(len=128)

The output observation sequence file for DART.

site-
name

charac-
ter(len=128)

The name of the site. Must match one of the site names in the site_metadata_file.
Case-insensitive match, trailing blanks ignored. Use ncdump -v sitenames COS-
MIC_parlist.nc

max-
goodqc

integer left for future implementation.

verbose logical A switch to specify the amount of run-time output. .true. the most amount of output.
.false. the least amount of output.

Cosmos_to_obs namelist

&COSMOS_to_obs_nml
site_metadata_file = 'COSMIC_parlist.nc',
text_input_file = 'SantaRita_corcounts.txt',
obs_out_file = 'SantaRita_obs_seq.out',
sitename = 'Santa_Rita_Creosote',

6.50.5 References

• The COSMOS web page.

• Franz, T.E, M. Zreda, T.P.A. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng and W.J. Shuttleworth, 2012:
Measurement depth of the cosmic-ray soil moisture probe affected by hydrogen from various sources. Water
Resources Research 48, W08515, doi:10.1029/2012WR011871

• Franz, T.E, M. Zreda, R. Rosolem, T.P.A. Ferre, 2012: Field validation of cosmic-ray soil moisture probe using
a distributed sensor network. Vadose Zone Journal (in press), doi:10.2136/vzj2012.0046

6.50.6 Future Plans

• Implement a routine to automatically determine the column indices of the columns of interest.

• Implement a QC encoding that reflects the uncertainty of the measurement. Presently, all Level 2 data have an
incoming QC of 1.

128 Chapter 6. References

http://cosmos.hwr.arizona.edu
http://dx.doi.org/10.1029/2012WR011871
http://dx.doi.org/10.2136/vzj2012.0046

DART, Release 9.10.3

6.51 PROGRAM COSMOS_development

6.51.1 Overview

Trial COSMOS text file to DART converter

COSMOS is an NSF supported project to measure soil moisture on the horizontal scale of hectometers and depths of
decimeters using cosmic-ray neutrons. The data for each station is available from the COSMOS data portal with
several levels of processing. The metadata for each station (location, height, etc) is also available from the data portal.
The Level 2 Data is most suited for use with DART, but does not currently have a correction for the amount of
hydrogen in the atmospheric volume near the probe. To this end, Rafael Rosolem has a separate data stream.
COSMOS_development reads Rafaels data streams and converts them to DART observation sequence files. Since
these data streams are not widespread, we recommend using PROGRAM COSMOS_to_obs.
The workflow is usually:

1. get the site metadata and enter it in the input.nml &COSMOS_development_nml

2. acquire the development observation data and prefix the filename with the station name (or else they all get
named corcounts.txt) and enter the filename into &COSMOS_development_nml

3. make sure the station soil parameters and COSMIC parameters are contained in the observations/
COSMOS/data/COSMIC_parlist.nc (more on this in the section on COSMIC parameters)

4. run COSMOS_development to generate a DART observation sequence file for the station and rename the
output file if necessary (you can explicity name the output file via the namelist).

5. repeat steps 1-4 for this converter to generate a DART observation sequence file for each station.

6. use the program obs_sequence_tool to combine the observations from multiple sites

6.51.2 Data sources

The COSMOS data portal can be found at: http://cosmos.hwr.arizona.edu/Probes/probemap.php The development
observation data for each station is generally not available. The metadata for each station (location, height, etc) is also
available from the data portal. The Level 2 Data is most suited for use with DART. We recommend using PROGRAM
COSMOS_to_obs. An example of the development observation data follows:

month,day,hour,doy,neutron_fluxAVE,neutron_fluxSTD,neutron_fluxQC
1, 1, 0, 1,-9999,9999,3
1, 1, 1, 1,-9999,9999,3
1, 1, 2, 1,-9999,9999,3
1, 1, 3, 1,-9999,9999,3

...

6.51. PROGRAM COSMOS_development 129

http://cosmos.hwr.arizona.edu/
http://cosmos.hwr.arizona.edu/Probes/probemap.php
http://cosmos.hwr.arizona.edu/Probes/probemap.php

DART, Release 9.10.3

6.51.3 Programs

The COSMOS_development.f90 file is the source code for the main converter program. At present there is an
uncomfortable assumption that the order of the columns in the Level 2 data is fixed. I hope to relax that requirement
in the near future. COSMOS_development reads each text line into a character buffer and then reads from that
buffer to parse up the data items. The items are then combined with the COSMIC parameters for that site and written
to a DART-format observation sequence file. The DART format allows for the additional COSMIC parameters to be
contained as metadata for each observation.

To compile and test, go into the COSMOS/work subdirectory and run the quickbuild.csh script to build the
converter and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e. combines, sub-
sets) DART observation files once they have been created. The default observations supported are those defined in
DART/observations/forward_operators/obs_def_land_mod.f90 and DART/observations/
forward_operators/obs_def_COSMOS_mod.f90. If you need additional observation types, you will have
to add the appropriate obs_def_XXX_mod.f90 file to the input.nml &preprocess_nml:input_files
variable and run quickbuild.csh again. It rebuilds the table of supported observation types before compiling the
source code.

COSMIC parameters

Additional information is needed by DART to convert soil moisture profiles to neutron counts. Each COSMOS
instrument has site-specific parameters describing soil properties etc. Those parameters have been inserted into the
observation file as metadata for each observation to simplify the DART observation operator. It is a bit redundant as
currently implemented, but it is convenient.
COSMOS_development reads the site name from the input namelist and the known station information from
COSMIC_parlist.nc. The simplest way to add a new station to COSMIC_parlist.nc is probably to:

1. manually enter the information into the “data” section of COSMIC_parlist_station.txt

2. then use ncgen to convert COSMIC_parlist_station.txt to a netCDF file.

3. That netCDF file can be concatenated onto COSMIC_parlist.nc with a simple ncrcat command.

Listing the sites already supported is easy:

observations/COSMOS/data % ncdump -v sitenames COSMIC_parlist.nc
netcdf COSMIC_parlist {
dimensions:

nsites = UNLIMITED ; // (42 currently)
strlength = 21 ;

variables:
char sitenames(nsites, strlength) ;

sitenames:long_name = "COSMOS Site Names" ;
double longitude(nsites) ;

longitude:long_name = "Longitude" ;
longitude:units = "degrees" ;

double latitude(nsites) ;
latitude:long_name = "Latitude" ;
latitude:units = "degrees" ;

double elevation(nsites) ;
elevation:long_name = "Elevation" ;
elevation:units = "m" ;

double bd(nsites) ;
bd:long_name = "Dry Soil Bulk Density" ;
bd:units = "g cm{-3}" ;

double lattwat(nsites) ;
(continues on next page)

130 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

lattwat:long_name = "Lattice Water Content" ;
lattwat:units = "m{3} m{-3}" ;

double N(nsites) ;
N:long_name = "High Energy Neutron Intensity" ;
N:units = "relative counts" ;

double alpha(nsites) ;
alpha:long_name = "Ratio of Fast Neutron Creation Factor (Soil to

→˓Water)" ;
alpha:units = "-" ;

double L1(nsites) ;
L1:long_name = "High Energy Soil Attenuation Length" ;
L1:units = "g cm{-2}" ;

double L2(nsites) ;
L2:long_name = "High Energy Water Attenuation Length" ;
L2:units = "g cm{-2}" ;

double L3(nsites) ;
L3:long_name = "Fast Neutron Soil Attenuation Length" ;
L3:units = "g cm{-2}" ;

double L4(nsites) ;
L4:long_name = "Fast Neutron Water Attenuation Length" ;
L4:units = "g cm{-2}" ;

// global attributes:
:website = "COsmic-ray Soil Moisture Observing System (COSMOS) -

http://cosmos.hwr.arizona.edu" ;
data:

sitenames =
"ARM-1 ",
"Austin_Cary ",
"Bondville ",
"Brookings ",
"Chestnut_Ridge_NOAA ",
"Coastal_Sage_UCI ",
"Daniel_Forest ",
"Desert_Chaparral_UCI ",
"Fort_Peck ",
"Harvard_Forest ",
"Hauser_Farm_North ",
"Hauser_Farm_South ",
"Howland ",
"Iowa_Validation_Site ",
"Island_Dairy ",
"JERC ",
"Kendall ",
"KLEE ",
"Manitou_Forest_Ground",
"Metolius ",
"Morgan_Monroe ",
"Mozark ",
"Mpala_North ",
"Neb_Field_3 ",
"P301 ",
"Park_Falls ",
"Pe-de-Gigante ",
"Rancho_No_Tengo ",
"Reynolds_Creek ",

(continues on next page)

6.51. PROGRAM COSMOS_development 131

DART, Release 9.10.3

(continued from previous page)

"Rietholzbach ",
"Rosemount ",
"San_Pedro_2 ",
"Santa_Rita_Creosote ",
"Savannah_River ",
"Silver_Sword ",
"SMAP-OK ",
"Soaproot ",
"Sterling ",
"Tonzi_Ranch ",
"UMBS ",
"UVA ",
"Wind_River " ;

}

The observation sequence files will look something like the following, the attributes in yellow are the information from
COSMIC_parlist.nc:

obs_sequence
obs_kind_definitions

1
20 COSMOS_NEUTRON_INTENSITY

num_copies: 1 num_qc: 1
num_obs: 3840 max_num_obs: 3840

observation
COSMOS QC

first: 1 last: 3840
OBS 1
1048.0000000000000
1.0000000000000000

-1 2 -1
obdef
loc3d

4.154723123116714 0.7997185899100618 0.000000000000000 -1
kind

20

cosmic 0.88500000000000001 5.84099999999999966E-002 336.95696938999998 0.31918025877000000
161.98621864285701 129.14558984999999 55.311849408000000 3.8086191933000002 1

77340 150034
1225.0000000000000
...

6.51.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&COSMOS_development_nml
site_metadata_file = 'COSMIC_parlist.nc'
text_input_file = 'textdata.input',
obs_out_file = 'obs_seq.out',

(continues on next page)

132 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

sitename = 'missing',
year = -1
maxgoodqc = 3,
verbose = .false.
/

Con-
tents

Type Description

site_metadata_filecharac-
ter(len=256)

The netCDF file containing the parameter values for each site.

text_input_filecharac-
ter(len=128)

The text file containing the raw observations for each site.

obs_out_filecharac-
ter(len=128)

The output observation sequence file for DART.

site-
name

charac-
ter(len=128)

The name of the site. Must match one of the site names in the site_metadata_file.
Case-insensitive match, trailing blanks ignored. Use ncdump -v sitenames COS-
MIC_parlist.nc

year integer The year of the data.
max-
goodqc

integer left for future implementation.

verbose logical A switch to specify the amount of run-time output. .true. the most amount of output.
.false. the least amount of output.

COSMOS development namelist

&COSMOS_development_nml
site_metadata_file = '../data/COSMIC_parlist.nc',
text_input_file = 'SantaRita_corcounts.txt',
obs_out_file = 'SantaRita_obs_seq.out',
sitename = 'Santa_Rita_Creosote',

6.51.5 References

• The COSMOS web page.

• Franz, T.E, M. Zreda, T.P.A. Ferre, R. Rosolem, C. Zweck, S. Stillman, X. Zeng and W.J. Shuttleworth, 2012:
Measurement depth of the cosmic-ray soil moisture probe affected by hydrogen from various sources. Water
Resources Research 48, W08515, doi:10.1029/2012WR011871

• Franz, T.E, M. Zreda, R. Rosolem, T.P.A. Ferre, 2012: Field validation of cosmic-ray soil moisture probe using
a distributed sensor network. Vadose Zone Journal (in press), doi:10.2136/vzj2012.0046

6.51. PROGRAM COSMOS_development 133

http://cosmos.hwr.arizona.edu
http://dx.doi.org/10.1029/2012WR011871
http://dx.doi.org/10.2136/vzj2012.0046

DART, Release 9.10.3

6.51.6 Future Plans

• Implement a routine to automatically determine the column indices of the columns of interest.

• Implement a QC encoding that reflects the uncertainty of the measurement. Presently, all Level 2 data have an
incoming QC of 1.

6.52 PROGRAM dwl_to_obs

6.52.1 Overview

DWL to DART converter

These are Doppler Wind Lidar measurements which have previously been extracted from the incoming format and
output in ascii format, one pair of wind component observations per line. This converter reads in the ascii file and
outputs the data in DART observation sequence (obs_seq) format.

This is OSSE data from a satellite which is expected to be launched in 2015. Information on the satellite mission is
here at http://en.wikipedia.org/wiki/ADM-Aeolus.

The workflow is:

• read in the needed information about each observation - location, time, observation values, obs errors - from an
ascii file

• call a series of DART library routines to construct a derived type that contains all the information about a single
observation

• call another set of DART library routines to put it into a time-sorted series

• repeat the last 2 steps until all observations are processed

• finally, call a write subroutine that writes out the entire series to a file in a format that DART can read in

6.52.2 Data sources

Matic Savli at University of Ljubljana has programs which read the expected instrument formats, do the proper con-
versions, and write out ascii lines, one per wind observation.

6.52.3 Programs

The dwl_to_obs.f90 file is the source for the main converter program. There is a sample data file in the “data”
directory. The converter reads each text line into a character buffer and then reads from that buffer to parse up the data
items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

The observation types are defined in DART/obs_def/obs_def_dwl_mod.f90. That filename must be added
to the input.nml namelist file, to the &preprocess_nml namelist, the ‘input_files’ variable before compiling any
program that uses these observation types. Multiple files can be listed. Then run quickbuild.csh again. It remakes the
table of supported observation types before trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. It will need customization
before being used.

134 Chapter 6. References

http://en.wikipedia.org/wiki/ADM-Aeolus

DART, Release 9.10.3

6.53 GMI Brightness Temperatures

This directory contains the code to convert the GMI Brightness Temperatures in HDF5 format to the DART observation
sequence file format.

The dataset of interest is: “GPM GMI Common Calibrated Brightness Temperatures Collocated L1C 1.5 hours 13 km
V05 (GPM_1CGPMGMI) at GES DISC” not the _R set! The short name for this dataset is ‘GPM_1CGPMGMI’.

The introductory paragraph for the dataset is:

Version 5 is the current version of the data set. Version 4 is no longer available and has been superseded
by Version 5. All 1C products have a common L1C data structure, simple and generic. Each L1C swath
includes scan time, latitude and longitude, scan status, quality, incidence angle, Sun glint angle, and the
intercalibrated brightness temperature (Tc). One or more swaths are included in a product. The radiometer
data are recalibrated to a common basis so that precipitation products derived from them are consistent.
1CGMI contains common calibrated brightness temperatures from the GMI passive microwave instrument
flown on the GPM satellite. 1C-R GMI is a remapped version of 1CGMI which is explained at the end
of this section. Swath S1 has 9 channels which are similar to TRMM TMI (10V 10H 19V 19H 23V 37V
37H 89V 89H). Swath S2 has 4 channels similar to AMSU-B (166V 166H 183+/-3V 183+/-8V). Data for
both swaths is observed in the same revolution of the instrument.

The citation information for this dataset is: Title: GPM GMI Common Calibrated Brightness Temperatures Collo-
cated L1C 1.5 hours 13 km V05 Version: 05 Creator: Wesley Berg Publisher: Goddard Earth Sciences Data and
Information Services Center (GES DISC) > Release Date: 2016-03-03T00:00:00.000Z

Linkage: https://disc.gsfc.nasa.gov/datacollection/GPM_1CGPMGMI_05.html

6.53.1 Instructions to download the GPM_1CGPMGMI dataset for the GMI converter

1. Go to https://earthdata.nasa.gov

2. Log in (or create an account if necessary)

3. Search for GMI L1C (the “c” here is for cross-calibrated with other satellites)

4. Scroll down past datasets to “Matching results.”

• Follow the link to the GMI common calibrated data set: “GPM GMI Common Calibrated Brightness Tempera-
tures Collocated L1C 1.5 hours 13 km V05 (GPM_1CGPMGMI) at GES DISC” dataset (NOT the _R set)

5. You should now be at the https://cmr.earthdata.nasa.gov/search/concepts/C1383813813-GES_DISC.html page.

• Select the ‘Download data’ tab

• Select ‘Earthdata search’

• Select the GPM link under ‘Matching datasets’

6. You can now select ‘Granule filters’ to choose your start and end dates.

7. Select the granules you want, then click ‘download all’ and ‘download data’

8. Click download access script

9. Follow the instructions on that page to download the data.

Each granule is about 28M and has names like:
1C.GPM.GMI.XCAL2016-C.20160621-S001235-E014508.013137.V05A.HDF5

6.53. GMI Brightness Temperatures 135

https://disc.gsfc.nasa.gov/datacollection/GPM_1CGPMGMI_05.html
https://earthdata.nasa.gov
https://cmr.earthdata.nasa.gov/search/concepts/C1383813813-GES_DISC.html

DART, Release 9.10.3

Guidelines for converting the observations, thinning, superobbing, etc. are forthcoming. For more background on
assimilating radiances in DART, please read https://dart.ucar.edu/pages/Radiance_support.html

When running the DART converter, two swaths (S1, S2) are converted to observations. S1 and S2 have different
channels and different “postings,” meaning actual observation locations. They are more or less right next to each other
. . .

https://disc.gsfc.nasa.gov/datasets/GPM_1CGPMGMI_05/summary

Swath S1 has 9 channels which are similar to TRMM TMI (10V 10H 19V 19H 23V 37V 37H 89V 89H).
Swath S2 has 4 channels similar to AMSU-B (166V 166H 183+/-3V 183+/-8V).
Data for both swaths is observed in the same revolution of the instrument.

Partial run-time output for one file (no thinning, whole globe, i.e. about 8 million observations):

...
Data Metadata: observation
QC Metadata: GMI QC

First timestamp: day=151747, sec=6309
calendar Date: 2016 Jun 21 01:45:09

Last timestamp: day=151747, sec=11863
calendar Date: 2016 Jun 21 03:17:43
Number of obs processed : 5734296

GPM_1_GMI_TB 5734296 obs

add_swath_observations: Converted 5734296 obs for swath /S1; total GMI obs =
→˓ 5734296

Data Metadata: observation
QC Metadata: GMI QC

First timestamp: day=151747, sec=6309
calendar Date: 2016 Jun 21 01:45:09

Last timestamp: day=151747, sec=11863
calendar Date: 2016 Jun 21 03:17:43
Number of obs processed : 8279480

GPM_1_GMI_TB 8279480 obs

add_swath_observations: Converted 2545184 obs for swath /S2; total GMI obs =
→˓ 8279480

write_obs_seq opening unformatted observation sequence file "obs_seq.gmi"
write_obs_seq closed observation sequence file "obs_seq.gmi"
convert_gmi_L1.f90 Finished successfully.
...

136 Chapter 6. References

https://dart.ucar.edu/pages/Radiance_support.html
https://disc.gsfc.nasa.gov/datasets/GPM_1CGPMGMI_05/summary

DART, Release 9.10.3

6.54 NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b
Radiances

The data are available from NOAA-NCEI

The convert_goes_ABI_L1b program converts ABI Level 1b Radiances in netCDF format to a DART observation se-
quence file with GOES_16_ABI_RADIANCE observations (there is a namelist option to select other GOES satellites,
which will have the appropriate observation type).

The Advanced Baseline Imager (ABI) instrument samples the radiance of the Earth in sixteen spectral
bands using several arrays of detectors in the instrument’s focal plane. Single reflective band ABI Level
1b Radiance Products (channels 1 - 6 with approximate center wavelengths 0.47, 0.64, 0.865, 1.378, 1.61,
2.25 microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere
for visible and near-infrared (IR) bands. Single emissive band ABI L1b Radiance Products (channels
7 - 16 with approximate center wavelengths 3.9, 6.185, 6.95, 7.34, 8.5, 9.61, 10.35, 11.2, 12.3, 13.3
microns, respectively) are digital maps of outgoing radiance values at the top of the atmosphere for IR
bands. Detector samples are compressed, packetized and down-linked to the ground station as Level 0
data for conversion to calibrated, geo-located pixels (Level 1b Radiance data). The detector samples are
decompressed, radiometrically corrected, navigated and resampled onto an invariant output grid, referred
to as the ABI fixed grid.

Cite as: GOES-R Calibration Working Group and GOES-R Series Program, (2017): NOAA GOES-R
Series Advanced Baseline Imager (ABI) Level 1b Radiances. [indicate subset used]. NOAA National
Centers for Environmental Information. doi:10.7289/V5BV7DSR. [access date].

6.54.1 Specifying a vertical location

Jeff Steward added (PR 48) the capability to specify a vertical location if desired. This allows for localization in the
vertical.

It’s sometimes helpful, even though definitely wrong from a theoretical standpoint, to give a vertical lo-
cation to satellite observations (which are integrated quantities). This has been an issue with observation-
space localization for some time, and this is the standard workaround pioneered by Lili Lei and Jeff
Whittaker.

6.54. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances 137

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C01501

DART, Release 9.10.3

6.54.2 A short description of the namelist options

This table is meant to familiarize you with some of the options available. Until we fully implement automatic doc-
umentation generation, you would be well advised to familiarize yourself with the code. This is not the full list of
namelist variables . . .

vari-
able

de-
fault

meaning

x_thin 0 Skip this many per X scan.
y_thin 0 Skip this many per Y scan.
goes_num16 GOES Satellite number.
re-
ject_dqf_1

.true. Bad scan rejection criteria. If .true. and DQF /= 0, the scan is rejected. If .false. any DQF > 1
rejects the scan.

ver-
bose

.false. Run-time output verbosity

obs_err MISS-
ING_R8

The observation error standard deviation (std dev, in radiance units) TODO: make this more
sophisticated. You must supply a value other than MISSING_R8. Be aware that the observation
sequence files convert this to a variance.

vloc_pres_hPa-1.0 The vertical location of this observation (hPa). A negative means there is no vertical location
(which is typical for a ve rtically-integrated quantity).

6.55 GPSPW

convert GPS observations of Precipitable Water into DART obs_sequence format.

6.56 GSI2DART

6.56.1 Overview

The GSI2DART converter was contributed by Craig Schwartz and Jamie Bresch of the Mesoscale & Microscale
Meteorology Lab at NCAR. Thanks Craig and Jamie!

This converter is designed to convert observation files created by the Gridpoint Statistical Interpolation (GSI) system
maintained by the National Oceanic and Atmospheric Administration (NOAA) into DART observation sequence files.
The files created by GSI are ‘BIG_ENDIAN’ and have filenames such as:

• diag_amsua_metop-a_ges.ensmean

• diag_amsua_metop-a_ges.mem001

• diag_amsua_metop-a_ges.mem002

• diag_amsua_n18_ges.ensmean

• diag_amsua_n18_ges.mem001

• diag_amsua_n18_ges.mem002

• diag_amsua_n19_ges.ensmean

• diag_amsua_n19_ges.mem001

• diag_amsua_n19_ges.mem002

• diag_conv_ges.ensmean

138 Chapter 6. References

DART, Release 9.10.3

• diag_conv_ges.mem001

• diag_conv_ges.mem002

The DART converter uses routines from the GSI system that use the Message Passing Interface (MPI) to process
observations in parallel (even when converting a small amount of observations) so MPI is required to execute this
observation converter.

Due to these prerequisites, we provide a detailed description of this directory to guide the user.

This directory contains copies of several source code files from GSI. The GSI source code is available via a Github
repository managed by NOAA’s Environmental Modeling Center (EMC):

https://github.com/NOAA-EMC/GSI

To differentiate between the sets of code, we refer to the root directory of the NOAA-EMC repository as GSI and
refer to the root directory of this observation converter as GSI2DART.

GSI2DART/enkf copies seven files from GSI/src mostly without modification:

1. GSI2DART/enkf/constants.f90 from GSI/src/gsi/constants.f90

2. GSI2DART/enkf/kinds.F90 from GSI/src/gsi/kinds.F90

3. GSI2DART/enkf/mpi_readobs.f90 from GSI/src/enkf/mpi_readobs.f90

4. GSI2DART/enkf/readconvobs.f90 from GSI/src/enkf/readconvobs.f90

5. GSI2DART/enkf/read_diag.f90 from GSI/src/gsi/read_diag.f90

6. GSI2DART/enkf/readozobs.f90 from GSI/enkf/readozobs.f90

7. GSI2DART/enkf/readsatobs.f90 from GSI/enkf/readsatobs.f90

Note that within GSI the source file kinds.F90 has an upper-case F90 suffix. Within the GSI2DART observation
converter, it gets preprocessed into mykinds.f90 with a lower-case f90 suffix. Case-insensitive filesystems should
be banned . . . until then, it is more robust to implement some name change during preprocessing. The path name
specified in GSI2DART/work/path_names_gsi_to_dart reflects this processed filename.

The following three files had their open() statements modified to read ‘BIG_ENDIAN’ files without the need to
compile EVERYTHING with the -convert big_endian compiler option. Using the DART open_file() routine
also provides some nice error handling.

• original: open(iunit,form="unformatted",file=obsfile,iostat=ios)

• modified: iunit = open_file(obsfile,form='unformatted',action='read',
convert='BIG_ENDIAN')

1. GSI2DART/enkf/readconvobs.f90

2. GSI2DART/enkf/readozobs.f90

3. GSI2DART/enkf/readsatobs.f90

6.56. GSI2DART 139

https://github.com/NOAA-EMC/GSI

DART, Release 9.10.3

6.56.2 DART Modifications

Within GSI2DART

The source files within GSI2DART are:

1. gsi_to_dart.f90: the main program.

2. dart_obs_seq_mod.f90: the DART obs_seq output subroutine.

3. params.f90: the same module name as GSI/src/enkf/params.f90 but with different content. This
version is used to avoid modifying GSI2DART/enkf/read*.f90.

4. radinfo.f90: the same module name as GSI/src/gsi/radinfo.f90 but with different content. This
version is used to avoid modifying GSI2DART/enkf/read*.f90.

5. mpisetup.f90: the same module name as GSI/src/enkf/mpisetup.f90 but with different content.
This version is used to avoid dependency on GSI.

Elsewhere in the repository

This observation converter required modifying two files and adding a module for radiance observation types.

• Modified ../../forward_operators/DEFAULT_obs_def_mod.F90

• Modified ../../DEFAULT_obs_kind_mod.F90

• Added ../../forward_operators/obs_def_radiance_mod.f90 which has radiance observation
types

Compiler notes

When using ifort, the Intel Fortran compiler, you may need to add the compiler flag -nostdinc to avoid inserting
the standard C include files which have incompatible comment characters for Fortran. You can add this compiler flag
in the the GSI2DART/work/mkmf_gsi_to_dart file by adding it to the “-c” string contents.

Please note: this was NOT needed for ifort version 19.0.5.281.

Additional files and directories

1. satinfo is a file read by radinfo.f90 and must exist in the GSI2DART/work directory.

2. datapath specifies the directory containing the data to be converted – it is specified in the
gsi_to_dart_nml namelist in GSI2DART/work/input.nml.

3. submit.csh is contained in GSI2DART/work/ – it runs the gsi_to_dart converter once it has been compiled.
Again, since GSI requires MPI, multiple processors must be requested to run the gsi_to_dart executable.

140 Chapter 6. References

DART, Release 9.10.3

6.56.3 Issues

1. The converter requires an ensemble size greater than one and will MPI_Abort() if only one ensemble member is
requested.

The following are issues previously recorded in the README:

1. Radiance and surface pressure bias correction

2. Surface pressure altimeter adjustment?

3. Specific humidity obs are transformed to relative humidity. What to do? [Just run EnSRF with psuedo_rh=.false.
and assimilate RH obs]

4. DART must use W and PH as control variables [okay, EnSRF can do this too (nvars=6 for WRF-ARW)]

5. Does DART not do vertical localization for surface obs?

! If which_vert has no vertical definition for either location do only horizontal
if(loc1%which_vert == VERTISUNDEF .or. loc2%which_vert == VERTISUNDEF) comp_h_only = .
→˓true.
! If both verts are surface, do only horizontal
if(loc1%which_vert == VERTISSURFACE .and. loc2%which_vert == VERTISSURFACE) comp_h_
→˓only = .true.

Running with 32 bit reals

The converter has been tested with 64-bit reals as well as 32-bit reals (i.e. r8=r4 and -D_REAL_4). The answers are
different only at the roundoff level.

This requires changes in two places:

1. DART/assimilation_code/modules/utilities/types_mod.f90 change required: r8 = r4

2. GSI2DART/work/mkmf_gsi_to_dart change required: -D_REAL4_

If these are not set in a compatible fashion, you will fail to compile with the following error (or something similar):

../../../../observations/obs_converters/GSI2DART/dart_obs_seq_mod.f90(213): error
→˓#6284:
There is no matching specific function for this generic function reference. [SET_
→˓LOCATION]
location = set_location(lon, lat, vloc, which_vert)
-----------------^

6.57 GTSPP Observations

6.57.1 Overview

GTSPP (Global Temperature-Salinity Profile Program) data measures vertical profiles of ocean temperature and salin-
ity. The GTPSS home page has detailed information about the repository, observations, and datasets. The programs
in this directory convert from the netcdf files found in the repository into DART observation sequence (obs_seq) file
format.

6.57. GTSPP Observations 141

https://www.ncei.noaa.gov/products/global-temperature-and-salinity-profile-programme

DART, Release 9.10.3

6.57.2 Data sources

Data from the GTSPP can be downloaded interactively from the GTSPP data server. It is delivered in netCDF file
format, one vertical profile per netCDF file.

Currently each vertical profile is stored in a separate file, so converting a months’s worth of observations involves
downloading many individual files. The converter program can take a list of input files, so it is easy to collect a month
of observations together into a single output file with one execution of the converter program.

The units in the source file are degrees C for temperature, g/kg for salinity, and so far we have not found any error
information (not quality control, but observation instrument error values). There is probably instrument source infor-
mation encoded in these files, but so far we don’t have the key. The quality control values are read and only those with
a QC of 1 are retained.

6.57.3 Programs

The data is distributed in netCDF file format. DART requires all observations to be in a proprietary format often called
DART “obs_seq” format. The files in this directory, a combination of C shell scripts and a Fortran source executable,
do this data conversion.

6.57.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

>spp_to_obs_nml
gtspp_netcdf_file = '1234567.nc'
gtspp_netcdf_filelist = 'gtspp_to_obs_filelist'
gtspp_out_file = 'obs_seq.gtspp'
avg_obs_per_file = 500
debug = .false.

/

142 Chapter 6. References

http://www.nodc.noaa.gov/cgi-bin/gtspp/gtsppform01.cgi
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf

DART, Release 9.10.3

Item Type Description
gt-
spp_netcdf_file

char-
ac-
ter(len=128)

The input filename when converting a single profile. Only one of the two file or filelist items can
have a valid value, so to use the single filename set the list name ‘gtspp_netcdf_filelist’ to the
empty string (‘ ‘).

gt-
spp_netcdf_filelist

char-
ac-
ter(len=128)

To convert a series of profiles in a single execution create a text file which contains each input file,
in ascii, one filename per line. Set this item to the name of that file, and set ‘gtspp_netcdf_file’ to
the empty string (‘ ‘).

gt-
spp_out_file

char-
ac-
ter(len=128)

The output file to be created. To be compatible with earlier versions of this program, if this file
already exists it will be read in and the new data will be inserted into that file.

avg_obs_per_fileinte-
ger

The code needs an upper limit on the number of observations generated by this program. It can be
larger than the actual number of observations converted. The total number of obs is computed by
multiplying this number by the number of input files. If you get an error because there is no more
room to add observations to the output file, increase this number.

de-
bug

logi-
cal

If true, output more debugging messages.

6.57.5 Modules used

types_mod
time_manager_mod
utilities_mod
location_mod
obs_sequence_mod
obs_def_mod
obs_def_ocean_mod
obs_kind_mod
netcdf

6.57.6 Known Bugs

Does not have correct code for setting observation error variance yet. Also, not sure if the incoming data qc is strict
enough.

6.58 MADIS Data Ingest System

6.58.1 Overview

The MADIS (Meteorological Assimilation Data Ingest System) service provides access to real-time and archived data
of a variety of types, with added Quality Control (QC) and integration of data from a variety of sources.

To convert a series of MADIS data files (where different types of observations are distributed in separate files), one
high level view of the workflow is:

1. convert each madis file, by platform type, into an obs_seq file. one file in, one file out. no time changes. use
the shell_scripts/madis_conv.csh script. there are script options for hourly output files, or a single
daily output file.

6.58. MADIS Data Ingest System 143

http://madis.noaa.gov/

DART, Release 9.10.3

2. if you aren’t using the wrf preprocessing program, you’re ready to go.

3. if you do want to do subsequent wrf preprocessing, you need to:

1. decide on the windowing. each platform has a different convention and if you’re going to put them into the
wrf preprocessing you’ll need to have the windowing match. use the shell_scripts/windowing.
csh script.

2. the wrf preprocessing takes a list of files and assumes they will all be assimilated at the same time, for
superob’ing purposes, so it should match the expected assimilation window when running filter.

6.58.2 Data sources

http://madis.noaa.gov

There are two satellite wind converter programs; the one in this directory and one in the SSEC Data Center directory.
The observations distributed here come from NESDIS. The SSEC observations are processed by SSEC itself and will
differ from the observations converted here.

6.58.3 Programs

The programs in the DART/observations/MADIS/ directory extract data from the distribution files and create
DART observation sequence (obs_seq) files. Build them in the work directory by running the ./quickbuild.csh
script. In addition to the converters, the advance_time and obs_sequence_tool utilities will be built.

There are currently converters for these data types:

ACARS aircraft T,U,V,Q data convert_madis_acars
Marine surface data convert_madis_marine
Mesonet surface data convert_madis_mesonet
Metar data convert_madis_metar
Wind Profiler data convert_madis_profiler
Rawinsonde/Radiosonde data convert_madis_rawin
Satellite Wind data convert_madis_satwnd

Example data files are in the data directory. Example scripts for converting batches of these files are in the
shell_scripts directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized
for your use. There are comments at the top of the scripts saying what options they include, and should be commented
enough to indicate where changes will be likely to need to be made.

Several converters have compile-time choices for outputting various types of moist variables. Check the source code
for more details. Some converters also read multiple T/F strings from the console (standard input) to control at run-time
what types of observations to convert. Again, check the source code for more details.

Each converter has hard-coded input and output filenames:

convert_madis_acars: acars_input.nc obs_seq.acars
convert_madis_marine: marine_input.nc obs_seq.marine
convert_madis_mesonet: mesonet_input.nc obs_seq.mesonet
convert_madis_metar: metar_input.nc obs_seq.metar
convert_madis_profiler: profiler_input.nc obs_seq.profiler
convert_madis_rawin: rawin_input.nc obs_seq.rawin
convert_madis_satwnd: satwnd_input.nc obs_seq.satwnd

144 Chapter 6. References

http://madis.noaa.gov/
http://www.nesdis.noaa.gov

DART, Release 9.10.3

The expected usage pattern is that a script will copy, rename, or make a symbolic link from the actual input file (which
often contains a timestamp in the name) to the fixed input name before conversion, and move the output file to an
appropriate filename before the next invocation of the converter. If an existing observation sequence file of the same
output name is found when the converter is run again, it will open that file and append the next set of observations to
it.

6.59 PROGRAM MIDAS_to_obs

6.59.1 Overview

MIDAS netCDF file to DART observation converter

Alex Chartier (University of Bath, UK) contributed the code.

“MIDAS runs in Matlab. The raw observations come from GPS receivers as RINEX files, but we can’t
use them directly just yet . . . Currently, the ‘slant’ (satellite-to-receiver path) observations are inverted by
MIDAS to make vertical, column-integrated ‘observations’ of plasma density.”

6.59.2 Data sources

The original files have been converted to netCDF files that are then converted to DART observation sequence files.
The netCDF files have a pretty simple format:

netcdf Test {
dimensions:

latitude = 5 ;
longitude = 6 ;
height = 30 ;
time = UNLIMITED ; // (1 currently)

variables:
double latitude(latitude) ;

latitude:units = "degrees_north" ;
latitude:long_name = "latitude" ;
latitude:standard_name = "latitude" ;

double longitude(longitude) ;
longitude:units = "degrees_east" ;
longitude:long_name = "longitude" ;
longitude:standard_name = "longitude" ;

double height(height) ;
height:units = "metres" ;
height:long_name = "height" ;
height:standard_name = "height" ;

double time(time) ;
time:units = "Days since 1601-01-01" ;
time:long_name = "Time (UT)" ;
time:standard_name = "Time" ;

double Ne(height, latitude, longitude) ;
Ne:grid_mapping = "standard" ;
Ne:units = "1E11 e/m^3" ;
Ne:long_name = "electron density" ;
Ne:coordinates = "latitude longitude" ;

double TEC(time, latitude, longitude) ;
TEC:grid_mapping = "standard" ;

(continues on next page)

6.59. PROGRAM MIDAS_to_obs 145

DART, Release 9.10.3

(continued from previous page)

TEC:units = "1E16 e/m^2" ;
TEC:long_name = "total electron content" ;
TEC:coordinates = "latitude longitude" ;

double Variance(time, latitude, longitude) ;
Variance:grid_mapping = "standard" ;
Variance:units = "1E16 e/m^2" ;
Variance:long_name = "Variance of total electron content" ;
Variance:coordinates = "latitude longitude" ;
Variance:standard_name = "TEC variance" ;

// global attributes:
:Conventions = "CF-1.5" ;

}

6.59.3 Programs

The MIDAS_to_obs.f90 file is the source code for the main converter program.
To compile and test, go into the MIDAS/work subdirectory and run the quickbuild.csh script to build the
converter and a couple of general purpose utilities. The program obs_sequence_tool manipulates (i.e. combines,
subsets) DART observation files once they have been created. The default observations supported are those defined in
observations/forward_operators/obs_def_upper_atm_mod.f90. If you need additional observation types, you will
have to add the appropriate obs_def_XXX_mod.f90 file to the input.nml
&preprocess_nml:input_files variable and run quickbuild.csh again. It rebuilds the table of
supported observation types before compiling the source code.

6.59.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&MIDAS_to_obs_nml
input_file = 'infile.nc'
obs_out_file = 'obs_seq.out',
verbose = .false.
/

Item Type Description
in-
put_file

charac-
ter(len=256)

Name of the input netCDF MIDAS file to read.

obs_out_filecharac-
ter(len=256)

Name of the output observation sequence file that is created.

ver-
bose

logical Controls how much informational output is printed during a conversion. .true. the
most amount of output. .false. the least amount of output.

146 Chapter 6. References

../../forward_operators/obs_def_upper_atm_mod.f90

DART, Release 9.10.3

Example

&MIDAS_to_obs_nml
input_file = '../data/Test.nc',
obs_out_file = 'obs_seq.out',
verbose = .TRUE.,

6.59.5 References

6.60 DART observations and MODIS products.

There are many MODIS products, in many formats. This document will list all of the data products and formats that
have DART programs to convert them to observation sequence files.

6.60.1 Programs

PROGRAM
MOD15A2_to_obs

Converts MODIS Land Product Subsets Leaf Area Index (LAI) and Fraction of Photosyn-
thetically Active Radiation (FPAR) 8 day composite [MOD15A2]

6.60.2 Plans

1. Support MOD15A2 ‘Global Tool’ records.

2. The work that remains is to get the IGBP landcover code for the site and incorporate that into the observation
metadata. I almost have everything I need. Once that happens, the forward observation operator can be made to
be much more accurate by only using model landunits that have the right landcover class.

3. Support more products. Put in a request to help me prioritize.

6.61 PROGRAM MOD15A2_to_obs

6.61.1 MODIS land product subsets (collection 5) to DART observation sequence
converter

Overview

This routine is designed to convert the MODIS Land Product Subsets data of Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation (FPAR) 8 day composite [MOD15A2] to a DART observation sequence file.
According to the MODIS LAI/FPAR Product User’s Guide:

Leaf area index (LAI; dimensionless) is defined as the one-sided green leaf area per unit ground area
in broadleaf canopies and as one-half the total needle surface area per unit ground area in coniferous
canopies. Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR; dimensionless)
is defined as the fraction of incident photosynthetically active radiation (400-700 nm) absorbed by the
green elements of a vegetation canopy.

6.60. DART observations and MODIS products. 147

http://daac.ornl.gov/MODIS/modis.shtml
https://lpdaac.usgs.gov/products/modis_products_table/mod15a2
http://daac.ornl.gov/MODIS/modis.shtml
https://lpdaac.usgs.gov/sites/default/files/public/modis/docs/MODIS-LAI-FPAR-User-Guide.pdf

DART, Release 9.10.3

Specifically, the composites are comma-separated-values (.csv format) ASCII files where each line is a record. The
input .csv files are directly from the Oak Ridge National Laboratory DAAC. There are two streams to download the
data formats we support, they differ only in the very first line of the file. One of the formats has a header record, the
other does not. Other than that, the file formats are identical. The format with the header record is fully described
in https://lpdaac.usgs.gov/dataset_discovery/modis. Please remember to cite the data in your publications, specific
instructions from LP DAAC are available here. This is an example:

Data Citation: Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2012.
MODIS subsetted land products, Collection 5. Available on-line [http://daac.ornl.gov/MODIS/modis.
html] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A. Accessed Month dd, yyyy.

For more information on downloading the data, see DATA SOURCES below. The MODIS Land Product Subsets page
indicates that the Collection 5 MODIS Subsets are available three ways:

1. Field Site and Flux tower. Since the files are preprocessed, the download is immediate. The current state of the
converter supports this format.

2. Global Tool. This requires exact knowledge of the location(s) of interest. Because some processing to fulfill the
request is needed, a job is scheduled on the DAAC server and an email notification is sent with instuctions on
how to retrieve the file(s) of interest. The converter does not currently support this format, but will soon. Worst
case scenario is that you make your own header file and add your ‘site’ to the metadata file described below.

3. Web Service. I have not used the Web Service.

The DART workflow is usually:

1. download the MOD15A2 data for the sites and years in question (see DATA SOURCES below)

2. build the DART executables with support for MODIS_LEAF_AREA_INDEX and MODIS_FPAR observations.
This is done by running preprocess with obs_def_land_mod.f90 in the list of input_files for
preprocess_nml and then building MOD15A2_to_obs in the usual DART way.

3. provide basic information via the input.nml:MOD15A2_to_obs_nml namelist

4. convert each MODIS data file individually using MOD15A2_to_obs

5. combine all output files for the region and timeframe of interest into one file using program obs_sequence_tool

For some models (CLM, for example), it is required to reorganize the observation sequence files into a series of files
that contains ONLY the observations for each assimilation. This can be achieved with the DART/observations/
obs_converters/MODIS/shell_scripts/makedaily.sh script.

6.61.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&MOD15A2_to_obs_nml
text_input_file = 'MOD15A2.fn_usbouldr.txt',
metadata_file = 'MOD15A2_site_metadata.txt',
obs_out_file = 'obs_seq.out',
maxgoodqc = 10,
verbose = .false.
/

148 Chapter 6. References

http://daac.ornl.gov
https://lpdaac.usgs.gov/dataset_discovery/modis
https://lpdaac.usgs.gov/about/citing_lp_daac_and_data
https://lpdaac.usgs.gov/about/citing_lp_daac_and_data
http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.html
http://daac.ornl.gov/MODIS/modis.shtml
http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
https://lpdaac.usgs.gov/tools/lp_daac_web_services

DART, Release 9.10.3

Con-
tents

Type Description

text_input_filechar-
ac-
ter(len=256)

Name of the MODIS file of comma-separated values. This may be a relative or absolute filename.

meta-
data_file

char-
ac-
ter(len=256)

Name of the file that contains the location information for the specific sites. This may be a relative
or absolute filename. If this file does not exist, it is presumed that the location information is part
of the ‘site’ column. If this is not true, the program will fail. For more information see the section
Presumed Format

obs_out_filechar-
ac-
ter(len=128)

Name of the output observation sequence file.

max-
goodqc

real maximum value of any observation quality control flag to pass through to the output observation
sequence. Keep in mind that filter has the ability to discriminate on the value, so there is really
little to be gained by rejecting them during the conversion. The QC value is passed through in its
native value, i.e. it is not converted to play nicely with observations that have values 0,1,2,3,4,5 etc.

ver-
bose

logi-
cal

Print extra information during the MOD15A2_to_obs execution.

6.61.3 Data sources

Field site and flux tower

The download site for the ‘Field Site and Flux tower’ data is
http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html. Since the files are preprocessed, the download is
immediate. This method results in files with the header record, and requires a small amount of additional work:

• Download the metadata file containing the locations for the Field Sites ftp://daac.ornl.gov/data/modis_ascii_
subsets/5_MODIS_SUBSETS_C5_&_FLUXNET.csv

• I usually convert this to UNIX format with the UNIX utility dos2unix and rename it to
MOD15A2_site_metadata.txt

The data files have names like MOD15A2.fn_uswiirpi.txt or MOD15A2.fn_dehambur.txt and have very
long lines. The first line (i.e. record) of the file is a comma-separated list explaining the file format for all the
remaining lines/records.
These files contain records with 49 pixel values where each pixel represents the values for a 1km by 1km voxel. The
center pixel is the only value converted to a DART observation value.

MODIS_LAI % head -1 MOD15A2.fn_dehambur.txt
HDFname,Product,Date,Site,ProcessDate,Band,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,
→˓18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
→˓46,47,48,49

The format of the Site in these files is the predominant difference between the files from the download methods. The
Site fields in these files have specified site names that must have a case-sensitive match to a site in the metadata file
specified by input.nml:metadata_file .

6.61. PROGRAM MOD15A2_to_obs 149

http://daac.ornl.gov/cgi-bin/MODIS/GR_col5_1/mod_viz.html
ftp://daac.ornl.gov/data/modis_ascii_subsets/5_MODIS_SUBSETS_C5_&_FLUXNET.csv
ftp://daac.ornl.gov/data/modis_ascii_subsets/5_MODIS_SUBSETS_C5_&_FLUXNET.csv

DART, Release 9.10.3

Global tool

This format is not supported yet.
The download site for the ‘Global Tool’ data is
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl. Because some processing
to fulfill the request is needed, a job is scheduled on the DAAC server and an email notification is sent with
instuctions on how to retrieve the file(s) of interest. This method requires exact knowledge of the location(s) of
interest. MOD15A2_to_obs presumes prior knowledge of the file format and that the latitude and longitude are
coded in the site name (which is the default behavior). Do not change the format of the file. Please follow the
download instructions below - exactly. These instructions were accurate as of 11 April 2014.

1. go to the DAAC download site for MODIS global data.

2. Select either

1. “Country” (it helps to FIRST clear out the values from the “lat/lon” boxes)

2. or a specific latitude and longitude. Be precise. This will specify the center pixel location.

3. click “Continue”

4. Select the “[MOD15A2] Leaf Area Index (LAI) and Fraction of Photsyntetically Active Radiation (FPAR) 8
Day Composite” from the pull-down menu.

5. Important: Specify 3 and only 3 kilometers to encompass the center location. This results in the 7 km by 7 km
resolution required by MOD15A2_to_obs.

6. click “Continue”

7. select the Starting Date and Ending Date from the list. You can convert the entire dataset into one long DART
observation sequence file and then subset it later if need be.

8. Important: Make sure you check the button “Generate GeoTIFF and Reproject to Geographic Lat/long”

9. Supply your REAL email address

10. click “Continue”

11. Review the confirmation page. Make sure the requested resolution and area is correct. You should see something
like “The Requested Data Area is Approximately 7 Kilometers Wide and 7 Kilometers High”

12. click “Continue”

13. At some point later (perhaps even days), you will get an email with the subject “ORNL DAAC MODIS
MOD15A2 order”, follow the instructions to complete the download.

The resulting ASCII files will have the same format as described below. The ‘site name’ column for these files is of
the form: Lat47.61666667Lon12.58333333Samp7Line7 which provides the location information otherwise
provided by the MOD15A2_site_metadata.txt file for the predefined sites.

150 Chapter 6. References

http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl
http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl

DART, Release 9.10.3

Web service

I have not used the Web Service.

6.61.4 Format

The data product “Leaf Area Index - Fraction of Photosynthetically Active Radiation 8-Day L4 Global 1km”
(MOD15A2) is described in https://lpdaac.usgs.gov/products/modis_products_table/mod15a2 (expand the ‘Layers’
tab). The units and the QC values are described there. What I have not been able to determine is how to interpret the
‘Date’ . . . if it is 2000049 . . . It is day 49 of year 2000. Is that the start of the 8 day composite, the middle, the end?
If you know the answer, please let me know.
Taken (almost) directly from https://lpdaac.usgs.gov/tools/lp_daac_web_services and modified only slightly with
examples more appropriate for the LAI/FPAR product.
The MODIS MOD15A2 products in question are ASCII files of comma-separated values. If the file contains a header
record/line, all columns are interpreted based on this header column. If the file does not contain a header, the
following format is REQUIRED.

• ASCII values are comma delimited

• Row 1 is the header row (which may not exist for products generated by the Global Tool)

• Data values start in row 2 if the header row is present.

• Rows of QC data are interleaved with measurement data as indicated in Column 6.

• Note that values may contain embedded periods, dashes, and underscores (“.,-, _”).

Col-
umn

Column Description Example Values

1 Unique row identifier MOD15A2.A2000049.fn_ruyakuts.005.2006268205917.Fpar_1km
MOD15A2.A2000049.fn_ruyakuts.005.2006268205917.Lai_1km

2 MODIS Land Product Code MOD15A2
3 MODIS Acquisition Date A(YYYYDDD) A2000049 (?this is an 8 day average) What does

49 indicate? start? middle? end?
4 SiteID Each site is assigned a unique ID. To get the

Site name information from SiteID, click here
fn_ustnwalk,
Lat47.61666667Lon12.58333333Samp7Line7

5 MODIS Processing Date (YYYYDDDHHMMSS) 2006269073558
6 Product Scientific Data Set (Band): Indicates type of

values to follow. Specific values vary by Product. Data
quality information are interleaved.

MOD15A2: FparExtra_QC, FparLai_QC, FparSt-
dDev_1km, Fpar_1km, LaiStdDev_1km, Lai_1km

7 to
N

Data values of type as specified. Number of data
columns as given in Column 4. Definition of QC com-
ponent values vary by Scientific Data Set

QC: 00100001,01100001,01100001, . . . Measure-
ment: 2,2,1,1,1,1,1,0,0,0,1,1,0,0, to N

QC flags are binary-coded ascii strings e.g., 10011101 bits 5,6,7 (the last three) are decoded as follows:

• 000 . . . Main(RT) method used, best result possible (no saturation)

• 001 . . . Main(RT) method used with saturation, Good, very usable

• 010 . . . Main(RT) method failed due to bad geometry, empirical algorithm used

• 011 . . . Main(RT) method failed due to other problems

• 100 . . . pixel not produced at all

Consequently, the last three digits are used by DART’s data processing logic.

6.61. PROGRAM MOD15A2_to_obs 151

https://lpdaac.usgs.gov/tools/lp_daac_web_services
https://lpdaac.usgs.gov/products/modis_products_table/mod15a2
https://lpdaac.usgs.gov/tools/lp_daac_web_services
ftp://daac.ornl.gov/data/modis_ascii_subsets/MODIS_Subset_Sites_Information_Collection5.csv

DART, Release 9.10.3

6.61.5 Programs

The MOD15A2_to_obs.f90 file is the source for the main converter program. Look at the source code where it
reads the example data file. You will almost certainly need to change the “read” statement to match your data format.
The example code reads each text line into a character buffer and then reads from that buffer to parse up the data
items.
FIXME Explain the 10% for the obs error for FPAR and question the LAIStddev . . .

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/obs_def directory. If you can find an obs_def_XXX_mod.f90
file with an appropriate set of observation types, change the ‘use’ lines in the converter source to include those types.
Then add that filename in the input.nml namelist file to the &preprocess_nml namelist, the ‘input_files’ variable.
Multiple files can be listed. Then run quickbuild.csh again. It remakes the table of supported observation types before
trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

6.61.6 Decisions you might need to make

See the general discussion in the Creating an obs_seq file from real observations page about what options are available
for the things you need to specify. These include setting a time, specifying an expected error, setting a location, and
an observation type.

6.61.7 Future plans

• Support for the data records without the header, as created by the Global Tool.

• The work that remains is to get the IGBP landcover code for the site and incorporate that into the observation
metadata. I almost have everything I need. Once that happens, the forward observation operator can be made to
be much more accurate by only using model landunits that have the right landcover class.

6.62 PROGRAM MOD15A2_to_obs

MODIS land product subsets (collection 5) to DART observation sequence converter

152 Chapter 6. References

DART, Release 9.10.3

6.63 MPD

The Micro Pulse Differential Absorption Lidar (MPD) data were collected during field campaigns and testing periods
by the Earth Observing Laboratory (EOL).

The differential absorption lidar (DIAL) technique uses two separate laser wavelengths: an absorbing wavelength
(online) and a non-absorbing wavelength (offline). The ratio of the range-resolved backscattered signals between
the online and offline wavelengths is proportional to the amount of water vapor in the atmosphere, which allows the
retrieval of absolute humidity profiles above the lidar site.

This observation converter takes absolute humidity (g/m3) profiles retrieved from the MPD data and converts them to
the format used by DART. The obs_converter/MPD/work/convert_to_text.py script reads the netCDF
files from each MPD site and combines them into text files, one for each date and time. The obs_converter/
MPD/work/MPD_text_to_obs program translates the text files to the DART obs_seq.out format.

Test data for a single site and an example output can be downloaded from https://www.image.ucar.edu/pub/DART/
MPD/MPD.tar.gz

For more details of the retrieval and quality control process, and inquire about data availability for your research
project, please contact Tammy Weckwerth at EOL, NCAR.

6.64 PROGRAM prepbufr

6.64.1 Overview

Translating NCEP PREPBUFR files into DART obs_seq.out files (input file to filter) is a 2 stage process. The first stage
uses NCEP software to translate the PREPBUFR file into an intermediate text file. This is described in this document.
The second step is to translate the intermediate files into obs_seq.out files, which is done by create_real_obs, as
described in PROGRAM create_real_obs .

6.64.2 Instructions

The prep_bufr package is free-standing and has not been completely assimilated into the DART architecture. It also
requires adaptation of the sources codes and scripts to the computing environment where it will be run. It is not so
robust that it can be controlled just with input parameters. It may not have the same levels of error detection and
warning that the rest of DART has, so the user should very careful about checking the end product for correctness.

Overview of what needs to be built and run

More detailed instructions follow, but this section describes a quick overview of what programs you will be building
and running.

6.63. MPD 153

https://www.image.ucar.edu/pub/DART/MPD/MPD.tar.gz
https://www.image.ucar.edu/pub/DART/MPD/MPD.tar.gz

DART, Release 9.10.3

Building

Running the install.sh script will build the library and main executable. You will probably have to edit this script to
set which fortran compiler is available on your system.

If you have raw unblocked PREPBUFR files you will need to convert them to blocked format (what prepbufr expects
as input). The blk/ublk section of the build script compiles the cword.x converter program.

If you are running on an Intel (little-endian) based machine you will need the grabbufr byte swapping program that
is also built by this script.

One-shot execution

If you are converting a single obs file, or are walking through the process by hand for the first time, you can follow
the more detailed build instructions below, and then run the prep_bufr.x program by hand. This involves the following
steps:

• building the executables.

• running the blocker if needed (generally not if you have downloaded the blocked format PREPBUFR files).

• running the binary format converter if you are on an Intel (little-endian) machine.

• linking the input file to a fixed input filename

• running prepbufr.x to convert the file

• copying the fixed output filename to the desired output filename

Production mode

If you have multiple days (or months) of observations that you are intending to convert, there is a script in the work
subdirectory which is set up to run the converter on a sequence of raw data files, and concatenate the output files
together into one output file per day. Edit the work/prepbufr.csh script and set the necessary values in the ‘USER SET
PARAMETERS’ section near the top. This script can either be run from the command line, or it can be submitted to a
batch queue for a long series of conversion runs.

Installation of the ncep prepbufr decoding program

This package is currently organized into files under the DART/observations/NCEP/prep_bufr directory:

src Source code of the NCEP PREPBUFR decoder
lib NCEP BUFR library source
install.sh A script to install the NCEP PREPBUFR decoder and the NCEP BUFR library.
exe Executables of the decoder and converter.
data Where the NCEP PREPBUFR files (prepqm****) could be loaded into

from the NCAR Mass Store (the script assumes this is the default
→˓location).
work Where we run the script to do the decoding.
convert_bufr Source code (grabbufr) to convert the binary big-endian PREPBUFR files
→˓to

little-endian files, and a script to compile the program.
blk_ublk Source code (cwordsh) to convert between blocked and unblocked format.
docs Some background information about NCEP PREPBUFR observations.

154 Chapter 6. References

DART, Release 9.10.3

The decoding program: src/prepbufr.f

The program prepbufr.f is used to decode the NCEP reanalysis PREPBUFR data into intermediate text files. This
program was originally developed by NCEP. It has been modified to output surface pressure, dry temperature, specific
humidity, and wind components (U/V) of conventional radiosonde, aircraft reports, and satellite cloud motion derived
wind. There are additional observation types on the PREPBUFR files, but using them they would require significant
modifications of prepbufr and require detailed knowledge of the NCEP PREPBUFR files. The NCEP quality control
indexes for these observations based on NCEP forecasts are also output and used in DART observation sequence
files. The NCEP PREPBUFR decoding program is written in Fortran 77 and has been successfully compiled on
Linux computers using pgi90, SGI® computers with f77, IBM® SP® systems with xlf, and Intel® based Mac® with
gfortran.

If your operating system uses modules you may need to remove the default compiler and add the one desired for this
package. For example

• which pgf90 (to see if pgf90 is available.)

• module rm intel64 netcdf64 mpich64

• module add pgi32

To compile the BUFR libraries and the decoding program, set the CPLAT variable in the install.sh script to match
the compilers available on your system. CPLAT = linux is the default. Execute the install.sh script to complete the
compilations for the main decoding program, the NCEP BUFR library, and the conversion utilities.

The executables (i.e., prepbufr.x, prepbufr_03Z.x) are placed in the ../exe directory.

Platforms tested:

• Linux clusters with Intel, PGI, Pathscale, GNU Fortran,

• Mac OS X with Intel, GNU Fortran,

• SGI Altix with Intel

• Cray with Intel, Cray Fortran.

The byte-swapping program convert_bufr/grabbufr.f

For platforms with little-endian binary file format (e.g. Intel, AMD®, and non-MIPS SGI processors) the program
grabbufr.f is used to convert the big-endian format NCEP PREPBUFR data into little-endian format. The grabbufr.f
code is written in Fortran 90, and has been compiled can be compiled with the pgf90 compiler on a Linux system,
with gfortran on an Intel based Mac, and the ifort compiler on other Linux machines. More detailed instructions for
building it can be found in convert_bufr/README, but the base install script should build this by default. In case of
problems, cd into the convert_bufr subdirectory, edit convert_bufr.csh to set your compiler, and run it to compile the
converter code (grabbufr).

This program reads the whole PREPBUFR file into memory, and needs to know the size of the file (in bytes). Un-
fortunately, the system call STAT() returns this size as one number in an array, and the index into that array differs
depending on the system and sometimes the word size (32 vs 64) of the compiler. To test that the program is using the
right offset into this array, you can compile and run the stat_test.f program. It takes a single filename argument and
prints out information about that file. One of the numbers will be the file size in bytes. Compare this to the size you
see with the ‘ls -l’ command for that same file. If the numbers do not agree, find the right index and edit the grabbufr.f
source file. Look for the INDEXVAL line near the first section of executable code.

If grabbufr.f does not compile because the getarg() or iargc() subroutines are not found or not available, then either use
the arg_test.f program to debug how to get command line arguments into a fortran program on your system, or simply
go into the grabbufr.f source and comment out the section which tries to parse command line arguments and comment

6.64. PROGRAM prepbufr 155

DART, Release 9.10.3

in the hardcoded input and output filenames. Now to run this program you must either rename the data files to these
predetermined filenames, or you can use links to temporarily give the files the names needed.

The blocking program blk_ublk/cword.x

The prepbufr.x program expects to read a blocked input file, which is generally what is available for download. How-
ever, if you have an unblocked file that you need to convert, there is a conversion program. The install.sh script will
try to build this by default, but in case of problems you can build it separately. Change directories into the blk_ublk
subdirectory and read the README_cwordsh file for more help. The cwordsh shell-script wrapper shows how to run
the executable cwordsh.x executable.

Note that if you can get the blocked file formats to begin with, this program is not needed.

Getting the ncep reanalysis prepbufr format data from ncar hpss

The NCEP PREPBUFR files (prepqmYYMMDDHH) can be found within the NCEP reanalysis dataset, ds090.0, on
NCAR Mass Store System (HPSS).

To find the files:

• go to the NCAR/NCEP reanalysis archive.

• Click on the “Inventories” tab.

• Select the year you are interested in.

• Search for files with the string “prepqm” in the name.

• Depending on the year the format of the filenames change, but they should contain the year, usually as 2 digits,
the month, and then either the start/stop day for weekly files, or the letters A and B for semi-monthly files.

Depending on the year you select, the prepqm files can be weekly, monthly, or semi-monthly. Each tar file has a
unique dataset number of the form “A#####”. For example, for January of 2003, the 4 HPSS TAR files are: A21899,
A21900, A21901, A21902. After September 2003, these files include AIRCRAFT data (airplane readings taken at
cruising elevation) but not ACARS data (airplane readings taken during takeoff and landing). There are different
datasets which include ACARS data but their use is restricted and you must contact the RDA group to get access.

If you are running on a machine with direct access to the NCAR HPSS, then change directories into the
prep_bufr/data subdirectory and run:
> hsi get /DSS/A##### rawfile
where ##### is the data set number you want.

These files may be readable tar files, or they may require running the cosconvert program first. See if the tar
command can read them:
> tar -tvf rawfile
If you get a good table of contents then simply rename the file and untar it:
> mv rawfile data.tar
> tar -xvf data.tar
However, if you get an error from the tar command you will need to run the cosconvert program to convert the
file into a readable tar file. On the NCAR machine yellowstone, run:
> /glade/u/home/rdadata/bin/cosconvert -b rawfile data.tar
On other platforms, download the appropriate version from: http://rda.ucar.edu/libraries/io/cos_blocking/utils/ .
Build and run the converter and then you should have a tar file you can unpack.

156 Chapter 6. References

http://rda.ucar.edu/datasets/ds090.0/
http://rda.ucar.edu/libraries/io/cos_blocking/utils/

DART, Release 9.10.3

The output of tar should yield individual 6-hourly NCEP PREPBUFR data files for the observations in the +/- 3-hour
time windows of 00Z, 06Z, 12Z, and 18Z of each day. Note that DART obs_seq files are organized such that a 24
hour file with 4 observation times would contain observations from 3:01Z to 3:00Z of the next day, centered on 6Z,
12Z, 18Z and “24Z”. In addition, there are some observations at 3:00Z on the PREPBUFR file labelled with 06Z.
Then, in order to make a full day intermediate file incorporating all the required obs from the “next” day, you’ll need
the PREPBUFR files through 6Z of the day after the last day of interest. For example, to generate the observation
sequence for Jan 1, 2003, the decoded NCEP PREPBUFR text files for Jan 1 and 2, 2003 are needed, and hence the
PREPBUFR files

• prepqm03010106

• prepqm03010112

• prepqm03010118

• prepqm03010200

• prepqm03010206

are needed.

Running the ncep prepbufr decoding program

In prep_bufr/work/prepbufr.csh set the appropriate values of the year, month, first day, and last day of the period you
desire, and the variable “convert” to control conversion from big- to little-endian. Confirm that the raw PREPBUFR
files are in ../data, or that prepbufr.csh has been changed to find them. Execute prepbufr.csh in the work directory. It
has code for running in the LSF batch environment, but not PBS.

Currently, this script generates decoded PREPBUFR text data each 24 hours which contains the observations
within the time window of -3:01 hours to +3:00Z within each six-hour synoptic time. These daily out-
put text files are named as temp_obs.yyyymmdd. These text PREPBUFR data files can then be read by
DART/observations/NCEP/ascii_to_obs/work/PROGRAM create_real_obs to generate the DART daily observation
sequence files.

There is an alternate section in the script which creates a decoded PREPBUFR text data file each 6 hours (so they are
1-for-1 with the original PREPBUFR files). Edit the script prepbufr.csh and look for the commented out code which
outputs 4 individual files per day. Note that if you chose this option, you will have to make corresponding changes in
the create_obs_seq.csh script in step 2.

6.64.3 Other modules used

This is a piece of code that is intended to be ‘close’ to the original, as such, we have not modified it to use the DART
build mechanism. This code does not use any DART modules.

6.64.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&prep_bufr_nml
obs_window = 1.5,
obs_window_upa = 1.5,
obs_window_air = 1.5,
obs_window_sfc = 0.8,

(continues on next page)

6.64. PROGRAM prepbufr 157

DART, Release 9.10.3

(continued from previous page)

obs_window_cw = 1.5,
land_temp_error = 2.5,
land_wind_error = 3.5,
land_moist_error = 0.2,
otype_use = missing,
qctype_use = missing,

/

Item Type Description
obs_windowreal Window of time to include observations. If > 0, overrides all the other more specific window

sizes. Set to -1.0 to use different time windows for different obs types. The window is +/- this
number of hours, so the total window size is twice this value.

obs_window_upareal Window of time to include sonde observations (+/- hours) if obs_window is < 0, otherwise
ignored.

obs_window_airreal Window of time to include aircraft observations (+/- hours) if obs_window is < 0, otherwise
ignored.

obs_window_sfcreal Window of time to include surface observations (+/- hours) if obs_window is < 0, otherwise
ignored.

obs_window_cwreal Window of time to include cloud wind observations (+/- hours) if obs_window is < 0, otherwise
ignored.

otype_use real(300)Report Types to extract from bufr file. If unspecified, all types will be converted.
qc-
type_use

inte-
ger(300)

QC types to include from the bufr file. If unspecified, all QC values will be accepted.

land_temp_errorreal observation error for land surface temperature observations when none is in the input file.
land_wind_errorreal observation error for land surface wind observations when none is in the input file.
land_moisture_errorreal observation error for land surface moisture observations when none is in the input file.

6.64.5 Files

• input file(s); NCEP PREPBUFR observation files named using ObsBase with the “yymmddhh” date tag on the
end. Input to grabbufr if big- to little-endian is to be done. Input to prepbufr if not.

• intermediate (binary) prepqm.little; output from grabbufr, input to prepbufr.

• intermediate (text) file(s) “temp_obs.yyyymmddhh”; output from prepbufr, input to create_real_obs

158 Chapter 6. References

DART, Release 9.10.3

6.64.6 References

DART/observations/NCEP/prep_bufr/docs/* (NCEP text files describing the PREPBUFR files)

6.65 PROGRAM create_real_obs

6.65.1 Overview

Translating NCEP BUFR files into DART obs_seq.out files (input file to filter) is a 2 stage process. The first stage
uses NCEP software to translate the BUFR file into an “intermediate” text file. This is described in PROGRAM
prepbufr. The second step is to translate the intermediate files into an obs_seq.out files, which is done by
create_real_obs, as described in this document.

This program provides a number of options to select several observation types (radiosonde, aircraft, and satellite
data, etc.) and the DART observation variables (U, V, T, Q, Ps) which are specified in its optional namelist interface
&ncepobs_nml which may be read from file input.nml.

6.65.2 Instructions

• Go to DART/observations/NCEP/ascii_to_obs/work

• Use quickbuild.csh to compile all executable programs in the directory. To rebuild just one program:

– Use mkmf_create_real_obs to generate the makefile to compile create_real_obs.f90.

– Type make to get the executable.

• Make appropriate changes to the &ncep_obs_nml namelist in input.nml, as follows.

• run create_real_obs.

The selection of any combinations of the specific observation fields (T, Q, U/V, and surface pressure) and types (ra-
diosonde, aircraft reports, or satellite wind, etc.) is made in the namelist &ncepobs_nml. All the available combina-
tions of fields X types (i.e. ADPUPA and obs_U) will be written to the obs_seq file. (You will be able to select which
of those to use during an assimilation in another namelist (assimilate_these_obs, in &obs_kind_nml), so
be sure to include all the fields and types you might want.) You should change Obsbase to the pathname of the de-
coded PREPBUFR text data files. Be sure that daily_file is set to .TRUE. to create a single 24 hour file; .FALSE.
converts input files one-for-one with output files. The default action is to tag each observation with the exact time
it was taken and is the recommended setting. However, if you want to bin the observations in time, for example to
do additional post-processing, the time on all observations in the window can be overwritten and set to the nearest
synoptic time (e.g. 0Z, 6Z, 12Z, or 18Z), by setting obs_time to false.

Generally you will want to customize the namelist for your own use. For example, here is a sample namelist:

&ncepobs_nml
year = 2007,
month = 3,
day = 1,
tot_days = 31,
max_num = 700000,
ObsBase = '../prep_bufr/work/temp_obs.'
select_obs = 1,
ADPUPA = .true.,
AIRCAR = .false.,
AIRCFT = .true.,

(continues on next page)

6.65. PROGRAM create_real_obs 159

DART, Release 9.10.3

(continued from previous page)

SATEMP = .false.,
SFCSHP = .false.,
ADPSFC = .false.,
SATWND = .true.,
obs_U = .true.,
obs_V = .true.,
obs_T = .true.,
obs_PS = .false.,
obs_QV = .false.,
daily_file = .true.
obs_time = .true.,

/

&obs_sequence_nml
write_binary_obs_sequence = .false.

/

This will produce daily observation sequence files for the period of March 2007, which have the selected observation
types and fields; T, U, and V from radiosondes (ADPUPA) and aircraft (AIRCFT). No surface pressure or specific
humidity would appear in the obs_seq files, nor observations from ACARS, satellites, and surface stations. The output
files look like “obs_seq200703dd”, with dd = 1,. . . ,31.

6.65.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&ncepobs_nml
year = 2003,
month = 1,
day = 1,
tot_days = 31,
max_num = 800000,
select_obs = 0,
ObsBase = 'temp_obs.',
ADPUPA = .false.,
AIRCAR = .false.,
AIRCFT = .false.,
SATEMP = .false.,
SFCSHP = .false.,
ADPSFC = .false.,
SATWND = .false.,
obs_U = .false.,
obs_V = .false.,
obs_T = .false.,
obs_PS = .false.,
obs_QV = .false.,
daily_file = .true.,
obs_time = .true.,
lon1 = 0.0,
lon2 = 360.0,
lat1 = -90.0,
lat2 = 90.0

/

160 Chapter 6. References

DART, Release 9.10.3

6.65. PROGRAM create_real_obs 161

DART, Release 9.10.3

Item Type Description
year, month, day integer Beginning year, month, day of the

observation period.
tot_days integer Total days in the observation period.

The converter cannot cross month
boundaries.

max_num integer Maximum observation number for
the current one day files.

select_obs integer Controls whether to select a sub-
set of observations from the NCEP
BUFR decoded daily ascii files.

• 0 = All observations are se-
lected.

• 1 = Select observations using
the logical parameters below.

daily_file logical Controls timespan of observations
in each obs_seq file:

• true = 24 hour spans (3:01Z
to 3:00Z of the next day).
Filenames have the form
obs_seqYYYYMMDD.

• false = 6 hour spans (3:01Z
to 9:00Z, 9:01Z to 15:00Z,
15:01Z to 21:00Z, and
21:01Z to 3:00Z of the next
day. Filenames have the form
obs_seqYYYYMMDDHH,
where HH is 06, 12, 18, and
24.

ObsBase character(len=129) Path that contains the decoded
NCEP BUFR daily observation
files. To work with the example
scripts this should be ‘temp_obs.’,
or if it includes a pathname then it
should end with a ‘/temp_obs.’

include_specific_humidity, in-
clude_relative_humidity, in-
clude_dewpoint

logical Controls which moisture observa-
tions are created. The default is to
create only specific humidity obs,
but any, all, or none can be re-
quested. Set to .TRUE. to output
that obs type, .FALSE. skips it.

ADPUPA logical Select the NCEP type ADPUPA
observations which includes land
and ship launched radiosondes and
pibals as well as a few profile drop-
sonde. This involves, at 00Z and
12Z, about 650 - 1000 stations, and
at 06Z and 18Z (which are mostly
pibals), about 150 - 400 stations.

AIRCFT logical Select the NCEP type AIRCFT ob-
servations, which includes commer-
cial, some military and reconnais-
sance reports. They are flight level
reports.

AIRCAR logical Select the NCEP type AIRCAR
observations, which includes data
from aircraft takeoff and landings.
Sometimes referred to as ACARS
obs.

SATEMP logical Select the NCEP type SATEMP ob-
servations, which includes NESDIS
ATOVS virtual temperature sound-
ings.

SFCSHP logical Select the NCEP type SFCSHP ob-
servations, which includes surface
marine (ship, buoy, c-man) reports.

ADPSFC logical Select the NCEP type ADPSFC ob-
servations, which includes surface
land synoptic station reports.

SATWND logical Select the NCEP type SATWND
observations, which includes winds
derived from satellite cloud drift
analysis.

obs_U logical Select u-component of wind obser-
vations.

obs_V logical Select v-component of wind obser-
vations.

obs_T logical Select temperature observations.
obs_PS logical Select surface pressure observa-

tions.
obs_QV logical Select specific humidity observa-

tions.
lon1 real Western longitude bound of obser-

vations to keep.
lon2 real Eastern longitude bound of observa-

tions to keep. Can be less than lon1
if region crosses prime meridian.

lat1 real Lower latitude bound of observa-
tions to keep.

lat2 real upper latitude bound of observations
to keep.

obs_time logical If .true. use the full time in the in-
put data. To force all observation
times in the output to the synoptic
time (e.g. 0Z, 6Z, 12Z, or 18Z) set
this to .false. (not recommended).

162 Chapter 6. References

DART, Release 9.10.3

6.65.4 Modules used

types_mod
utilities_mod
obs_utilities_mod
obs_sequence_mod
obs_kind_mod
obs_def_mod
assim_model_mod
model_mod
cov_cutoff_mod
location_mod
random_seq_mod
time_manager_mod
null_mpi_utilities_mod
real_obs_mod

6.65.5 Files

• path_names_create_real_obs; the list of modules used in the compilation of create_real_obs.

• temp_obs.yyyymmdd; (input) NCEP BUFR (decoded/intermediate) observation file(s) Each one has 00Z of the
next day on it.

• input.nml; the namelist file used by create_real_obs.

• obs_seqYYYYMMDD[HH]; (output) the obs_seq files used by DART.

6.65.6 References

• . . . /DART/observations/NCEP/prep_bufr/docs/* (NCEP text files describing the BUFR files)

6.66 ROMS observations to DART observation sequences

6.66.1 Overview

The relationship between ROMS and DART is slightly different than most other models. ROMS has the ability to
apply its own forward operator as the model is advancing (a capability needed for variational assimilation) which pro-
duces something the ROMS community calls ‘verification’ observations. The observation file that is input to ROMS is
specified by the s4dvar.in:OBSname variable. The verification obs are written out to a netcdf file whose name is
specified by the s4dvar.in:MODname variable. Since each ROMS model is advancing independently, a set of veri-
fication observation files are created during a DART/ROMS assimilation cycle. This set of files can be converted using
convert_roms_obs to produce a DART observation sequence file that has precomputed forward operators (FOs).
convert_roms_obs can also convert s4dvar.in:OBSname,MODname files to a DART observation sequence
file that does not have the precomputed FOs.

The ROMS verification observation files must contain the obs_provenance as a global attribute and the following
variables:

• obs_lat, obs_lon, obs_depth

6.66. ROMS observations to DART observation sequences 163

DART, Release 9.10.3

• obs_value

• obs_error

• obs_time

• NLmodel_value

• obs_scale

• obs_provenance

Note that the obs_provenance:flag_values, and obs_provenance:flag_meanings attributes are totally ignored - those
relationships are specified by the global attribute obs_provenance.

Locations only specified by obs_Xgrid, obs_Ygrid, obs_depth are not supported.

The conversion of a (set of) ROMS verification observations requires metadata to coordinate the relationship of the
ROMS observation provenance to a DART observation TYPE. ROMS provides significant flexibility when specifying
the observation provenance and it is simply impractical for DART to try to support all of them. An example of the
current practice is described in the PROGRAMS section below.
Important: filter and perfect_model_obs must also be informed which DART observation types use
precomputed forward operators. This is done by setting the input.nml&obs_kind_nml namelist. An example is
shown at the end of the PROGRAMS section below.

6.66.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_roms_obs_nml
ens_size = 1
roms_mod_obs_files = ''
roms_mod_obs_filelist = 'filelist.txt'
dart_output_obs_file = 'obs_seq.out'
append_to_existing = .false.
use_precomputed_values = .true.
add_random_noise = .false.
pert_amplitude = 0.01
verbose = 0
type_translations = 'NULL'
/

164 Chapter 6. References

DART, Release 9.10.3

Item Type Description
ens_sizeinte-

ger
Number of ensemble members which are expected to be found when creating the expected obs val-
ues. This must match the number of ROMS “mod” files listed in either the ‘roms_mod_obs_files’
or ‘roms_mod_obs_filelist’ namelist items. It is an error if they are not the same length.

roms_mods_obs_fileschar-
ac-
ter(len=256),
di-
men-
sion(100)

List of filenames, one per ensemble member, that contain the observation values for each ensemble
member. These are output from the ROMS program. If listing the files explicitly in this list,
‘roms_mod_obs_filelist’ must be ‘ ‘ (null).

roms_mods_obs_filelistchar-
ac-
ter(len=256)

The name of an ASCII file which contains, one per line, a list of filenames, one per ensemble mem-
ber, that contain the expected obs values for each ensemble member. The filenames should NOT be
quoted. These are output from the ROMS program. If using a filelist, then ‘roms_mod_obs_files’
must be ‘ ‘ (null).

dart_output_obs_filechar-
ac-
ter(len=256)

The name of the DART obs_seq file to create. If a file already exists with this name, it is either
appended to or overwritten depending on the ‘append_to_existing’ setting below.

ap-
pend_to_existing

logi-
cal

If an existing ‘dart_output_obs_file’ is found, this namelist item controls how it is handled. If .true.
the new observations are appended to the existing file. If .false. the new observations overwrite
the existing file.

use_precomputed_valueslogi-
cal

flag to indicate that the output DART observation sequence file should include the verification
observation values from all of the ROMS observation files. If .true. this will result in the
DART file having the precomputed FOs to be used in the DART assimilation. If .false. this
will result in DART files having the instrument values only.

add_random_noiselogi-
cal

Almost always should be .false. . The exception is the first cycle of an assimilation if all the
ROMS input files are identical (no ensemble currently exists). To create differences in the forward
operator values (since they are computed by ROMS), we can add gaussian noise here to give
them perturbed values. This should be set as well as the “perturb_from_single_instance = .true.”
namelist in the &filter_nml namelist. After the first cycle, both these should be set back to
.false. .

pert_amplitudereal(r8) Ignored unless ‘add_random_noise’ is .true. . Controls the range of random values added to the
expected obs values. Sets the width of a gaussian.

ver-
bose

inte-
ger

If greater than 0, prints more information during the conversion.

type_translationschar-
ac-
ter(256),
di-
men-
sion(2,
100)

A set of strings which control the mapping of ROMS observation types to DART observation
types. These should be specified in pairs. The first column should be a string that occurs in
the global attribute ‘obs_provenance’. Note that the obs_provenance:flag_values
and obs_provenance:flag_meanings attributes are ignored. The second column should
be a DART specific obs type that is found in DART/assimi lation_code/modules/
observations/obs_kind_mod.f90, which is created by the DART preprocess pro-
gram.

6.66. ROMS observations to DART observation sequences 165

DART, Release 9.10.3

6.66.3 Data sources

The origin of the input observation files used by ROMS are completely unknown to me.

6.66.4 Programs

• convert_roms_obs

• PROGRAM obs_seq_to_netcdf

• program obs_sequence_tool

• PROGRAM preprocess

• PROGRAM advance_time

Only convert_roms_obs will be discussed here.

The global attribute obs_provenance is used to relate the observation provenance to DART obser-
vation TYPES. The ROMS ‘MODname’ netCDF file(s) must have both the obs_provenance vari-
able and a obs_provenance global attribute. The exact strings must be repeated in the DART
convert_roms_obs_nml:type_translations variable to be able to convert from the integer value of the
obs_provenance to th DART type in the following example:

ncdump -h roms_mod_obs.nc (the output has been pruned for clarity)

netcdf roms_mod_obs {
dimensions:

record = 2 ;
survey = 5376 ;
state_var = 8 ;
datum = 2407217 ;

variables:
{snip}
int obs_provenance(datum) ;

obs_provenance:long_name = "observation origin" ;
obs_provenance:flag_values = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ;

double obs_time(datum) ;
obs_time:long_name = "time of observation" ;
obs_time:units = "days since 1900-01-01 00:00:00 GMT" ;
obs_time:calendar = "gregorian" ;

double obs_lon(datum) ;
obs_lon:long_name = "observation longitude" ;
obs_lon:units = "degrees_east" ;

double obs_lat(datum) ;
obs_lat:long_name = "observation latitude" ;
obs_lat:units = "degrees_north" ;

double obs_depth(datum) ;
obs_depth:long_name = "ROMS internal depth of observation variable" ;
obs_depth:units = "meters or fractional z-levels" ;
obs_depth:negative_value = "downwards" ;
obs_depth:missing_value = 1.e+37 ;

double obs_error(datum) ;
obs_error:long_name = "observation error covariance" ;

double obs_value(datum) ;
obs_value:long_name = "observation value" ;

double obs_scale(datum) ;
obs_scale:long_name = "observation screening/normalization scale" ;
obs_scale:_FillValue = 0. ;

(continues on next page)

166 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

double NLmodel_value(datum) ;
NLmodel_value:long_name = "nonlinear model at observation locations" ;
NLmodel_value:_FillValue = 1.e+37 ;

{snip}
:obs_provenance = "\n",

"1: gridded AVISO sea level anomaly (zeta)\n",
"2: gridded Aquarius SSS (salinity)\n",
"3: XBT from Met Office (temperature)\n",
"4: CTD from Met Office (temperature)\n",
"5: CTD from Met Office (salinity)\n",
"6: ARGO floats (temperature)\n",
"7: ARGO floats (salinity)\n",
"8: glider UCSD (temperature)\n",
"9: glider UCSD (salinity)\n",
"10: blended satellite SST (temperature)" ;

{snip}

Note the integer values that start the obs_provenance strings are used to interpret the integer contents of the
obs_provenance variable. They need not be consecutive, nor in any particular order, but they must not appear more
than once.
The following is the relevent section of the DART input.nml:

&convert_roms_obs_nml
ens_size = 32
roms_mod_obs_filelist = 'precomputed_files.txt'
dart_output_obs_file = 'obs_seq.out'
append_to_existing = .false.
use_precomputed_values = .true.
add_random_noise = .false.
verbose = 1
type_translations = "gridded AVISO sea level anomaly (zeta)", "SATELLITE_SSH",

"gridded Aquarius SSS (salinity)", "SATELLITE_SSS",
"XBT from Met Office (temperature)", "XBT_TEMPERATURE",
"CTD from Met Office (temperature)", "CTD_TEMPERATURE",
"CTD from Met Office (salinity)", "CTD_SALINITY",
"ARGO floats (temperature)", "ARGO_TEMPERATURE",
"ARGO floats (salinity)", "ARGO_SALINITY",
"glider UCSD (temperature)", "GLIDER_TEMPERATURE",
"glider UCSD (salinity)", "GLIDER_SALINITY",
"blended satellite SST (temperature)", "SATELLITE_BLENDED_

→˓SST"
/

A complete list of DART observation TYPES for oceans is described in MODULE obs_def_ocean_mod

Any or all of the DART observation types that appear in the second column of type_translations must
also be designated as observations that have precomputed forward operators. This is done by setting the input.
nml&obs_kind_nml namelist as follows:

&obs_kind_nml
assimilate_these_obs_types = 'SATELLITE_SSH',

'SATELLITE_SSS',
'XBT_TEMPERATURE',

(continues on next page)

6.66. ROMS observations to DART observation sequences 167

DART, Release 9.10.3

(continued from previous page)

'CTD_TEMPERATURE',
'CTD_SALINITY',
'ARGO_TEMPERATURE',
'ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST'

use_precomputed_FOs_these_obs_types = 'SATELLITE_SSH',
'SATELLITE_SSS',
'XBT_TEMPERATURE',
'CTD_TEMPERATURE',
'CTD_SALINITY',
'ARGO_TEMPERATURE',
'ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST'

/

6.67 SSEC Data Center

6.67.1 Overview

The program in this directory takes satellite wind data from the University of Wisconsin-Madison Space Science and
Engineering Center, and converts it into DART format observation sequence files, for use in assimilating with the
DART filter program.

6.67.2 Data sources

The Space Science and Engineering Center (SSEC) at University of Wisconsin-Madison has an online data center with
both real-time and archival weather satellite data.

The last 2 day’s worth of data is available from ftp://cyclone.ssec.wisc.edu/pub/fnoc.

There is a second satellite wind DART converter in the MADIS Data Ingest System directory which converts wind
observations which originate from NESDIS. The data from this converter is processed at the SSEC and the observations
will be different from the ones distributed by MADIS.

6.67.3 Programs

Conversion program convert_ssec_satwnd converts the ascii data in the input files into a DART observation
sequence file. Go into the work directory and run the quickbuild.csh script to compile the necessary files.
The program reads standard input for the data time range, which types of observations to convert, and then, if quality
control information is found in the input file, what type of quality control algorithm to use when deciding whether the
observation is of good quality or not. See the references below.

168 Chapter 6. References

http://www.ssec.wisc.edu/data
ftp://cyclone.ssec.wisc.edu/pub/fnoc
http://www.nesdis.noaa.gov

DART, Release 9.10.3

6.67.4 References

• RF method: Velden, C. S., T. L. Olander, and S. Wanzong, 1998: The impact of multispectral GOES-8 wind
information on Atlantic tropical cyclone track forecasts in 1995. Part I: Dataset methodology, description, and
case analysis. Mon. Wea. Rev., 126, 1202-1218.

• QI method: Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion
vectors to derive quality indicators. Wea. Forecasting, 13, 1093-1104.

• Comparison of two methods: Holmlund, K., C.S. Velden, and M. Rohn, 2001: Enhanced Automated Quality
Control Applied to High-Density Satellite-Derived Winds. Mon. Wea. Rev., 129, 517-529.

6.68 PROGRAM sst_to_obs, oi_sst_to_obs

6.68.1 Overview

There are two gridded SST observation converters in this directory, one for data from PODAAC, and one from
NOAA/NCDC. sst_to_obs converts data from PODAAC and has been used by Romain Escudier for regional
studies with ROMS. oi_sst_to_obs converts data from NOAA/NCDC and has been used by Fred Castruccio for
global studies with POP.

sst_to_obs – GHRSST to DART observation sequence converter

These routines are designed to convert the GHRSST Level 4 AVHRR_OI Global Blended Sea Surface Temperature
Analysis (GDS version 2) from NCEI data distributed by the Physical Oceanography Distributed Active Archive
Center. Please remember to cite the data in your publications, specific instructions from PODAAC are available here.
This is an example:

National Centers for Environmental Information. 2016. GHRSST Level 4 AVHRR_OI Global Blended
Sea Surface Temperature Analysis (GDS version 2) from NCEI. Ver. 2.0. PO.DAAC, CA, USA. Dataset
accessed [YYYY-MM-DD] at http://dx.doi.org/10.5067/GHAAO-4BC02.

Many thanks to Romain Escudier (then at Rutgers) who did the bulk of the work and graciously contributed
his efforts to the DART project. Romain gave us scripts and source code to download the data from the PODAAC
site, subset the global files to a region of interest, and convert that subsetted file to a DART observation sequence file.
Those scripts and programs have been only lightly modified to work with the Manhattan version of DART and contain
a bit more documentation.

The workflow is usually:

1. compile the converters by running work/quickbuild.csh in the usual way.

2. customize the shell_scripts/parameters_SST resource file to specify variables used by the rest of the
scripting.

3. run shell_scripts/get_sst_ftp.sh to download the data from PODAAC.

4. provide a mask for the desired study area.

5. run shell_scripts/Prepare_SST.sh to subset the PODAAC data and create the DART observa-
tion sequence files. Be aware that the Prepare_SST.sh modifies the shell_scripts/input.nml.
template file and generates its own input.nml. work/input.nml is not used.

6. combine all output files for the region and timeframe of interest into one file using the program
obs_sequence_tool

6.68. PROGRAM sst_to_obs, oi_sst_to_obs 169

https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
http://podaac.jpl.nasa.gov
http://podaac.jpl.nasa.gov
https://podaac.jpl.nasa.gov/dataset/AVHRR_OI-NCEI-L4-GLOB-v2.0
http://dx.doi.org/10.5067/GHAAO-4BC02

DART, Release 9.10.3

Example

It is worth describing a small example. If you configure get_sst_ftp.sh to download the last two days of 2010
and then specify the mask to subset for the NorthWestAtlantic (NWA) and run Prepare_SST.sh your directory
structure should look like the following:

0[1234] cheyenne6:/<6>obs_converters/SST
.
|-- ObsData
| `-- SST
| |-- ncfile
| | `-- 2010
| | |-- 20101230120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0.
→˓nc
| | `-- 20101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0.
→˓nc
| `-- nwaSST
| `-- 2010
| |-- 20101230120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0_
→˓NWA.nc
| `-- 20101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0_
→˓NWA.nc
|-- oi_sst_to_obs.f90
|-- oi_sst_to_obs.nml
|-- sst_to_obs.f90
|-- sst_to_obs.nml
|-- shell_scripts
| |-- Prepare_SST.sh
| |-- functions.sh
| |-- get_sst_ftp.sh
| |-- input.nml
| |-- input.nml.template
| |-- my_log.txt
| |-- parameters_SST
| `-- prepare_SST_file_NWA.sh
|-- masks
| |-- Mask_NWA-NCDC-L4LRblend-GLOB-v01-fv02_0-AVHRR_OI.nc
| `-- Mask_NWA120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.0.nc
`-- work

|-- Makefile
|-- advance_time
|-- input.nml
|-- mkmf_advance_time
|-- mkmf_obs_sequence_tool
|-- mkmf_oi_sst_to_obs
|-- mkmf_preprocess
|-- mkmf_sst_to_obs
|-- obs_sequence_tool
|-- oi_sst_to_obs
|-- path_names_advance_time
|-- path_names_obs_sequence_tool
|-- path_names_oi_sst_to_obs
|-- path_names_preprocess
|-- path_names_sst_to_obs
|-- preprocess
|-- quickbuild.csh
`-- sst_to_obs

170 Chapter 6. References

DART, Release 9.10.3

The location of the DART observation sequence files is specified by parameter_SST:DIR_OUT_DART. That di-
rectory should contain the following two files:

0[1236] cheyenne6:/<6>v2/Err30 > ls -l
'total 7104
-rw-r--r-- 1 thoar p86850054 3626065 Jan 10 11:08 obs_seq.sst.20101230
-rw-r--r-- 1 thoar p86850054 3626065 Jan 10 11:08 obs_seq.sst.20101231

6.68.2 oi_sst_to_obs – noaa/ncdc to DART observation sequence converter

oi_sst_to_obs is designed to convert the NOAA High-resolution Blended Analysis: Daily Values using AVHRR
only data. The global metadata of a typical file is shown here:

:Conventions = "CF-1.5" ;
:title = "NOAA High-resolution Blended Analysis: Daily Values using AVHRR only" ;
:institution = "NOAA/NCDC" ;
:source = "NOAA/NCDC ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/" ;
:comment = "Reynolds, et al., 2007:

Daily High-Resolution-Blended Analyses for Sea Surface Temperature.
J. Climate, 20, 5473-5496.
Climatology is based on 1971-2000 OI.v2 SST,
Satellite data: Navy NOAA17 NOAA18 AVHRR, Ice data: NCEP ice." ;

:history = "Thu Aug 24 13:46:51 2017: ncatted -O -a References,global,d,, sst.day.
→˓mean.2004.v2.nc\n",

"Version 1.0" ;
:references = "https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.
→˓html" ;
:dataset_title = "NOAA Daily Optimum Interpolation Sea Surface Temperature" ;

The workflow is usually:

1. compile the converters by running work/quickbuild.csh in the usual way.

2. download the desired data.

3. customize the work/input.nml file.

4. run work/oi_sst_to_obs to create a single DART observation sequence file.

5. combine all output files for the region and timeframe of interest into one file using the program
obs_sequence_tool

6.68.3 sst_to_obs namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&sst_to_obs_nml
sst_netcdf_file = '1234567.nc'
sst_netcdf_filelist = 'sst_to_obs_filelist'
sst_out_file = 'obs_seq.sst'
subsample_intv = 1
sst_rep_error = 0.3
debug = .false.
/

6.68. PROGRAM sst_to_obs, oi_sst_to_obs 171

https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
https://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html

DART, Release 9.10.3

Con-
tents

Type Description

sst_netcdf_filechar-
ac-
ter(len=256)

Name of the (usually subsetted) netcdf data file. This may be a relative or absolute filename. If
you run the scripts ‘as is’, this will be something like: ../ObsData/SST/nwaSST/2010/
20101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.
0_NWA.nc

sst_netcdf_filelistchar-
ac-
ter(len=256)

Name of the file that contains a list of (usually subsetted) data files, one per line. You may not specify
both sst_netcdf_file AND sst_netcdf_filelist. One of them must be empty.

sst_out_filechar-
ac-
ter(len=256)

Name of the output observation sequence file.

sub-
sam-
ple_intv

in-
te-
ger

It is possible to ‘thin’ the observations. subsample_intv allows one to take every Nth observa-
tion.

sst_rep_errorreal In DART the observation error variance can be thought of as having two components, an instru-
ment error and a representativeness error. In sst_to_obs the instrument error is specified in
the netCDF file by the variable analysis_error. The representativeness error is specified by
sst_rep_error, which is specified as a standard deviation. These two values are added together
and squared and used as the observation error variance. Note: This algorithm maintains backwards
compatibility, but is technically not the right way to combine these two quantities. If they both speci-
fied variance, adding them together and then taking the square root would correctly specify a standard
deviation. Variances add, standard deviations do not. Since the true observation error variance (in
general) is not known, we are content to live with an algorithm that produces useful observation error
variances. If your research comes to a more definitive conclusion, please let us know.

de-
bug

log-
ical

Print extra information during the sst_to_obs execution.

6.68.4 oi_sst_to_obs namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&oi_sst_to_obs_nml
input_file = '1234567.nc'
output_file_base = 'obs_seq.sst'
subsample_intv = 1
sst_error_std = 0.3
debug = .false.
/

172 Chapter 6. References

DART, Release 9.10.3

Con-
tents

Type Description

in-
put_file

char-
ac-
ter(len=256)

Name of the input netcdf data file. This may be a relative or absolute filename. If you
run the scripts ‘as is’, this will be something like: ../ObsData/SST/nwaSST/2010/
20101231120000-NCEI-L4_GHRSST-SSTblend-AVHRR_OI-GLOB-v02.0-fv02.
0_NWA.nc

out-
put_file_base

char-
ac-
ter(len=256)

Partial filename for the output file. The date and time are appended to output_file_base
to construct a unique filename reflecting the time of the observations in the file.

sub-
sam-
ple_intv

inte-
ger

It is possible to ‘thin’ the observations. subsample_intv allows one to take every Nth obser-
vation.

sst_error_stdreal This is the total observation error standard deviation.
de-
bug

logi-
cal

Print extra information during the oi_sst_to_obs execution.

6.68.5 Decisions you might need to make

See the general discussion in the Creating an obs_seq file from real observations page about what options are available
for the things you need to specify. These include setting a time, specifying an expected error, setting a location, and
an observation type.

6.68.6 Known Bugs

I do not believe sst_to_obs will work correctly if given multiple files in sst_netcdf_filelist. The number
of observation used to declare the length of the output observation sequence is based on a single file . . . yet seems to
be used by many. I have not tested this configuration, since the scripting does not use the sst_netcdf_filelist
mechanism.

6.69 SSUSI F16 EDR-DSK format to observation sequence converters

6.69.1 Overview

The Special Sensor Ultraviolet Spectrographic Imager SSUSI is designed to remotely sense the ionosphere and ther-
mosphere. The following is repeated from the SSUSI home page:

Overview Beginning in 2003, the Defense Meteorological Satellite Program (DMSP) satellites began car-
rying the SSUSI instrument - a combination of spectrographic imaging and photometric systems designed
to remotely sense the ionosphere and thermosphere. The long term focus of the SSUSI program is to
provide data concerning the upper atmospheric response to the sun over the changing conditions of the
solar cycle. Data collected by SSUSI instrument can help identify structure in the equatorial and polar
regions. Mission SSUSI was designed for the DMSP Block 5D-3 satellites. These satellites are placed
into nearly polar, sun-synchronous orbits at an altitude of about 850 km. SSUSI is a remote-sensing in-
strument which measures ultraviolet (UV) emissions in five different wavelength bands from the Earth’s
upper atmosphere. SSUSI is mounted on a nadir-looking panel of the satellite. The multicolor images
from SSUSI cover the visible Earth disk from horizon to horizon and the anti-sunward limb up to an
altitude of approximately 520 km. The UV images and the derived environmental data provide the Air
Force Weather Agency (Offutt Air Force Base, Bellevue, NE) with near real-time information that can be
utilized in a number of applications, such as maintenance of high frequency (HF) communication links
and related systems and assessment of the environmental hazard to astronauts on the Space Station.

6.69. SSUSI F16 EDR-DSK format to observation sequence converters 173

http://http://ssusi.jhuapl.edu/

DART, Release 9.10.3

convert_f16_edr_dsk.f90 will extract the ON2 observations from the F16 “edr-dsk” format files and create
DART observation sequence files. There is one additional preprocessing step before the edr-dsk files may be
converted.
The ON2_UNCERTAINTY variable in the netcdf files have IEEE NaN values, but none of the required metadata to
interpret them correctly. These 2 lines will add the required attributes so that NaNs are replaced with a fill value that
can be queried and manipulated. Since the ON2_UNCERTAINTY is a standard deviation, it is sufficient to make the
fill value negative. See the section on Known Bugs

ncatted -a _FillValue,ON2_UNCERTAINTY,o,f,NaN input_file.nc
ncatted -a _FillValue,ON2_UNCERTAINTY,m,f,-1.0 input_file.nc

6.69.2 Data sources

http://ssusi.jhuapl.edu/data_products

Please read their data usage policy.

6.69.3 Programs

DART/observations/SSUSI/convert_f16_edr_dsk.f90 will extract ON2 data from the distribution
files and create DART observation sequence (obs_seq) files. Build it in the SSUSI/work directory by run-
ning the ./quickbuild.csh script located there. In addition to the converters, the advance_time and
obs_sequence_tool utilities will be built.

An example data file is in the data directory. An example scripts for adding the required metadata to the
ON2_UNCERTAINTY variable in the shell_scripts directory. These are NOT intended to be turnkey scripts;
they will certainly need to be customized for your use. There are comments at the top of the scripts saying what
options they include, and should be commented enough to indicate where changes will be likely to need to be made.

6.69.4 Errors

The code for setting observation error variances is using fixed values, and we are not certain if they are correct.
Incoming QC values larger than 0 are suspect, but it is not clear if they really signal unusable values or whether there
are some codes we should accept.

6.69.5 Known Bugs

The netCDF files - as distributed - have NaN values to indicate “MISSING”. This makes it exceptionally
hard to read or work with, as almost everything will core dump when trying to perform any math with NaNs.
convert_f16_edr_dsk.f90 tries to count how many values are missing. If the NaN has not been replaced
with a numerically valid MISSING value, the following FATAL ERROR is generated (by the Intel compiler, with
debug and traceback enabled):

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
forrtl: error (65): floating invalid
Image PC Routine Line Source
convert_f16_edr_d 000000000051717D MAIN__ 143 convert_f16_edr_
→˓dsk.f90
convert_f16_edr_d 0000000000409B3C Unknown Unknown Unknown

(continues on next page)

174 Chapter 6. References

http://ssusi.jhuapl.edu/data_products
http://ssusi.jhuapl.edu/home_data_usage

DART, Release 9.10.3

(continued from previous page)

libc.so.6 0000003101E1ED5D Unknown Unknown Unknown
convert_f16_edr_d 0000000000409A39 Unknown Unknown Unknown
Abort (core dumped)

The solution is to replace the NaN values with a viable MISSING value using the shell_scripts/
netcdf_manip.csh script. It relies on the netCDF Operators, freely available http://nco.sourceforge.net

6.70 WOD Observations

6.70.1 Overview

The World Ocean Database (WOD) is a collection of data from various sources, combined into a single format with
uniform treatment. WOD is created by the National Centers for Environmental Information (NCEI) of the National
Oceanic and Atmospheric Administration (NOAA).

An updated version of the dataset is released approximately every four years. It was first produced in 1994 and has
been released in 1998, 2001, 2005, 2009, 2013 and 2018.

The WOD website has detailed information about the repository, observations, and datasets. The programs in this
directory convert from the packed ASCII files found in the repository into DART observation sequence (obs_seq) file
format.

There are two sets of available files: the raw observations and the observations binned onto standard levels.

Note: DAReS staff recommend using the datasets on standard levels for assimilation. The raw data can be very dense
in the vertical and are not truly independent observations. The correlation between nearby observations leads to too
much certainty in the updated values during the assimilation.

6.70.2 Data sources

Use already existing obs_seq files

NCAR staff have prepared datasets already converted to DART’s obs_seq file format for the World Ocean Database
2013 (WOD13) and the World Ocean Database 2009 (WOD09).

WOD13

The already-converted WOD13 dataset comprises data from 2005-01-01 to 2016-12-31 and was created by Fred
Castruccio. Thanks Fred! The files are stored in the following directory on GLADE:

/glade/p/cisl/dares/Observations/WOD13

The subdirectories are formatted in YYYYMM order and contain the following observation types:

6.70. WOD Observations 175

http://nco.sourceforge.net
https://www.ncei.noaa.gov/products/world-ocean-atlas

DART, Release 9.10.3

FLOAT_SALINITY FLOAT_TEMPERATURE
DRIFTER_SALINITY DRIFTER_TEMPERATURE
GLIDER_SALINITY GLIDER_TEMPERATURE
MOORING_SALINITY MOORING_TEMPERATURE
BOTTLE_SALINITY BOTTLE_TEMPERATURE
CTD_SALINITY CTD_TEMPERATURE
XCTD_SALINITY XCTD_TEMPERATURE
APB_SALINITY APB_TEMPERATURE
XBT_TEMPERATURE

If you use WOD13, please cite Boyer et al. (2013).1

WOD09

The already-converted WOD09 dataset, which comprises data from 1960-01-01 to 2008-12-31, is stored in the follow-
ing directory on GLADE:

/glade/p/cisl/dares/Observations/WOD09

If you use WOD09, please cite Johnson et al. (2009).2

Download WOD from NCEI

Data from each of the WOD releases can be downloaded interactively from the WOD website.

Download WOD from NCAR

WOD09 can also be downloaded from NCAR’s research data archive (RDA) dataset 285.0.

6.70.3 Programs

The data is distributed in a specialized packed ASCII format. In this directory is a program called wodFOR.f which is
an example reader program to print out data values from the files. The program wod_to_obs converts these packed
ASCII files into DART obs_sequence files.

As with most other DART directories, the work directory contains a quickbuild.csh script to build all necessary
executables.

1 Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D.
O’Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72, S.
Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., doi:10.7289/V5NZ85MT.

2 Johnson, D.R., T.P. Boyer, H.E. Garcia, R.A. Locarnini, O.K. Baranova, and M.M. Zweng, 2009. World Ocean Database 2009 Documentation.
Edited by Sydney Levitus. NODC Internal Report 20, NOAA Printing Office, Silver Spring, MD, 175 pp., http://www.nodc.noaa.gov/OC5/WOD09/
pr_wod09.html.

176 Chapter 6. References

https://www.ncei.noaa.gov/products/world-ocean-atlas
https://rda.ucar.edu/datasets/ds285.0/
http://doi.org/10.7289/V5NZ85MT
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html

DART, Release 9.10.3

6.70.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&wod_to_obs_nml
wod_input_file = 'XBTS2005',
wod_input_filelist = '',
wod_out_file = 'obs_seq.wod',
avg_obs_per_file = 500000,
debug = .false.,
timedebug = .false.,
print_qc_summary = .true.,
max_casts = -1,
no_output_file = .false.,
print_every_nth_cast = -1,
temperature_error = 0.5,
salinity_error = 0.5,

/
! temperature error is in degrees C, salinity error in g/kg.

6.70. WOD Observations 177

DART, Release 9.10.3

Item Type Description
wod_input_filechar-

ac-
ter(len=128)

The input filename when converting a single file. Only one of the two namelist items that specify
input files can have a valid value, so to use a single filename set the list name ‘wod_input_filelist’ to
the empty string (‘ ‘).

wod_input_filelistchar-
ac-
ter(len=128)

To convert one or more files in a single execution create a text file which contains each input filename,
in ascii, one filename per line. Set this item to the name of that file, and set ‘wod_input_file’ to the
empty string (‘ ‘).

wod_out_filechar-
ac-
ter(len=128)

The output file to be created. Note that unlike earlier versions of some converters, this program will
overwrite an existing output file instead of appending to it. The risk of replicated observations, which
are difficult to detect since most of the contents are floating point numbers, outweighed the possible
utility.

avg_obs_per_filein-
te-
ger

The code needs an upper limit on the number of observations generated by this program. It can be
larger than the actual number of observations converted. The total number of obs is computed by
multiplying this number by the number of input files. If you get an error because there is no more
room to add observations to the output file, increase this number. Do not make this an unreasonably
huge number, however, since the code does preallocate space and will be slow if the number of obs
becomes very large.

print_every_nth_castin-
te-
ger

If a value greater than 0, the program will print a message after processing every N casts. This allows
the user to monitor the progress of the conversion.

print_qc_summarylog-
ical

If .TRUE. the program will print out a summary of the number of casts which had a non-zero quality
control values (current files appear to use values of 1-9).

de-
bug

log-
ical

If .TRUE. the program will print out debugging information.

timede-
bug

log-
ical

If .TRUE. the program will print out specialized time-related debugging information.

max_castsin-
te-
ger

If a value greater than 0 the program will only convert at most this number of casts from each input
file. Generally only expected to be useful for debugging. A negative value will convert all data from
the input file.

no_output_filelog-
ical

If .TRUE. the converter will do all the work needed to convert the observations, count the number of
each category of QC values, etc, but will not create the final obs_seq file. Can be useful if checking
an input file for problems, or for getting QC statistics without waiting for a full output file to be
constructed, which can be slow for large numbers of obs. Only expected to be useful for debugging.

tem-
per-
a-
ture_error

real(r8)The combined expected error of temperature observations from all sources, including instrument
error, model bias, and representativeness error (e.g. larger or smaller grid box sizes affecting expected
accuracy), in degrees Centigrade. Values in output file are error variance, which will be this value
squared.

salin-
ity_error

real(r8)The combined expected error of salinity observations from all sources, including instrument error,
model bias, and representativeness error (e.g. larger or smaller grid box sizes affecting expected
accuracy) in g/kg (psu). Values in output file are error variance, and use units of msu (kg/kg), so the
numbers will be this value / 1000.0, squared.

178 Chapter 6. References

DART, Release 9.10.3

6.70.5 Modules used

types_mod
time_manager_mod
utilities_mod
location_mod
obs_sequence_mod
obs_def_mod
obs_def_ocean_mod
obs_kind_mod

6.70.6 Errors and known bugs

The code for setting observation error variances is using fixed values, and we are not certain if they are correct.
Incoming QC values larger than 0 are suspect, but it is not clear if they really signal unusable values or whether there
are some codes we should accept.

6.70.7 Future Plans

• This converter is currently being used on WOD09 data, but the standard files generally stop with early 2009
data. There are subsequent additional new obs files available from the download site.

• The fractional-time field, and sometimes the day-of-month field in a small percentage of the obs have bad
values. The program currently discards these obs, but it may be possible to recover the original good day
number and/or time of day. There is a subroutine at the end of the wod_to_obs.f90 file which contains all the
reject/accept/correction information for the year, month, day, time fields. To accept or correct the times on more
obs, edit this subroutine and make the necessary changes.

6.70.8 References

6.71 GND GPS VTEC

This is a modification of a standard “text” converter that comes with DART.

gnd_gps_vtec_text_to_obs.f90 reads VTEC text files (from OpenMadrigal at http://madrigal.haystack.mit.
edu/) and outputs DART obs_seq.out files.

Please examine work/input.nml:&text_to_obs_nml as it specifies the name of the input and the output files

The provided file work/gps021201g.002.txt is only for example (only 2 datapoints are shown) and not for real estima-
tion.

6.71. GND GPS VTEC 179

http://madrigal.haystack.mit.edu/
http://madrigal.haystack.mit.edu/

DART, Release 9.10.3

6.72 GPS Observations

6.72.1 Overview

The COSMIC project provides data from a series of satellites. There are two forms of the data that are used by DART:
GPS Radio Occultation data and Electron Density. The programs in this directory extract the data from the distribution
files and put them into DART observation sequence (obs_seq) file format.

Radio occultation

The COSMIC satellites measure the phase delay caused by deviation of the straight-line path of the GPS satellite signal
as it passes through the Earth’s atmosphere when the GPS and COSMIC satellites rise and set relative to each other.
This deviation results from changes in the angle of refraction of light as it passes through regions of varying density
of atmosphere. These changes are a result of variations in the temperature, pressure, and moisture content. Vertical
profiles of temperature and moisture can be derived as the signal passes through more and more atmosphere until it is
obscured by the earth’s horizon. There are thousands of observations each day distributed around the globe, including
in areas which previously were poorly observed. These data are converted with the convert_cosmic_gps_cdf.
f90 program and create DART observations of GPSRO_REFRACTIVITY.

Electron density

The COSMIC satellites also provide ionospheric profiles of electron density. The accuracy is generally about 10-4

10-5 cm-3. These data are converted with the convert_cosmic_ionosphere.f90 program and create DART
observations tagged as COSMIC_ELECTRON_DENSITY.

6.72.2 Data sources

Data from the COSMIC Program are available by signing up on the data access web page. We prefer delivery in
netCDF file format.

Radio occultation

The files we use as input to these conversion programs are the Level 2 data, Atmospheric Profiles (filenames include
the string ‘atmPrf’).
Each vertical profile is stored in a separate netCDF file, and there are between 1000-3000 profiles/day, so converting a
day’s worth of observations used to involve downloading many individual files. There are now daily tar files available
which makes it simpler to download the raw data all in a single file and then untar it to get the individual profiles.
The scripts in the shell_scripts directory can now download profiles from any of the available satellites that
return GPS RO data to the CDAAC web site. See the gpsro_to_obsseq.csh or
convert_many_gpsro.csh script for where to specify the satellites to be included.

180 Chapter 6. References

http://www.cosmic.ucar.edu
http://www.cosmic.ucar.edu
http://cosmic-io.cosmic.ucar.edu/cdaac
http://www.unidata.ucar.edu/software/netcdf

DART, Release 9.10.3

Electron density

The files we have used as input to these conversion programs are from the COSMIC 2013 Mission and have a data
type of ‘ionPrf’.
The file naming convention and file format are described by COSMIC here and there can be more than 1000
profiles/day. Like the GPS radio occultation data, the profiles are now available in a single daily tar file which can be
downloaded then be unpacked into the individual files. COSMIC has instructions on ways to download the data at
http://cdaac-www.cosmic.ucar.edu/cdaac/tar/rest.html

6.72.3 Programs

Convert_cosmic_gps_cdf

The data are distributed in netCDF file format. DART requires all observations to be in a proprietary format often
called DART “obs_seq” format. The files in this directory (a combination of C shell scripts and a Fortran source
executable) do this data conversion.
The shell_scripts directory contains several example scripts, including one which downloads the raw data files a day
at a time (download_script.csh), and one which executes the conversion program
(convert_script.csh). These scripts make 6 hour files by default, but have options for other times. Each
profile is stored in a separate netcdf file and there are usually between 1000-3000 files/day, so the download process
can be lengthy. You probably want to download as a separate preprocess step and do not use the script options to
automatically delete the input files. Keep the files around until you are sure you are satisified with the output files and
then delete them by hand.
The conversion executable convert_cosmic_gps_cdf, reads the namelist &convert_cosmic_gps_nml
from the file input.nml.
The namelist lets you select from one of two different forward operators. The ‘local’ forward operator computes the
expected observation value at a single point: the requested height at the tangent point of the ray between satellites.
The ‘non-local’ operator computes values along the ray-path and does an integration to get the expected value. The
length of the integration segments and height at which to end the integration are given in the namelist. In some
experiments the difference between the two types of operators was negligible. This choice is made at the time of the
conversion, and the type of operator is stored in the observation, so at runtime the corresponding forward operator
will be used to compute the expected observation value.
The namelist also lets you specify at what heights you want observations to be extracted. The raw data is very dense
in the vertical; using all values would not results in a set of independent observations. The current source code no
longer does an intermediate interpolation; the original profiles appear to be smooth enough that this is not needed.
The requested vertical output heights are interpolated directly from the full profile.

Convert_cosmic_ionosphere

Each profile is interpolated to a set of desired levels that are specified at run time. During the conversion process,
each profile is checked for negative values of electron density above the minimum desired level. If negative values
are found, the entire profile is discarded. If an observation sequence file already exists, the converter will simply add
the new observations to it. Multiple profiles may be converted in a single execution, so it is easy to consolidate all
the profiles for a single day into a single observation sequence file, for example. convert_cosmic_ionosphere
reads the namelist &convert_cosmic_ionosphere_nml from the file input.nml. The original observation
times are preserved in the conversion process. If it is desired to subset the observation sequence file such that obser-
vations too far away from desired assimilation times are rejected, a separate post-processing step using the program
obs_sequence_tool is required. A script will be necessary to take a start date, an end date, an assimilation time step, and
a desired time ‘window’ - and strip out the unwanted observations from a series of observation sequence files. There
are multiple ways of specifying the observation error variance at run time. They are implemented in a routine named
electron_density_error() and are selected by the namelist variable observation_error_method.

6.72. GPS Observations 181

http://cdaac-www.cosmic.ucar.edu/cdaac/cgi_bin/fileFormats.cgi?type=ionPrf
http://cdaac-www.cosmic.ucar.edu/cdaac/tar/rest.html
http://www.unidata.ucar.edu/software/netcdf

DART, Release 9.10.3

‘constant’ a scalar value for all observations
‘scaled’ the electron density is multiplied by a scalar value
‘lookup’ a lookup table is read
‘scaled_lookup’ the lookup table value is multiplied by a scalar value and the electron density value

I-Te Lee: ” . . . the original idea for error of ionospheric observation is 1%. Thus, I put the code as “oerr
= 0.01_r8 * obsval”. Liu et. al and Yue et al investigated the Abel inversion error of COSMIC ionosphere
profile, both of them figure out the large error would appear at the lower altitude and push model toward
wrong direction at the lower ionosphere while assimilating these profiles. On the other hand, the Abel
inversion error depends on the ionospheric electron density structure, which is a function of local time,
altitude and geomagnetic latitude. To simplify the procedure to define observation error of profiles, Xinan
Yue help me to estimate an error matrix and saved in the file which named ‘f3coerr.nc’. . . . The number
in the matrix is error percentage (%), which calculated by OSSE. Here are two reference papers. In the
end, the observation error consists of instrumentation error (10%) and Abel error.”

• X. Yue, W.S. Schreiner, J. Lei, S.V. Sokolovskiy, C. Rocken, D.C. Hunt, and Y.-H. Kuo (2010),
Error analysis of Abel retrieved electron density profiles from radio occultation measurements.
Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences. 28 No. 1, pp 217-222,
doi:10.5194/angeo-28-217-2010

• J.Y. Liu, C.Y. Lin, C.H. Lin, H.F. Tsai, S.C. Solomon, Y.Y. Sun, I.T. Lee, W.S. Schreiner, and Y.H.
Kuo (2010), Artificial plasma cave in the low-latitude ionosphere results from the radio occultation
inversion of the FORMOSAT-3/COSMIC}, Journal of Geophysical Research: Space Physics. 115
No. A7, pp 2156-2202, doi:10.1029/2009JA015079

It is possible to create observation sequence files for perfect model experiments that have realistic observation sampling
patterns and observation error variances that do not have any actual electron densities. The COSMIC data files are
read, but the electron density information is not written. Keep in mind that some methods of specifying the observation
error variance require knowledge of the observation value. If the observation value is bad or the entire profile is bad,
no observation locations are created for the profile.

6.72.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_cosmic_gps_nml
obs_levels = -1.0
use_original_kuo_error = .false.
local_operator = .true.
ray_ds = 5000.0
ray_htop = 15000.0
gpsro_netcdf_file = 'cosmic_gps_input.nc'
gpsro_netcdf_filelist = ''
gpsro_out_file = 'obs_seq.gpsro'

/

182 Chapter 6. References

https://www.ann-geophys.net/28/217/2010/
http://dx.doi.org/10.1029/2009JA015079
http://dx.doi.org/10.1029/2009JA015079

DART, Release 9.10.3

Item Type Description
obs_levels inte-

ger(200)
A series of heights, in kilometers, where observations from this profile should be interpo-
lated. (Note that the other distances and heights in the namelist are specified in meters.) The
values should be listed in increasing height order.

use_original_kuo_errorlogical If .true. use the observation error variances for a refractivity observation that come from a
Kuo paper and were implied to be used for the CONUS domain. If .false. use observation
error variances similar to what is used in GSI.

lo-
cal_operator

logical If .true. compute the observation using a method which assumes all effects occur at the
tangent point. If .false. integrate along the tangent line and do ray-path reconstruction.

ray_ds real(r8) For the non-local operator only, the delta stepsize, in meters, to use for the along-path inte-
gration in each direction out from the tangent point.

ray_htop real(r8) For the non-local operator only, stop the integration when one of the endpoints of the next
integration step goes above this height. Specify in meters.

gp-
sro_netcdf_file

charac-
ter(len=128)

The input filename when converting a single profile. Only one of the file or filelist items can
have a valid value, so to use the single filename set the list name ‘gpsro_netcdf_filelist’ to
the empty string (‘ ‘).

gp-
sro_netcdf_filelist

charac-
ter(len=128)

To convert a series of profiles in a single execution create a text file which contains each
input file, in ascii, one filename per line. Set this item to the name of that file, and set
‘gpsro_netcdf_file’ to the empty string (‘ ‘).

gp-
sro_out_file

charac-
ter(len=128)

The output file to be created. To be compatible with earlier versions of this program, if this
file already exists it will be read in and the new data will be appended to that file.

A more useful example follows:

&convert_cosmic_gps_nml
gpsro_netcdf_file = ''
gpsro_netcdf_filelist = 'flist'
gpsro_out_file = 'obs_seq.gpsro'
local_operator = .true.
use_original_kuo_error = .false.
ray_ds = 5000.0
ray_htop = 13000.1
obs_levels = 0.2, 0.4, 0.6, 0.8,

1.0, 1.2, 1.4, 1.6, 1.8,
2.0, 2.2, 2.4, 2.6, 2.8,
3.0, 3.2, 3.4, 3.6, 3.8,
4.0, 4.2, 4.4, 4.6, 4.8,
5.0, 5.2, 5.4, 5.6, 5.8,
6.0, 6.2, 6.4, 6.6, 6.8,
7.0, 7.2, 7.4, 7.6, 7.8,
8.0, 8.2, 8.4, 8.6, 8.8,
9.0, 9.2, 9.4, 9.6, 9.8,

10.0, 10.2, 10.4, 10.6, 10.8,
11.0, 11.2, 11.4, 11.6, 11.8,
12.0, 12.2, 12.4, 12.6, 12.8,
13.0, 13.2, 13.4, 13.6, 13.8,
14.0, 14.2, 14.4, 14.6, 14.8,
15.0, 15.2, 15.4, 15.6, 15.8,
16.0, 16.2, 16.4, 16.6, 16.8,
17.0, 17.2, 17.4, 17.6, 17.8,
18.0, 19.0, 20.0, 21.0, 22.0,
23.0, 24.0, 25.0, 26.0, 27.0,
28.0, 29.0, 30.0, 31.0, 32.0,
33.0, 34.0, 35.0, 36.0, 37.0,
38.0, 39.0, 40.0, 41.0, 42.0,

(continues on next page)

6.72. GPS Observations 183

DART, Release 9.10.3

(continued from previous page)

43.0, 44.0, 45.0, 46.0, 47.0,
48.0, 49.0, 50.0, 51.0, 52.0,
53.0, 54.0, 55.0, 56.0, 57.0,
58.0, 59.0, 60.0,

/

&convert_cosmic_ionosphere_nml
input_file = ''
input_file_list = 'input_file_list.txt'
output_file = 'obs_seq.out'
observation_error_file = 'none'
observation_error_method = 'scaled_lookup'
locations_only = .false.
obs_error_factor = 1.0
verbose = 0
obs_levels = -1.0

/

Item Type Description
in-
put_file

char-
ac-
ter(len=256)

The input filename when converting a single profile. Only one of the input_file
or input_file_list items can have a valid value, so to use a single filename set
input_file_list = ''

in-
put_file_list

char-
ac-
ter(len=256)

To convert a series of profiles in a single execution create a text file which contains one filename
per line. Set this item to the name of that file, and set input_file = ''

out-
put_file

char-
ac-
ter(len=256)

The output file to be created. If this file already exists the new data will be added to that file. DART
observation sequences are linked lists. When the list is traversed, the observations are in ascending
time order. The order they appear in the file is completely irrelevant.

ob-
ser-
va-
tion_error_file

char-
ac-
ter(len=256)

This specifies a lookup table. The table created by I-Te Lee and Xinan Yue is called f3coerr.nc.

ob-
ser-
va-
tion_error_method

char-
ac-
ter(len=128)

There are multiple ways of specifying the observation error variance. This character string al-
lows you to select the method. The selection is not case-sensitive. Allowable values are: ‘con-
stant’, ‘scaled’, ‘lookup’, or ‘scaled_lookup’. Anything else will result in an error. Look in the
electron_density_error() routine for specifics.

loca-
tions_only

log-
ical

If locations_only = .true. then the actual observation values are not written to the output
observation sequence file. This is useful for designing an OSSE that has a realistic observation
sampling pattern. Keep in mind that some methods of specifying the observation error variance
require knowledge of the observation value. If the observation value is bad or the entire profile is
bad, this profile is rejected - even if locations_only = .true.

obs_error_factorreal(r8)This is the scalar that is used in several of the methods specifying the observation error variance.
ver-
bose

in-
te-
ger

controls the amount of run-time output echoed to the screen. 0 is nearly silent, higher values write
out more. The filenames of the profiles that are skipped are ALWAYS printed.

obs_levelsin-
te-
ger(200)

A series of heights, in kilometers, where observations from this profile should be interpolated.
(Note that the other distances and heights in the namelist are specified in meters.) The values must
be listed in increasing height order.

184 Chapter 6. References

DART, Release 9.10.3

A more useful example follows:

&convert_cosmic_ionosphere_nml
input_file = ''
input_file_list = 'file_list.txt'
output_file = 'obs_seq.out'
observation_error_file = 'f3coeff.dat'
observation_error_method = 'scaled'
locations_only = .false.
obs_error_factor = 0.01
verbose = 1
obs_levels = 160.0, 170.0, 180.0, 190.0, 200.0,

210.0, 220.0, 230.0, 240.0, 250.0,
260.0, 270.0, 280.0, 290.0, 300.0,
310.0, 320.0, 330.0, 340.0, 350.0,
360.0, 370.0, 380.0, 390.0, 400.0,
410.0, 420.0, 430.0, 440.0, 450.0

/

6.72.5 Workflow for batch conversions

If you are converting only a day or two of observations you can download the files by hand and call the converter
programs from the command line. However if you are going convert many days/months/years of data you need an
automated script, possibly submitted to a batch queue on a large machine. The following instructions describe shell
scripts we provide as a guide in the shell_scripts directory. You will have to adapt them for your own system
unless you are running on an NCAR superscomputer.

Making DART Observations from Radio Occultation atmPrf Profiles:

Description of the scripts provided to process the COSMIC and
CHAMP GPS radio occultation data.

Summary of workflow:
1) cd to the ../work directory and run ./quickbuild.csh to compile everything.
2) Edit ./gpsro_to_obsseq.csh once to set the directory where the DART

code is installed, and your CDAAC web site user name and password.
3) Edit ./convert_many_gpsro.csh to set the days of data to download/convert/remove.
4) Run ./convert_many_gpsro.csh either on the command line or submit to a batch
→˓system.

More details:

1) quickbuild.csh:

Make sure your $DART/mkmf/mkmf.template is one that matches the
platform and compiler for your system. It should be the same as
how you have it set to build the other DART executables.

Run quickbuild.csh and it should compile all the executables needed
to do the GPS conversion into DART obs_sequence files.

(continues on next page)

6.72. GPS Observations 185

DART, Release 9.10.3

(continued from previous page)

2) gpsro_to_obsseq.csh:

Edit gpsro_to_obsseq.csh once to set the DART_DIR to where you have
downloaded the DART distribution. (There are a few additional options
in this script, but the distribution version should be good for most users.)
If you are downloading data from the CDAAC web site, set your
web site user name and password. After this you should be able to
ignore this script.

3) convert_many_gpsro.csh:

A wrapper script that calls the converter script a day at a time.
Set the days of data you want to download/convert/remove. See the
comments at the top of this script for the various options to set.
Rerun this script for all data you need. This script depends on
the advance_time executable, which should automatically be built
in the ../work directory, but you may have to copy or link to a
version from this dir. you also need a minimal input.nml here:

&utilities_nml
/

is all the contents it needs.

It can be risky to use the automatic delete/cleanup option - if there are
any errors in the script or conversion (file system full, bad file format,
etc) and the script doesn't exit, it can delete the input files before
the conversion has succeeded. But if you have file quota concerns
this allows you to keep the total disk usage lower.

Making DART Observations from Ionospheric ionPrf Profiles:

0) run quickbuild.csh as described above

1) iono_to_obsseq.csh

set the start and stop days. downloads from the CDAAC and
untars into 100s of files per day. runs the converter to
create a single obs_seq.ion.YYYYMMDD file per day.

2) split_obs_seq.csh

split the daily files into X minute/hour files - set the
window times at the top of the file before running.

186 Chapter 6. References

DART, Release 9.10.3

Notes on already converted observations on the NCAR supercomputers
GPS Radio Occultation Data:

See /glade/p/image/Observations/GPS

These are DART observation sequence files that contain
radio-occultation measurements from the COSMIC
(and other) satellites.

Uses temperature/moisture bending of the signals as they
pass through the atmosphere between GPS source satellites
and low-earth-orbit receiving satellites to compute the
delay in the arrival of data. the files also contain the
bending angle data, but we are not using that currently.

the subdirectories include:

local -- original processed files, single obs at nadir
local-cosmic2013 -- reprocessed by CDAAC in 2013
local-test2013 -- 2013 data, denser in vertical, diff errors
local-complete2013 - all satellites available for that time,
new errors (from lydia c), 2013 cosmic reprocessed data

nonlocal -- original processed files, ray-path integrated
rawdata -- netcdf data files downloaded from the CDAAC

local: the ob is at a single location (the tangent point
of the ray and earth) and the entire effect is assumed
to be impacting the state at that point.

non-local: computes the ob value by doing a line integral
along the ray path to accumulate the total effect.

(in our experiments we have compared both and did not see
a large difference between the two methods, and so have
mistly used the local version because it's faster to run.)

some directories contain only the gps obs and must be
merged (with the obs_sequence_tool) with the rest of
the conventional obs before assimilation.

some directories contain both the gps-only files and
the obs merged with NCEP and ACARS data.

if a directory exists but is empty, the files are
likely archived on the HPSS. see the README files
in the next level directory down for more info on
where they might be.

nsc
jan 2016

6.72. GPS Observations 187

DART, Release 9.10.3

Ionosphere Data:

See /glade/p/image/Observation/ionosphere

These are COSMIC 'ionPrf' ionospheric profile observations.

They are downloaded from the CDAAC website as daily tar files
and unpacked into the 'raw' directory. They distribute these
observations with one profile per netcdf file. Each profile has
data at ~500-1000 different levels.

Our converter has a fixed number of levels in the namelist
and we interpolate between the two closest levels to get the
data for that level. If you give the converter a list of
input netcdf files it will convert all of them into a
single output file.

The 'daily' directory is a collection of all the profiles for
that day.

The 'convert' directory has the executables and scripting
for breaking up the daily files into 10 minute files which
are put in the '10min' directory. Change the 'split_obs_seq.csh'
script to change the width of this window, or the names of
the output files.

The 'verify.csh' script prints out any missing files, which
happens if there are no profiles in the given window.

Our convention is to make a 0 length file for missing intervals
and we expect the filter run script to look at the file size
and loop if there is a file but with no contents. This will
allow us to distinguish between a time where we haven't converted
the observations and a time where there are no observations.
In that case the script should add time to the next model
advance request and loop to the next interval.

6.72.6 Modules used

convert_cosmic_gps_cdf and convert_cosmic_ionosphere use the same set of modules.

assimilation_code/location/threed_sphere/location_mod.f90
assimilation_code/modules/assimilation/adaptive_inflate_mod.f90
assimilation_code/modules/assimilation/assim_model_mod.f90
assimilation_code/modules/io/dart_time_io_mod.f90
assimilation_code/modules/io/direct_netcdf_mod.f90
assimilation_code/modules/io/io_filenames_mod.f90
assimilation_code/modules/io/state_structure_mod.f90
assimilation_code/modules/io/state_vector_io_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod.f90

(continues on next page)

188 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

assimilation_code/modules/utilities/distributed_state_mod.f90
assimilation_code/modules/utilities/ensemble_manager_mod.f90
assimilation_code/modules/utilities/netcdf_utilities_mod.f90
assimilation_code/modules/utilities/null_mpi_utilities_mod.f90
assimilation_code/modules/utilities/null_win_mod.f90
assimilation_code/modules/utilities/options_mod.f90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/sort_mod.f90
assimilation_code/modules/utilities/time_manager_mod.f90
assimilation_code/modules/utilities/types_mod.f90
assimilation_code/modules/utilities/utilities_mod.f90
models/template/model_mod.f90
models/utilities/default_model_mod.f90
observations/forward_operators/obs_def_mod.f90
observations/forward_operators/obs_def_utilities_mod.f90
observations/obs_converters/utilities/obs_utilities_mod.f90

6.72.7 Errors

The converters have a parameter declaring the maximum number of desired levels as 200. If more than 200 levels are
entered as input (to obs_levels), a rather uninformative run-time error is generated:

ERROR FROM:
routine: check_namelist_read
message: INVALID NAMELIST ENTRY: / in namelist convert_cosmic_ionosphere_nml

Your error may be different if obs_levels is not the last namelist item before the slash ‘/’

6.72.8 Known Bugs

Some COSMIC files seem to have internal times which differ from the times encoded in the filenames by as much as
2-3 minutes. If it is important to get all the observations within a particular time window files with filenames from a
few minutes before and after the window should be converted. Times really outside the window can be excluded in a
separate step using the program obs_sequence_tool.

6.73 Oklahoma Mesonet MDF Data

6.73.1 Overview

Program to convert Oklahoma Mesonet MDF files into DART observation sequence files.

6.73. Oklahoma Mesonet MDF Data 189

DART, Release 9.10.3

6.73.2 Data sources

The observation files can be obtained from the Oklahoma Mesonet archive using urls of the format: http://www.
mesonet.org/index.php/dataMdfMts/dataController/getFile/YYYYMMDDHHMM/mdf/TEXT
where YYYYMMDDHHMM is the date and time of the desired set of observations. Files are available every 5
minutes.

If you are located outside of Oklahoma or are going to use this for a non-research purpose see this web page for
information about access: http://www.mesonet.org/index.php/site/about/data_access_and_pricing

Static fields are drawn from the station description file provided by the OK Mesonet. Update the local file from:
http://www.mesonet.org/index.php/api/siteinfo/from_all_active_with_geo_fields/format/csv

6.73.3 Programs

The programs in the DART/observations/ok_mesonet/ directory extract data from the distribution files
and create DART observation sequence (obs_seq) files. Build them in the work directory by running the ./
quickbuild.csh script. In addition to the converters, the advance_time and obs_sequence_tool utilities
will be built.

The converter is a preliminary version which has no namelist inputs. It has hard-coded input and output filenames.
It always reads a data file named okmeso_mdf.in and creates an output file named obs_seq.okmeso. The
converter also requires a text file with the location of all the observating stations, called geoinfo.csv.

The converter creates observations of the following types:

• LAND_SFC_ALTIMETER

• LAND_SFC_U_WIND_COMPONENT

• LAND_SFC_V_WIND_COMPONENT

• LAND_SFC_TEMPERATURE

• LAND_SFC_SPECIFIC_HUMIDITY

• LAND_SFC_DEWPOINT

• LAND_SFC_RELATIVE_HUMIDITY

Example data files are in the data directory. Example scripts for converting batches of these files are in the
shell_scripts directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized
for your use. There are comments at the top of the scripts saying what options they include, and should be commented
enough to indicate where changes will be likely to need to be made.

The expected usage pattern is that a script will copy, rename, or make a symbolic link from the actual input file (which
often contains a timestamp in the name) to the fixed input name before conversion, and move the output file to an
appropriate filename before the next invocation of the converter. If an existing observation sequence file of the same
output name is found when the converter is run again, it will open that file and append the next set of observations to
it.

190 Chapter 6. References

http://www.mesonet.org/index.php/site/about/data_access_and_pricing
http://www.mesonet.org/index.php/api/siteinfo/from_all_active_with_geo_fields/format/csv

DART, Release 9.10.3

6.74 QuikSCAT SeaWinds Data

6.74.1 Overview

NASA’s QuikSCAT mission is described in http://winds.jpl.nasa.gov/missions/quikscat/. “QuikSCAT” refers to the
satellite, “SeaWinds” refers to the instrument that provides near-surface wind speeds and directions over large bodies
of water. QuikSCAT has an orbit of about 100 minutes, and the SeaWinds microwave radar covers a swath under the
satellite. The swath is comprised of successive scans (or rows) and each scan has many wind-vector-cells (WVCs).
For the purpose of this document, we will focus only the Level 2B product at 25km resolution. If you go to the official
JPL data distribution site http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html , we are using the product
labelled L2B OWV 25km Swath. Each orbit consists of (potentially) 76 WVCs in each of 1624 rows or scans. The
azimuthal diversity of the radar returns affects the error characteristics of the retrieved wind speeds and directions,
as does rain, interference of land in the radar footprint, and very low wind speeds. Hence, not all wind retrievals are
created equal.

The algorithm that converts the ‘sigma naughts’ (the measure of radar backscatter) into wind speeds and directions
has multiple solutions. Each candidate solution is called an ‘ambiguity’, and there are several ways of choosing ‘the
best’ ambiguity. Beauty is in the eye of the beholder. At present, the routine to convert the original L2B data files (one
per orbit) in HDF format into the DART observation sequence file makes several assumptions:

1. All retrievals are labelled with a 10m height, in accordance with the retrieval algorithm.

2. Only the highest-ranked (by the MLE method) solution is desired.

3. Only the WVCs with a wvc_quality_flag of zero are desired.

4. The mission specification of a wind speed rms error of 2 ms (for winds less than 20 m/s) and 10% for windspeeds
between 20 and 30 m/s can be extended to all winds with a qc flag of zero.

5. The mission specification of an error in direction of 20 degrees rms is applicable to all retrieved directions.

6. All retrievals with wind speeds less than 1.0 are not used.

7. The above error characterstics can be simplified when deriving the horizontal wind components (i.e. U,V). Note
: this may or may not be a good assumption, and efforts to assimilate the speed and direction directly are under
way.

6.74.2 Data sources

The NASA Jet Propulsion Laboratory (JPL) data repository has a collection of animations and data sets from this
instrument. In keeping with NASA tradition, these data are in HDF format (specifically, HDF4), so if you want to read
these files directly, you will need to install the HDF4 libraries (which can be downloaded from http://www.hdfgroup.
org/products/hdf4/)

If you go to the official JPL data distribution site http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html, we
are using the product labelled L2B OWV 25km Swath. They are organized in folders by day . . . with each or-
bit (each revolution) in one compressed file. There are 14 revolutions per day. The conversion to DART obser-
vation sequence format is done on each revolution, multiple revolutions may be combined ‘after the fact’ by any
obs_sequence_tool in the work directory of any model.

6.74. QuikSCAT SeaWinds Data 191

http://winds.jpl.nasa.gov/missions/quikscat/index.cfm
http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html
http://winds.jpl.nasa.gov/imagesAnim/quikscat.cfm
http://www.hdfgroup.org/products/hdf4/
http://www.hdfgroup.org/products/hdf4/
http://podaac.jpl.nasa.gov/DATA_CATALOG/quikscatinfo.html

DART, Release 9.10.3

6.74.3 Programs

There are several programs that are distributed from the JPL www-site, ftp://podaac.jpl.nasa.gov/pub/ocean_wind/
quikscat/L2B/sw/; we specifically started from the Fortran file read_qscat2b.f and modified it to be called as a subrou-
tine to make it more similar to the rest of the DART framework. The original Makefile and read_qscat2b.f are
included in the DART distribution in the DART/observations/quikscat directory. You will have to modify
the Makefile to build the executable.

convert_L2b.f90

convert_L2b is the executable that reads the HDF files distributed by JPL. DART/observations/quikscat/
work has the expected mkmf_convert_L2b and path_names_convert_L2b files and compiles the exe-
cutable in the typical DART fashion - with one exception. The location of the HDF (and possible dependencies)
installation must be conveyed to the mkmf build mechanism. Since this information is not required by the rest of
DART, it made sense (to me) to isolate it in the mkmf_convert_L2b script. It will be necessary to modify the
``mkmf_convert_L2b`` script to be able to build ``convert_L2b``. In particular, you will have to change the two
lines specifying the location of the HDF (and probably the JPG) libraries. The rest of the script should require little, if
any, modification.

set JPGDIR = /contrib/jpeg-6b_gnu-4.1.2-64 set HDFDIR = /contrib/hdf-4.2r4_gnu-4.1.2-64

There are a lot of observations in every QuikSCAT orbit. Consequently, the observation sequence files are pretty large -
particularly if you use the ASCII format. Using the binary format (i.e. obs_sequence_nml:write_binary_obs_sequence
= .true.) will result in observation sequence files that are about half the size of the ASCII format.

Since there are about 14 QuikSCAT orbits per day, it may be useful to convert individual orbits to an ob-
servation sequence file and then concatenate multiple observation sequence files into one file per day. This
may be trivially accomplished with the obs_sequence_tool program in any model/xxxx/work direc-
tory. Be sure to include the '../../../obs_def/obs_def_QuikSCAT_mod.f90' string in input.
nml&preprocess_nml:input_files when you run preprocess.

Obs_to_table.f90, plot_wind_vectors.m

DART/diagnostics/threed_sphere/obs_to_table.f90 is a potentially useful tool. You can run the
observation sequence files through this filter to come up with a ‘XYZ’-like file that can be readily plotted with DART/
diagnostics/matlab/plot_wind_vectors.m.

6.74.4 Namelist

This namelist is read from the file input.nml. We adhere to the F90 standard of starting a namelist with an am-
persand ‘&’ and terminating with a slash ‘/’ for all our namelist input. Character strings that contain a ‘/’ must be
enclosed in quotes to prevent them from prematurely terminating the namelist. The following values are the defaults
for these namelist items.

&convert_L2b_nml
l2b_file = '',
datadir = '.',
outputdir = '.',
lon1 = 0.0,
lon2 = 360.0,
lat1 = -90.0,
lat2 = 90.0,
along_track_thin = 0,

(continues on next page)

192 Chapter 6. References

ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/
ftp://podaac.jpl.nasa.gov/pub/ocean_wind/quikscat/L2B/sw/FORTRAN/read_qscat2b.f

DART, Release 9.10.3

(continued from previous page)

cross_track_thin = 0
/

It is possible to restrict the output observation sequence to contain data from a region of interest throught the use of
the namelist parameters. If you need a region that spans the Prime Meridian lon1 can be a larger number than lon2,
for example, a region from 300 E to 40 E and 60 S to 30 S (some of the South Atlantic), would be lon1 = 300, lon2 =
40, lat1 = -60, lat2 = -30.

Contents Type Description
l2b_file charac-

ter(len=128)
name of the HDF file to read - NOT including the directory, e.g.
QS_S2B44444.20080021548

datadir charac-
ter(len=128)

the directory containing the HDF files

outputdir charac-
ter(len=128)

the directory for the output observation sequence files.

lon1 real(r4) the West-most longitude of interest in degrees. [0.0, 360]
lon2 real(r4) the East-most longitude of interest in degrees. [0.0, 360]
lat1 real(r4) the South-most latitude of interest in degrees. [-90.0, 90.0]
lat2 real(r8) the North-most latitude of interest in degrees. [-90.0, 90.0]
along_track_thininteger provides ability to thin the data by keeping only every Nth row. e.g. 3 == keep every

3rd row.
cross_track_thininteger provides ability to thin the data by keeping only every Nth wind vector cell in a

particular row. e.g. 5 == keep every 5th cell.

Future Plans

1. There is one bit of error-checking that did not survive the conversion from F77 to F90. I need to restore the
check that the HDF file being read is a ‘Level 2B’ product.

2. There is a lot of error-checking that is not being done. I need to bulletproof the code more.

3. We need namelist options to select something other than the highest-ranked ambiguity.

4. We need namelist options to select more QC flags - not just the ones with the ‘perfect’ QC value of 0

5. Add an option to leave the observations as speed and direction instead of converting them to U,V components.
This is a natural implementation of the instrument error characteristics. However, it would require writing
a specialized forward operator in order to assimilate obs of this type (speed, direction), and there is still a
numerical problem with trying to do the statistics required during the assimilation of a cyclic direction value.

6.74. QuikSCAT SeaWinds Data 193

DART, Release 9.10.3

6.75 Even Sphere

Generate a series of synthetic observations located at roughly evenly distributed locations on a sphere. At each location
generate a vertical column of observations. This could mimic a radiosonde observing network, for example.

This directory contains a MATLAB script that generates input for the ‘create_obs_sequence’ program. It takes a
number of vertical levels and a total number of points, and generates a roughly evenly distributed set of observations
across the entire globe. Note that the number of obs will be the number of points times the number of vertical levels.

the process, end to end:

MATLAB:

edit even_sphere.m and set the number of levels, the number of profiles, the vertical coordinate type, etc.

run it in MATLAB. it will make a plot (which you can save from the menu) and it will create a file ‘even_create_input’.

DART:

build the following executables and have these files in the current directory:

./create_obs_sequence

./create_fixed_network_seq
input.nml

(if these executables were compiled for a specific model, then if that model needs any other input files at startup time,
they will need to be copied here as well. e.g. cam needs a caminput.nc and cam_phis.nc even though they will never
be used.)

1) run ./create_obs_sequence < even_create_input > /dev/null

that makes a set_def.out file

2) edit run_fixed_network_seq.csh to set the start/stop times

run ./run_fixed_network_seq.csh which will call ./create_fixed_network_seq multiple times to make separate obs_seq
files as output. this script is where you set the period between files.

DETAILS on generating points evenly distributed on a sphere:

this is the algorithm (i believe) that’s being used:

dlong := pi*(3-sqrt(5)) /* ~2.39996323 */
dz := 2.0/N
long := 0
z := 1 - dz/2
for k := 0 .. N-1

r := sqrt(1-z*z)
node[k] := (cos(long)*r, sin(long)*r, z)
z := z - dz
long := long + dlong

194 Chapter 6. References

DART, Release 9.10.3

6.76 Obs Error

This directory is where to add modules that compute/set the observational errors for different types of real-world
observations.

For the 2 existing files, the data source is:

ECMWF errors: http://www.ecmwf.int/research/ifsdocs/CY25r1/Observations/Observations-03-3.html

NCEP errors: a 2005 version of the GFS observation error tables.

(Note that the return values from these modules should be the ERROR STANDARD DEVIATION. In the obs_seq
files, the value stored with each observation will be the variance.)

Each center uses different errors, and these separate files make it easy to collect these values in one place, and switch
them in and out depending on the needs of the user who is creating new obs_seq files for DART.

Anyone who wants to contribute another error module is more than welcome to add files here.

IMPORTANT: Each file should have the same module name; e.g. the file names will differ, but the module name itself
must be the same across all modules in this directory.

All the subroutines must also have the same names, and supply appropriate values for each observation type that is
required. If a new observation type is added, it should be added to all the files in this directory.

This way the user can change between error values by editing the filename in the path_names_xxx files and recompil-
ing, without changing the code.

Thanks to Ryan Torn for the idea and initial contributions.

6.77 Radar Observations

6.77.1 Overview

Several programs for converting radar observations into DART obs_seq format exist, and will be placed in this direc-
tory when they are ready for distribution. Observations generated by these programs have been successfully assimi-
lated with weather models in the DART framework.

This directory currently contains a program for generating synthetic radar observations for a WSR-88D (NEXRAD). It
can generate reflectivity and/or doppler radial velocity observations with clear-air or storm sweep patterns, for testing
or for OSSEs (Observing System Simulation Experiments).

There are challenges to working with radar data; for more information contact us.

6.77.2 Data sources

6.77.3 Programs

create_obs_radar_sequence generates one or more sets of synthetic radar observations. Change into the
work subdirectory and run quickbuild.csh to build this program.

Many DART users working with radar observations are using the WRF Weather and Research Forecast model. See the
WRF tests directory in DART/models/wrf/regression/Radar/ for pointers to data to run a radar test case.

In addition to the programs available in the DART distribution, the following external program produces DART obser-
vation sequence files:

6.76. Obs Error 195

http://www.ecmwf.int/research/ifsdocs/CY25r1/Observations/Observations-03-3.html
http://en.wikipedia.org/wiki/WSR-88D

DART, Release 9.10.3

• Observation Processing And Wind Synthesis (OPAWS): OPAWS can process NCAR Dorade (sweep) and
NCAR EOL Foray (netcdf) radar data. It analyzes (grids) data in either two-dimensions (on the conical sur-
face of each sweep) or three-dimensions (Cartesian). Analyses are output in netcdf, Vis5d, and/or DART (Data
Assimilation Research Testbed) formats.

6.78 PROGRAM snow_to_obs

6.78.1 MODIS snowcover fraction observation converter

Overview

There are several satellite sources for snow observations. Generally the data is distributed in HDF-EOS format. The
converter code in this directory DOES NOT READ HDF FILES as input. It expects the files to have been preprocessed
to contain text, one line per observation, with northern hemisphere data only.

6.78.2 Data sources

not sure.

6.78.3 Programs

The snow_to_obs.f90 file is the source for the main converter program.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

This converter creates observations of the “MODIS_SNOWCOVER_FRAC” type.

There is another program in this directory called snow_to_obs_netcdf.f90 which is a prototype for reading
netcdf files that contain some metadata and presumably have been converted from the original HDF. THIS HAS NOT
BEEN TESTED but if you have such data, please contact dart@ucar.edu for more assistance. If you write something
that reads the HDF-EOS MODIS files directly, please, please contact us! Thanks.

6.78.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&snow_to_obs_nml
longrid = 360,
latgrid = 90,
year = 2000,
doy = 1,
snow_input_file = 'snowdata.input',
missing_value = -20.0,
debug = .false.

/

196 Chapter 6. References

http://code.google.com/p/opaws/
mailto:dart@ucar.edu

DART, Release 9.10.3

Item Type Description
lon-
grid

integer The number of divisions in the longitude dimension.

latgrid integer The number of divisions in the latitude dimension. This converter assumes the data is for the
northern hemisphere only. A namelist item could be added to select northern verses southern
hemisphere if needed.

year integer The year number of the data.
doy integer The day number in the year. Valid range 1 to 365 in a non-leap year, 1 to 366 in a leap year.
snow_input_filecharac-

ter(len=128)
The name of the input file.

miss-
ing_value

real(r8) The value used to mark missing data.

debug logical If set to .true. the converter will print out more information as it does the conversion.

Known Bugs

This program is hardcoded to read only northern hemisphere data. It should handle global values.

Future Plans

This program should use the HDF-EOS libraries to read the native MODIS granule files. Right now the ascii interme-
diate files contain no metadata, so if the namelist values don’t match the actual division of the globe, bad things will
happen.

6.79 PROGRAM text_to_obs

6.79.1 Text file to DART converter

Overview

If you have observations in spreadsheet or column format, in text, with a single line per observation, then the files this
directory are a template for how to convert these observations into a format suitable for DART use.

The workflow is usually:

• read in the needed information about each observation - location, time, data value, observation type - from a
data source (usually a file)

• call a series of DART library routines to construct a derived type that contains all the information about a single
observation

• call another set of DART library routines to put it into a time-sorted series

• repeat the last 2 steps until all observations are processed

• finally, call a write subroutine that writes out the entire series to a file in a format that DART can read in

It is not recommended that you try to mimic the ascii file format by other means; the format is subject to change and
the library routines will continue to be supported even if the physical format changes.

If your input data is in some kind of format like netCDF or HDF, then one of the other converters (e.g. the MADIS
ones for netCDF) might be a better starting place for adapting code.

6.79. PROGRAM text_to_obs 197

DART, Release 9.10.3

6.79.2 Data sources

This part is up to you. For each observation you will need a location, a data value, a type, a time, and some kind of
error estimate. The error estimate can be hardcoded in the converter if they are not available in the input data. See
below for more details on selecting an appropriate error value.

6.79.3 Programs

The text_to_obs.f90 file is the source for the main converter program. Look at the source code where it reads
the example data file. You will almost certainly need to change the “read” statement to match your data format. The
example code reads each text line into a character buffer and then reads from that buffer to parse up the data items.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

To change the observation types, look in the DART/observations/forward_operators directory. If you can
find an “obs_def_XXX_mod.f90” file with an appropriate set of observation types, change the ‘use’ lines in the con-
verter source to include those types. Then add that filename in the input.nml namelist file to the &preprocess_nml
namelist, the ‘input_files’ variable. Multiple files can be listed. Then run quickbuild.csh again. It remakes the table of
supported observation types before trying to recompile the source code.

An example script for converting batches of files is in the shell_scripts directory. A tiny example data file is in
the data directory. These are NOT intended to be turnkey scripts; they will certainly need to be customized for your
use. There are comments at the top of the script saying what options they include, and should be commented enough
to indicate where changes will be likely to need to be made.

6.79.4 Decisions you might need to make

See the discussion in the Creating an obs_seq file from real observations page about what options are available for
the things you need to specify. These include setting a time, specifying an expected error, setting a location, and an
observation type.

6.80 Total Precipitable Water Observations

6.80.1 Overview

Several satellites contain instruments that return observations of integrated Total Precipitable Water (TPW). There are
two MODIS Spectroradiometers, one aboard the TERRA satellite, and the other aboard the AQUA satellite. There is
also an AMSR-E instrument on the AQUA satellite.

These instruments produce a variety of data products which are generally distributed in HDF format using the HDF-
EOS libraries. The converter code in this directory IS NOT USING THESE FILES AS INPUT. The code is expecting
to read ASCII TEXT files, which contain one line per observation, with the latitude, longitude, TPW data value, and
the observation time. The Fortran read line is:

read(iunit, '(f11.6, f13.5, f10.4, 4x, i4, 4i3, f7.3)') &
lat, lon, tpw, iyear, imonth, iday, ihour, imin, seconds

No program to convert between the HDF and text files is currently provided. Contact dart@ucar.edu for more infor-
mation if you are interested in using this converter.

198 Chapter 6. References

http://modis.gsfc.nasa.gov/
http://terra.nasa.gov/
http://aqua.nasa.gov/
http://wwwghcc.msfc.nasa.gov/AMSR/
mailto:dart@ucar.edu

DART, Release 9.10.3

6.80.2 Data sources

This converter reads files produced as part of a data research effort. Contact dart@ucar.edu for more information if
you are interested in this data.

Alternatively, if you can read HDF-EOS files and output a text line per observation in the format listed above, then
you can use this converter on TPW data from any MODIS file.

6.80.3 Programs

The programs in the DART/observations/tpw directory extract data from the distribution text files and create
DART observation sequence (obs_seq) files. Build them in the work directory by running the ./quickbuild.csh
script. In addition to the converters, several other general observation sequence file utilities will be built.

Generally the input data comes in daily files, with the string YYYYMMDD (year, month, day) as part of the name.
This converter has the option to loop over multiple days within the same month and create an output file per day.

Like many kinds of satellite data, the TWP data is dense and generally needs to be subsampled or averaged (super-
ob’d) before being used for data assimilation. This converter will average in both space and time. There are 4 namelist
items (see the namelist section below) which set the centers and widths of time bins for each day. All observations
within a single time bin are eligible to be averaged together. The next available observation in the bin is selected and
any other remaining observations in that bin that are within delta latitude and delta longitude of it are averaged in both
time and space. Then all observations which were averaged are removed from the bin, so each observation is only
averaged into one output observation. Observations that are within delta longitude of the prime meridian are handled
correctly by averaging observations on both sides of the boundary.

It is possible to restrict the output observation sequence to contain data from a region of interest using namelist settings.
If your region spans the Prime Meridian min_lon can be a larger number than max_lon. For example, a region from
300 E to 40 E and 60 S to 30 S (some of the South Atlantic), specify min_lon = 300, max_lon = 40, min_lat = -60,
max_lat = -30. So ‘min_lon’ sets the western boundary, ‘max_lon’ the eastern.

The specific type of observation created in the output observation sequence file can be select by namelist.
“MODIS_TOTAL_PRECIPITABLE_WATER” is the most general term, or a more satellite-specific name can be cho-
sen. The choice of which observations to assimilate or evaluate are made using this name. The observation-space
diagnostics also aggregate statistics based on this name.

6.80.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&convert_tpw_nml
start_year = 2008
start_month = 1
start_day = 1
total_days = 31
max_obs = 150000
time_bin_start = 0.0
time_bin_interval = 0.50
time_bin_half_width = 0.25
time_bin_end = 24.0
delta_lat_box = 1.0
delta_lon_box = 1.0
min_lon = 0.0

(continues on next page)

6.80. Total Precipitable Water Observations 199

mailto:dart@ucar.edu

DART, Release 9.10.3

(continued from previous page)

max_lon = 360.0
min_lat = -90.0
max_lat = 90.0
ObsBase = '../data'
InfilePrefix = 'datafile.'
InfileSuffix = '.txt'
OutfilePrefix = 'obs_seq.'
OutfileSuffix = ''
observation_name = 'MODIS_TOTAL_PRECIPITABLE_WATER'

/

200 Chapter 6. References

DART, Release 9.10.3

Item Type Description
start_year integer The year for the first day to be con-

verted. (The converter will option-
ally loop over multiple days in the
same month.)

start_month integer The month number for the first day
to be converted. (The converter will
optionally loop over multiple days
in the same month.)

start_day integer The day number for the first day to
be converted. (The converter will
optionally loop over multiple days
in the same month.)

total_days integer The number of days to be con-
verted. (The converter will option-
ally loop over multiple days in the
same month.) The observations for
each day will be created in a sep-
arate output file which will include
the YYYYMMDD date as part of
the output filename.

max_obs integer The largest number of obs in the
output file. If you get an error, in-
crease this number and run again.

time_bin_start real(r8) The next four namelist values de-
fine a series of time intervals that
define time bins which are used for
averaging. The input data from the
satellite is very dense and generally
the data values need to be subset-
ted in some way before assimilat-
ing. All observations in the same
time bin are eligible to be averaged
in space if they are within the lati-
tude/longitude box. The input files
are distributed as daily files, so use
care when defining the first and last
bins of the day. The units are in
hours. This item defines the mid-
point of the first bin.

time_bin_interval real(r8) Increment added the time_bin_start
to compute the center of the next
time bin. The units are in hours.

time_bin_half_width real(r8) The amount of time added to and
subtracted from the time bin center
to define the full bin. The units are
in hours.

time_bin_end real(r8) The center of the last bin of the day.
The units are in hours.

delta_lat_box real(r8) For all observations in the same time
bin, the next available observation
is selected. All other observations
in that bin that are within delta lati-
tude or longitude of it are averaged
together and a single observation
is output. Observations which are
averaged with others are removed
from the bin and so only contribute
to the output data once. The units
are degrees.

delta_lon_box real(r8) See delta_lat_box above.
min_lon real(r8) The output observations can be con-

strained to only those which lie be-
tween two longitudes and two lat-
itudes. If specified, this is the
western-most longitude. The units
are degrees, and valid values are be-
tween 0.0 and 360.0. To define a
box that crosses the prime merid-
ian (longitude = 0.0) it is legal for
this value to be larger than max_lon.
Observations on the boundaries are
included in the output.

max_lon real(r8) The output observations can be con-
strained to only those which lie be-
tween two longitudes and two lat-
itudes. If specified, this is the
eastern-most longitude. The units
are degrees, and valid values are be-
tween 0.0 and 360.0. To define a
box that crosses the prime meridian
(longitude = 0.0) it is legal for this
value to be smaller than min_lon.
Observations on the boundaries are
included in the output.

min_lat real(r8) The output observations can be con-
strained to only those which lie be-
tween two longitudes and two lat-
itudes. If specified, this is the
southern-most latitude. The units
are degrees, and valid values are be-
tween -90.0 and 90.0. Observations
on the boundaries are included in
the output.

max_lat real(r8) The output observations can be con-
strained to only those which lie be-
tween two longitudes and two lat-
itudes. If specified, this is the
northern-most latitude. The units
are degrees, and valid values are be-
tween -90.0 and 90.0. Observations
on the boundaries are included in
the output.

ObsBase character(len=128) A directory name which is
prepended to the input file-
names only. For files in the current
directory, specify ‘.’ (dot).

InfilePrefix character(len=64) The input filenames are constructed
by prepending this string before
the string ‘YYYYMMDD’ (year,
month, day) and then the suffix is
appended. This string can be ‘ ‘
(empty).

InfileSuffix character(len=64) The input filenames are constructed
by appending this string to the file-
name. This string can be ‘ ‘ (empty).

OutfilePrefix character(len=64) The output files are always created
in the current directory, and the file-
names are constructed by prepend-
ing this string before the string
‘YYYYMMDD’ (year, month day)
and then the suffix is appended.
This string can be ‘ ‘ (empty).

OutfileSuffix character(len=64) The output filenames are con-
structed by appending this string to
the filename. This string can be ‘ ‘
(empty).

observation_name character(len=31) The specific observation type to use
when creating the output observa-
tion sequence file. The possible val-
ues are:

•
“AQUA_TOTAL_PRECIPITABLE_WATER”

•
“TERRA_TOTAL_PRECIPITABLE_WATER”

•
“AMSR_TOTAL_PRECIPITABLE_WATER”

•
“MODIS_TOTAL_PRECIPITABLE_WATER”

These must match the pa-
rameters defined in the
‘obs_def_tpw_mod.f90’ file in
the DART/obs_def directory. There
is a maximum limit of 31 characters
in these names.

6.80. Total Precipitable Water Observations 201

DART, Release 9.10.3

6.80.5 Known Bugs

The input files are daily; be cautious of time bin boundaries at the start and end of the day.

6.80.6 Future Plans

• This program should use the HDF-EOS libraries to read the native MODIS granule files.

• This program could loop over arbitrary numbers of days by using the time manager calendar functions to incre-
ment the bins across month and year boundaries; it could also use the schedule module to define the bins.

6.81 PROGRAM tc_to_obs

6.82 Tropical Cyclone ATCF File to DART Converter

6.82.1 Overview

Tropical Cyclone data created by the ‘Automated Tropical Cyclone Forecast (ATCF) System’ can be converted into
DART observations of the storm center location, minimum sea level pressure, and maximum wind speed. Several of
the options can be customized at runtime by setting values in a Fortran namelist. See the namelist section below for
more details. In the current release of DART only the WRF has forward operator code to generate expected obs values
for these vortex observations.

This webpage documents many things about the ATCF system and the various file formats that are used for storm track
data and other characteristics.

The converter in this directory is only configured to read the packed “b-deck” format (as described on the webpage
referenced above). There are sections in the fortran code which can be filled in to read other format variants. This
should mostly be a matter of changing the read format string to match the data in the file.

6.82.2 Data sources

A collection of past storm ATCF information can be found here. For each observation you will need a location, a data
value, a type, a time, and some kind of error estimate. The error estimates will need to be hardcoded or computed in
the converter since they are not available in the input data. See below for more details on selecting an appropriate error
value.

202 Chapter 6. References

http://www.ral.ucar.edu/hurricanes/realtime/index.php#about_atcf_data_files
http://www.ral.ucar.edu/hurricanes/repository

DART, Release 9.10.3

6.82.3 Programs

The tc_to_obs.f90 file is the source for the main converter program. Look at the source code where it reads the
example data file. Given the variety of formatting details in different files, you may quite possibly need to change the
“read” statement to match your data format. There is a ‘select case’ section which is intended to let you add more
formats and select them at runtime via namelist.

To compile and test, go into the work subdirectory and run the quickbuild.csh script to build the converter
and a couple of general purpose utilities. advance_time helps with calendar and time computations, and the
obs_sequence_tool manipulates DART observation files once they have been created.

This converter creates observation types defined in the DART/observations/forward_operators/
obs_def_vortex_mod.f90 file. This file must be listed in the input.nml namelist file, in the
&preprocess_nml namelist, in the ‘input_files’ variable, for any programs which are going to process these obser-
vations. If you have to change the &preprocess_nml namelist you will have to run quickbuild.csh again to
build and execute the preprocess program before compiling other executables. It remakes the table of supported
observation types before trying to recompile other source code.

There is an example b-deck data file in the data directory. This format is what is supported in the code as distributed.
There are other variants of this format which have more spaces so the columns line up, and variants which have many
more fields than what is read here.

6.82.4 Specifying expected error

The ATCF files DO NOT include any estimated error values. The source code currently has hardcoded values for
location, sea level pressure, and max wind errors. These may need to be adjusted as needed if they do not give the
expected results.

6.82.5 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&tc_to_obs_nml
input_atcf_file = 'input.txt'
fileformat = 'b-deck'
obs_out_file = 'obs_seq.out'
append_to_existing_file = .false.
debug = .false.

/

6.82. Tropical Cyclone ATCF File to DART Converter 203

DART, Release 9.10.3

Item Type Description
in-
put_atcf_file

char-
ac-
ter(len=256)

Name of the input ascii text file in ATCF format.

file-
for-
mat

char-
ac-
ter(len=128)

Currently only supports ‘b-deck’ but if other format strings are added, can switch at runtime between
reading different varieties of ATCF file formats.

obs_out_filechar-
ac-
ter(len=256)

Name of the output observation sequence file to create.

ap-
pend_to_existing_file

log-
ical

If .false., this program will overwrite an existing file. If .true. and if a file already exists with the same
name the newly converted observations will be appended to that file. Useful if you have multiple
small input files that you want to concatenate into a single output file. However, there is no code
to check for duplicated observations. If this is .true. and you run the converter twice you will get
duplicate observations in the file which is bad. (It will affect the quality of your assimilation results.)
Use with care. You can concatenate multiple obs sequence files as a postprocessing step with the
program obs_sequence_tool which comes with DART and is built by the quickbuild.csh script in the
TC converter work directory.

de-
bug

log-
ical

Set to .true. to print out more details during the conversion process.

6.83 PROGRAM littler_tf_dart

6.83.1 Overview

Programs to convert littler data files into DART observation sequence files, and vice versa. The capability of the
program is limited to wind and temperature from radiosondes.

The littler data files do not contain observation errors. The observation errors are in a separate file called obserr.
txt. The littler file generated here has to be preprocessed by the program 3dvar_obs.exe before beeing ingested
in the WRF 3D-Var system.

6.83.2 Modules used

types_mod
obs_sequence_mod
obs_def_mod
obs_kind_mod
location/threed_sphere/location_mod
time_manager_mod
utilities_mod

204 Chapter 6. References

DART, Release 9.10.3

6.83.3 Modules indirectly used

assim_model_mod
models/wrf/model_mod
models/wrf/module_map_utils
random_seq_mod

6.83.4 Namelist

The program does not have its own namelist. However, an input.nml file is required for the modules used by the
program.

6.83.5 Files

• input namelist ; input.nml

• Input - output observation files; obs_seq.out and little-r.dat

• Input - output littler observation error files ; obserr.txt

File formats

If there are no observation error at a particular pressure level, the default value of -1 is written in obserr.txt.

6.83.6 References

• 3DVAR GROUP PAGE

6.83.7 Private components

call set_str_date(timestring, dart_time)

type(time_type), intent(in) :: dart_time
character(len=20), intent(out) :: timestring

Given a dart_time (seconds, days), returns date as bbbbbbyyyymmddhhmmss, where b is a blank space.

call set_dart_time(tstring, dart_time)

6.83. PROGRAM littler_tf_dart 205

http://www.mmm.ucar.edu/wrf/WG4/

DART, Release 9.10.3

character(len=20), intent(in) :: tstring
type(time_type), intent(out) :: dart_time

Given a date as bbbbbbyyyymmddhhmmss, where b is a blank space, returns the dart_time (seconds, days).

call StoreObsErr(obs_err_var, pres, plevel, nlev, obs_err_std)

integer, intent(in) :: nlev, pres
real(r8), intent(in) :: obs_err_var
integer, intent(in) :: plevel(nlev)
real(r8), intent(inout) :: obs_err_std(nlev)

If the incoming pres corresponds exactly to a pressure level in plevel, then transfers the incoming obs_err_var into the
array obs_err_std at the corresponding level.

level_index = GetClosestLevel(ilev, vlev, nlev)

integer, intent(in) :: nlev, ilev
integer, intent(in) :: vlev(nlev)

Returns the index of the closest level in vlev to the incoming ilev.

call READ_OBSERR(filein, platform, sensor_name, err, nlevels)

CHARACTER (LEN=80), intent(in) :: filein
CHARACTER (LEN=80), intent(in) :: platform
CHARACTER (LEN=80), intent(in :: sensor_name
INTEGER, intent(in) :: nlevels
REAL(r8), intent(out) :: err(nlevels)

Read observational error on pressure levels (in hPa) from the incoming filein and store the result in the array err. It is
assumed that filein has the same format as WRF 3D-Var obserr.txt file. It reads observational error for a specific
platform (e.g. RAOBS) and a specific sensor (e.g. WIND SENSOR ERRORS).

f_obstype = obstype(line)

CHARACTER (LEN= 80), intent(in) :: line

Read in a line the string present after keyword ‘BOGUS’, which should be the sensor name.

206 Chapter 6. References

DART, Release 9.10.3

f_sensor = sensor(line)

CHARACTER (LEN= 80), intent(in) :: line

Read in a line the string present after numbers, which should be the platform name.

val = intplin(x,xx,yy)

INTEGER, DIMENSION (:), intent(in) :: xx
REAL(r8), DIMENSION (:), intent(in) :: yy
REAL(r8), intent(in) :: x

Do a linear interpolation.

val = intplog(x,xx,yy)

INTEGER, DIMENSION (:), intent(in) :: xx
REAL(r8), DIMENSION (:), intent(in) :: yy
REAL(r8), intent(in) :: x

Do a log-linear interpolation.

index = locate(x,xx)

INTEGER, DIMENSION (:), intent(in) :: xx
REAL(r8), intent(in) :: x

Return the index in xx such that xx(index) < x < xx(index+1).

6.83. PROGRAM littler_tf_dart 207

DART, Release 9.10.3

6.84 PROGRAM rad_3dvar_to_dart

6.84.1 Overview

Programs to convert MM5 3D-VAR 2.0 Radar data files into DART observation sequence files. The capability of the
program is limited to DOPPLER_RADIAL_VELOCITY and RADAR_REFLECTIVITY.

6.84.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&rad_3dvar_to_dart_nml
var_file = 'qc_radr_3dvar_2002083100.dat',
obs_seq_out_file_name = 'obs_seq.out',
calendar_type = 3

/

Item Type Description
var_file charac-

ter(len=129)
This is the name of the file containing MM5 3D-VAR 2.0 Radar ob-
servations.

obs_seq_out_file_name charac-
ter(len=129)

File name for output observation sequence file.

calendar_type integer Calendar type. We recommend using 3 (GREGORIAN).

6.84.3 Modules directly used

types_mod
obs_sequence_mod
obs_def_mod
obs_def/obs_def_radar_mod
obs_kind_mod
location/threed_sphere/location_mod
time_manager_mod
utilities_mod

208 Chapter 6. References

DART, Release 9.10.3

6.84.4 Modules indirectly used

assim_model_mod
models/wrf/model_mod
models/wrf/module_map_utils
random_seq_mod

6.84.5 Files

• input namelist ; input.nml

• Input observation file; qc_radr_3dvar_2002083100.dat

• Output observation file; obs_seq.out

File formats

input.nml and qc_radr_3dvar_2002083100.dat are ASCII files. obs_seq.out is either ASCII or bi-
nary, depending on the logical write_binary_obs_sequence, which is the namelist entry for obs_sequence_mod.

6.84.6 References

• 3DVAR GROUP PAGE

6.85 3DVAR/4DVAR Observation Converters

6.85.1 Overview

The programs in this directory help convert data which is formatted for input into the 3DVAR/4DVAR programs into
DART obs_seq observation files.

This directory contains conversion programs for various obs formats related to 3D-Var, WRF-Var, and MM5:

• PROGRAM littler_tf_dart to and back from little-r format, temperature and winds only.

• PROGRAM rad_3dvar_to_dart the radar 3d-var obs only to dart format.

• gts_to_dart.f90 from GTS to dart format.

You need to add some WRF-Var source files to the 3DVAR_OBSPROC directory, and then you can go into the work
directory and run the ‘quickbuild.csh’ script.

The little-r converter may need changes to the code to convert from the original quality control flags into QC flags
compatible with DART. (in DART, 0 is good data.)

The GTS converter does not support SATEM thickness data but there are versions around which do; write
dart@ucar.edu if you are interested in more about this.

And a final disclaimer: Whether these work with the latest 3D-Var format is untested at this point. Please contact the
DART Development group if you are interested in using these tools.

6.85. 3DVAR/4DVAR Observation Converters 209

https://www.mmm.ucar.edu/wrf-administration
mailto:dart@ucar.edu

DART, Release 9.10.3

6.86 Checking your initial assimilation

You may require several attempts to get your assimilation configured correctly. The next section, Computing filter
increments, describes how to take the difference between two assimilation stages to determine whether your initial
assimilation worked as intented.

If your assimilation does not change anything in the model state, you may need to rerun filter multiple times to
understand what is wrong.

Thus you should make filter very fast to run. You can do this by:

1. Making an observation sequence file containing a single observation.

2. Configuring your run so that filter does a single assimilation and exits without having to advance the ensemble
of models or do other work.

6.86.1 Making an observation sequence file containing a single observation

You can use one of these methods to make an obs_seq with just a single observation:

1. Run create_obs_sequence to make a new, short, observation sequence file.

2. Use the obs_sequence_tool to cut an existing obs_seq.out file down to just a few obs by selecting
only a subset of the types and setting a very short time window, such as a second or two when you know there
are observations available.

These programs are described in the Programs directory.

6.86.2 Configuring your run so that filter does a single assimilation and exits

To configure filter to only do a single assimilation:

1. Edit the &filter_nml namelist in input.nml to set the init_time_days and init_time_seconds
to match the observation time in your truncated observation sequence file. This overrides any times in the input
files and ensures that filter will only assimilate and not try to advance the model.

2. Make sure the truncated observation sequence file contains only a single observation or observations close
enough together in time to fit into a single assimilation window.

6.87 Computing filter increments

Note: This document is written as if your experiment was run with single_file_out = .true.. The potential
permutations of filenames output by filter is enormous, so it isn’t feasible to write documentation for all possible cases.

After filter executes without error and produces an obs_seq.final file, a preassim.nc file, and an
analysis.nc file, the first questions to ask are:

1. Is the model state output from filter different from the input?

2. Were any observations successfully assimilated?

You can check check if the output model state data was changed by the assimilation by using the ncdiff tool to
create a file containing the difference of the preassim.nc and analysis.nc files. If you are running with
single_file_in = .true. and single_file_out = .true. use ncdiff on the files output for the
analysis and preassim stages:

210 Chapter 6. References

DART, Release 9.10.3

$ ncdiff analysis.nc preassim.nc increments.nc

Otherwise, if you are running with single_file_in = .false. and single_file_out = .false., use
ncdiff on the ensemble mean files for the analysis and preassim stages:

$ ncdiff analysis_mean.nc preassim_mean.nc increments.nc

ncdiff generates a file, increments.nc, that contains the increments, or innovations, created by filter. You
can view the increments using ncview:

$ ncview increments.nc

to examine the ensemble mean variables. If all values are 0, then the assimilation changed nothing in the state.

6.88 Computing filter increments using a complex model

The innovations to the model state are easy to derive. Use the NCO Operator ncdiff to difference the two DART
diagnostic netCDF files to create the innovations. Be sure to check the CopyMetaData variable to figure out what copy
is of interest. Then, use ncview to explore the innovations or the inflation values or . . .

If the assimilation used state-space inflation, the inflation fields will be added as additional ‘copies’. A sure sign of
trouble is if the inflation fields grow without bound. As the observation network changes, expect the inflation values
to change.

The only other thing I look for in state-space is that the increments are ‘reasonable’. As the assimilation ‘burns in’,
the increments are generally larger than increments from an assimilation that has been cycling for a long time. If the
increments keep getting bigger, the ensemble is continually drifting away from the observation. Not good. In ncview,
it is useful to navigate to the copy/level of interest and re-range the data to values appropriate to the current data and
then hit the ‘>>’ button to animate the image. It should be possible to get a sense of the magnitude of the innovations
as a function of time.

6.88.1 Example from a model of intermediate complexity: the bgrid model

I ran a perfect model experiment with the bgrid model in the DART-default configuration and turned on some
adaptive inflation for this example. To fully demonstrate the adaptive inflation, it is useful to have an observa-
tion network that changes through time. I created two observation sequence files: one that had a single ‘RA-
DIOSONDE_TEMPERATURE’ observation at the surface with an observation error variance of 1.5 degrees Kelvin -
repeated every 6 hours for 6 days (24 timesteps); and one that had 9 observations locations clustered in about the same
location that repeated every 6 hours for 1.5 days (6 timesteps). I merged the two observation sequences into one using
obs_sequence_tool and ran them through perfect_model_obs to derive the observation values and create
an obs_seq.out file to run through filter.

Note: Other models may have their ensemble means and spreads and inflation values in separate files. See the table
of possible filenames.

$ cd ${DARTROOT}/models/bgrid_solo/work
$ ncdiff analysis.nc preassim.nc Innov.nc
$ ncview preassim.nc &
$ ncview Innov.nc &
$ ncdump -v MemberMetadata preassim.nc
netcdf preassim {

(continues on next page)

6.88. Computing filter increments using a complex model 211

http://nco.sourceforge.net/

DART, Release 9.10.3

(continued from previous page)

dimensions:
metadatalength = 64 ;
member = 20 ;
time = UNLIMITED ; // (24 currently)
NMLlinelen = 129 ;
NMLnlines = 303 ;
StateVariable = 28200 ;
TmpI = 60 ;
TmpJ = 30 ;
lev = 5 ;
VelI = 60 ;
VelJ = 29 ;

variables:
char MemberMetadata(member, metadatalength) ;

MemberMetadata:long_name = "Metadata for each copy/member" ;
...
double ps(time, member, TmpJ, TmpI) ;

ps:long_name = "surface pressure" ;
ps:units = "Pa" ;
ps:units_long_name = "pascals" ;

double t(time, member, lev, TmpJ, TmpI) ;
t:long_name = "temperature" ;
t:units = "degrees Kelvin" ;

double u(time, member, lev, VelJ, VelI) ;
u:long_name = "zonal wind component" ;
u:units = "m/s" ;

double v(time, member, lev, VelJ, VelI) ;
v:long_name = "meridional wind component" ;
v:units = "m/s" ;

double ps_mean(time, TmpJ, TmpI) ; The ensemble mean is now a
→˓separate variable.

double t_mean(time, lev, TmpJ, TmpI) ; The ensemble spread is now a
→˓separate variable.

double u_mean(time, lev, VelJ, VelI) ; If I was using inflation, they
→˓would also be separate variables.

double v_mean(time, lev, VelJ, VelI) ;
double ps_sd(time, TmpJ, TmpI) ;
double t_sd(time, lev, TmpJ, TmpI) ;
double u_sd(time, lev, VelJ, VelI) ;
double v_sd(time, lev, VelJ, VelI) ;

data:
MemberMetadata =
"ensemble member 1 ",
"ensemble member 2 ",
"ensemble member 3 ",
"ensemble member 4 ",
"ensemble member 5 ",
"ensemble member 6 ",
"ensemble member 7 ",
"ensemble member 8 ",
"ensemble member 9 ",
"ensemble member 10 ",
"ensemble member 11 ",
"ensemble member 12 ",
"ensemble member 13 ",
"ensemble member 14 ",

(continues on next page)

212 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

"ensemble member 15 ",
"ensemble member 16 ",
"ensemble member 17 ",
"ensemble member 18 ",
"ensemble member 19 ",
"ensemble member 20 " ;

}

This is an exploration of the preassim.nc file. Note that I selected the ‘t’ field, turned the coastlines ‘off’ under
the ‘Opts’ button, used the ‘Repl’ instead of ‘Bi-lin’ (to more faithfully represent the model resolution), navigated to
copy 23 of 24 (in this case, the inflation mean) select the inflation mean variable of your choice and advanced to
the last timestep. The image plot is pretty boring, but does indicate that the inflation values are restricted to where I
put the observations. Right-clicking on the ‘Range’ button automatically re-ranges the colorbar to the min/max of the
current data. Clicking on any location generates a time series figure.

This is an exploration of the Innov.nc file as created by ncdiff. Note that the titles are somewhat misleading because
they reflect information from the first file given to ncdiff. This time I left the rendering as ‘Bi-lin’ (which obfuscates
the model resolution), navigated to copy 1 of 24 (in this case, the ensemble mean) selected the t_mean variable and
advanced to the 6th timestep. Right-click on the ‘Range’ button to reset the colorbar. The image plot confirms that the
innovations are restricted to a local region. Clicking on any location generates a time series.

This is fundamentally the same as the previous panel except that I have now selected the ‘u’ u_mean variable. Despite
the fact the observations were only of ‘t’, the assimilation has generated (rightly so) increments to the ‘u’ state variable.

6.89 DART missing data value

If all the prior and posterior mean values are -888888.0 (which is the DART “missing data” value), those observations
were not assimilated.

Note: Some observations have precomputed values and the posterior values for these will always be -888888.0, no
matter if the observation was assimilated or not.

If it is not already set, edit the &filter_nml name list in input.nml to set num_output_obs_members to
be the same as the ensemble size.

This will give you all the forward operator values for all the ensemble members. You can determine if all ensemble
members are failing in the same way, or if only a few are problematic.

6.90 DART quality control field

DART has a quality control (QC) field in the obs_seq.final file to report on the status of the assimilation of the variable.
The most common reason for exploring the DART QC value is to help determine if the observation was assimilated
(or evaluated) - or if the observation was rejected or . . .

To learn more about how to intepret the QC field as well as other values in an observation sequence file, see Detailed
structure of an obs_seq file. The ‘DART QC’ field is usually the second of the 2 “quality control” copies.

A list of all the DART QC values can be found in the QC table in MODULE quality_control_mod.

• If the DART QC values are 4, the forward operators have failed. Look at the model_interpolate() routine in your
model_mod.f90 file, or the forward operator code in observations/forward_operators/obs_def_xxx_mod.f90
for your observation type. A successful forward operator must return a valid obs_val and an istatus = 0.

6.89. DART missing data value 213

DART, Release 9.10.3

If the forward operator code returns different istatus values for different error types, you can set &fil-
ter_nml::output_forward_op_errors = .true. and rerun filter to see exactly what error istatus codes are being set.
See MODULE filter_mod for more information on how to use the ‘output_forward_op_errors’ option. Negative
istatus values are reserved for the system, istatus = 0 is success, and any positive value indicates a failed forward
operator. The code is free to use different positive values to signal different types of errors.

• If the DART QC values are 5, those observation types were intentionally ignored because they were not listed
in the &obs_kind_nml namelist, in the ‘assimilate_these_obs_types’ stringlist.

• If the DART QC values are 6, the data quality control that came with the original observation data indicates this
is a bad quality observation and it was skipped for this reason.

• If the DART QC values are 7, the observation value is too far away from the ensemble mean. Set &fil-
ter_nml::outlier_threshold = -1 to ignore this for now and rerun. In general, this is not the optimal strategy
as the number of observations inconsistent with the ensemble is a very powerful indicator of the success or
failure of the assimilation.

• If the DART QC values are 8, it was not possible to convert the observation to the required vertical coordinate
system.

If the prior and posterior values in the obs_seq.final are not -888888.0 but are identical, your obs are being
assimilated but are having no impact.

The most common reasons assimilated obs have no impact on the model state include:

• Zero spread in ensemble members Your initial ensemble members must have different values for each state
item. If all members have identical values, the observations cannot make a change. To diagnose this condi-
tion, look at the prior ensemble spread. This is either in preassim.nc or preassim_sd.nc, depend-
ing on your model. If all the values are 0, this is your problem. One way to generate an ensemble with
some spread is to set &filter_nml::perturb_from_single_instance = .false., (which will still require a single fil-
ter initial condition file) but then the filter code will add random gaussian perturbations to each state vector
item to generate an initial ensemble with spread. The magnitude of the gaussian noise added is controlled
by the &filter_nml::perturbation_amplitude. It is also possible to write your own perturbation routine in your
model_mod.f90 code.

• Cutoff value too small If the localization radius is too small, the observation may not be ‘close enough’ to the
model grid to be able to impact the model. Check the localization radius (&assim_tools_nml::cutoff). Set it to a
very large number (e.g. 100000) and rerun. If there is now an impact, the cutoff was restricting the items in the
state vector so your obs had no impact before. Cutoff values are dependent on the location type being used. It is
specified in radians for the threed_sphere locations module (what most large models use), or in simple distance
(along a unit circle) if using a low order model (lorenz, ikeda, etc).

• Obs error values too large (less likely) If the observation error is very large, it will have no impact on the
model state. This is less likely a cause than other possibilities.

• No correlation (unlikely) If there is no correlation between the distribution of the forward observation values
and the state vector values, the increments will be very tiny. However there are generally still tiny increments
applied, so this is also a low likelyhood case.

• Errors in forward operator location computations, or get_close_obs() If there is an error in the
model_mod.f90 code in either get_state_meta_data(), model_interpolate(), or the vertical conversion code
in get_close_obs(), it is possible for the forward operators to appear to be working correctly, but the distances
computed for the separation between the obs and the state vector values can be incorrect. The most frequent
problem is that the wrong locations are being passed back from get_state_meta_data(). This can result in the
increments being applied in the wrong locations or not at all. This is usually one of the things to test carefully
when developing a new model interface, and usually why we recommend starting with a single observation at a
known location.

• Incorrect vertical conversion If the model is using 3d coordinates and needs the capability to convert between
pressure, height, and/or model level, the conversion may be incorrect. The state vector locations can appear

214 Chapter 6. References

DART, Release 9.10.3

to be too high or too low to be impacted by an observation. Some models have a height limit built into their
model_mod code to avoid trying to assimilate observations at the model top. The observations cannot make
meaningful changes to the model state there and trying to assimilate them can lead to problems with the inflation.
If the code in the model_mod is excluding observations incorrectly, or you are testing with observations at the
model top, this can result in no impact on the model state.

6.91 Examining the obs_seq.final file

1. If you are testing with a single observation, just look in the file. If this file is in binary format, edit the
&obs_sequence_nml namelist in input.nml so the output observation sequence file will be written in ASCII:

&obs_sequence_nml
write_binary_obs_sequence = .false.

/

Then rerun filter to regenerate an obs_seq.final file in ASCII. For an explanation of the contents of your
obs_seq.final file, see Detailed structure of an obs_seq file.

2. If you are using many observations, run the obs_diag program appropriate for your model. The MATLAB®
observation space diagnostics will help to summarize your output and to explore what is going on.

If there are no changes in the model state after assimilation and a visual examination of obs_seq.final was not infor-
mative, convert the obs_seq.final file to netCDF with obs_seq_to_netcdf and either use the Matlab tools distributed
with DART or something of your own. Actually, obs_seq_to_netcdf works on all observation sequence files, not just
obs_seq.final files.

6.92 MATLAB® observation space diagnostics

The observation-space functions are in the $DARTROOT/diagnostics/matlab directory. Once you have pro-
cessed the obs_seq.final files into a single obs_diag_output.nc, you can use that as input to your own
plotting routines or use the following DART MATLAB® routines:

plot_evolution.m plots the temporal evolution of any of the quantities above for each variable for specified levels. The
number of observations possible and used are plotted on the same axis.

fname = 'POP11/obs_diag_output.nc'; % netcdf file produced by 'obs_diag'
copystring = 'rmse'; % 'copy' string == quantity of
→˓interest
plotdat = plot_evolution(fname,copystring); % -- OR --
plotdat = plot_evolution(fname,copystring,'obsname','RADIOSONDE_TEMPERATURE');

6.91. Examining the obs_seq.final file 215

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_evolution.m

DART, Release 9.10.3

plot_profile.m plots the spatial and temporal average of any specified quantity as a function of height. The number of

216 Chapter 6. References

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_profile.m

DART, Release 9.10.3

observations possible and used are plotted on the same axis.

fname = 'POP11/obs_diag_output.nc'; % netcdf file produced by 'obs_diag'
copystring = 'rmse'; % 'copy' string == quantity of
→˓interest
plotdat = plot_profile(fname,copystring);

6.92. MATLAB® observation space diagnostics 217

DART, Release 9.10.3

plot_rmse_xxx_evolution.m same as plot_evolution.m but will overlay rmse on the same axis.

218 Chapter 6. References

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_rmse_xxx_evolution.m

DART, Release 9.10.3

plot_rmse_xxx_profile.m same as plot_profile.m with an overlay of rmse.

plot_bias_xxx_profile.m same as plot_profile.m with an overlay of bias.

two_experiments_evolution.m same as plot_evolution.m but will overlay multiple (more than two, actually)
experiments (i.e. multiple obs_diag_output.nc files) on the same axis. A separate figure is created for each
region in the obs_diag_output.nc file.

files = {'POP12/obs_diag_output.nc','POP11/obs_diag_output.nc'};
titles = {'CAM4','CAM3.6.71'};
varnames = {'ACARS_TEMPERATURE'};
qtty = 'rmse';
prpo = 'prior';
levelind = 5;
two_experiments_evolution(files, titles,{'ACARS_TEMPERATURE'}, qtty, prpo, levelind)

two_experiments_profile.m same as plot_profile.m but will overlay multiple (more than two, actually) exper-
iments (i.e. multiple obs_diag_output.nc files) on the same axis. If the obs_diag_output.nc file was
created with multiple regions, there are multiple axes on a single figure.

6.92. MATLAB® observation space diagnostics 219

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_rmse_xxx_profile.m
https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_bias_xxx_profile.m
https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/two_experiments_evolution.m
https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/two_experiments_profile.m

DART, Release 9.10.3

files = {'POP12/obs_diag_output.nc','POP11/obs_diag_output.nc'};
titles = {'CAM4','CAM3.6.71'};
varnames = {'ACARS_TEMPERATURE'};
qtty = 'rmse';
prpo = 'prior';
two_experiments_profile(files, titles, varnames, qtty, prpo)

220 Chapter 6. References

DART, Release 9.10.3

plot_rank_histogram.m will create rank histograms for any variable that has that information present in

6.92. MATLAB® observation space diagnostics 221

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_rank_histogram.m

DART, Release 9.10.3

obs_diag_output.nc.

fname = 'obs_diag_output.nc'; % netcdf file produced by 'obs_diag'
timeindex = 3; % plot the histogram for the third timestep
plotdat = plot_rank_histogram(fname, timeindex, 'RADIOSONDE_TEMPERATURE');

You may also convert observation sequence files to netCDF by using PROGRAM obs_seq_to_netcdf . All of the
following routines will work on observation sequences files AFTER an assimilation (i.e. obs_seq.final files that
have been converted to netCDF), and some of them will work on obs_seq.out-type files that have been converted.

read_obs_netcdf.m reads a particular variable and copy from a netCDF-format observation sequence file and returns a
single structure with useful bits for plotting/exploring. This routine is the back-end for plot_obs_netcdf.m.

fname = 'obs_sequence_001.nc';
ObsTypeString = 'RADIOSONDE_U_WIND_COMPONENT'; % or 'ALL' ...
region = [0 360 -90 90 -Inf Inf];
CopyString = 'NCEP BUFR observation';
QCString = 'DART quality control';

(continues on next page)

222 Chapter 6. References

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/read_obs_netcdf.m

DART, Release 9.10.3

(continued from previous page)

verbose = 1; % anything > 0 == 'true'
obs = read_obs_netcdf(fname, ObsTypeString, region, CopyString, QCString, verbose);

plot_obs_netcdf.m creates a 3D scatterplot of the observation locations, color-coded to the observation values. A
second axis will also plot the QC values if desired.

fname = 'POP11/obs_epoch_011.nc';
region = [0 360 -90 90 -Inf Inf];
ObsTypeString = 'AIRCRAFT_U_WIND_COMPONENT';
CopyString = 'NCEP BUFR observation';
QCString = 'DART quality control';
maxgoodQC = 2;
verbose = 1; % > 0 means 'print summary to command window'
twoup = 1; % > 0 means 'use same Figure for QC plot'
bob = plot_obs_netcdf(fname, ObsTypeString, region, CopyString, ...

QCString, maxgoodQC, verbose, twoup);

6.92. MATLAB® observation space diagnostics 223

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_obs_netcdf.m

DART, Release 9.10.3

plot_obs_netcdf_diffs.m creates a 3D scatterplot of the difference between two ‘copies’ of an observation.

224 Chapter 6. References

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/plot_obs_netcdf_diffs.m

DART, Release 9.10.3

fname = 'POP11/obs_epoch_011.nc';
region = [0 360 -90 90 -Inf Inf];
ObsTypeString = 'AIRCRAFT_U_WIND_COMPONENT';
CopyString1 = 'NCEP BUFR observation';
CopyString2 = 'prior ensemble mean';
QCString = 'DART quality control';
maxQC = 2;
verbose = 1; % > 0 means 'print summary to command window'
twoup = 0; % > 0 means 'use same Figure for QC plot'
bob = plot_obs_netcdf_diffs(fname, ObsTypeString, region, CopyString1, CopyString2, ..
→˓.

QCString, maxQC, verbose, twoup);

plot_wind_vectors.m creates a 2D ‘quiver’ plot of a wind field. This function is in the matlab/private directory
- but if you want to use it, you can move it out. I find it has very little practical value.

fname = 'obs_epoch_001.nc';
platform = 'SAT'; % usually 'RADIOSONDE', 'SAT', 'METAR', ...
CopyString = 'NCEP BUFR observation';
QCString = 'DART quality control';
region = [210 310 12 65 -Inf Inf];
scalefactor = 5; % reference arrow magnitude

(continues on next page)

6.92. MATLAB® observation space diagnostics 225

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/private/plot_wind_vectors.m

DART, Release 9.10.3

(continued from previous page)

bob = plot_wind_vectors(fname, platform, CopyString, QCString, ...
'region', region, 'scalefactor', scalefactor);

link_obs.m creates multiple figures that have linked attributes. This is my favorite function. Click on the little paint-
brush icon in any of the figure frames and select some observations with “DART quality control == 7” in one window,
and those same observations are highlighted in all the other windows (for example). The 3D scatterplot can be rotated
around with the mouse to really pinpoint exactly where the observations are getting rejected, for example. If the data
browser (the spreadsheet-like panel) is open, the selected observations get highlighted there too.

fname = 'obs_epoch_001.nc';
ObsTypeString = 'RADIOSONDE_TEMPERATURE';
ObsCopyString = 'NCEP BUFR observation';
CopyString = 'prior ensemble mean';
QCString = 'DART quality control';
region = [220 300 20 60 -Inf Inf];
global obsmat;
link_obs(fname, ObsTypeString, ObsCopyString, CopyString, QCString, region)

226 Chapter 6. References

https://raw.githubusercontent.com/NCAR/DART/master/diagnostics/matlab/link_obs.m

DART, Release 9.10.3

6.92. MATLAB® observation space diagnostics 227

DART, Release 9.10.3

228 Chapter 6. References

DART, Release 9.10.3

6.93 DART Tutorial

The DART Tutorial is intended to aid in the understanding of ensemble data assimilation theory and consists of step-
by-step concepts and companion exercises with DART.

Before beginning the DART Tutorial, make sure you are familiar with the prerequisite statistical concepts by reading
Conditional probability and Bayes’ theorem.

The diagnostics in the tutorial use Matlab®. To learn how to configure your environment to use Matlab and the DART
diagnostics, see the documentation for Configuring Matlab® for netCDF & DART.

• Section 1: Filtering For a One Variable System

• Section 2: The DART Directory Tree

• Section 3: DART Runtime Control and Documentation

• Section 4: How should observations of a state variable impact an unobserved state variable? Multivariate
assimilation.

• Section 5: Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space

• Section 6: Other Updates for An Observed Variable

6.93. DART Tutorial 229

http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#configure_matlab

DART, Release 9.10.3

• Section 7: Some Additional Low-Order Models

• Section 8: Dealing with Sampling Error

• Section 9: More on Dealing with Error; Inflation

• Section 10: Regression and Nonlinear Effects

• Section 11: Creating DART Executables

• Section 12: Adaptive Inflation

• Section 13: Hierarchical Group Filters and Localization

• Section 14: Observation Quality Control

• Section 15: DART Experiments: Control and Design

• Section 16: Diagnostic Output

• Section 17: Creating Observation Sequences

• Section 18: Lost in Phase Space: The Challenge of Not Knowing the Truth

• Section 19: DART-Compliant Models and Making Models Compliant: Coming Soon

• Section 20: Model Parameter Estimation

• Section 21: Observation Types and Observing System Design

• Section 22: Parallel Algorithm Implementation: Coming Soon

• Section 23: Location Module Design

• Section 24: Fixed Lag Smoother (not available yet)

• Section 25: A Simple 1D Advection Model: Tracer Data Assimilation

6.94 Conditional probability and Bayes’ theorem

This section introduces two prerequisite concepts for understanding data assimilation theory: conditional probability
and Bayes’ theorem.

6.94.1 Conditional probability

Most real-world events involve uncertainty because the occurence of a specific outcome isn’t guaranteed. You can
sense that in situations in which these are possible outcomes:

• your flight departs on time

• you keep your New Year’s resolution

• your car needs repairs in the next 6 months

there is a chance that the opposite outcome might occur. Describing such situations accurately requires making prob-
abilistic statements.

In mathematical notation, the probability of an event, 𝐴, is denoted by 𝑃 (𝐴). If the event 𝐴 means that your flight
departs on time, you can write:

𝑃 (𝐴) = 𝑙𝑖𝑘𝑒𝑙𝑦

since most flights do actually depart on time.

230 Chapter 6. References

DART, Release 9.10.3

Events usually occur in conjuction with other events, so it is useful to assign conditional probabilities, or the probability
that an outcome occurs if another event also occurs.

If the event 𝐵 is that a blizzard approaches the airport an hour before your scheduled departure you can write a
conditional probability as 𝑃 (𝐴|𝐵), or the probability that 𝐴 occurs, given that 𝐵 also occurs. In this case, you can
assign the probability that your flight departs on time given that a blizzard approaches the airport an hour before your
scheduled departure as:

𝑃 (𝐴|𝐵) = 𝑢𝑛𝑙𝑖𝑘𝑒𝑙𝑦

since it is unlikely that your flight departs on time in a blizzard. These examples use informal, subjective probabilities.
But the mathematical notation can also be used to assign formal, quantitative probabilities as well.

6.94.2 Bayes’ theorem

Imagine you are in a house and the carbon monoxide detector has set off its alarm. Carbon monoxide is colorless
and odorless, so you evacuate the house, but you don’t know whether there are actually significant concentrations of
carbon monoxide inside or if your detector is faulty.

In the United States, 100,000 carbon monoxide exposure events occur in houses annually and the manufacturer of
your detector claims that its detectors have a 0.1% error rate. Bayes’ theorem allows you to calculate the quantitative
probability of whether or not there is a carbon monoxide exposure event in the house, given that the carbon monoxide
detector has set off its alarm.

Probability theory allows you to keep track of specific conditions and events. The names of the relevant terms, and
what they represent in this example are:

• the prior, 𝑃 (𝐴) - the probability of a carbon monoxide exposure event in your house

• the likelihood, 𝑃 (𝐵|𝐴) - the probability your detector sets off its alarm given that there is a carbon monoxide
exposure event in your house

• the normalization, 𝑃 (𝐵) - the probablity your detector sets off its alarm

• the posterior, 𝑃 (𝐴|𝐵) - the probability of a carbon monoxide exposure event in your house given that your
detector sets of its alarm

If this is your first experience with probability theory, you may be unaccustomed to the terminology and level of
nuance that the theory affords. Take your time to think through each of the probabilities and conditions. Notice, for
example, the difference between 𝑃 (𝐵|𝐴) and 𝑃 (𝐴|𝐵).

Bayes’ theorem allows you to calculate the probability you want to know, the posterior, 𝑃 (𝐴|𝐵). The theorem is:

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑× 𝑝𝑟𝑖𝑜𝑟

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

or:

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)

To compute the right hand side of the equation you’ll need to estimate the prior, the likelihood, and the normalization.

6.94. Conditional probability and Bayes’ theorem 231

DART, Release 9.10.3

Prior

You can estimate the probability of a carbon monoxide exposure event in your house, 𝑃 (𝐴), by dividing the number
of carbon monoxide exposure events that occur annually in houses by the total number of houses in the United States,
which is 140 million houses:

𝑃 (𝐴) = 100, 000 ÷ 140, 000, 000 = 7.1 × 10−4

Likelihood

You can estimate the probability your detector sets off its alarm given that there is a carbon monoxide exposure event
in your house, 𝑃 (𝐵|𝐴), since you know the error rate of the detector, 0.1%:

𝑃 (𝐵|𝐴) = 1 − 0.001 = 0.999

Normalization

Estimating the probablity your detector sets off its alarm, 𝑃 (𝐵), requires estimating two cases: the probability of a
false alarm, 𝑃 (𝐵−), and the probability of a true alarm, 𝑃 (𝐵+).

The probability of a false alarm is the portion of the population that does not experience a carbon monoxide exposure
event times the error rate of the detector:

𝑃 (𝐵−) =
(140, 000, 000 − 100, 000)

140, 000, 000
× 0.001 = 9.9 × 10−4

The probability of a true alarm is the portion of the population that experiences a carbon monoxide exposure event
times the rate that the detector will correctly set off its alarm:

𝑃 (𝐵+) =
100, 000

140, 000, 000
× (1 − 0.001) = 7.1 × 10−4

𝑃 (𝐵) is the sum of 𝑃 (𝐵−) and 𝑃 (𝐵+):

𝑃 (𝐵) = 9.9 × 10−4 + 7.1 × 10−4 = 1.7 × 10−3

Posterior

You now have all of the necessary probabilities to estimate the probability of a carbon monoxide exposure event in
your house given that your detector sets off its alarm, 𝑃 (𝐴|𝐵):

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
=

0.999 × 7.1 × 10−4

1.7 × 10−3
= 0.42

Thus, the posterior probability is 0.42.

6.94.3 Bayesian inference

One of the primary benefits of Bayes’ theorem is that it can be applied multiple times to update a probability when
new information is available. This process is best illustrated by continuing the example.

While standing outside, you call the fire department. A fire engine arrives and firefighters enter the house with a carbon
monoxide meter. This meter is more accurate than the one installed in the house. It has an error rate of 0.01%.

232 Chapter 6. References

DART, Release 9.10.3

The meter detects dangerous levels carbon monoxide in the house. You know intuitively that it is now highly probable
that there are dangerous levels of carbon monoxide in the house. Bayes’ theorem provides a rigorous framework to
support your intuition.

You can apply Bayes’ theorem again to update your estimate of the probability of a carbon monoxide exposure event
in the house. This updating process is called Bayesian inference.

When applying Bayes’ theorem a second time, the process is the same but the probabilities involved are different.

Prior

In the first part of the example, you estimated the prior by dividing the number of carbon monoxide exposure events
that occur annually in houses by the total number of houses in the United States. That was the correct approach at first.
But now your prior is the posterior from the first part:

𝑃 (𝐴) = 0.42

since that is the probability of a carbon monoxide exposure event in your house.

Likelihood

Since the firefighters’ carbon monoxide meter has a lower error rate than the detector installed in the house, 𝑃 (𝐵|𝐴)
is also different:

𝑃 (𝐵|𝐴) = 1 − 0.0001 = 0.9999

Normalization

The probablity that the meter detects carbon monoxide is still comprised of two parts, the probability of a false
detection, 𝑃 (𝐵−), and the probability of a true detection, 𝑃 (𝐵+). But since the error rate of the firefighters’ meter is
lower and your detector has also set off its alarm, the normalization is different.

The probability of a false detection is the probability that there isn’t a carbon monoxide exposure event in the house
times the error rate of the meter:

𝑃 (𝐵−) = (1 − 0.42) × 0.0001 = 5.8 × 10−5

The probability of a true detection is the probability that there is a carbon monoxide exposure event in the house times
the rate that the meter will correctly detect it:

𝑃 (𝐵+) = 0.42 × 0.9999 = 0.42

𝑃 (𝐵) is the sum of 𝑃 (𝐵−) and 𝑃 (𝐵+):

𝑃 (𝐵) = 5.8 × 10−5 + 0.42 = 0.42

Posterior

You have all of the necessary probabilities to estimate the probability of a carbon monoxide exposure event in your
house given that both your detector set off its alarm and the firefighters’ meter also detected carbon monoxide, 𝑃 (𝐴|𝐵):

𝑃 (𝐴|𝐵) =
𝑃 (𝐵|𝐴)𝑃 (𝐴)

𝑃 (𝐵)
=

0.9999 × 0.42

0.42
= 0.9999

6.94. Conditional probability and Bayes’ theorem 233

DART, Release 9.10.3

Thus, the second posterior probability is 0.9999. This makes sense intuitively: it is extremely likely that there is a
carbon monoxide exposure event in the house if both your alarm and the firefighters’ meter detect carbon monoxide.

It also demonstrates the ability of Bayes’ theorem to update the probability of an event when new information becomes
available.

With these concepts you can now begin the DART Tutorial.

6.95 DART_LAB Tutorial

6.95.1 Overview

The files in this directory contain PDF tutorial materials on DART, and Matlab exercises. See below for links to the
PDF files and a list of the corresponding matlab scripts.

This tutorial begins at a more introductory level than the materials in the tutorial directory, and includes hands-on
exercises at several points. In a workshop setting, these materials and exercises took about 1.5 days to complete.

6.95.2 DART tutorial presentations

Here are the PDF files for the presentation part of the tutorial:

• Section 1: The basics in 1D.

• Section 2: How should observations of a state variable impact an unobserved state variable? Multivariate
assimilation.

• Section 3: Sampling error and localization.

• Section 4: The Ensemble Kalman Filter (Perturbed Observations).

• Section 5: Adaptive Inflation.

6.95.3 Matlab hands-on exercises

In the matlab subdirectory are a set of Matlab scripts and GUI (graphical user interface) programs which are exercises
that go with the tutorial. Each is interactive with settings that can be changed and rerun to explore various options. A
valid Matlab license is needed to run these scripts.

The exercises use the following functions:

• gaussian_product

• oned_model

• oned_ensemble

• run_lorenz_63

• run_lorenz_96

• twod_ensemble

To run these, cd into the DART_LAB/matlab directory, start matlab, and type the names at the prompt.

234 Chapter 6. References

http://www.mathworks.com/products/matlab/

DART, Release 9.10.3

6.96 WRF/DART Tutorial Materials for the Manhattan Release.

6.96.1 Introduction

This document will describe how to get started with your own Weather Research and Forecasting (WRF) data assim-
ilation experiments using DART and only covers only the WRF-specific aspects of integrating with DART. It is not
wise to try to run WRF/DART if you have no experience with WRF and/or no experience with DART.

This tutorial was assembled to be compatible with ~WRF V3.9.1 and the DART Manhattan release. Other releases of
WRF may or may not be backwards or forwards compatible with this tutorial.

You must already be comfortable running the WRF system (WPS, real_em build of WRF). If not, work through the
WRF model tutorial first before trying to link WRF and DART together. Check the WRF user guide or the WRFHELP
forum for WRF-specific assistance.

If you are new to DART, we recommend that you become familiar with DART by working through the DART Tutorial
and then understanding the DART getting started documentation.

before attempting the WRF/DART tutorial as you will find many helpful resources for learning the base DART con-
figuration.

We do not claim that this is a “turnkey” or “black box” system. Be mentally prepared to invest a reasonable amount of
time on the learning curve. There are many outstanding research issues which have no easy answers. This is not a one
week/grad student/naive user system. Even after you get the code up and running, you have to be able to interpret the
results, which requires developing specific skills. There are a lot of ways to alter how the system works – localization,
inflation, which variables and observations are assimilated, the assimilation window time, the model resolution, etc,
etc. This is both good and bad - you have many ways of improving your results, but you have to take care on how
you leave all the settings of these inputs. Getting a set of scripts that runs doesn’t mean the system is running well, or
producing useful results. So - if you’re still reading: Let the adventure begin!

This tutorial introduces a “canned” WRF/DART experiment involving an ensemble of 50 members that will be initial-
ized from GFS initial conditions at 2017/04/27 00:00 UTC using a domain of the continental United States. The data
included in the tutorial lasts until 2017/04/30 18:00 UTC. During this period, there was a strong rain and wind event
that affected a large portion of the United States, causing record rains, localized flooding, and numerous tornadoes.
For more information on the physical account of this case, see weather.gov.

By default, the tutorial case will only cover 12 hours of this event starting at 2017/04/27 00:00 UTC. The WRF model
will be “spun-up” for six hours to generate a prior distribution. An assimilation of PREPBUFR observations will then
be performed at 06:00 UTC, at which time analysis files will be generated to begin a new ensemble forecast. The
WRF model will be advanced for 6 hours and a final assimilation cycle will be performed at 12:00 UTC. This process
could then continue in order to investigate the strong rain and wind event. For what it’s worth, on NCAR’s Cheyenne
under the default test configuration for this case, it can take an hour to complete a forecast/assimilation cycle. Since
the tutorial runs for two cycles, it can take twice as long.

The goals of this tutorial are to demonstrate how WRF/DART works. After running this tutorial, you will be able to
understand the major steps involved in setting up your own data assimilation (DA) experiments. However, you will
need to do additional work before you can expect to have a fully functional WRF/DART system, as some of the steps
involved in this tutorial (in particular, the perturbation bank and the observation sequence files) are provided for you
in order to simplify the process. Furthermore, if you are not running on the UCAR/NCAR Cheyenne supercomputing
system, you will likely need to customize the assimilation scripts to match the details of your particular system.

Important: We have provided instructions for the NCAR supercomputer Cheyenne, so you may need to tailor these
instructions to your system if you are not using Cheyenne. These system-specific setup steps may take a good deal
of effort, especially if you are unfamiliar with details such as MPI, NetCDF, etc. Furthermore, even after you get the
code up and running, you will need to properly interpret your results.

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 235

http://www2.mmm.ucar.edu/wrf/users/download/get_source.html
https://www.mmm.ucar.edu/wrf-tutorial-0
https://www.mmm.ucar.edu/wrf-user-support-contributor-information
https://www.weather.gov/lot/2017Apr2930_rainfall

DART, Release 9.10.3

6.96.2 Step 1: Setup

There are several dependencies for the executables and scripting components. On Cheyennne, users have reported
success building WRF, WPS, WRFDA, and DART with the default module environment including Intel compilers,
MPT, and netCDF4. In addition, you’ll need to load the nco and ncl modules to run the set of scripts that accompany
the tutorial.

There are multiple phases for the setup: building the DART executables, getting the initial WRF boundary conditions
etc., building (or using existing) WRF executables, and configuring and staging the scripting needed to perform an
experiment.

Build the DART executables.

If you have not already, see Getting Started to download the DART software package. Set an environment variable
DART_DIR to point to your base DART directory. How to do this will depend on which shell you are using.

shell command
tcsh setenv DART_DIR <path_to_your_dart_installation>
bash export DART_DIR=<path_to_your_dart_installation>

In either case, you will replace <path_to_your_dart_installation> with the actual path to your DART installation. If
you are using another shell, refer to your shell-specific documentation on how to set an environment variable.

Building the DART executables for the tutorial follows the same process as building any of the DART executables.
Configure the mkmf.template file for your system, configure the input.nml for the model you want to compile,
and run quickbuild.csh (which is not necessarily quick, but it is quicker than doing it by hand) to compile all the
programs you might need for an experiment with that model.

1. It is assumed you have successfully configured the $DART_DIR/build_templates/mkmf.template
file for your system. If not, you will need to do so now. See the Getting Started for more detail, if necessary.

2. [OPTIONAL] Modify the DART code to use 32bit reals. Most WRF/DART users run both the WRF model and
the DART assimilation code using 32bit reals. This is not the default for the DART code. Make this single code
change before building the DART executables to compile all reals as 32bit reals.

Edit $DART_DIR/assimilation_code/modules/utilities/types_mod.f90 with your fa-
vorite editor. Change

! real precision:
! TO RUN WITH REDUCED PRECISION REALS (and use correspondingly less memory)
! comment OUT the r8 definition below and use the second one:
integer, parameter :: r4 = SELECTED_REAL_KIND(6,30)
integer, parameter :: r8 = SELECTED_REAL_KIND(12) ! 8 byte reals
!integer, parameter :: r8 = r4 ! alias r8 to r4

to

! real precision:
! TO RUN WITH REDUCED PRECISION REALS (and use correspondingly less memory)
! comment OUT the r8 definition below and use the second one:
integer, parameter :: r4 = SELECTED_REAL_KIND(6,30)
! integer, parameter :: r8 = SELECTED_REAL_KIND(12) ! 8 byte reals
integer, parameter :: r8 = r4 ! alias r8 to r4

3. Copy the tutorial DART namelist from $DART_DIR/models/wrf/tutorial/template/input.
nml.template to $DART_DIR/models/wrf/work/input.nml.

236 Chapter 6. References

http://nco.sourceforge.net/
https://www.ncl.ucar.edu/

DART, Release 9.10.3

cd $DART_DIR/models/wrf
cp tutorial/template/input.nml.template work/input.nml

4. Build the WRF/DART executables:

cd $DART_DIR/models/wrf/work
./quickbuild.csh

Many executables are built, the following executables are needed for the tutorial and will be copied to the right
place by the setup.csh script in a subsequent step:

advance_time
fill_inflation_restart
filter
obs_diag
obs_seq_to_netcdf
obs_sequence_tool
pert_wrf_bc
wrf_dart_obs_preprocess

Preparing the experiment directory.

Approximately 100Gb of space is needed to run the tutorial. Create a “work” directory someplace with a lot of free
space. The rest of the instructions assume you have an environment variable called BASE_DIR that points to this
directory.

shell command
tcsh setenv BASE_DIR <path_to_your_working_directory>
bash export BASE_DIR=<path_to_your_working_directory>

1. The WRF boundary conditions and perturbations required to make a viable ensemble are available in a 15 GB
tar file. Put this file in your $BASE_DIR. Since this is a large file, we suggest using ‘wget’ to download the file
directly to your local system:

cd $BASE_DIR
wget http://www.image.ucar.edu/wrfdart/tutorial/wrf_dart_tutorial_23May2018_v3.
→˓tar.gz
tar -xzvf wrf_dart_tutorial_23May2018_v3.tar.gz

After untarring the file you should see the following directories: icbc, output, perts, and template. The directory
names (case sensitive) are important, as the scripts rely on these local paths and file names.

2. You will need template WRF namelists from the $DART_DIR/models/wrf/tutorial/template di-
rectory:

cp $DART_DIR/models/wrf/tutorial/template/namelist.input.meso $BASE_DIR/
→˓template/.
cp $DART_DIR/models/wrf/tutorial/template/namelist.wps.template $BASE_DIR/
→˓template/.

3. You will also need the scripting to run a WRF/DART experiment. Copy the contents of $DART_DIR/models/
wrf/shell_scripts to the $BASE_DIR/scripts directory.

mkdir $BASE_DIR/scripts
cp -R $DART_DIR/models/wrf/shell_scripts/* $BASE_DIR/scripts

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 237

DART, Release 9.10.3

Build or locate WRF executables.

The WRFDA package is needed to generate a set of perturbed initial ensemble member files and also to generate
perturbed boundary condition files. Since the tutorial provides a perturbation bank for a specific case, it is not required
to actually run da_wrfvar.exe but it needs to be in the WRF_RUN directory for the tutorial.

Build (or locate an appropriate build of) WRF, WPS and WRFDA.

WRF and WRFDA should be built with the “dmpar” option, while WPS can be built “serial”ly. See the WRF/WRFDA
documentation for more information about building these packages.

Note: For consistency and to avoid errors, you should build WRF, WPS, WRFDA, and DART with the same compiler
you use for NetCDF. Likewise MPI should use the same compiler. You will need the location of the WRF and WRFDA
builds to customize the params.csh script in the next step.

Configure $BASE_DIR/scripts/param.csh with proper paths, info, etc.

This is a script that sets variables which will be read by other WRF/DART scripts. There are some specific parameters
for either the Cheyenne supercomputing system using the PBS queueing system or the (decommissioned) Yellowstone
system which used the LSF queueing system. If you are not using Cheyenne, you may still want to use this script to
set your queueing-system specific parameters.

Important:

All variables that are marked 'set this appropriately #%%%#' need to be set. This list is
intended to provide some guidance on what needs to be set, but it is not an exhaustive list.

Script variable Description
module load mpt The Environment Modules MPI compiler to use (here the HPE MPI) compiler). Note

that on Cheyenne the default compiler is Intel.
module load nco The nco package.
module load ncl/6.6.2 The ncl package.
BASE_DIR The directory containing icbc, output, perts, etc.
DART_DIR The DART directory.
WRF_DM_SRC_DIR The directory of the WRF dmpar installation.
WPS_SRC_DIR The directory of the WPS installation.
VAR_SRC_DIR The directory of the WRFDA installation.
GEO_FILES_DIR The root directory of the WPS_GEOG files. NOTE: on Cheyenne these are available in

the /glade/u/home/wrfhelp/WPS_GEOG directory
GRIB_DATA_DIR The root directory of the GRIB data input into ungrib.exe. For this tutorial the grib files

are included, so use ${ICBC_DIR}/grib_data
GRIB_SRC The type of GRIB data (e.g. <Vtable.TYPE>) to use with ungrib.exe to copy the appro-

priate Vtable file. For the tutorial, the value should be ‘GFS’.
COM-
PUTER_CHARGE_ACCOUNT

The project account for supercomputing charges. See your supercomputing project ad-
ministrator for more information.

EMAIL The e-mail address used by the queueing system to send job summary information.

Run the setup.csh script to create the proper directory structure and move executables to proper locations.

238 Chapter 6. References

http://www2.mmm.ucar.edu/wrf/users/wrfda/download/get_source.html
https://www.pbsworks.com/

DART, Release 9.10.3

cd $BASE_DIR/scripts
./setup.csh param.csh

So far, your $BASE_DIR should contain the following directories:

icbc
obs_diag
obsproc
output
perts
post
rundir
scripts
template

Your $BASE_DIR/rundir directory should contain the following:

executables:

• advance_time,

• fill_inflation_restart,

• filter,

• obs_diag,

• obs_seq_to_netcdf,

• obs_sequence_tool,

• pert_wrf_bc (no helper page),

• wrf_dart_obs_preprocess

directories:

• WRFIN (empty)

• WRFOUT (empty)

• WRF_RUN (wrf executables and support files)

scripts:

• add_bank_perts.ncl

• new_advance_model.csh

support data:

• sampling_error_correction_table.nc

Check to make sure your $BASE_DIR/rundir/WRF_RUN directory contains:

da_wrfvar.exe
wrf.exe
real.exe
be.dat
contents of your WRF build run/ directory (support data files for WRF)

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 239

../../../assimilation_code/programs/advance_time/advance_time.html
../../../assimilation_code/programs/fill_inflation_restart/fill_inflation_restart.html
../../../assimilation_code/programs/filter/filter.html
../../../assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html
../../../assimilation_code/programs/obs_seq_to_netcdf/obs_seq_to_netcdf.html
../../../assimilation_code/programs/obs_sequence_tool/obs_sequence_tool.html
../../../models/wrf/WRF_DART_utilities/wrf_dart_obs_preprocess.html

DART, Release 9.10.3

Note: Be aware that the setup.csh script is designed to remove $BASE_DIR/rundir/WRF_RUN/namelist.
input. Subsequent scripting will modify $BASE_DIR/template/namlist.input.meso to create the
namelist.input for the experiment.

For this tutorial, we are providing you with a specified WRF domain. To make your own, you would need to define
your own wps namelist and use WPS to make your own geogrid files. See the WRF site for help with building and
running those tools as needed. You would also need to get the appropriate grib files to generate initial and boundary
condition files for the full period you plan to cycle. In this tutorial we have provided you with geogrid files, a small
set of grib files, and a namelist to generate series of analyses for several days covering a North American region.

Let’s now look inside the $BASE_DIR/scripts directory. You should find the following scripts:

Script name Description
add_bank_perts.ncl Adds perturbations to each member.
assim_advance.csh Advances 1 WRF ensemble member to the next analysis time.
assimilate.csh Runs filter . . . i.e. the assimilation.
diagnostics_obs.csh Computes observation-space diagnostics and the model-space mean analysis incre-

ment.
driver.csh Primary script for running the cycled analysis system.
first_advance.csh Advances 1 WRF ensemble member (on the first time).
gen_pert_bank.csh Saves the perturbations generated by WRFDA CV3.
gen_retro_icbc.csh Generates the wrfinput and wrfbdy files.
init_ensemble_var.csh Creates the perturbed initial conditions from the WRF-VAR system.
mean_increment.ncl Computes the mean state-space increment, which can be used for plotting.
new_advance_model.csh advances the WRF model after running DART in a cycling context.
param.csh Contains most of the key settings to run the WRF/DART system.
prep_ic.csh Prepares the initial conditions for a single ensemble member.
real.csh Runs the WRF real.exe program.
setup.csh Creates the proper directory structure and place executables/scripts in proper locations.

You will need to edit the following scripts to provide the paths to where you are running the experiment, to connect up
files, and to set desired dates. Search for the string 'set this appropriately #%%%#' for locations that you
need to edit.

cd $BASE_DIR/scripts
grep -r 'set this appropriately #%%%#' .

Other than param.csh, which was covered above, make the following changes:

File
name

Variable /
value

Change description

driver.cshdatefnl =
2017042712

Change to the final target date; here the final date is already set correctly for this tutorial.

gen_retro_icbc.cshdatefnl =
2017043000

This is the final date to create WRF initial/boundary conditions for. This is set to the last
date that files are included in the tutorial.

gen_retro_icbc.cshparamfile =
<full path to
param.csh>

The full path to param.csh. Change this on the line after the comment. While these two
files are in the same directory here, in general it is helpful to have one param.csh for each
experiment.

gen_pert_bank.cshAll changes As the tutorial includes a perturbation bank, you will not need to run this script for the
tutorial, so you will not need to change these values. However, you should set appropriate
values when you are ready to generate your own perturbation bank.

240 Chapter 6. References

DART, Release 9.10.3

Next, move to the $BASE_DIR/perts directory. Here you will find 100 perturbation files, called a “perturbation
bank.” For your own case, you would need to create a perturbation bank of your own. A brief description for running
the script is available inside the comments of that file. However, again, for this tutorial, this step has already been
run for you. The $BASE_DIR/icbc directory contains a geo_em_d01.nc file (geo information for our test domain),
and grib files that will be used to generate the initial and boundary condition files. The $BASE_DIR/template
directory should contain namelists for WRF, WPS, and filter, along with a wrfinput file that matches what will be
the analysis domain. Finally, the $BASE_DIR/output directory contains observations within each directory name.
Template files will be placed here once created (done below), and as we get into the cycling the output will go in these
directories.

6.96.3 Step 2: Initial conditions

To get an initial set of ensemble files, depending on the size of your ensemble and data available to you, you might have
options to initialize the ensemble from, say, a global ensemble set of states. Here, we develop a set of flow dependent
errors by starting with random perturbations and conducting a short forecast. We will use the WRFDA random CV
option 3 to provide an initial set of random errors, and since this is already available in the perturbation bank developed
in the setup, we can simply add these to a deterministic GFS state. Further, lateral boundary uncertainty will come
from adding a random perturbation to the forecast (target) lateral boundary state, such that after the integration the
lateral boundaries have random errors.

First, we need to generate a set of GFS states and boundary conditions that will be used in the cycling. Use
$BASE_DIR/scripts/gen_retro_icbc.csh to create this set of files, which will be added to a subdirec-
tory corresponding to the date of the run in the $BASE_DIR/output directory. Make sure gen_retro_icbc.csh has
the appropriate path to your param.csh script. If the param.csh script also has the correct edits for paths and you have
the executables placed in the rundir, etc., then running gen_retro_icbc.csh should execute a series of operations to
extract the grib data, run metgrid, and then twice execute real.exe to generate a pair of WRF files and a boundary file
for each analysis time.

cd $BASE_DIR/scripts
./gen_retro_icbc.csh

Note: Ignore any rm: No match errors, as the script attempts to delete output files if they already exist, and they
will not for the first run.

Once the script completes, inside your $BASE_DIR/output/2017042700 directory you should see these files:

wrfbdy_d01_152057_21600_mean
wrfinput_d01_152057_0_mean
wrfinput_d01_152057_21600_mean

These filenames include the Gregorian dates for these files, which is used by the dart software for time schedules.
Similar files (with different dates) should appear in all of the date directories between the datea and datef dates set in
the gen_retro_icbc.csh script. All directories with later dates will also have an observation sequence file obs_seq.out
that contains observations to be assimilated at that time.

Next, we will execute the script to generate an initial ensemble of states for the first analysis. For this we run the script
init_ensemble_var.csh, which takes two arguments: a date string and the location of the param.csh script.

cd $BASE_DIR/scripts
./init_ensemble_var.csh 2017042700 param.csh

This script generates 50 small scripts and submits them to the batch system. It assumes a PBS batch system and the
‘qsub’ command for submitting jobs. If you have a different batch system, edit this script and look near the end. You

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 241

DART, Release 9.10.3

will need to modify the lines staring with #PBS and change ‘qsub’ to the right command for your system. You might
also want to modify this script to test running a single member first — just in case you have some debugging to do.

When complete for the full ensemble, you should find 50 new files in the directory output/2017042700/PRIORS
with names like prior_d01.0001, prior_d01.0002, etc. . . You may receive an e-mail to helpfully inform you when each
ensemble member has finished.

6.96.4 Step 3: Prepare observations [OPTIONAL]

For the tutorial exercise, observation sequence files are provided to enable you to quickly get started running a test
WRF/DART system. If you want to run with the example observations, you can skip to Step 4.

However, observation processing is critical to the success of running DART and was covered in getting started. In
brief, to add your own observations to WRF/DART you will need to understand the relationship between observation
definitions and observation sequences, observation types and observation quantities, and understand how observation
converters extract observations from their native formats into the DART specific format.

The observation sequence files that are provided in this tutorial come from NCEP BUFR observations from the GDAS
system. These observations contain a wide array of observation types from many platforms within a single file.

If you wanted to generate your own observation sequence files from PREPBUFR for an experiment with WRF/DART,
you should follow the guidance on the prepbufr page to build the bufr conversion programs, get observation files for
the dates you plan to build an analysis for, and run the codes to generate an observation sequence file.

For completeness, we list here how you could generate these observation sequence files yourself.

Important: the following steps are not necessary for the tutorial as the processed PREPBUFR observation sequence
files have already been provided for you. However, these steps are provided in order to help users get started with
these observations quickly for their own experiments.

To (again, optionally) reproduce the observation sequence files in the output directories, you would do the following:

• Go into your DART prep_bufr observation converter directory and install the PREPBUFR utilities as follows:

cd $DART_DIR/observations/obs_converters/NCEP/prep_bufr
./install.sh

You may need to edit the install.sh script to match your compiler and system settings.

• Go to the $DART_DIR/observations/obs_converters/NCEP/prep_bufr/work/ directory and
run quickbuild.csh to build the DART PREPBUFR-to-intermediate-file observation processor:

cd $DART_DIR/observations/obs_converters/NCEP/prep_bufr/work
./quickbuild.csh

• Download the PREPBUFR observations for your desired time. Go to the NCAR/UCAR Research Data Archive
page for the NCEP/NCAR Global Reanalysis Products. Register on the site, click on the “Data Access” tab, and
follow either the instructions for external users or NCAR internal users.

• The downloaded .tar file will often be COS-blocked. If so, the file will appear corrupted if you attempt to
untar it without converting the data. See the NCAR COS-block page for more information on how to strip the
COS-blocking off of your downloaded file.

• Untar the data in your desired directory.

• In the $DART_DIR/observations/obs_converters/NCEP/prep_bufr/work directory, edit the
input.nml file. This file will control what observations will be used for your experiment, so the namelist options
are worth investigating a bit here. For example, you could use the following:

242 Chapter 6. References

../../../observations/obs_converters/NCEP/prep_bufr/prep_bufr.html
https://rda.ucar.edu/datasets/ds090.0/
https://rda.ucar.edu/#!cosb

DART, Release 9.10.3

&prep_bufr_nml
obs_window = 1.0
obs_window_cw = 1.5
otype_use = 120.0, 130.0, 131.0, 132.0, 133.0, 180.0

181.0, 182.0, 220.0, 221.0, 230.0, 231.0
232.0, 233.0, 242.0, 243.0, 245.0, 246.0
252.0, 253.0, 255.0, 280.0, 281.0, 282.0

qctype_use = 0,1,2,3,15
/

This defines an observation time window of +/- 1.0 hours, while cloud motion vectors will be used over a window
of +/- 1.5 hours. This will use observation types sounding temps (120), aircraft temps (130,131), dropsonde
temps (132), mdcars aircraft temps, marine temp (180), land humidity (181), ship humidity (182), rawinsonde
U,V (220), pibal U,V (221), Aircraft U,V (230,231,232), cloudsat winds (242,243,245), GOES water vapor
(246), sat winds (252,253,255), and ship obs (280, 281, 282). Additionally, it will include observations with
specified qc types only. See the prepbufr page for more available namelist controls.

• Within the $DART_DIR/observations/obs_converters/NCEP/prep_bufr/work directory, edit
the prepbufr.csh file and change BUFR_dir, BUFR_idir, BUFR_odir, and BUFR_in to match the locations and
format of the data you downloaded. A little trial and error might be necessary to get these set correctly.

• Copy over the executables from ../exe, and run the prepbufr.csh script for a single day at a time:

cd $DART_DIR/observations/obs_converters/NCEP/prep_bufr/work
cp ../exe/*.x .
./prepbufr.csh \<year\> \<month\> \<day\>

• Your PREPBUFR files have now been converted to an intermediate ASCII format. There is another observation
converter to take the observations from this format and write them into the native DART format. Edit the
input.nml namelist file in the DART_DIR/observations/obs_converters/NCEP/ascii_to_obs/work directory. Here
is a basic example:

&ncepobs_nml
year = 2017,
month = 4,
day = 27,
tot_days = 3,
max_num = 800000,
select_obs = 0,
ObsBase = '<path to observations>/temp_obs.',
daily_file = .false.,
lat1 = 15.0,
lat2 = 60.0,
lon1 = 270.0,
lon2 = 330.0
/

Choosing “select_obs = 0” will select all the observations in the ASCII file. Set “ObsBase” to the directory you
output the files from during the last step. If you wish to choose specific observations from the ASCII intermediate
file or control other program behavior, there are many namelist options documented on the create_real_obs page.

• It is now time to build ascii_to_obs programs. Run the following:

cd $DART_DIR/observations/obs_converters/NCEP/ascii_to_obs/work
./quickbuild.csh

• Run the create_real_obs program to create the DART observation sequence files:

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 243

../../../observations/obs_converters/NCEP/prep_bufr/prep_bufr.html
../../../observations/obs_converters/NCEP/ascii_to_obs/create_real_obs.html

DART, Release 9.10.3

cd $DART_DIR/observations/obs_converters/NCEP/ascii_to_obs/work
./create_real_obs

• The program create_real_obs will create observation sequence files with one file for each six hour window.
For a cycled experiment, the typical approach is to put a single set of observations, associated with a single
analysis step, into a separate directory. For example, within the output directory, we would create directories
like 2017042700, 2017042706, 2017042712, etc. for 6-hourly cycling. Place the observation files in
the appropriate directory to match the contents in the files (e.g. obs_seq2017042706) and rename as simply
obs_seq.out (e.g. output/2017042706/obs_seq.out).

• It is helpful to also run the wrf_dart_obs_preprocess program, which can strip away observations not in the
model domain, perform superobservations of dense observations, increase observation errors near the lateral
boundaries, check for surface observations far from the model terrain height, and other helpful pre-processing
steps. These collectively improve system performance and simplify interpreting the observation space diagnos-
tics. There are a number of namelist options to consider, and you must provide a wrfinput file for the program
to access the analysis domain information.

6.96.5 Step 4: Creating the first set of adaptive inflation files

In this section we describe how to create initial adaptive inflation files. These will be used by DART to control how
the ensemble is inflated during the first assimilation cycle.

It is convenient to create initial inflation files before you start an experiment. The initial inflation files may be created
with fill_inflation_restart, which was built by the quickbuild.csh step. A pair of inflation files is needed for each WRF
domain.

Within the $BASE_DIR/rundir directory, the input.nml file has some settings that control the behavior of
fill_inflation_restart. Within this file there is the section:

&fill_inflation_restart_nml
write_prior_inf = .true.
prior_inf_mean = 1.00
prior_inf_sd = 0.6

write_post_inf = .false.
post_inf_mean = 1.00
post_inf_sd = 0.6

input_state_files = 'wrfinput_d01'
single_file = .false.
verbose = .false.
/

These settings write a prior inflation file with a inflation mean of 1.0 and a prior inflation standard deviation of 0.6.
These are reasonable defaults to use. The input_state_files variable controls which file to use as a template. You
can either modify this namelist value to point to one of the wrfinput_d01_XXX files under $BASE_DIR/output/
<DATE>, for any given date, or you can copy one of the files to this directory. The actual contents of the file referenced
by input_state_files do not matter, as this is only used as a template for the fill_inflation_restart program to write the
default inflation values. Note that the number of files specified by input_state_files must match the number of domains
specified in model_nml:num_domains, i.e. the program needs one template for each domain. This is a comma-
separated list of strings in single ‘quotes’.

After running the program, the inflation files must then be moved to the directory expected by the driver.csh script.

Run the following commands with the dates for this particular tutorial:

244 Chapter 6. References

../../../models/wrf/WRF_DART_utilities/wrf_dart_obs_preprocess.html

DART, Release 9.10.3

cd $BASE_DIR/rundir
cp ../output/2017042700/wrfinput_d01_152057_0_mean ./wrfinput_d01
./fill_inflation_restart
mkdir ../output/2017042700/Inflation_input
mv input_priorinf_*.nc ../output/2017042700/Inflation_input/

Once these files are in the right place, the scripting should take care of renaming the output from the previous cycle as
the input for the next cycle.

6.96.6 Step 5: Cycled analysis system

While the DART system provides executables to perform individual tasks necessary for ensemble data assimilation, for
large models such as WRF that are run on a supercomputer queueing system, an additional layer of scripts is necessary
to glue all of the pieces together. A set of scripts is provided with the tutorial tarball to provide you a starting point
for your own WRF/DART system. You will need to edit these scripts, perhaps extensively, to run them within your
particular computing environment. If you will run on NCAR’s Cheyenne environment, fewer edits may be needed, but
you should familiarize yourself with running jobs on Cheyenne if necessary. A single forecast/assimilation cycle of
this tutorial can take an hour on Cheyenne - longer if debug options are enabled or the shared nodes are busy - shorter
if more cores or a higher optimization level is acceptable.

In this tutorial, we have previously edited the param.csh and other scripts. Throughout the WRF/DART scripts, there
are many options to adjust cycling frequency, domains, ensemble size, etc., which are available when adapting this set
of scripts for your own research. To become more famililar with this set of scripts and to eventually make these scripts
your own, we advise commenting out all the places the script submits jobs while debugging, placing an ‘exit’ in the
script at each job submission step. This way you will be able to understand how all of the pieces work together.

However, for this tutorial, we will only show you how the major components work. The next step in our process is
the main driver.csh script, which expects a starting date (YYYYMMDDHH) and the full path of the resource file as
command line arguments. In this example (which uses csh/tcsh syntax), we are also capturing the run-time output into
a file named run.out and the entire command will be running in the background:

cd $BASE_DIR/scripts
./driver.csh 2017042706 param.csh >& run.out &

driver.csh will - check that the input files are present (wrfinput files, wrfbdy, observation sequence, and DART restart
files), - create a job script to run filter in $BASE_DIR/rundir, - monitor that expected output from filter is created, -
submit jobs to advance the ensemble to the next analysis time, - (simultaneously with the ensemble advance) compute
assimilation diagnostics - archive and clean up - and continue to cycle until the final analysis time has been reached.

6.96.7 Step 6: Check your results

Once you have run the analysis system, it is time to check if things ran well or if there are problems that need to be
addressed. DART provides analysis system diagnostics in both state and observation space.

Check to see if the analysis system actually changed the state. You should find a file in the $BASE_DIR/output/
directory called analysis_increment.nc which is the change in the ensemble mean state from the background to the
analysis after running filter. Use a tool, such as ncview, to look at this file. You should see spatial patterns that look
something like the meteorology of the day. These should be places where the background (short ensemble forecast)
was adjusted based on the set of observations provided. Please become familiar with the Diagnostics Section of the
DART Documentation.

The driver.csh script also ran the diagnostics_obs.csh which runs the obs_diag program to investigate the observation
space analysis statistics. You’ll find the results of this in $BASE_DIR/output/<DATE>/obs_diag_output.
nc. There are many Matlab scripts in the $DART_DIR/diagnostics/matlab directory that help explore the
effectiveness of the assimilation. Look for their examples in the Observation-Space Diagnostics section.

6.96. WRF/DART Tutorial Materials for the Manhattan Release. 245

https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne/quick-start-cheyenne
../../../assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html

DART, Release 9.10.3

The additional files enable plotting the time series of recently assimilated observations once multiple cycles have been
run. Be sure to check that a high percentage (> 90%) of available observations were assimilated. Low assimilation rates
typically point to a problem with the background analysis, observation quality, and/or observation error specification
which are important to address before using system results for science.

Additional statistics can be evaluated using the converted final observation sequence file in netcdf format from the
obs_seq_to_netcdf tool. This file has a name like obs_epoch_029.nc, where the number in the file is largest in the
most recent set of observations processed. There are Matlab tools to explore where and why the observations were
rejected. plot_obs_netcdf.m and link_obs.m are particularly useful.

If you encounter difficulties setting up, running, or evaluating the system performance, please consider using the
GitHub Issue facility or feel free to contact us at dart(at)ucar(dot)edu.

6.96.8 Agenda from the 22 Jan 2014 tutorial

• Introduction (Anderson) - DART Lab materials

• WRF/DART basic building blocks (Romine) -slides (some material is outdated)

• Computing environment support (Collins) -slides

• WRF/DART application examples (Romine) -slides (some material is outdated)

• Observation processing (Collins) -slides

• DART diagnostics (Hoar) - observation diagnostics

6.96.9 More Resources

• Check or Submit DART Issues

• DAReS website

• Register for DART

• Preparing MATLAB to use with DART.

• WRF model users page

• Need help? e-mail dart (at) ucar (dot) edu

6.97 Supported Models

DART supported models:

• 9-variable

• AM2

• bgrid_solo

• Atmospheric Models in CESM

• Community Earth System Model

• CICE

• CLM

• CM1

246 Chapter 6. References

../../../assimilation_code/programs/obs_seq_to_netcdf/obs_seq_to_netcdf.html
https://github.com/NCAR/DART/issues
../../../guide/DART_LAB/DART_LAB.html
https://www.image.ucar.edu/wrfdart/classic/wrf_workshop_building_blocks.pdf
https://www.image.ucar.edu/wrfdart/classic/wrf_workshop_computing_environment.pdf
https://www.image.ucar.edu/wrfdart/classic/wrf_workshop_application_examples.pdf
https://www.image.ucar.edu/wrfdart/classic/wrf_workshop_observation_processing.pdf
https://github.com/NCAR/DART/issues
ttp://dart.ucar.edu
https://www2.cisl.ucar.edu/software/dart/download
https://dart.ucar.edu/pages/Getting_Started.html#matlab
http://www.mmm.ucar.edu/wrf/users

DART, Release 9.10.3

• COAMPS Nest

• COAMPS

• ECHAM

• FESOM

• GITM

• Ikeda

• LMDZ

• Lorenz 05

• Lorenz 63

• Lorenz 84

• Lorenz 96

• Lorenz 96 2-scale

• Forced Lorenz 96

• MITgcm_ocean

• MPAS_ATM

• MPAS OCN

• NCOMMAS

• NOAH, NOAH-MP

• null_model

• PBL_1D

• pe2lyr

• POP

• ROMS

• ROSE

• Simple advection

• SQG

• TIEGCM

• WRF-Hydro

• WRF

6.97. Supported Models 247

DART, Release 9.10.3

6.97.1 Hints for porting a new model to DART:

Copy the contents of the DART/models/template directory into a DART/models/xxx directory for your new
model.

If the coordinate system for the model is 1D, you’re ok as-is. If model coordinates are 3D, edit the work/path_names_*
files and change location/oned/* to location/threed_sphere/*

If your model is closer to the simpler examples (e.g. lorenz), the existing model_mod.f90 is a good place to start. If
your model is a full 3d geophysical one (e.g. like cam, pop, etc) then rename full_model_mod.f90 to model_mod.f90
and start there.

Edit all the work/path_names_* files and change models/template/xxx to use the name of the directory for your model.

Try ./quickbuild.csh and everything should compile at this point.

The required subroutines are these:

public :: get_model_size, &
get_state_meta_data, &
model_interpolate, &
shortest_time_between_assimilations, &
static_init_model, &
init_conditions, &
adv_1step, &
nc_write_model_atts, &
pert_model_copies, &
nc_write_model_vars, &
init_time, &
get_close_obs, &
get_close_state, &
end_model, &
convert_vertical_obs, &
convert_vertical_state, &
read_model_time, &
write_model_time

If needed, model_mod can contain additional subroutines that are used for any model-specific utility programs. No
routines other than these will be called by programs in the DART distribution.

Edit the model_mod and fill in these routines:

1. static_init_model() - make it read in any grid information and the number of variables that will be in the
state vector. Fill in the model_size variable. Now get_model_size() and get_model_time_step()
from the template should be ok as-is.

2. get_state_meta_data() - given an index number into the state vector return the location and kind.

3. model_interpolate() - given a location (lon/lat/vert in 3d, x in 1d) and a state QTY_xxx kind, return the
interpolated value the field has at that location. this is probably one of the routines that will take the most code
to write.

For now, ignore these routines:

nc_write_model_vars()
get_close_obs()
get_close_state()
end_model()
convert_vertical_obs()
convert_vertical_state()

(continues on next page)

248 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

read_model_time()
write_model_time()

If you have data in a dart initial condition/restart file, then you can ignore these routines:

shortest_time_between_assimilations()
init_conditions()

Otherwise, have them return an initial time and an initial default ensemble state.

If your model is NOT subroutine callable, you can ignore this routine:

adv_1step()

Otherwise have it call the interface to your model and add the files necessary to build your model to all the
work/path_names_* files. Add any needed model source files to a src/ directory.

If you want to let filter add gaussian noise to a single state vector to generate an ensemble, you can ignore this routine:

pert_model_copies()

Otherwise fill in code that does whatever perturbation makes sense to have an initial ensemble of states. in some cases
that means adding a different range of values to each different field in the state vector.

At this point you should have enough code to start testing with the model_mod_check program. It is a stand-alone
utility that calls many of the model_mod interface routines and should be easier to debug than some of the other DART
programs.

Once you have that program working you should have enough code to test and run simple experiments.

The general flow is:

1. ./create_obs_sequence - make a file with a single observation in it

2. ./perfect_model_obs - should interpolate a value for the obs

3. generate an ensemble of states, or set ‘perturb_from_single_instance’ to .true.

4. run ./filter with the single observation

5. Look at the preassim.nc and analysis.nc files Diff them with ncdiff:

ncdiff analysis.nc preassim.nc Innov.nc

plot it, with ncview if possible:

ncview Innov.nc

The difference between the two is the impact of that single observation see if it’s at the right location and if the
differences seem reasonable

If your model data cannot be output in NetCDF file format, or cannot be directly converted to NetCDF file format with
the ncgen program, there are 2 additional steps:

• model_to_dart - read your native format and output data in NetCDF format

• dart_to_model - write the updated data back to the native file format

More details on each of these 5 steps follows.

6.97. Supported Models 249

DART, Release 9.10.3

Running model_to_dart if needed

If your model data is not stored in NetCDF file format, a program to convert your data from the model to NetCDF is
needed. It needs to read your model data in whatever format it uses and create NetCDF variables with the field names,
and appropriate dimensions if these are multi-dimensional fields (e.g. 2d or 3d). If the data is ASCII, the generic
NetCDF utility ncgen may be helpful.

Running create_obs_sequence

You can make a synthetic observation (or a series of them) with this interactive program and use them for testing.
Before running make sure the observation types you want to use are in the input.nml file in the &obs_kind_nml
section, either in the assimilate or evaluate lists.

Run the program. Give the total number of obs you want to create (start with 1). Answer 0 to number of data items and
0 to number of quality control items. Answer 0 when it says enter -1 to quit. You will be prompted for an observation
number to select what type of observation you are going to test.

Give it a location that should be inside your domain, someplace where you can compute (by hand) what the correct
value should be. When it asks for time, give it a time that is the same as the time on your model data.

When it asks for error variance, at this point it doesn’t matter. give it something like 10% of the expected data value.
Later on this is going to matter a lot, but for testing the interpolation of a single synthetic obs, this will do.

For an output filename, it suggests ‘set_def.out’ but in this case tell it ‘obs_seq.in’.

Running perfect_model_obs

Make sure the NetCDF file with your input data matches the input name in the input.nml file, the &per-
fect_model_obs_nml namelist. Make sure the input obs_sequence is still set to ‘obs_seq.in’. run perfect_model_obs.
Something bad will happen, most likely. Fix it.

Eventually it will run and you will get an ‘obs_seq.out’ file. For these tests, make sure &obs_sequence_nml :
write_binary_obs_sequence = .false. in the input.nml file. The sequence files will be short and in ascii. You can
check to see what the interpolated value is. if it’s right, congratulations. If not, debug the interpolation code in the
model_mod.f90 file.

Using a single input state

In the &filter_nml namelist, set ‘perturb_from_single_instance’ to .true. this tells filter that you have not generated
N initial conditions, that you are only going to supply one and it needs to perturb that one to generate an initial
ensemble. Make sure the ‘input_state_files’ matches the name of the single state vector file you have. You can use
the ‘obs_seq.out’ file from the perfect_model run because now it has data for that observation. Later on you will need
to decide on how to generate a real set of initial states, and then you will set ‘perturb_from_single_instance’ back to
.false. and supply N files instead of one. You may need to set the &ensemble_manager_nml : perturbation_amplitude
down to something smaller than 0.2 for these tests - 0.00001 is a good first guess for adding small perturbations to a
state.

250 Chapter 6. References

DART, Release 9.10.3

Running filter

Set the ens_size to something small for testing - between 4 and 10 is usually a good range. Make sure your observation
type is in the ‘assimilate_these_obs_types’ list and not in the evaluate list. run filter. Find bugs and fix them until the
output ‘obs_seq.final’ seems to have reasonable values. Running filter will generate NetCDF diagnostic files. The
most useful for diagnosis will be comparing preassim.nc and analysis.nc.

Diagnostics

Run ‘ncdiff analysis.nc preassim.nc differences.nc’ and use your favorite netcdf plotting tool to see if there are any
differences between the 2 files. For modules using a regular lat/lon grid ‘ncview’ is a quick way to scan files. For
something on an irregular grid a more complicated tool will have to be used. If the files are identical the assimilation
didn’t do anything. Check to see if there is a non-zero DART quality control value in the obs_seq.final file. Check to
see if there are errors in the dart_log.out file. Figure out why there’s no change. If there is a difference, it should be at
the location of the observation and extend out from it for a short distance. If it isn’t in the right location, look at your
get_state_meta_data() code. If it doesn’t have a reasonable value, look at your model_interpolate() code.

Running dart_to_model if needed

After you have run filter, the files named in the ‘output_state_files’ namelist item will contain the changed values. If
your model is reading NetCDF format it can ingest these directly. If not, an additional step is needed to copy over the
updated values for the next model run.

6.98 9-variable

6.98.1 Overview

The 9-variable model is described in Lorenz (1980).1 Lorenz developed this primitive-equation model using shallow-
water equations as a starting point and manipulating the divergence equations so that the model exhibits quasi-
geostrophic behavior and transient gravity waves that dissipate with time. Gent and McWilliams (1982)2 explore
the behavior of this model extensively. For an introduction to shallow-water equations, we recommend consulting the
relevant section of a meteorology textbook such as section 4.5 of Holton and Hakim (2013).3

The model’s three X variables are at 0, 1/9, and 2/9, three Y variables are at 3/9, 4/9 and 5/9, and three Z variables are
at 6/9, 7/9, and 8/9 on a cyclic [0, 1] domain.

In the 9-variable model, DART advances the model, gets the model state and metadata describing this state. The model
can be configured by altering the &model_nml namelist in the input.nml file. The details of the &model_nml
namelist are always model-specific (there are no generic namelist values). The model time step defaults to 1 hour
(3600 seconds) but is settable by altering the namelist.

The 9-variable model has a work/workshop_setup.csh script that compiles and runs an example. This example
is referenced in Sections 7 and 10 of the DART_tutorial and is intended to provide insight into model/assimilation
behavior. The example may or may not result in good (or even decent!) results!

1 Lorenz, Edward N., 1980: Attractor Sets and Quasi-Geostrophic Equilibrium. Journal of the Atmospheric Sciences, 37, 1685-1699.
doi:10.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2

2 Gent, Peter R., and James C. McWilliams, 1982: Intermediate Model Solutions to the Lorenz Equations: Strange Attractors and Other
Phenomena. Journal of the Atmospheric Sciences, 39, 3-13. doi:10.1175/1520-0469(1982)039<0003:IMSTTL>2.0.CO;2

3 Holton, James R., and Gregory J. Hakim, 2013: An Introduction to Dynamic Meteorology – Fifth Edition. Academic Press, 532 pp.

6.98. 9-variable 251

https://doi.org/10.1175/1520-0469(1980)037\T1\textless {}1685:ASAQGE\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039\T1\textless {}0003:IMSTTL\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

6.98.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
g = 8.0,
deltat = 0.0833333333333333,
time_step_days = 0,
time_step_seconds = 3600

/

Description of each namelist entry

Item Type Description
g real(r8) Model parameter, see comp_dt in code for equations.
delta_t real(r8) Non-dimensional timestep. This is mapped to the dimensional timestep specified by

time_step_days and time_step_seconds.
time_step_days real(r8) Number of days for dimensional timestep, mapped to delta_t.
time_step_secondsreal(r8) Number of seconds for dimensional timestep, mapped to delta_t.

6.98.3 References

6.99 AM2

Attention: AM2 works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using AM2 with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

6.99.1 Overview

AM2 is an atmospheric model developed as part of a coupled atmosphere-ocean general circulation system developed
at NOAA’s Geophysical Fluid Dynamics Laboratory.

If you are interested in running DART with this model please contact the DART group at dart@ucar.edu for more
information.

6.100 bgrid_solo

6.100.1 Overview

DART interface module for the dynamical core of the GFDL AM2 Bgrid model. This model is subroutine callable
from DART and can be run in a similar fashion to low-order models that produce diagnostic output files with multiple
assimilation times per file.

252 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

The Bgrid model was originally configured as a comprehensive atmospheric model as described in Anderson et al.
(2004).1

All of that code remains in the directories under the DART/models/bgrid_solo directory, however, much of the
capability has been disabled by code modification. What is left is a dry dynamical core for a model with no diurnal
cycle at equinox with forcing described in Held and Suarez (1994).2

The default settings are for a model with a 60x30 horizontal grid and 5 vertical levels. This is close to the smallest
version that has somewhat realistic baroclinic instability resulting in mid-latitude ‘storm tracks’. The model resolution
can be changed with the entries in the bgrid_cold_start_nml namelist described in the Namelist section. It
may be necessary to change the model time step to maintain stability for larger model grids. The model state variables
are the gridded surface pressure, temperature, and u and v wind components.

The bgrid_solo directory has a work/workshop_setup.csh script that compiles and runs an example. This
example is intended to demonstrate that the same process used for a low-order model may be used for a much more
complex model and generates output for state-space or observation-space diagnostics.

Some examples of ways in which this model can be configured and modified to test DART assimilation capabilities
are documented in Anderson et al. (2005).3

Several programs that generate interesting observation sequences are available in the DART/models/bgrid_solo
directory. These programs take interactive user input and create a text file that can be piped into program
create_obs_sequence to create obs_sequence files. These can serve as examples for users who are interested in
designing their own custom obs_sequence files.

Program column_rand creates an obs_sequence with randomly located columns of observations (essentially syn-
thetic radiosondes) that observe surface pressure along with temperature and wind components at all model levels.

Program id_set_def_stdin generates an obs_sequence file that observes every state variable with error variance
of 10000 for surface pressure and 1.0 for temperature and wind components.

Program ps_id_stdin generates an obs_sequence that observes every surface pressure variable for the default
model size (30x60) with an error variance of 100.

Program ps_rand_local generates a set of randomly located surface pressure observations with an interactively
specified error variance. It also allows the observations to be confined to a rectangular subdomain.

6.100.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
current_time = 0, 0, 0, 0
override = .false.,
dt_atmos = 3600,
days = 10,
hours = 0,
minutes = 0,
seconds = 0,
noise_sd = 0.0,

(continues on next page)

1 Anderson, J. L. and Coauthors, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST
simulations. Journal of Climate, 17, 4641-4673. doi:10.1175/JCLI-3223.1

2 Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models,
Bulletin of the American Meteorological Society, 75(10), 1825-1830. doi:10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2

3 Anderson, J. L., Wyman, B., Zhang, S. & Hoar, T., 2005: Assimilation of surface pressure observations using an ensemble filter in an idealized
global atmospheric prediction system, Journal of the Atmospheric Sciences, 62, 2925-2938. doi:10.1175/JAS3510.1

6.100. bgrid_solo 253

https://doi.org/10.1175/JCLI-3223.1
https://doi.org/10.1175/1520-0477(1994)075\T1\textless {}1825:APFTIO\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/JAS3510.1

DART, Release 9.10.3

(continued from previous page)

dt_bias = -1,
state_variables = 'ps', 'QTY_SURFACE_PRESSURE',

't', 'QTY_TEMPERATURE',
'u', 'QTY_U_WIND_COMPONENT',
'v', 'QTY_V_WIND_COMPONENT',

template_file = 'perfect_input.nc'
/
only used if initial conditions file not specified in run
&bgrid_cold_start_nml

nlon = 60,
nlat = 30,
nlev = 5,
equal_vert_spacing = .true.

/
Values in hs_forcing_nml are described in Held and Suarez (1994)
&hs_forcing_nml

delh = 60.,
t_zero = 315.,
t_strat = 200.,
delv = 10.,
eps = 0.,
ka = -40.,
ks = -4.,
kf = -1.,
sigma_b = .7,
do_conserve_energy = .false.

/
&bgrid_core_driver_nml

damp_coeff_wind = 0.10,
damp_coeff_temp = 0.10,
damp_coeff_tracer = 0.10,
advec_order_wind = 4,

advec_order_temp = 2,
advec_order_tracer = 2,
num_sponge_levels = 1,
sponge_coeff_wind = 1.00,
sponge_coeff_temp = 1.00,
sponge_coeff_tracer = 1.00,
num_fill_pass = 2,
decomp = 0,0,
num_adjust_dt = 3,
num_advec_dt = 3,
halo = 1,
do_conserve_energy = .false.

/
&bgrid_integrals_nml

file_name = 'dynam_integral.out',
time_units = 'days',
output_interval = 1.00

/

254 Chapter 6. References

DART, Release 9.10.3

Description of each namelist entry

The following values are specified in model_nml.

Item Type Description
cur-
rent_time(4)

in-
te-
ger

Specifies the initial time of the Bgrid model internal clock. The four integer values are the day, hour,
minutes, and seconds. The default version of the Bgrid model has neither a diurnal or seasonal cycle,
so these can all be set to 0, the default value.

over-
ride

log-
ical

If true, then the initial model date is taken from namelist entry current_time, even if an at-
mos_model.res file is found in directory INPUT. For most DART applications, atmospheric restart
values are coming from DART files and no INPUT directory is used.

dt_atmosin-
te-
ger

Model timestep in seconds.

noise_sdreal(r8)Standard deviation of random perturbations to the time tendency of temperature applied at each
timestep. Each gridpoint value of the computed temperature tendency is multiplied by 1+N(0,
noise_sd) before the updated values of temperature are computed.

dt_biasin-
te-
ger

Allows a simple mechanism to simulate model error. If dt_bias is non-zero, the assimilation programs
believe that each model advance changes the time by dt_bias. However, internally the bgrid model
is moving things forward by dt_atmos. By running perfect_model_obs with one time step for the
internal bgrid clock (for instance dt_atmos = 3600, dt_bias = 3600), and filter with another (dt_atmos
= 3000, and dt_bias = 3600) model error is simulated.

state_variables(:,2)char-
ac-
ter(len=129)

Strings that identify the bgrid_solo variables that should be part of the DART state vector. The first
column is the netCDF variable name, the second column is the corresponding DART quantity.

tem-
plate_file

char-
ac-
ter(len=256)

This is the name of the file that specifies the resolution of the variables DART uses to create the
DART state vector. If template_file = “null” the &bgrid_cold_start_nml namelist variables are used
to specify the resolution. The actual input filenames for filter and perfect_model_obs come from their
respective namelists. The resolutions in the file specified in template_file must match the resolutions
of the variables in the input filenames. To start an experiment with a new model resolution, set
template_file to “null” and set the resolutions in bgrid_cold_start_nml.

The following values are specified in bgrid_cold_start_nml.

Item Type Description
nlon integer The number of longitudes on the model grid.
nlat integer The number of latitudes on the model grid.
nlev integer The number of model levels.
equal_vertical_spacing logical Model levels are equally spaced in pressure if true.

The Held-Suarez forcing details can be modified with the hs_forcing_nml namelist using the documentation in
Held and Suarez (1994).

Model dynamics can be adjusted with the bgrid_core_driver_nml following the documentation in the references and
internal documentation in the bgrid code.

6.100. bgrid_solo 255

DART, Release 9.10.3

6.100.3 References

6.101 Atmospheric Models in CESM

6.101.1 Overview

The larger context of the Community Earth System Model and DART interactions is described in the CESM readme
This document focuses on the several atmospheric models that have been developed or adapted to run in the CESM
environment. They are named according to their dynamical core (“dycore”). As of 2021 these include Finite Volume
Community Atmosphere Model (CAM-FV), Spectral Element (CAM-SE), and MPAS. The DART system has sup-
ported data assimilation into CAM-FV continuously for many years. It has also provided an interface to CAM-SE on
an as-needed basis, but we expect to make that a continuously supported interface in 2021. An interface to MPAS is
being developed (contact us about the current status).

The flexibility of the DART environment has led to its use by graduate students, post-graduates, and scientists at
universities and research labs to conduct data assimilation research. Others are using the products of data assimilation
(analyses), which were produced here at NCAR using CESM+DART, to conduct related research. The latest reanalysis
is described in the DART 1 degree reanalysis wiki

The variety of research can be sampled on the DART Publications page.

Terminology

The atmospheric component used in CESM is built with two independent main characteristics. CESM labels these as:

resolution

signifies both the horizontal resolution of the grid (not the vertical) and the dynamical core run on the
specified grid. The dynamical core refers to the fluid dynamical equations run on the specified grid.
Examples of resolution (short) names are f19_f19 (~2 degree Finite Volume dycore) or ne30np4_gx1v6
(~1 degree Spectral Element dycore).

compset

refers to the vertical grid and the parameterizations – the formulation of the subgridscale physics – as
well as the combination of active, data, or stub model components. These parameterizations consist of the
equations describing physical processes such as convection, radiation, and chemistry.

• The vertical grid is determined by the needs of the chosen parameterizations, thus the vertical spac-
ing and the top level of the model domain vary with those choices.

• The combinations of parameterizations and vertical grids are named: CAM3.5, CAM5, CAM#, . . .
WACCM, WACCM#, WACCM-X, CAM-Chem.

• The compset is specified as described in the CESM readme.

ensemble, multi-instance, and multidriver

These are essentially synonyms referring to multiple, closely related models or model states. “Ensemble”
is DART’s vocabulary, while “multi-instance” is CESM’s original term for an ensemble. “Multidriver” is
replacing “multi-instance”, and refers to the CESM module which coordinates the running of all of the
model components. Similarly, DART ensemble “members” are the same as CESM “instances”.

CASE, CASEROOT

Running a DART setup script creates a CESM “CASE” (the name of your experiment) in the “CASE-
ROOT” directory (from where jobs will be controlled and launched), both of which are defined in the

256 Chapter 6. References

../CESM/readme.html
http://www2.cesm.ucar.edu/models
https://github.com/NCAR/DART/wiki/1-degree,-CAM6,-ensemble-reanalysis-for-CESM-experiments-(2011-thru-2019):-DATM,-hindcasts,-model-evaluation
https://dart.ucar.edu/pages/Publications.html
../CESM/readme.html

DART, Release 9.10.3

setup script. There will also be a run directory named $CASEROOT in your scratch space (usually),
where the fortran executables can also be found ($scratch/$CASEROOT/bld).

Setup Scripts describes how to specify these and other choices in the assimilation setup scripts and namelists.

6.101.2 CAM-FV

Here are some highlighted features of this DART interface to CAM-FV.

• Assimilate within the CESM software framework by using the multidriver capability of CESM2 (and later).
This enables assimilation of suitable observations into a variety of CESM components and leverages CESM’s
build, run, and archiving capabilities.

• Use any horizontal and vertical resolution of CAM-FV.

• Assimilate a variety of observations. To date the observations successfully assimilated include:

– NCEP reanalysis BUFR obs (T,U,V,Q),

– Global Positioning System radio occultation observations (refractivity and electron density),

– AIRS retrievals (T and Q),

– MOPITT (carbon monoxide, when a chemistry model is incorporated into CAM-FV),

– OCO2 (carbon dioxide),

– Aura MLS (T),

– SABER (T),

– GNSS (total electron content, “TEC”),

– The development of the ability to assimilate RTTOV radiances is nearly complete (2021: contact us for
the current status).

– Research has also explored assimilating surface observations, cloud liquid water, and aerosols.

The Aura MLS, SABER, and GNSS observations have been assimilated into WACCM and WACCM-X; “high
top” versions of CAM-FV.

• Specify, via namelist entries, the CAM (initial file) variables which will be directly affected by the observations,
that is, the state vector.

• Generate analyses on the CAM grid which have only CAM model error in them, rather than another model’s.

Reanalyses

There have been two large-scale reanalysis efforts using CAM-FV and DART. The CAM6 Data Assimilation Re-
search Testbed (DART) Reanalysis is archived in the NCAR Research Data Archive DS345.0 . (See the 1 degree
reanalysis wiki). It contains just under 120Tb (yes Tb) of data:

These CAM6+DART Reanalysis data products are designed to facilitate a broad variety of research using
NCAR’s CESM2 models, ranging from model evaluation to (ensemble) hindcasting (initial conditions),
data assimilation experiments, and sensitivity studies. They come from an 80 member ensemble reanalysis
of the global troposphere and stratosphere using CAM6-FV from CESM2.1. The data products represent
the actual states of the atmosphere from 2011-2019 at a ~1 degree horizontal resolution and up to 6
hourly frequency. Each ensemble member is an equally likely description of the atmosphere, and is also
consistent with dynamics and physics of CAM6-FV.

An earlier, more limited dataset can be found in the **Ensemble of Atmospheric Forcing Files from a CAM4-FV
Reanalysis** is archived in the NCAR Research Data Archive DS199.1 . It contains about 1.5Tb of data:

6.101. Atmospheric Models in CESM 257

https://rda.ucar.edu/datasets/ds345.0/#!description
https://github.com/NCAR/DART/wiki/1-degree,-CAM6,-ensemble-reanalysis-for-CESM-experiments-(2011-thru-2019):-DATM,-hindcasts,-model-evaluation
https://github.com/NCAR/DART/wiki/1-degree,-CAM6,-ensemble-reanalysis-for-CESM-experiments-(2011-thru-2019):-DATM,-hindcasts,-model-evaluation
https://github.com/NCAR/DART/wiki/2-degree-DATM-ensemble-for-CESM-experiments-(1998-thru-2010)
https://github.com/NCAR/DART/wiki/2-degree-DATM-ensemble-for-CESM-experiments-(1998-thru-2010)
https://rda.ucar.edu/datasets/ds199.1/

DART, Release 9.10.3

This dataset contains files that are an ensemble of ‘coupler history’ files from an 80-member reanaly-
sis performed with the Data Assimilation Research Testbed (DART) using the Community Atmosphere
Model Version 4 with the finite volume core (CAM4-FV) at 1.9 degree by 2.5 degree resolution. The
observations assimilated include all those used in the NCEP/NCAR reanalysis (temperature and wind
components from radiosondes, aircraft, and satellite drift winds) plus radio occultation observations from
the COSMIC satellites starting in late 2006. These files are intended to be used as ‘DATM stream files’
for CESM component sets that require a data atmosphere. Some example stream text files are included in
the RDA to illustrate how to use these data.

6.101.3 Observations

The CAM6+DART Reanalysis used “observation sequence files” which contain the types of observations in the
table below (“T” = temperature, “U” = zonal wind, “V” = meridional wind, “Q” = specific humidity, “refrac-
tivity” = the bending of light by density variations). These files are available on NCAR’s glade file system:
/glade/p/cisl/dares/Observations/NCEP+ACARS+GPS+AIRS/Thinned_x9x10. Versions of these files, which also
have the results of the reanalysis in them, are available from the RDA ds345.0 linked above.

NCEP NCEP’s PREPBUFR files (prepqm) in NCAR’s Research Data Archive: (https://rda.ucar.edu/datasets/ds090.
0/)

COSMIC This site (http://www.cosmic.ucar.edu/) provides atmospheric refractivity from a variety of satellites (in-
cluding COSMIC), which receive Global Positioning System radio occultation signals.

AIRS Retrievals from infrared soundings from the AQUA satellite They are thinned by a factor of 90 to make their
density comparable to the radiosonde network.

Observation or Re-
trieval

Platform Distribution Data
Source

T, U, V, Q Radiosondes from balloons mostly land NCEP
T, U, V ACARS commercial aircraft mostly North America NCEP
T, U, V AIRCRAFT commercial aircraft mostly non-North Amer-

ica
NCEP

U, V Cloud drift winds from GOES satel-
lites

midlatitudes and tropics NCEP

index of refraction Global Positioning System receivers global COSMIC
T, Q AQUA satellite; AIRS instrument global AIRS
altimeter Radiosondes, bouys global surface NCEP

Sample sets of observations, which can be used with CAM+DART assimilations, can be found at http://www.image.
ucar.edu/pub/DART/Obs_sets/ of which the NCEP BUFR observations are the most widely used.

6.102 The CAM-FV DART Interface

The 19 public interface subroutines in model_mod.f90 are standardized for all DART compliant models. These
interfaces allow DART to get the model state and metadata describing this state, find state variables that are close
to a given location, and do spatial interpolation for a variety of variables required by observational operators. Your
choices for how the assimilation (not the hindcast) will happen are defined in the cam-fv/work/input.nml file.
In that file, the model_nml namelist lets you control the interaction with CAM-FV. The CAM-FV, which DART will
interact with, is defined by the setup scripts, as described next.

258 Chapter 6. References

https://rda.ucar.edu/datasets/ds090.0/
https://rda.ucar.edu/datasets/ds090.0/
http://www.cosmic.ucar.edu/
http://airs.jpl.nasa.gov/
http://aqua.nasa.gov/
http://www.image.ucar.edu/pub/DART/Obs_sets/
http://www.image.ucar.edu/pub/DART/Obs_sets/

DART, Release 9.10.3

6.102.1 Setup Scripts

Unlike pre-Manhattan versions of DART-CAM, CESM (CAM) runs using its normal scripts, then stops and calls
a DART script, which does the desired assimilation tasks, then returns to the CESM run script for the next model
advance. See the CESM interface documentation in the CESM readme for more general information about running
DART with CESM. Due to the complexity of the CESM software environment, the versions of CESM which can be
used for assimilation are more restricted than previously. Each supported CESM version has similar, but unique, sets
of setup scripts and CESM SourceMods. Those generally do not affect the cam-fv/model_mod.f90 interface.

The primary purpose of a setup script is to set up a CESM “CASE” (compset, resolution, etc.), which can be used by
DART. The ability to use DART programs is then set up by a second script; DART_config, which was created by
the setup script. Here is an outline of the scripts, which are currently (2021) in shell_scripts. They are roughly in order
of complexity, which is the order in which you might want to use them. The indenting shows which scripts are used
by, or associated with, another script.

cesm2_1/ Directory containing scripts developed for
→˓CESM2_1

spinup_single Setup a single instance (member) CAM-FV case to
→˓advance a model state

some months to a desired date.
setup_hybrid Basic script to set up an assimilation case.

DART_config.template Modified to create the script which modifies a
→˓CESM CASE to do assimilation.

no_assimilate.csh.template Modified to create a script which does no
→˓assimilation,

but prepares files for the next model advance.
assimilate.csh.template Modified to create the assimilate.csh script

compress.csh Example of compressing assimilation output for
→˓efficient archiving.

Can be called by assimilate.csh
mv_to_campaign.csh Example of how to use globus to move files to a

→˓remote archive.
setup_advanced Like setup_hybrid, but more model and

→˓assimilation features can be modified.
It modifies DART_config.template like setup_

→˓hybrid does.
setup_single_from_ens Set up a single-instance run using initial

→˓conditions taken from
a single instance of a multi-instance CAM

→˓hindcast. Useful for debugging.
standalone.pbs Batch job tests of assimilation with no model

→˓advances.
test_assimilate.csh A simpler (earlier) form of assimilate.csh.

cesm2_0/ Similar contents to cesm2_1, plus the following.
obs_seq_tool_series.csh Script to process a series of obs_seq.final

→˓files,
to change any of the properties available to

→˓obs_sequence_tool.
spinup_single_sst.25 Same as cesm2_1/spinup_single, but uses a high

→˓resolution SST dataset.

The scripts in cesm#_# will handle, for that CESM version;

• all CAM-FV “physics” variants and vertical resolutions. For example, CAM5.5, CAM6, . . . , WACCM4,
WACCM6, WACCM-X, . . . , CAM-Chem.

• all horizontal resolutions of CAM-FV; 1.9x2.5 (f19xf19), 0.9x1.25 (f09xf09),

Physics variants of other dycores are handled in other “model” interfaces, such as models/cam-se.

6.102. The CAM-FV DART Interface 259

../CESM/readme.html

DART, Release 9.10.3

SourceMods

The most recent SourceMods for the CAM6+DART interface can be fetched from the github reanalysis repository.
Change to the cesm2_1_forcing_rean branch, which includes a SourceMods tar file. Unpack that file into the location
you specify in the setup script, before building the CASE.

6.102.2 Namelists

DART assembles the namelists for all of the relevant modules into a single namelist file; models/cam-fv/input.
nml. This section focuses on model_nml, but others are referenced, as needed. Namelists start with an ampersand
& and terminate with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from
prematurely terminating the namelist. Text outside of the &. . . / pairs is ignored.

Here’s a list of the model_nml variables and default values. More detailed descriptions follow in a table and subsec-
tions.

&model_nml
cam_template_filename = 'caminput.nc'
cam_phis_filename = 'cam_phis.nc'
vertical_localization_coord = 'PRESSURE'
use_log_vertical_scale = .false.
no_normalization_of_scale_heights = .true.
no_obs_assim_above_level = -1,
model_damping_ends_at_level = -1,
state_variables = ''
assimilation_period_days = 0
assimilation_period_seconds = 21600
suppress_grid_info_in_output = .false.
custom_routine_to_generate_ensemble = .true.
fields_to_perturb = ''
perturbation_amplitude = 0.0_r8
using_chemistry = .false.
use_variable_mean_mass = .false.
debug_level = 0

/

260 Chapter 6. References

https://github.com/kdraeder/cesm\protect \T1\textbraceright \protect \T1\textbraceleft github.com/kdraeder/cesm

DART, Release 9.10.3

Item Type Description
cam_template_filenamechar-

acter
(len=128)

CAM initial file used to provide configuration information, such as the grid resolution, number
of vertical levels, whether fields are staggered or not, etc. Created by the first hindcast.

cam_phis_filenamechar-
acter
(len=128)

CAM topography file. Reads the “PHIS” NetCDF variable from this file. Typically this is a
CAM History file because this field is not normally found in a CAM initial file. Created by the
first hindcast.

verti-
cal_localization_coord

char-
acter
(len=128)

The vertical coordinate to which all vertical locations are converted in model_mod. Valid op-
tions are “pressure”, “height”, “scaleheight” or “level”.

use_log_vertical_scalelogi-
cal

Use the log of the vertical distances when interpolating. This is only used for locations hav-
ing which_vert = VERTISPRESSURE. It should be .true. when vertical_localization_coord =
“scaleheight” or “height”.

no_normalization_of_scale_heightslogi-
cal

If true (default), scale height is computed as the log of the pressure at the given location. Be-
ware: unnormalized scale heights decrease upward, and may have values < 0. This works
because only differences of scale height are used and find_enclosing_indices assigns the larger
and smaller coordinate values correctly in the interpolation. If false, the scale height is com-
puted as the log of the ratio of the surface pressure to the pressure aloft. In previous versions
normalization was the default. It is slightly less efficient.

no_obs_assim_above_levelinte-
ger

Because the top of the model is highly damped it is recommended to NOT assimilate observa-
tions in the top model levels. The units here are CAM model level numbers. Set it to equal or
below the lowest model level (the highest number) where damping is applied in the model. See
Diffusion, below.

model_damping_ends_at_levelinte-
ger

Set this to the lowest model level (the highest number) where model damping is applied. Ob-
servations below the ‘no_obs_assim_above_level’ cutoff, but close enough to the model top to
have an impact during the assimilation, will have their impacts decreased smoothly to 0 at this
given model level. The assimilation should make no changes to the model state above the given
level. See Diffusion, below.

state_variableschar-
acter
(len=64)
di-
men-
sion(100)

Character string table that includes: 1. CAM initial file variable names of fields to be read
into the state vector, 2. the corresponding DART QTY (quantity) 3. if a bounded quantity, the
minimum and maximum valid values, 4. the string ‘UPDATE’ indicates that the updated values
should be written back to the output file. ‘NOUPDATE’ will skip writing this field at the end
of the assimilation. See State Variables, below.

as-
simila-
tion_period_days

inte-
ger

With assimilation_period_seconds, sets the assimilation cycle length. They should match the
model advance time. The CAM scripts distributed with DART set these to 0 days, 21600
seconds (6 hours). They also set the assimilation window width.

as-
simila-
tion_period_seconds

inte-
ger

See assimilation_period_days

sup-
press_grid_info_in_output

logi-
cal

Filter can update fields in existing files or create diagnostic/output files from scratch. By default
files created from scratch include a full set of CAM grid information to make the file fully self-
contained and plottable. However, to save disk space the grid variables can be suppressed in
files created by filter by setting this to true.

cus-
tom_routine_to_generate_ensemble

logi-
cal

Use the subroutines in model_mod.f90 to create an ensemble of initial conditions (with non-0
spread) from a single CAM initial file. This is useful when there is no existing ensemble of
ICs. See Perturbed, below.

fields_to_perturbchar-
acter,
(len=32)
di-
men-
sion(100)

If perturbing a single state to generate an ensemble, set ‘custom_routine_to_generate_ensemble
= .true.’ and list here the DART QTYs of the field(s) to be perturbed.

per-
turba-
tion_amplitude

real(r8),
di-
men-
sion(100)

For each field name in the ‘fields_to_perturb’ list, give the standard deviation of the gaussian
noise to add to each field being perturbed.

us-
ing_chemistry

logi-
cal

If using CAM-CHEM, set this to .true.

us-
ing_variable_mean_mass

logi-
cal

If using any variant of WACCM (a very high model top), set this to .true.

de-
bug_level

inte-
ger

Set this to increasingly larger values to print out more debugging information. Note that this
can be very verbose. Use with care.

6.102. The CAM-FV DART Interface 261

DART, Release 9.10.3

6.102.3 Setup Variations

The default values in cam-fv/shell_scripts/cesm#_#/setup* and in the namelists in cam-fv/work/
input.nml are (mostly) set up for a single assimilation cycle of CAM-fV, starting from a single model state, which
must be perturbed into an ensemble. The following are suggestions for setting it up for other assimilations. Namelist
variables listed here might be in any namelist within input.nml.

State Variables

This implementation of the DART interface module for the CAM and WACCM models uses the CAM initial files (not
restart files) for transferring the model state to and from the filter.

The DART state vector should include all prognostic variables in the CAM initial files which cannot be calculated
directly from other prognostic variables. In practice the state vector sometimes contains derived quantities to enable
DART to compute forward operators (expected observation values) efficiently. The derived quantities are often over-
written when the model runs the next timestep, so the work DART does to update them is wasted work. The standard
state vector contains the following fields, as entered into the input.nml:model_nml namelist.

state_variables =
'T', 'QTY_TEMPERATURE', 'NA', 'NA', 'UPDATE'
'US', 'QTY_U_WIND_COMPONENT', 'NA', 'NA', 'UPDATE'
'VS', 'QTY_V_WIND_COMPONENT', 'NA', 'NA', 'UPDATE'
'Q', 'QTY_SPECIFIC_HUMIDITY', 'NA', 'NA', 'UPDATE'
'CLDLIQ','QTY_CLOUD_LIQUID_WATER', 'NA', 'NA', 'UPDATE'
'CLDICE','QTY_CLOUD_ICE', 'NA', 'NA', 'UPDATE'
'PS', 'QTY_SURFACE_PRESSURE', 'NA', 'NA', 'UPDATE'

Any tracers or chemicals (“constituents” in CESM’s vocabulary), which are needed for a given study and exist in the
initial files, can be added to state_variables. See the list for CAM6, below. CAM6 variables which are not in
the initial file can be added to it if they are in CAM’s list of constituents (or “tracers”). Those variables are identified
by a &IC suffix in the “MASTER FIELD LIST” in an “atm.log. . . ” or “atm_0001.log. . . ” file. Finally (you’re deeply
into the weeds here), variables can be added to the list of constituents using CAM’s cnst_add function, which will
not be described here. In all of these cases, minor modifications to model_mod.f90 and CAM may be necessary.

Here is a list of CAM initial file variables, excluding the variables listed as parts of the most common state vector,
above. Each would need to have a DART *QTY* associated with it.

Other moisture variables

• NUMICE “cloud ice number “

• NUMLIQ “cloud liquid number “

• NUMRAI “rain number “

• NUMSNO “snow number “

• RAINQM “rain amount “

• SNOWQM “snow amount “

Aerosols

• DMS “dimethyl sulfide “

• H2O2 “H2O2”

• H2SO4 “H2SO4”

• SO2 “SO2”

• SOAG “secondary organic aerosols gas “

262 Chapter 6. References

DART, Release 9.10.3

MAM4 modal aerosol scheme variables (“[]” means use a single digit.)

• bc_a[1,4] “black carbon, modes 1 and 4 “

• dst_a[1-3] “dust, modes 1 through 3”

• ncl_a[1-3] “sea salt (NaCl) , modes 1 through 3”

• num_a[1-4] “aerosol number density, modes 1 through 4”

• pom_a[1,4] “primary-organic aerosols, modes 1 and 4”

• soa_a[1,2] “secondary-organic aerosols, modes 1 and 2”

• so4_a[1-3] “sulfate (SO4) modes 1 through 3”

Expected observation values on pressure, scale height, height or model levels can be requested from
model_interpolate. Surface observations can not yet be interpolated, due to the difference between the
model’s lowest level (~7 hPa above the model surface) and the Earth’s surface where the observations are made.
Model_interpolate can be queried for any (non-surface) variable in the state vector (which are variables native to
CAM) plus pressure on height levels.

The reasons initial files are used instead of restart files include:

1. The contents of the restart files vary depending on both the model release version and the physics packages
selected.

2. There is no metadata describing the variables in the restart files. Some information can be tracked down in the
atm.log file, but not all of it.

3. The restart files (for non-chemistry model versions) are much larger than the initial files (and we need to deal
with an ensemble of them).

4. The temperature on the restart files is virtual equivalent potential temperature, which requires (at least) surface
pressure, specific humidity, and sensible temperature to calculate.

5. CAM does not call the initialization routines when a hindcast is started in ‘’restart” mode, so fields which are
not modified by DART may be inconsistent with fields which are.

6. If DART modifies the contents of the .r. restart file, it might also need to modify the contents of the .rs.
restart file, which has similar characteristics (1-3 above) to the .r. file.

7. There is no need for exact restart performance because filter alters the model state, making exact restarts impos-
sible.

Inflation

Assimilation using CAM and WACCM should generally use one of DART’s adaptive inflation algorithms. As of 2021
these are inf_flavor = 2 (a widely used and tested option) and flavor 5 (similar to 2, but enhanced by the use of an
gamma distribution instead of a normal distribution). “Prior” inflation is generally a better choice than “posterior”, so
set input.nml:filter_nml:

inf_initial_from_restart = .true., .false.
inf_sd_initial_from_restart = .true., .false.

For the first cycle, if you have inflation restart files, you should stage those in the $RUNDIR where the other restart files
will be staged, with names which include “dart.rh.cam_output_priorinf_mean” and “dart.rh.cam_output_priorinf_sd”
in them, so that assimilate.csh will find them. If you don’t have restart files, set *initial_from_restart
to .false. and assimilate.csh will create inflation restart files using the values in inf_initial and
inf_sd_initial. You will need to run the assimilation for some days in order to allow the inflation values to
equilibrate with the observation network and model ensemble spread.

6.102. The CAM-FV DART Interface 263

DART, Release 9.10.3

Perturbed Ensemble

A multidriver configuration of CAM needs an ensemble of initial condition files for each active component in order to
start a hindcast. The set of files must include, at a minimum, CAM initial files and CLM restart files. Usually CICE
is also active, and other components may be, which need their own restart files. If there is no suitable initial ensemble
for starting the ensemble hindcast, one can be generated from a single model state by linking it into suitably named
files (see ../CESM/shell_scripts/link_ens_to_single.csh), running the first ensemble hindcast, and then telling DART
to perturb each member before the first assimilation.

The default perturbation routine in filter adds gaussian noise equally to all fields in the state vector. For CAM it
is preferable to use the perturbation mechanism in the cam-fv/model_mod.f90. This allows the exclusion of fields
which are tricky to perturb, such as specific humidity. The mechanism is controlled by the input.nml:model_nml
“perturb” variables. Typically, ensemble spread is generated from a single state by adding small perturbations to only
the temperature field “T” and letting the model expand the perturbations to other fields and increase the sizes. For
example,

filter_nml:
single_file_in = .false., (Even though your initial ensemble may be

→˓linked to a single file)
perturb_from_single_instance = .true.
perturbation_amplitude (ignored, because model_mod defines it)

model_nml:
custom_routine_to_generate_ensemble = .true.
fields_to_perturb = 'QTY_TEMPERATURE'
perturbation_amplitude = 0.1

Continuing after the first cycle

If your first hindcast+assimilation cycle uses an ensemble created from a single file, you will need to change to the
‘continuing’ mode, where CAM will not perform all of its startup procedures and DART will use the most recently
created ensemble.

! model_nml:
custom_routine_to_generate_ensemble = .true.
fields_to_perturb = '' (Turns off perturbations)
perturbation_amplitude = 0.1 (Ignored. Can change to 0.0_r8 for

→˓consistency)

! CESM's env_run.xml:
<entry id="CONTINUE_RUN" value="TRUE">

Combining multiple cycles into one job

Setup_hybrid and setup_pmo are set up in the default cycling mode, where each submitted job performs one
model advance and one assimilation, then resubmits the next cycle as a new job. For long series of cycles, this can
result in a lot of time waiting in the queue for short jobs to run. Prevent this by using CESM’s multicycling mode. To
request 2 hours to run 8 assimilation cycles, in $CASEROOT run commands:

= ./xmlchange DATA_ASSIMILATION_CYCLES=8
./xmlchange --subgroup case.run --id JOB_WALLCLOCK_TIME --val 2:00:00
./xmlchange --subgroup case.run --id USER_REQUESTED_WALLTIME --val 2:00

264 Chapter 6. References

DART, Release 9.10.3

Diffusion Near the Model Top

CAM applies extra diffusion to the top levels of the model. The number of levels is indirectly controlled
by the CAM namelist variable div24del2flag. It’s not productive to assimilate in those levels because
of the distorting effects of the diffusion, so the cam-fv/model_mod namelist has variables to prevent as-
similation there. Model_damping_ends_at_level can be set to the same value that is activated by
div24del2flag, or larger. An alternative way to prevent assimilation in those layers is to exclude high observa-
tions using no_obs_assim_above_level. The CAM6 reanalysis mentioned above used this option, with
no_obs_assim_above_level = 5. If model_damping_ends_at_level is turned on (has a value other than -1) it’s still
sensible to exclude high observations using no_obs_assim_above_level.

It’s worth considering the vertical localization when setting the value of no_obs_assim_above_level. Observations at
one level can affect model variables at other levels if the localization is broad enough. The effective vertical localization
can be calculated by

cutoff * 2 * vert_normalization_{your_vert_coord}

where cutoff is the half-width (hence the 2) of the horizontal localization (radians) and
vert_normalization_... is the conversion from radians to the vertical coordinate system you’ve cho-
sen using vertical_localization_coord. The resulting number can be compared against CAM’s vertical
levels to decide which should be excluded.

Minimum Recommended Values to Control Assimilation Near the Model Top.

div24del2flag Diffusion levels model_damping_ends_at_level no_obs_assim_above_level
CAM: 2 2 2 (2; depends on localization)
WACCM: 2 3 3 (3; depends on localization)
CAM 4, 24 3 3 (3; depends on localization)
WACCM: 4, 24 4 4 (4; depends on localization)

WACCM

WACCM[#][-X] has a much higher top than the CAM versions, which requires the use of scale height as the vertical
coordinate, instead of pressure, during assimilation. Another impact of the high top is that the number of top model
levels with extra diffusion in the FV version is different than in the low-topped CAM-FV, so the div24del2flag
options lead to the larger minimum values listed in the table above.

You may need to experiment to find the best choices of DART namelist variables to use with WACCM, but a good
place to start includes

use_log_vertical_scale = .true.
use_variable_mean_mass = .true.
vertical_localization_coord = 'SCALEHEIGHT'
vert_normalization_scale_height = 1.5
cutoff = 0.15
no_obs_assim_above_level = 4,

In any case, make the following changes (or similar) to convert from a CAM setup to a WACCM setup in
setup_hybrid:

setenv compset FWHIST
setenv resolution f19_f19
setenv refcase {the CASE name of the initial condition file(s) (differs from this
→˓assimilation)}
setenv refyear {\ }

(continues on next page)

6.102. The CAM-FV DART Interface 265

DART, Release 9.10.3

(continued from previous page)

setenv refmon { >{the date of the initial condition file(s)}
setenv refday {/ }

If there are problems with instability in the WACCM foreasts, try changing some of the following parameters in either
the setup script or input.nml.

• The default div24del2flag in WACCM is 4. Change it in the CAM namelist section of the setup script to

echo " div24del2flag = 2 " >> ${fname}

• Set a larger ATM_NCPL in the setup script. The default for WACCM is 144 (per day). The default for WACCM-
X is 288 (per day). It’s safest to choose a value which will evenly divide an hour, (for WACCM: ATM_NCPL
= 168 or 192 . . . multiples of 24) but evenly dividing the hindcast period might work (for a 6 hour hindcast:
ATM_NCPL = 148 or 152 . . . multiples of 4). To convert an existing CASE, try changing the related namelist
variables $CASEROOT/user_nl_cpl:{component}_cpl_dt (component ̸= “rof”)

user_nl_cpl:
atm_cpl_dt = 300
glc_cpl_dt = 300
ice_cpl_dt = 300
lnd_cpl_dt = 300
ocn_cpl_dt = 300
wav_cpl_dt = 300

• Increase model_damping_ends_at_level in input.nml

• Set a larger nsplit and/or nspltvrm in the CAM namelist section of the setup script:

echo " nsplit = 16 " >> ${fname}
echo " nspltvrm = 4 " >> ${fname}

• Reduce inf_damping from the default value of 0.9 in input.nml:

inf_damping = 0.6, 0,

6.102.4 Nitty gritty: Efficiency and Issues to Address

Warning: Experience on a variety of machines has shown that it is a very good idea to make sure your run-time
environment has the following:

limit stacksize unlimited
limit datasize unlimited

It may be very beneficial to set MPI environment variables to larger values than the defaults in $CASE-
ROOT/env_mach_specific.xml:

<environment_variables>
<env name="MPI_COMM_MAX">16383</env>
<env name="MPI_GROUP_MAX">1024</env>

Reduce total core hours and queue wait times by finding the minimum number of whole nodes on which CAM will
run reliably. Use that number in the setup script for each member of the ensemble.

Reduce core hours wasted by the single tasked creation of the CESM namelists before each hindcast by:

266 Chapter 6. References

DART, Release 9.10.3

• calling case.submit with the –skip-preview-namelists argument

• replacing the cime/src/drivers/mct/cime_config/buildnml with the one in the SourceMods tar file.

• ISSUE: Improve this page

– Add links and references to this document.

– Publications web page.

– CAM-chem; link? More description?

• ISSUE?; model_interpolate assumes that obs with a vertical location have 2 horizontal locations too.
The state vector may have fields for which this isn’t true, but no obs we’ve seen so far violate this assumption.
It would have to be a synthetic/perfect_model obs, like some sort of average or parameter value.

• ISSUE: the cam-se variable max_neighbors is set to 6, but could be set to 4 for non-refined grids. Is there a
good mechanism for this? Is it worth the file space savings?

• ISSUE: the cam-se variables x_planar and y_planar could be reduced in rank, if no longer needed for
testing and debugging.

6.102.5 References and Acknowledgements

• CESM homepage

Ave Arellano did the first work with CAM-Chem, assimilating MOPPITT CO observations into CAM-Chem. Jerome
Barre and Benjamin Gaubert took up the development work from Ave, and prompted several additions to DART, as
well as model_mod.f90.

Nick Pedatella developed the first vertical_localization_coord = ‘SCALEHEIGHT’`` capability to enable assimilation
using WACCM(-X).

Rafael Montuoro designed the first multicoupler in CESM.

6.103 Community Earth System Model

6.103.1 Preliminaries

If you found your way to this file without reading the DART ‘’getting started” files or tutorial, please read those first.
$DART/README.rst is a good place to find pointers to them. This document gives specific help in setting up a
CESM+DART assimilation for the first time. Also see the ../{your_model(s)}/readme.html documentation about the
code-level interfaces and namelist values.

6.103.2 CESM

CESM is a software framework for setting up and running a combination of models, each designed to represent a part
of the Earth system. Each component model (CAM, CLM, POP, CICE, . . .) contributes in one of 3 modes:

• active; the model state evolves in time based on its own calculations

• data; the model simply reads data from external sources and sends representations of it to the other components.

• stub; the model does not interact with the other components.

6.103. Community Earth System Model 267

https://www.cesm.ucar.edu/models/cesm1.3/

DART, Release 9.10.3

The components influence each other only by passing fluxes and interface field values through the coupler. The
combination chosen for a given application is called a compset. A compset is assembled using CESM’s
create_newcase and case.setup scripts, which create a new “CASE” in the “CASEROOT” directory.

CESM uses the term ‘fully coupled’ to refer to a compset which has an active atmosphere and ocean, regardless of
other components. We use that phrase in reference to CESM compsets only, not assimilations. In CESM an active
atmosphere almost always implies an active land, but that is not necessary for it to be called ‘fully coupled’, and, by
itself, is not ‘fully coupled’.

Most nonCESM models are either called by DART (low order models), or are run by DART via a shell script command
(e.g. WRF). In contrast, CESM runs its hindcast, and then tells DART to do the assimilation. The result is that
assimilation setup scripts for CESM components focus on modifying the build of CESM to accommodate DART’s
needs, such as ensemble (multi-instance) hindcasts, stopping at the assimilation times to run filter, and restarting
with the updated model state.

6.103.3 CESM+DART Overview

There are several modes of assimilating observations using CESM as the hindcast model. They share both the CESM
and DART environments, but differ somewhat for practical and historical reasons.

Single-component assimilation

The first, and simplest, consists of assimilating relevant observations into one active component. The other components
may be active, data, or stub. Each of these assimilations is handled by one of the $DART/models interfaces (cam-fv,
POP, clm, . . . , see, for example the cam-fv readme

If you want to use a new combination of active and data components, you may need to (work with us to) modify the
setup scripts or develop a new model interface. An example of single-component is when observations of the oceans
are assimilated into the POP model state, while the atmospheric component is in data mode (it provides forcing of the
ocean from CAM reanalysis files), the sea ice model may be active (but not be affected directly by observations) and
the land model (CLM) may be a stub. A variation of this is used by CAM assimilations. A CAM hindcast usually
uses an active land component (CLM) as well as an active atmospheric component. Atmospheric observations are
assimilated only into the CAM state, while the land state is modified only through its interactions with CAM through
the coupler. The sea surface temperature forcing of the atmosphere is provided by a data ocean component.

268 Chapter 6. References

../cam-fv/readme.html

DART, Release 9.10.3

Multi-component assimilation (often called ‘’weakly coupled”)

It’s also possible to assimilate observations into multiple active components, but restricting the im-
pact of observations to only ‘’their own” component. So in a ‘’coupled” CESM with active CAM and
POP, atmospheric observations change only the CAM model state while oceanic observations change
only the POP model state. This mode uses multiple DART model interfaces (cam-fv and POP in this
example) to make a filter for each model. This mode uses scripts found in the CESM/shell_scripts
directory. This does not require a models/CESM/model_mod.f90, since it uses a separate filter for
each component (cam-fv, POP, . . .).

Cross-component assimilation (often called ‘’strongly coupled”)

Work is underway to enable the assimilation of all observations into multiple active CESM com-
ponents. So observations of the atmosphere would directly change the POP state variables and
observations of the ocean would change the CAM state variables without interaction through the
coupler. Some unresolved issues include defining the ‘’distance” between an observation in the at-
mosphere and a grid point in the ocean (for localization), and how frequently to assimilate in CAM
versus POP. This mode will use code in this models/CESM directory.

Note: See setup guidelines for details about setting up assimilations using observations of multiple Earth system
components.

6.103.4 SourceMods

Since the ability to use DART has not been completely integrated into CESM testing, it is necessary to use some CESM
fortran subroutines which have been modified for use with DART. These must be provided to CESM through the
SourceMods mechanism. SourceMods for selected versions of CESM are available as described in the readme.html
pages of the component model interfaces ($DART/models/{cam-fv,clm,. . . }. This release of DART focuses on se-
lected CESM versions from CESM2 (June, 2017) and later. Using this DART with other CESM versions will quite
possibly fail, in which case existing SourceMods can often be used as a template for making SourceMods for a differ-
ent CESM version. If you have nonDART CESM modifications, they must be merged with the DART modifications
before building the case.

6.103. Community Earth System Model 269

DART, Release 9.10.3

CESM2

CESM2 has several helpful features (compared to CESM1), from DART’s perspective.

• ‘’Multi-driver” capability enables the efficient ensemble hindcasts which DART needs.

• Cycling capability, which enables multiple assimilation cycles in a single job. This reduces the frequency of
waiting in the queue.

• Removal of the short term archiver from the run script so that the MPI run doesn’t need to idle while the single
task archiver runs.

• CESM’s translation of the short term archiver to python, and control of it to an xml file ($CASE-
ROOT/env_archive.xml), so that DART modifications to the short term archiver are more straight-forward.

• The creation of a new component class, ‘’External System Processing” (‘’esp”), of which DART is the first
instance, integrates DART more fully into the CESM development, testing, and running environment. This is
similar to the atm class, which has CAM-FV as an instance. This will help make DART available in the most
recent tagged CESM versions which have the most recent CESM component versions.

• Reduced number of subroutines in DART’s SourceMods.

These have been exploited most fully in the CAM interfaces to DART, since some other components’ interfaces use
older CESMs. The cam-fv/shell_scripts can be used as a template for updating other models’ scripting. The multi-
cycling capability, with the short term archiver running as a separate job at the end, results in assimilation jobs which
rapidly fill the scratch space. Cam-fv’s and POP’s assimilate.csh scripts have code to remove older and unneeded
CESM restart file sets during the run. All of DART’s output, and user selected, restart file sets are preserved.

6.103.5 DART

DART’s manhattan release includes the change to filter setting input and output filenames, instead of the user setting
them in namelists. See stages. The assimilate.csh of the model interface can rename these files into the CESM file
format:
$case.$component{_$instance}.$filetype.$date.nc.
DART’s file names are used as new filetypes, just like CESM’s existing filetypes; ‘’r”, ‘’h0”, . . . For example, file
preassim_mean.nc from a CAM assimilation case Test0 may be renamed
Test0.cam.preassim_mean.2013-03-14-21600.nc

6.103.6 $DART/models/{cesm components} organization

PATHNAMES NOTES

$DART/models/cam-fv/ An interface for the CAM-FV dynamical core (CAM-SE will be available in 2021)
. . . model_mod.* The fortran interface between CAM-FV and DART
. . . work/ Build DART executables (filter, . . .) here before running setup_*
. . . shell_scripts/ Setup and support scripts
. cesm2_0/ Directory of scripts to setup and run in CESM2_0
. cesm2_1/ Directory of scripts to setup and run in CESM2_1
. . .

$DART/models/POP/ An interface for the POP ocean model (MOM may be interfaced next)
. . . model_mod.* The fortran interface between POP and DART
. . . work/ Build DART executables (filter, . . .) here before running setup_*

continues on next page

270 Chapter 6. References

../../assimilation_code/programs/filter/filter.html#detailed-program-execution-flow

DART, Release 9.10.3

Table 2 – continued from previous page
PATHNAMES NOTES
. . . shell_scripts/ Setup and support scripts
. cesm1_x/ Directory of scripts for setting up and running POP in several versions of CESM1
. cesm2_0/ Same for CESM2_0
. . .

$DART/models/clm/ An interface for the Community Land Model (CTSM may be interfaced next)
. . . model_mod.* The fortran interface between CLM and DART
. . . work/ Build DART executables (filter, . . .) here before running setup_*
. . . shell_scripts/ Setup and support scripts
. CESM1_2_1_setup_hybrid Script to set up an ensemble assimilation case using CESM1_2_1
. CESM1_2_1_setup_pmo Script to set up a perfect model observation case using CESM1_2_1 (single member).
. CESM_DART_config Script to activate the assimilation within the CESM case.
. *.csh Helper scripts for setup and running.
. user_datm.streams CESM files which tell CLM which data atmosphere forcing to use.
. . .

$DART/models/CESM/ An interface for multi-component assimilation (cross-component is being developed)
(. . . model_mod.*) No fortran model interface. It uses the components’ executables and namelists.
(. . . work/) No executables; they are built in the component interfaces’ work directories.
. . . shell_scripts/ Setup and support scripts
. CESM1_1_1_setup_hybrid Set up a multi-component assimilation using initial conditions from a single CESM B compset case in CESM1_1_1.
. CESM1_1_1_setup_initial Same, but initial conditions from a different sources for each active component.
. CESM1_1_1_setup_pmo Set up a perfect model observation case (single member).
. CESM_DART_config Script to activate the assimilation within the CESM case.
. assimilate.csh Small script to successively call the {comp}_assimilate.csh scripts
. {comp}_assimilate.csh assimilate.csh scripts for each active component (cam, pop, clm, . . .)
. run_perfect_model_obs.csh Script to run a perfect model observation job.
. . .

Warning: Experience on a variety of machines has shown that it is a very good idea to make sure your run-time
environment has the following:

limit stacksize unlimited
limit datasize unlimited

Tip: Also, large ensemble assimilations may run more efficiently by setting environment variables in $CASE-
ROOT/env_mach_specific.xml to something larger than their defaults. The variable names in an Intel MPI envi-
ronment (17.x.x in 2020) are:

<environment_variables>
<env name="MPI_GROUP_MAX">1024</env>
<env name="MPI_COMM_MAX">16383</env>

and preventing unnecessary rebuilds of the component namelists
by submitting the job using

(continues on next page)

6.103. Community Earth System Model 271

DART, Release 9.10.3

(continued from previous page)

$ case.submit --skip-preview-namelist

6.104 CICE

6.104.1 Overview

The Community Ice CodE (CICE) is a sea ice model that was first developed by Elizabeth Hunke as the Los Alamos
Sea Ice Model. Its code base and capabilities have grown as a result of continued development by the broader geo-
sciences community, an effort organized by the CICE Consortium.

Dr. Cecilia Bitz implemented support for the CICE model (as part of CESM) in DART. The DART model interface
was developed to work with CICE’s dynamical core on an Arakawa B-grid.1 When CICE is coupled to POP in CESM,
the ocean and sea ice grids are identical.

According to the CICE manual:

The spatial discretization is specialized for a generalized orthogonal B-grid as in Murray (1996)2 or Smith
et al. (1995).3 The ice and snow area, volume and energy are given at the center of the cell, velocity is
defined at the corners, and the internal ice stress tensor takes four different values within a grid cell;
bilinear approximations are used for the stress tensor and the ice velocity across the cell, as described
in Hunke and Dukowicz (2002).4 This tends to avoid the grid decoupling problems associated with the
B-grid.

Hence, in the DART interface:

• U, V are at grid cell corners

• T, h, hs, and the various scalar quantities are at grid cell centers

CICE is under development to work with other grids, such as the unstructured grid in MPAS and the C-grid in MOM.

6.104.2 Namelist

&model_nml
assimilation_period_days = 1
assimilation_period_seconds = 0
model_perturbation_amplitude = 0.00002
update_dry_cell_walls = .false.
binary_grid_file_format = 'big_endian'
debug = 1
model_state_variables = 'aicen', 'QTY_SEAICE_CONCENTR', 'UPDATE',

'vicen', 'QTY_SEAICE_VOLUME', 'UPDATE',
...
'vsnon', 'QTY_SEAICE_SNOWVOLUME', 'UPDATE',

/

1 Arakawa, Akio and Vivian R. Lamb, 1977: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model.
Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, doi:10.1016/B978-0-12-460817-7.50009-4

2 Murray, Ross J., 1996: Explicit Generation of Orthogonal Grids for Ocean Models. Journal of Computational Physics, 126, 251–273,
doi:10.1006/jcph.1996.0136

3 Smith, Richard D., Samuel Kortas and Bertrand Meltz, 1995: Curvilinear Coordinates for Global Ocean Models. Technical Report LA-UR95-
1146, Los Alamos National Laboratory.

4 Hunke, Elizabeth C., and John K. Dukowicz, 2002: The Elastic–Viscous–Plastic Sea Ice Dynamics Model in General Orthogo-
nal Curvilinear Coordinates on a Sphere—Incorporation of Metric Terms. Monthly Weather Review, 130, 1848–1865, doi:10.1175/1520-
0493(2002)130%3C1848:TEVPSI%3E2.0.CO;2

272 Chapter 6. References

https://github.com/CICE-Consortium/CICE
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.1006/jcph.1996.0136
https://doi.org/10.1175/1520-0493(2002)130%3C1848:TEVPSI%3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2002)130%3C1848:TEVPSI%3E2.0.CO;2

DART, Release 9.10.3

Description of each namelist entry

Item Type Description
time_step_days integer Number of days for dimensional timestep, mapped to deltat.
time_step_seconds integer Number of seconds for dimensional timestep, mapped to deltat.
model_perturbation_amplitudereal(r8) Perturbation amplitude
up-
date_dry_cell_walls

logical Currently does nothing. Additional code is needed to detect the cells which are
wet but within 1 cell of the bottom/sides/etc.

bi-
nary_grid_file_format

charac-
ter(64)

Byte sequence for the binary grid. Valid values are native, big_endian & lit-
tle_endian.

debug integer When set to 0, debug statements are not printed. Higher numbers mean more
debug reporting.

model_state_variables charac-
ter(*)

List of model state variables

References

6.105 CLM

Attention: CLM has a private development branch with some features that are delaying its integration with the
rest of the public DART repository. Until that time, you should consider this documentation as out-of-date. There
are several groups that are successfully using recent versions of CLM and recent versions of DART. If you are
interested in using CLM with more recent versions of DART, contact DAReS staff.

6.105.1 Overview

This is the DART interface to the Community Land Model (CLM). It is run as part of the Community Earth Sys-
tem Model (CESM) framework. It is strongly recommended that you become familiar with running a multi-instance
experiment in CESM before you try to run DART/CLM. The DART/CLM facility uses language and concepts that
should be familiar to CESM users. The DART/CLM capability is entirely dependent on the multi-instance capabil-
ity of CESM, first supported in its entirety in CESM1.1.1. Consequently, this version or newer is required to run
CLM/DART. The CLM User’s Guide is an excellent reference for CLM. As of (V7195) 3 October 2014, CESM1.2.1
is also supported.

DART uses the multi-instance capability of CESM, which means that DART is not responsible for advancing the
model. This GREATLY simplifies the traditional DART workflow, but it means CESM has to stop and write out a
restart file every time an assimilation is required. The multi-instance capability is very new to CESM and we are in
close collaboration with the CESM developers to make using DART with CESM as easy as possible. While we strive to
keep DART requirements out of the model code, there are a few SourceMods needed to run DART from within CESM.
Appropriate SourceMods for each CESM version are available at http://www.image.ucar.edu/pub/DART/CESM and
should be unpacked into your HOME directory. They will create a ~/cesm_?_?_? directory with the appropriate
SourceMods structure. The ensuing scripts require these SourceMods and expect them to be in your HOME directory.

Our notes on how to set up, configure, build, and run CESM for an assimilation experiment evolved into scripts. These
scripts are not intended to be a ‘black box’; you will have to read and understand them and modify them to your own
purpose. They are heavily commented – in keeping with their origins as a set of notes. If you would like to offer
suggestions on how to improve those notes - please send them to dart@ucar.edu - we’d love to hear them.

6.105. CLM 273

http://www.cesm.ucar.edu/models/cesm1.1/
http://www.cesm.ucar.edu/models/cesm1.1/
http://www.cesm.ucar.edu/models/cesm1.1/clm/models/lnd/clm/doc/UsersGuide/clm_ug.pdf
http://www.image.ucar.edu/pub/DART/CESM
mailto:dart@ucar.edu

DART, Release 9.10.3

Script Description
shell_scripts/
CESM1_1_1_setup_pmo

runs a single instance of CLM to harvest synthetic observations for an OSSE or “perfect model” exper-
iment. It requires a single CLM state from a previous experiment and uses a specified DATM stream
for forcing. This parallels an assimilation experiment in that in the multi-instance setting each CLM
instance may use (should use?) a unique DATM forcing. This script has almost nothing to do with
DART. There is one (trivial) section that records some configuration information in the DART setup
script, but that’s about it. This script should initially be run without DART to ensure a working CESM
environment. As of (V7195) 3 October 2014, this script demonstrates how to create ‘vector’-based
CLM history files (which requires a bugfix) and has an option to use a bugfixed snow grain-size code.
http://bugs.cgd.ucar.edu/show_bug.cgi?id=1730 http://bugs.cgd.ucar.edu/show_bug.cgi?id=1934

shell_scripts/
CESM1_2_1_setup_pmo

Is functionally identical to CESM1_1_1_setup_pmo but is appropriate for the the CESM 1_2_1 re-
lease, which supports both CLM 4 and CLM 4.5.

shell_scripts/
CESM1_1_1_setup_hybrid

runs a multi-instance CLM experiment and can be used to perform a free run or ‘open loop’ experiment.
By default, each CLM instance uses a unique DATM forcing. This script also has almost nothing to do
with DART. There is one (trivial) section that records some configuration information in the DART setup
script, but that’s about it. This script should initially be run without DART to ensure a working CESM.
As of (V7195) 3 October 2014, this script demonstrates how to create ‘vector’-based CLM history files
(which requires a bugfix) and has an option to use a bugfixed snow grain-size code. http://bugs.cgd.ucar.
edu/show_bug.cgi?id=1730 http://bugs.cgd.ucar.edu/show_bug.cgi?id=1934

shell_scripts/
CESM1_2_1_setup_hybrid

Is functionally identical to CESM1_1_1_setup_hybrid but is appropriate for the the CESM 1_2_1
release, which supports both CLM 4 and CLM 4.5.

shell_scripts/
CESM_DART_config

augments a CESM case with the bits and pieces required to run DART. When either CESM1_?
_1_setup_pmo or CESM1_?_1_setup_hybrid gets executed, CESM_DART_config gets copied
to the CESM “caseroot” directory. It is designed such that you can execute it at any time during a CESM
experiment. When you do execute it, it will build the DART executables and copy them into the CESM
“bld” directory, stage the run-time configurable input.nml in the “caseroot” directory, etc. and also
modifies the CESM case.run script to call the DART scripts for assimilation or to harvest synthetic
observations.

In addition to the script above, there are a couple scripts that will either perform an assimilation (assimilate.
csh) or harvest observations for a perfect model experiment (perfect_model.csh). These scripts are designed
to work on several compute platforms although they require configuration, mainly to indicate the location of the DART
observation sequence files on your system.

274 Chapter 6. References

http://bugs.cgd.ucar.edu/show_bug.cgi?id=1730
http://bugs.cgd.ucar.edu/show_bug.cgi?id=1934
http://bugs.cgd.ucar.edu/show_bug.cgi?id=1730
http://bugs.cgd.ucar.edu/show_bug.cgi?id=1730
http://bugs.cgd.ucar.edu/show_bug.cgi?id=1934

DART, Release 9.10.3

6.105.2 Pertinent details of the CLM gridcell

“The land surface is represented by 5 primary sub-grid land cover types (landunits: glacier, lake, wetland, urban,
vegetated) in each grid cell. The vegetated portion of a grid cell is further divided into patches of plant functional
types, each with its own leaf and stem area index and canopy height. Each subgrid land cover type and PFT patch is a
separate column for energy and water calculations.” – CLM documentation.

The only location information available is at the gridcell level. All landunits, columns, and PFTs in that gridcell
have the same location. This has ramifications for the forward observation operators. If the observation metadata has
information about land use/land cover, it can be used to select only those patches that are appropriate. Otherwise, an
area-weighted average of ALL patches in the gridcell is used to calculate the observation value for that location.

6.105.3 A word about forward observation operators

“Simple” observations like snowcover fraction come directly from the DART state. It is possible to configure the
CLM history files to contain the CLM estimates of some quantities (mostly flux tower observations e.g, net ecosystem
production, sensible heat flux, latent heat flux) that are very complicated combinations of portions of the CLM state.
The forward observation operators for these flux tower observations read these quantities from the CLM .h1. history
file. The smaller the CLM gridcell, the more likely it seems that these values will agree with point observations.

The prior and posterior values for these will naturally be identical as the history file is unchanged by the assimilation.
Configuring the CLM user_nl_clm files to output the desired quantities must be done at the first execution of CLM. As
soon as CONTINUE_RUN=TRUE, the namelist values for history file generation are ignored. Because the history file

6.105. CLM 275

http://www.cesm.ucar.edu/models/clm/surface.heterogeneity.html

DART, Release 9.10.3

creation is very flexible, some additional information must be passed to DART to construct the filename of the .h1.
history file needed for any particular time.

6.105.4 Major changes as of (v7195) 3 october 2014

The DART state vector may be constructed in a much more flexible way. Variables from two different CLM history
files may also be incorporated directly into the DART state - which should GREATLY speed up the forward observation
operators - and allow the observation operators to be constructed in a more flexible manner so that they can be used
by any model capable of providing required inputs. It is now possible to read some variables from the restart file,
some variables from a traditional history file, and some from a ‘vector-based’ history file that has the same structure
(gridcell/landunit/column/pft) as the restart file. This should allow more accurate forward observation operators since
the quantities are not gridcell-averaged a priori.

Another namelist item has been added clm_vector_history_filename to support the concept that two history
files can be supported. My intent was to have the original history file (required for grid metadata) and another for
support of vector-based quantities in support of forward observation operators. Upon reflection, I’m not sure I need
two different history files - BUT - I’m sure there will be a situation where it comes in handy.

The new namelist specification of what goes into the DART state vector includes the ability to specify if the quantity
should have a lower bound, upper bound, or both, what file the variable should be read from, and if the variable
should be modified by the assimilation or not. Only variables in the CLM restart file will be candidates for
updating. No CLM history files are modified. It is important to know that the variables in the DART diagnostic
files ``preassim.nc`` and ``analysis.nc`` will contain the unbounded versions of ALL the variables specied in
``clm_variables``. The example input.nml model_nml demonstrates how to construct the DART state vector.
The following table explains in detail each entry for clm_variables:

Column 1 Column 2 Column 3 Column 4 Column 5 Column 6
Variable name DART KIND minimum maximum filename update

Col-
umn
1

Vari-
able
name

This is the CLM variable name as it appears in the CLM netCDF file.

Col-
umn
2

DART
KIND

This is the character string of the corresponding DART KIND.

Col-
umn
3

mini-
mum

If the variable is to be updated in the CLM restart file, this specifies the minimum value. If set to
‘NA’, there is no minimum value.

Col-
umn
4

maxi-
mum

If the variable is to be updated in the CLM restart file, this specifies the maximum value. If set to
‘NA’, there is no maximum value.

Col-
umn
5

file-
name

This specifies which file should be used to obtain the variable. 'restart'
=> clm_restart_filename 'history' => clm_history_filename 'vector' =>
clm_vector_history_filename

Col-
umn
6

up-
date

If the variable comes from the restart file, it may be updated after the assimilation. 'UPDATE'
=> the variable in the restart file is updated. 'NO_COPY_BACK' => the variable in the restart
file remains unchanged.

The following are only meant to be examples - they are not scientifically validated. Some of these that are UPDATED
are probably diagnostic quantities, Some of these that should be updated may be marked NO_COPY_BACK. There
are multiple choices for some DART kinds. This list is by no means complete.

276 Chapter 6. References

DART, Release 9.10.3

'livecrootc', 'QTY_ROOT_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'deadcrootc', 'QTY_ROOT_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'livestemc', 'QTY_STEM_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'deadstemc', 'QTY_STEM_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'livecrootn', 'QTY_ROOT_NITROGEN', 'NA', 'NA', 'restart', 'UPDATE',
'deadcrootn', 'QTY_ROOT_NITROGEN', 'NA', 'NA', 'restart', 'UPDATE',
'livestemn', 'QTY_STEM_NITROGEN', 'NA', 'NA', 'restart', 'UPDATE',
'deadstemn', 'QTY_STEM_NITROGEN', 'NA', 'NA', 'restart', 'UPDATE',
'litr1c', 'QTY_LEAF_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'litr2c', 'QTY_LEAF_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'litr3c', 'QTY_LEAF_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'soil1c', 'QTY_SOIL_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'soil2c', 'QTY_SOIL_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'soil3c', 'QTY_SOIL_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'soil4c', 'QTY_SOIL_CARBON', 'NA', 'NA', 'restart', 'UPDATE',
'fabd', 'QTY_FPAR_DIRECT', 'NA', 'NA', 'restart', 'UPDATE',
'fabi', 'QTY_FPAR_DIFFUSE', 'NA', 'NA', 'restart', 'UPDATE',
'T_VEG', 'QTY_VEGETATION_TEMPERATURE', 'NA', 'NA', 'restart', 'UPDATE',
'fabd_sun_z', 'QTY_FPAR_SUNLIT_DIRECT', 'NA', 'NA', 'restart', 'UPDATE',
'fabd_sha_z', 'QTY_FPAR_SUNLIT_DIFFUSE', 'NA', 'NA', 'restart', 'UPDATE',
'fabi_sun_z', 'QTY_FPAR_SHADED_DIRECT', 'NA', 'NA', 'restart', 'UPDATE',
'fabi_sha_z', 'QTY_FPAR_SHADED_DIFFUSE', 'NA', 'NA', 'restart', 'UPDATE',
'elai', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'restart', 'UPDATE',

Only the first variable for a DART kind in the clm_variables list will be used for the forward observation
operator. The following is perfectly legal (for CLM4, at least):

clm_variables = 'LAIP_VALUE', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'restart' , 'UPDATE',
'tlai', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'restart' , 'UPDATE',
'elai', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'restart' , 'UPDATE',
'ELAI', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'history' , 'NO_COPY_

→˓BACK',
'LAISHA', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'history' , 'NO_COPY_

→˓BACK',
'LAISUN', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'history' , 'NO_COPY_

→˓BACK',
'TLAI', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'history' , 'NO_COPY_

→˓BACK',
'TLAI', 'QTY_LEAF_AREA_INDEX', 'NA', 'NA', 'vector' , 'NO_COPY_

→˓BACK'
/

however, only LAIP_VALUE will be used to calculate the LAI when an observation of LAI is encountered. All the
other LAI variables in the DART state will be modified by the assimilation based on the relationship of LAIP_VALUE
and the observation. Those coming from the restart file and marked ‘UPDATE’ will be updated in the CLM restart
file.

6.105. CLM 277

DART, Release 9.10.3

6.105.5 Namelist

These namelists are read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
clm_restart_filename = 'clm_restart.nc',
clm_history_filename = 'clm_history.nc',
clm_vector_history_filename = 'clm_vector_history.nc',
output_state_vector = .false.,
assimilation_period_days = 2,
assimilation_period_seconds = 0,
model_perturbation_amplitude = 0.2,
calendar = 'Gregorian',
debug = 0
clm_variables = 'frac_sno', 'QTY_SNOWCOVER_FRAC', 'NA' , 'NA', 'restart

→˓' , 'NO_COPY_BACK',
'H2OSNO', 'QTY_SNOW_WATER', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'H2OSOI_LIQ', 'QTY_SOIL_MOISTURE', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'H2OSOI_ICE', 'QTY_ICE', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'T_SOISNO', 'QTY_SOIL_TEMPERATURE', 'NA' , 'NA', 'restart

→˓' , 'UPDATE',
'SNOWDP', 'QTY_SNOW_THICKNESS', 'NA' , 'NA', 'restart

→˓' , 'UPDATE',
'LAIP_VALUE', 'QTY_LEAF_AREA_INDEX', 'NA' , 'NA', 'restart

→˓' , 'NO_COPY_BACK',
'cpool', 'QTY_CARBON', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'frootc', 'QTY_ROOT_CARBON', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'leafc', 'QTY_LEAF_CARBON', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'leafn', 'QTY_LEAF_NITROGEN', '0.0', 'NA', 'restart

→˓' , 'UPDATE',
'NEP', 'QTY_NET_CARBON_PRODUCTION', 'NA' , 'NA', 'history

→˓' , 'NO_COPY_BACK',
'TV', 'QTY_VEGETATION_TEMPERATURE', 'NA' , 'NA', 'vector'

→˓ , 'NO_COPY_BACK',
'RH2M_R', 'QTY_SPECIFIC_HUMIDITY', 'NA' , 'NA', 'vector'

→˓ , 'NO_COPY_BACK',
'PBOT', 'QTY_SURFACE_PRESSURE', 'NA' , 'NA', 'vector'

→˓ , 'NO_COPY_BACK',
'TBOT', 'QTY_TEMPERATURE', 'NA' , 'NA', 'vector'

→˓ , 'NO_COPY_BACK'
/

278 Chapter 6. References

DART, Release 9.10.3

Item Type Description
clm_restart_filename character(len=256) this is the filename of the CLM

restart file. The DART scripts
resolve linking the specific CLM
restart file to this generic name. This
file provides the elements used to
make up the DART state vector. The
variables are in their original lan-
dunit, column, and PFT-based rep-
resentations.

clm_history_filename character(len=256) this is the filename of the CLM .
h0. history file. The DART scripts
resolve linking the specific CLM
history file to this generic name.
Some of the metadata needed for
the DART/CLM interfaces is con-
tained only in this history file, so it
is needed for all DART routines.

clm_vector_history_filename character(len=256) this is the filename of a second
CLM history file. The DART
scripts resolve linking the specific
CLM history file to this generic
name. The default setup scripts ac-
tually create 3 separate CLM his-
tory files, the .h2. ones are linked
to this filename. It is possible
to create this history file at the
same resolution as the restart file,
which should make for better for-
ward operators. It is only needed
if some of the variables specified in
clm_variables come from this
file.

output_state_vector logical If .true. write state vector as a 1D
array to the DART diagnostic output
files. If .false. break state vector up
into variables before writing to the
output files.

assimilation_period_days,
assimilation_period_seconds

integer Combined, these specify the width
of the assimilation window. The
current model time is used as the
center time of the assimilation win-
dow. All observations in the as-
similation window are assimilated.
BEWARE: if you put observations
that occur before the beginning of
the assimilation_period, DART will
error out because it cannot move
the model ‘back in time’ to process
these observations.

model_perturbation_amplitude real(r8) Required by the DART interfaces,
but not used by CLM.

calendar character(len=32) string specifying the calendar to use
with DART. The CLM dates will be
interpreted with this same calendar.
For assimilations with real observa-
tions, this should be ‘Gregorian’.

debug integer Set to 0 (zero) for minimal out-
put. Successively higher values
generate successively more output.
Not all values are important, how-
ever. It seems I’ve only used values
[3,6,7,8]. Go figure.

clm_variables character(:,6) Strings that identify the CLM
variables, their DART kind, the
min & max values, what file to
read from, and whether or not the
file should be updated after the
assimilation. The DART kind must
be one found in obs_kind_mod.
f90 AFTER it gets built by
preprocess. Most of the land
observation kinds are specified by
obs_def_land_mod.f90 and
obs_def_tower_mod.f90
so they should be specified in
the preprocess_nml:input_files
variable.

6.105. CLM 279

DART, Release 9.10.3

&obs_def_tower_nml
casename = '../clm_dart',
hist_nhtfrq = -24,
debug = .false.
/

Item Type Description
case-
name

char-
ac-
ter(len=256)

this is the name of the CESM case. It is used by the forward observation operators to help construct
the filename of the CLM .h1. history files for the flux tower observations. When the input.nml
gets staged in the CASEROOT directory by CESM_DART_config, the appropriate value should
automatically be inserted.

hist_nhtfrqin-
te-
ger

this is the same value as in the CLM documentation. A negative value indicates the number of hours
contained in the .h1. file. This value is needed to constuct the right .h1. filename. When the
input.nml gets staged in the CASEROOT directory by CESM_DART_config, the appropriate
value should automatically be inserted. Due to the large number of ways of specifying the CLM
history file information, the correct value here is very dependent on how the case was configured.
You would be wise to check it.

de-
bug

log-
ical

Set to .false. for minimal output.

6.105.6 Other modules used (directly)

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod
obs_kind_mod
obs_def_land_mod
obs_def_tower_mod
random_seq_mod

280 Chapter 6. References

DART, Release 9.10.3

6.105.7 Public interfaces - required

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector.

model_size The length of the model state vector.

6.105. CLM 281

DART, Release 9.10.3

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Advances the model for a single time step. The time associated with the initial model state is also input although it is
not used for the computation.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Returns metadata about a given element, indexed by index_in, in the model state vector. The location defines where
the state variable is located.

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_type The generic DART kind of the state variable element.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given model state, returns the value interpolated to a given location.

x A model state vector.
locationLocation to which to interpolate.
itype Not used.
obs_val The interpolated value from the model.
istatus If the interpolation was successful istatus = 0. If istatus /= 0 the interpolation failed. Val-

ues less than zero are reserved for DART.

var = get_model_time_step()

282 Chapter 6. References

DART, Release 9.10.3

type(time_type) :: get_model_time_step

Returns the time step (forecast length) of the model;

var Smallest time step of model.

call static_init_model()

Used for runtime initialization of model; reads namelist, initializes model parameters, etc. This is the first call made
to the model by any DART-compliant assimilation routine.

call end_model()

A stub.

call init_time(time)

type(time_type), intent(out) :: time

Returns the time at which the model will start if no input initial conditions are to be used. This is used to spin-up the
model from rest.

time Initial model time.

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Returns default initial conditions for the model; generally used for spinning up initial model states.

x Initial conditions for state vector.

ierr = nc_write_model_atts(ncFileID)

6.105. CLM 283

DART, Release 9.10.3

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

Function to write model specific attributes to a netCDF file. At present, DART is using the NetCDF format to output
diagnostic information. This is not a requirement, and models could choose to provide output in other formats. This
function writes the metadata associated with the model to a NetCDF file opened to a file identified by ncFileID.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

Writes a copy of the state variables to a netCDF file. Multiple copies of the state for a given time are supported,
allowing, for instance, a single file to include multiple ensemble estimates of the state.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, produces a perturbed model state.

state State vector to be perturbed.
pert_state Perturbed state vector: NOT returned.
interf_provided Returned false; interface is not implemented.

call get_close_maxdist_init(gc, maxdist)

284 Chapter 6. References

DART, Release 9.10.3

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

In distance computations any two locations closer than the given maxdist will be considered close by the
get_close_obs() routine. Pass-through to the 3D Sphere locations module. See get_close_maxdist_init() for
the documentation of this subroutine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3D Sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Pass-through to the 3D Sphere locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

A NULL INTERFACE in this model.

ens_mean State vector containing the ensemble mean.

6.105. CLM 285

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_maxdist_init
../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs_init
../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

6.105.8 Public interfaces - optional

use model_mod, only : get_gridsize
clm_to_dart_state_vector

sv_to_restart_file

get_clm_restart_filename

get_state_time

get_grid_vertval

compute_gridcell_value

gridcell_components

DART_get_var

get_model_time

call get_gridsize(num_lon, num_lat, num_lev)

integer, intent(out) :: num_lon, num_lat, num_lev

Returns the number of longitudes, latitudes, and total number of levels in the CLM state.

num_lon The number of longitude grid cells in the CLM state. This comes from the CLM history file.
num_lat The number of latitude grid cells in the CLM state. This comes from the CLM history file.
num_lev The number of levels grid cells in the CLM state. This comes from ‘nlevtot’ in the CLM restart file.

call clm_to_dart_state_vector(state_vector, restart_time)

real(r8), intent(inout) :: state_vector(:)
type(time_type), intent(out) :: restart_time

Reads the current time and state variables from CLM netCDF file(s) and packs them into a DART state vector. This
MUST happen in the same fashion as the metadata arrays are built. The variables are specified by
model_nml:clm_variables. Each variable specifies its own file of origin. If there are multiple times in the file
of origin, only the time that matches the restart file are used.

286 Chapter 6. References

DART, Release 9.10.3

state_vector The DART state vector.
restart_time The valid time of the CLM state.

call sv_to_restart_file(state_vector, filename, dart_time)

real(r8), intent(in) :: state_vector(:)
character(len=*), intent(in) :: filename
type(time_type), intent(in) :: dart_time

This routine updates the CLM restart file with the posterior state from the assimilation. Some CLM variables that are
useful to include in the DART state (frac_sno, for example) are diagnostic quantities and are not used for subsequent
model advances. The known diagnostic variables are NOT updated. If the values created by the assimilation are
outside physical bounds, or if the original CLM value was ‘missing’, the vector_to_prog_var() subroutine
ensures that the values in the original CLM restart file are not updated.

state_vector The DART state vector containing the state modified by the assimilation.
filename The name of the CLM restart file. The contents of some of the variables will be overwritten

with new values.
dart_time The valid time of the DART state. This has to match the time in the CLM restart file.

call get_clm_restart_filename(filename)

character(len=*), intent(out) :: filename

provides access to the name of the CLM restart file to routines outside the scope of this module.

filename The name of the CLM restart file.

time = get_state_time(file_handle)

integer, intent(in) :: file_handle
character(len=*), intent(in) :: file_handle
type(time_type) :: get_state_time

This routine has two interfaces - one for an integer input, one for a filename. They both return the valid time of the
model state contained in the file. The file referenced is the CLM restart file in netCDF format.

file_handleIf specified as an integer, it must be the netCDF file identifier from nf90_open(). If specified as a
filename, the name of the netCDF file.

time A DART time-type that contains the valid time of the model state in the CLM restart file.

6.105. CLM 287

DART, Release 9.10.3

call get_grid_vertval(x, location, varstring, interp_val, istatus)

real(r8), intent(in) :: x(:)
type(location_type), intent(in) :: location
character(len=*), intent(in) :: varstring
real(r8), intent(out) :: interp_val
integer, intent(out) :: istatus

Calculate the value of quantity at depth. The gridcell value at the levels above and below the depth of interest
are calculated and then the value for the desired depth is linearly interpolated. Each gridcell value is an area-
weighted value of an unknown number of column- or pft-based quantities. This is one of the workhorse routines
for model_interpolate().

x The DART state vector.
location The location of the desired quantity.
varstring The CLM variable of interest - this must be part of the DART state. e.g, T_SOISNO, H2OSOI_LIQ,

H2OSOI_ICE . . .
interp_val The quantity at the location of interest.
istatus error code. 0 (zero) indicates a successful interpolation.

call compute_gridcell_value(x, location, varstring, interp_val, istatus)

real(r8), intent(in) :: x(:)
type(location_type), intent(in) :: location
character(len=*), intent(in) :: varstring
real(r8), intent(out) :: interp_val
integer, intent(out) :: istatus

Calculate the value of a CLM variable in the DART state vector given a location. Since the CLM location information
is only available at the gridcell level, all the columns in a gridcell are area-weighted to derive the value for the location.
This is one of the workhorse routines for model_interpolate(), and only select CLM variables are currently
supported. Only CLM variables that have no vertical levels may use this routine.

x The DART state vector.
location The location of the desired quantity.
varstring The CLM variable of interest - this must be part of the DART state. e.g, frac_sno, leafc, ZWT

. . .
interp_val The quantity at the location of interest.
istatus error code. 0 (zero) indicates a successful interpolation.

call gridcell_components(varstring)

288 Chapter 6. References

DART, Release 9.10.3

character(len=*), intent(in) :: varstring

This is a utility routine that helps identify how many land units,columns, or PFTs are in each gridcell for a particular
variable. Helps answer exploratory questions about which gridcells are appropriate to test code. The CLM variable is
read from the CLM restart file.

varstring The CLM variable name of interest.

call DART_get_var(ncid, varname, datmat)

integer, intent(in) :: ncid
character(len=*), intent(in) :: varname
real(r8), dimension(:), intent(out) :: datmat
real(r8), dimension(:,:), intent(out) :: datmat

Reads a 1D or 2D variable of ‘any’ type from a netCDF file and processes and applies the offset/scale/FillValue
attributes correctly.

ncid The netCDF file identifier to an open file. ncid is the output from a nf90_open() call.
varname The name of the netCDF variable of interest. The variables can be integers, floats, or doubles.
datmat The shape of datmat must match the shape of the netCDF variable. Only 1D or 2D variables are

currently supported.

model_time = get_model_time()

integer :: get_model_time

Returns the valid time of the model state vector.

model_time The valid time of the model state vector.

6.105. CLM 289

DART, Release 9.10.3

6.105.9 Files

filename purpose
input.nml to read the model_mod namelist
clm_restart.nc both read and modified by the CLM model_mod
clm_history.nc read by the CLM model_mod for metadata purposes.
.h1. history files may be read by the obs_def_tower_mod for observation operator purposes.
dart_log.out the run-time diagnostic output
dart_log.nml the record of all the namelists actually USED - contains the default values

6.105.10 References

CLM User’s Guide is an excellent reference for CLM.

6.105.11 Error codes and conditions

Routine Message Comment
nc_write_model_atts
nc_write_model_vars

Various netCDF-f90 interface error
messages

From one of the netCDF calls in the
named routine

6.105.12 Future plans

Almost too many to list.

1. Implement a robust update_snow() routine that takes the modified SWE and repartitions it into the respective
snow layers in a manner that works with both CLM4 and CLM4.5. This may mean modifying the clm_variables
list to contain SNOWDP, H2OSOI_LIQ, H2OSOI_ICE, T_SOISNO, and others that may not be in the UPDATE
list.

2. Implement a fast way to get the quantities needed for the calculation of radiative transfer models - needs a whole
column of CLM variables, redundant if multiple frequencies are used.

3. Figure out what to do when one or more of the ensemble members does not have snow/leaves/etc. when the
observation indicates there should be. Ditto for removing snow/leaves/etc. when the observation indicates
otherwise.

4. Right now, the soil moisture observation operator is used by the COSMOS code to calculate the expected neutron
intensity counts. This is the right idea, however, the COSMOS forward operator uses m3/m3 and the CLM units
are kg/m2 . . . I have not checked to see if they are, in fact, identical. This brings up a bigger issue in that the
soil moisture observation operator would also be used to calculate whatever a TDT probe or ??? would measure.
What units are they in? Can one operator support both?

290 Chapter 6. References

http://www.cesm.ucar.edu/models/cesm1.1/clm/models/lnd/clm/doc/UsersGuide/clm_ug.pdf

DART, Release 9.10.3

6.105.13 Private components

N/A

6.106 CM1

6.106.1 Overview

Cloud Model 1 (CM1) version 18 (CM1r18) is compatible with the DART. CM1 is a non-hydrostatic numerical model
in Cartesian 3D coordinates designed for the study of micro-to-mesoscale atmospheric phenomena in idealized to
semi-idealized simulations.

The CM1 model was developed and is maintained by George Bryan at the National Center for Atmospheric Research
(NCAR) Mesoscale and Microscale Meteorology Laboratory (MMM).

The model code is freely available from the CM1 website and must be downloaded and compiled outside of DART.

This model interface and scripting support were created by Luke Madaus. Thanks Luke!

6.106.2 namelist.input

Several modifications to the CM1 namelist namelist.input are required to produce model output compatible with
DART. The values are described here and an example is shown below.

The namelist.input file is partitioned into several distinct namelists. These namelists are denoted ¶m0,
¶m1, ¶m2, . . . ¶m13.

These namelists start with an ampersand & and terminate with a slash /. Thus, character strings that contain a / must
be enclosed in quotes to prevent them from prematurely terminating the namelist.

Using CM1 output files as a prior ensemble state in DART requires each ensemble member to produce a restart file in
netCDF format (which requires setting restart_format=2 in the ¶m9 namelist) and these restart files must
only contain output at the analysis time (which requires setting restart_filetype=2 in the ¶m9 namelist).

Here is an example configuration of the ¶m9 namelist in namelist.input:

¶m9
restart_format = 2 restart needs to be netCDF
restart_filetype = 2 restart must be the analysis time - ONLY
restart_file_theta = .true. make sure theta is in restart file
restart_use_theta = .true.

/

Important: The only required state variable to be updated is potential temperature (theta). Thus two additional set-
tings in the ¶m9 namelist – restart_file_theta = .true. and restart_use_theta = .true.
must be set to ensure theta is output the CM1 restart files.

Additional state variables that have been tested within DART include:

ua, va, wa, ppi, u0, v0, u10, v10, t2, th2, tsk, q2, psfc, qv, qc, qr, qi qs,
& qg.

At present, observation times are evaluated relative to the date and time specified in the ¶m11 namelist.

6.106. CM1 291

http://www2.mmm.ucar.edu/people/bryan/cm1/

DART, Release 9.10.3

Observation locations are specified in meters relative to the domain origin as defined the iorigin setting of
¶m2.

6.106.3 About Testing CM1 and DART

There are two sets of scripts in the shell_scripts directory. Luke contributed a set written in python, and the
DART team had a set written in csh. The csh scripts have not been tested in quite some time, so use with the understand-
ing that they will need work. Those csh scripts and some unfinished python scripts reside in a shell_scripts/
unfinished directory and should be used with the understanding that they require effort on the part of the user
before the scripts will actually work.

6.106.4 Strategy and Instructions for Using the Python Scripts

A List of Prerequisites

1. CM1 is required to use netCDF restart files.

2. A collection of CM1 model states for initial conditions will be available.

3. There is a separate observation sequence file for each assimilation time.

4. The DART input.nml file has some required values as defined below.

5. Each time CM1 is advanced, it will start from the same filename, and the restart number in that filename will be
000001 - ALWAYS. That filename will be a link to the most current model state.

Testing a Cycling Experiment

The big picture: three scripts (setup_filter.py, run_filter.py, and advance_ensemble.py) are al-
ternated to configure an experiment, perform an assimilation on a set of restart files, and make the ensemble forecast.
Time management is controlled through command-line arguments.

It is required that you have generated the DART executables before you test. The term {centraldir} refers to a
filesystem and directory that will be used to run the experiment, the working directory. {centraldir} should have
a lot of capacity, as ensemble data assimilation will require lots of disk. The term {dart_dir} will refer to the
location of the DART source code.

The data referenced in the directories (the initial ensemble, etc.) are provided as a compressed tar file
cm1r18_3member_example_data.tar.gz.

You will have to download the tar file, uncompress it, and modify the scripts to use these directories instead of the
example directories in the scripts. You will also have to compile your own cm1 executable.

1. Set some variables in both shell_scripts/setup_filter.py and shell_scripts/
advance_ensemble.py as described below.

2. In the {dart_dir}/models/cm1/shell_scripts directory, run:

$./setup_filter.py -d YYYYmmDDHHMMSS -i

where YYYYmmDDHHMMSS is the date and time of the first assimilation cycle (the -i option indicates this is the
initial setup and extra work will be performed). This will create the working directory {centraldir}, link
in required executables, copy in the initial conditions for each member from some predetermined location, copy
in the observation sequence file for this assimilation time from some predetermined location, modify namelists,
and build a queue submission script in the {centraldir}: run_filter.py.

292 Chapter 6. References

http://www.image.ucar.edu/pub/DART/CM1/cm1r18_3member_example_data.tar.gz

DART, Release 9.10.3

3. Change into {centraldir} and verify the contents of run_filter.py. Ensure the assimilation settings
in input.nml are correct. Once you are satisfied, submit run_filter.py to the queue to perform an
assimilation.

4. After the assimilation job completes, check to be sure that the assimilation completed successfully, and the
archived files requested in the setup_filter.py files_to_archive variable are in {centraldir}/
archive/YYYYmmDDHHMMSS.

5. Change into {dart_dir}/models/cm1/shell_scripts and advance the ensemble to the next assimi-
lation time by running:

$./advance_ensemble.py -d YYYYmmDDHHMMSS -l nnnn

where YYYYmmDDHHMMSS is the date of the COMPLETED analysis (the start time for the model) and nnnn
is the length of model integration in seconds (the forecast length). (The forecast length option is specified by
‘hypen ell’ - the lowercase letter L, not the number one.) advance_ensemble.py will submit jobs to the
queue to advance the ensemble.

6. After all ensemble members have successfully completed, run:

$./setup_filter.py -d YYYYmmDDHHMMSS

where $YYYYmmDDHHMMSS$ is the new current analysis time. Note the $-i$ flag is NOT used here, as we
do not need to (should not need to!) re-initialize the entire directory structure.

7. Change into {centraldir} and run:

$ ``run_filter.py``

to perform the assimilation.

8. Go back to step 4 and repeat steps 4-7 for each assimilation cycle until the end of the experiment.

Within the setup_filter.py and advance_ensemble.py scripts, the following variables need to be set be-
tween the “BEGIN USER-DEFINED VARIABLES” and “END USER-DEFINED VARIABLES” comment blocks:

jobname

A name for this experiment, will be included in the working directory path.

ens_size

Number of ensemble members.

restart_filename

The filename for each ensemble member’s restart. Highly recommended to leave this as
cm1out_rst_000001.nc

window_mins

The assimilation window width (in minutes) for each assimilation cycle.

copy

The copy command with desired flags for this system.

link

The link command with desired flags for this system.

remove

The remove command with desired flags for this system.

6.106. CM1 293

DART, Release 9.10.3

files_to_archive

A list of DART output files to archive for each assimilation cycle. Note that any inflation files generated
are automatically carried over.

centraldir

Directory (which will be created if setup_filter.py is run in intialization mode) where the assimi-
lation and model advances will take place. Should be on a system with enough space to allow for several
assimilation cycles of archived output.

dart_dir

Path to the cm1 subdirectory of DART.

cm1_dir

Path to the cm1 model executable (cm1.exe)

icdir

Path to the ensemble of initial conditions. It is assumed that within this directory, each ensemble member
has a subdirectory (m1, m2, m3, . . .) that contains:

• a restart file for cm1 at the desired start time and having the filename defined in
restart_filename above

• a namelist.input file compatible with the generation of that restart file.

obsdir

Path to a directory containing observation sequence files to be assimilated. It is assumed that the observa-
tion sequence files are named following the convention YYYYmmDDHHMMSS_obs_seq.prior, where
the date of the analysis time whose observations are contained in that file is the first part of the file name.

setup_filter.py and advance_ensemble.py assume that mpi queue submissions are required
to run cm1.exe and filter. These variables control how that is handled.

queue_system

The name of the queueing system

mpi_run_command

The command used in a submitted script to execute an mpi task in the queue, including any required flags

queue_sub_command

The command used to submit a script to the queue

job_sub_info

A dictionary of all flags required to execute a job in the queue, with the key being the flag and the value
being the variable. e.g. {‘-P’ : ‘PROJECT CODE HERE’, ‘-W’ : ‘00:20’}, etc.

294 Chapter 6. References

DART, Release 9.10.3

6.106.5 Namelist

The &model_nml namelist is read from the input.nml file. Again, namelists start with an ampersand & and ter-
minate with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
assimilation_period_days = 0
assimilation_period_seconds = 21600
model_perturbation_amplitude = 0.2
cm1_template_file = 'null'
calendar = 'Gregorian'
periodic_x = .true.
periodic_y = .true.
periodic_z = .false.
debug = 0
model_variables = ' '

/

6.106. CM1 295

DART, Release 9.10.3

Description of each namelist entry

Item Type Description
assimilation_period_[days,seconds] integer This specifies the width of the as-

similation window. The current
model time is used as the center time
of the assimilation window. All ob-
servations in the assimilation win-
dow are assimilated. BEWARE: if
you put observations that occur be-
fore the beginning of the assimila-
tion_period, DART will error out
because it cannot move the model
‘back in time’ to process these ob-
servations.

model_perturbation_amplitude real(r8) unsupported
cm1_template_file character(len=256) filename used to read the variable

sizes, location metadata, etc.
calendar character(len=256) Character string to specify the cal-

endar in use. Usually ‘Gregorian’
(since that is what the observations
use).

model_variables character(:,5) Strings that identify the CM1
variables, their DART quantity, the
minimum & maximum possible
values, and whether or not the pos-
terior values should be written to
the output file. The DART QUAN-
TITY must be one found in the
DART/obs_kind/obs_kind_mod.f90
AFTER it gets built by preprocess.

model_variables(:,1)Specifies the CM1 vari-
able name in the netCDF
file.

model_variables(:,2)Specifies the DART
quantity for that vari-
able.

model_variables(:,3)Specifies a minimum
bound (if any) for that
variable.

model_variables(:,4)Specifies a maximum
bound (if any) for that
variable.

model_variables(:,5)Specifies if the variable
should be updated in the
restart file. The value
may be “UPDATE” or
anything else.

periodic_x logical a value of .true. means the ‘X’ di-
mension is periodic.

periodic_y logical a value of .true. means the ‘Y’ di-
mension is periodic.

periodic_z logical unsupported
debug integer switch to control the amount of run-

time output is produced. Higher val-
ues produce more output. 0 pro-
duces the least.

296 Chapter 6. References

DART, Release 9.10.3

Note: The values above are the default values. A more realistic example is shown below and closely matches the
values in the default input.nml.

&model_nml
assimilation_period_days = 0
assimilation_period_seconds = 60
cm1_template_file = 'cm1out_rst_000001.nc'
calendar = 'Gregorian'
periodic_x = .true.
periodic_y = .true.
periodic_z = .false.
debug = 0
model_variables = 'ua' , 'QTY_U_WIND_COMPONENT' , 'NULL', 'NULL', 'UPDATE',

'va' , 'QTY_V_WIND_COMPONENT' , 'NULL', 'NULL', 'UPDATE',
'wa' , 'QTY_VERTICAL_VELOCITY' , 'NULL', 'NULL', 'UPDATE',
'theta', 'QTY_POTENTIAL_TEMPERATURE' , 0.0000, 'NULL', 'UPDATE',
'ppi' , 'QTY_PRESSURE' , 'NULL', 'NULL', 'UPDATE',
'u10' , 'QTY_10M_U_WIND_COMPONENT' , 'NULL', 'NULL', 'UPDATE',
'v10' , 'QTY_10M_V_WIND_COMPONENT' , 'NULL', 'NULL', 'UPDATE',
't2' , 'QTY_2M_TEMPERATURE' , 0.0000, 'NULL', 'UPDATE',
'th2' , 'QTY_POTENTIAL_TEMPERATURE' , 0.0000, 'NULL', 'UPDATE',
'tsk' , 'QTY_SURFACE_TEMPERATURE' , 0.0000, 'NULL', 'UPDATE',
'q2' , 'QTY_SPECIFIC_HUMIDITY' , 0.0000, 'NULL', 'UPDATE',
'psfc' , 'QTY_SURFACE_PRESSURE' , 0.0000, 'NULL', 'UPDATE',
'qv' , 'QTY_VAPOR_MIXING_RATIO' , 0.0000, 'NULL', 'UPDATE',
'qc' , 'QTY_CLOUD_LIQUID_WATER' , 0.0000, 'NULL', 'UPDATE',
'qr' , 'QTY_RAINWATER_MIXING_RATIO', 0.0000, 'NULL', 'UPDATE',
'qi' , 'QTY_CLOUD_ICE' , 0.0000, 'NULL', 'UPDATE',
'qs' , 'QTY_SNOW_MIXING_RATIO' , 0.0000, 'NULL', 'UPDATE',
'qg' , 'QTY_GRAUPEL_MIXING_RATIO' , 0.0000, 'NULL', 'UPDATE'

/

6.107 COAMPS Nest

Attention: COAMPS_NEST works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If
you are interested in using COAMPS_NEST with more recent versions of DART, contact DAReS staff to assess the
feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.107.1 Overview

An updated version of the COAMPS model interfaces and scripts.

This interface was contributed by Alex Reinecke of the Naval Research Lab-Monterey.

The primary differences from the original COAMPS model code are:

• the ability to assimilate nested domains

• assimilates real observations

• a simplified way to specify the state vector

• I/O COAMPS data files

6.107. COAMPS Nest 297

DART, Release 9.10.3

• extensive script updates to accommodate additional HPC environments

6.108 COAMPS

Attention: COAMPS works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using COAMPS with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.108.1 Overview

DART interface module for the Coupled Ocean / Atmosphere Mesoscale Prediction (COAMPS ®) model. The 16
public interfaces listed here are standardized for all DART compliant models. These interfaces allow DART to
advance the model, get the model state and metadata describing this state, find state variables that are close to a given
location, and do spatial interpolation for a variety of variables required in observational operators.
The following model description is taken from the COAMPS overview web page:

“The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) has been developed by the
Marine Meteorology Division (MMD) of the Naval Research Laboratory (NRL). The atmospheric com-
ponents of COAMPS, described below, are used operationally by the U.S. Navy for short-term numerical
weather prediction for various regions around the world.

The atmospheric portion of COAMPS represents a complete three-dimensional data assimilation system
comprised of data quality control, analysis, initialization, and forecast model components. Features in-
clude a globally relocatable grid, user-defined grid resolutions and dimensions, nested grids, an option
for idealized or real-time simulations, and code that allows for portability between mainframes and work-
stations. The nonhydrostatic atmospheric model includes predictive equations for the momentum, the
non-dimensional pressure perturbation, the potential temperature, the turbulent kinetic energy, and the
mixing ratios of water vapor, clouds, rain, ice, grauple, and snow, and contains advanced parameteriza-
tions for boundary layer processes, precipitation, and radiation.

The distributed version of the COAMPS code that can be downloaded from the web site has been designed
to use the message-passing interface (MPI), OpenMP directives, and horizontal domain decomposition to
achieve parallelism. The code is capable of executing efficiently across vector, parallel, or symmetric
muti-processor (SMP) machines by simply changing run-time options.”

6.108.2 Other modules used

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod
obs_kind_mod
random_seq_mod
netcdf
typesizes
coamps_grid_mod
coamps_interp_mod
coamps_restart_mod
coamps_util_mod

298 Chapter 6. References

http://www.nrlmry.navy.mil/coamps-web/web/view

DART, Release 9.10.3

6.108.3 Public interfaces

use model_mod, only : get_model_size
get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

adv_1step

end_model

init_time

init_conditions

The last 4 interfaces are only required for low-order models where advancing the model can be done by a call to a
subroutine. The COAMPS model only advances by executing the coamps program. Thus the last 4 interfaces only
appear as stubs in this module.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector as an integer. This includes all nested domains.

model_size The length of the model state vector.

6.108. COAMPS 299

DART, Release 9.10.3

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Returns metadata about a given element, indexed by index_in, in the model state vector. The location defines where
the state variable is located while the type of the variable (for instance temperature, or u wind component) is returned
by var_type. The integer values used to indicate different variable types in var_type are themselves defined as public
interfaces to model_mod if required.

index_inIndex of state vector element about which information is requested.
locationReturns location of indexed state variable. The location should use a location_mod that is appropriate for

the model domain. For realistic atmospheric models, for instance, a three-dimensional spherical location
module that can represent height in a variety of ways is provided.

var_typeReturns the type of the indexed state variable as an optional argument.

call model_interpolate(x, location, obs_kind, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: obs_kind
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given model state, returns the value of observation type interpolated to a given location by a method of the model’s
choosing. All observation kinds defined in obs_kind_mod are supported. In the case where the observational operator
is not defined at the given location (e.g. the observation is below the model surface or outside the domain), obs_val is
returned as -888888.0 and istatus = 1. Otherwise, istatus = 0. The interpolation is performed in the domain with the
highest resolution containing the observation.

x A model state vector.
location Location to which to interpolate.
obs_kind Integer indexing which type of observation is to be interpolated.
obs_val The interpolated value from the model.
istatus Integer flag indicating the result of the interpolation.

var = get_model_time_step()

type(time_type) :: get_model_time_step

Returns the model base time step as a time_type. For now this is set to 1 minute.

300 Chapter 6. References

DART, Release 9.10.3

var Smallest time step of model.

call static_init_model()

Used for runtime initialization of the model. This is the first call made to the model by any DART compliant assimi-
lation routine. It reads the model namelist parameters, initializes the pressure levels for the state vector, and generates
the location data for each member of the state.

ierr = nc_write_model_atts(ncFileId)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileId

Function to write model specific attributes to a netCDF file. At present, DART is using the NetCDF format to output
diagnostic information. This is not a requirement, and models could choose to provide output in other formats. This
function writes the metadata associated with the model to a NetCDF file opened to a file identified by ncFileID.

ncFileId Integer file descriptor opened to NetCDF file.
ierr Returned error code.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

Writes a copy of the state variables to a NetCDF file. Multiple copies of the state for a given time are supported,
allowing, for instance, a single file to include multiple ensemble estimates of the state.

ncFileID Integer file descriptor opened to NetCDF file.
statevec State vector.
copyindex Integer index to which copy is to be written.
timeindex Integer index of which time in the file is being written.
ierr Returned error code.

6.108. COAMPS 301

DART, Release 9.10.3

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, produces a perturbed model state. This is used to generate initial ensemble conditions perturbed
around some control trajectory state when one is preparing to spin-up ensembles. In the COAMPS interface, this can
be done three different ways:

• No perturbation

• Uniform perturbation - each element of the field has the same additive perturbation

• Individual perturbation - each element of the field has a different additive perturbation The perturbation mag-
nitude and option are supplied out of the dynamic restart vector definition - this allows us to supply a variance
appropriate for each type of variable at each level.

state State vector to be perturbed.
pert_state Perturbed state vector is returned.
interf_provided Returns .true. for this model.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

Pass-through to the 3-D sphere locations module. See get_close_maxdist_init() for the documentation of this subrou-
tine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3-D sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)

(continues on next page)

302 Chapter 6. References

../../location/threed-sphere/location_mod.html#get_close_maxdist_init
../../location/threed-sphere/location_mod.html#get_close_obs_init

DART, Release 9.10.3

(continued from previous page)

integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Pass-through to the 3-D sphere locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

A local copy is available here for use during other computations in the model_mod code.

ens_mean Ensemble mean state vector

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

This operation is not defined for the COAMPS model. This interface is only required if `synchronous’ model state
advance is supported (the model is called directly as a Fortran90 subroutine from the assimilation programs). This is
generally not the preferred method for large models and a stub for this interface is provided for the COAMPS model.

x State vector of length model_size.
time Gives time of the initial model state. Needed for models that have real time state requirements, for instance

the computation of radiational parameters. Note that DART provides a time_manager_mod module that is
used to support time computations throughout the facility.

call end_model()

Called when use of a model is completed to clean up storage, etc. A stub is provided for the COAMPS model.

call init_time(i_time)

type(time_type), intent(in) :: i_time

6.108. COAMPS 303

../../location/threed-sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

Returns the time at which the model will start if no input initial conditions are to be used. This is frequently used to
spin-up models from rest, but is not meaningfully supported for the COAMPS model.

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Returns default initial conditions for model; generally used for spinning up initial model states. For the COAMPS
model just return 0’s since initial state is always to be provided from input files.

x Model state vector.

6.108.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
cdtg = '2006072500',
y_bound_skip = 3,
x_bound_skip = 3,
need_mean = .false.,

/

Item Type Description
cdtg charac-

ter(len=10)
Date/time group.

x_bound_skip,
y_bound_skip

integer Number of x and y boundary points to skip when perturbing the
model state.

need_mean logical Does the forward operator computation need the ensemble mean?

304 Chapter 6. References

DART, Release 9.10.3

6.108.5 Files

filename purpose
input.nml to read the model_mod namelist
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

6.108.6 References

The COAMPS registration web site is http://www.nrlmry.navy.mil/coamps-web/web/home and COAMPS is a regis-
tered trademark of the Naval Research Laboratory.

6.108.7 Private components

N/A

6.109 ECHAM

6.109.1 Overview

ECHAM is the atmospheric general circulation component of the Max Planck Institute Earth System Model (MPI-
ESM). It was originally branched from the numerical weather prediction model developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) in the late 1980’s and is developed and supported by the Max Planck
Institute for Meteorology in Hamburg, Germany. Thus the ECHAM acronym is comprised of EC from ECMWF, H
for Hamburg and AM for atmospheric model.

There are several DART users who have working DART interface code to ECHAM. If you are interested in running
DART with this model please contact the DART group at dart@ucar.edu for more information. We currently do not
have a copy of the model_mod interface code nor any of the scripting required to run an assimilation, but we may be
able to put you in contact with the right people to get it.

6.110 FESOM

The Finite Element Sea-ice Ocean Model (FESOM) is an unstructured mesh global ocean model using finite element
methods to solve the hydro-static primitive equations with the Boussinesq approximation (Danilov et al., 20041; Wang
et al., 20082). FESOM v1.4 is interfaced with DART by Aydoğdu et al. (2018a)3 using a regional implementation in
Turkish Straits System (Gürses et al. 20164, Aydoğdu et al. 2018b5).

1 Danilov, S., Kivman, G., and Schröter, J.: A finite-element ocean model: principles and evaluation, Ocean Modell., 6, 125–150, 2004.
2 Wang, Q., Danilov, S., and Schröter, J.: Finite element ocean circulation model based on triangular prismatic elements, with application in

studying the effect of topography representation, J. Geophys. Res.-Oceans (1978–2012), 113, C05015, doi:10.1029/2007JC004482, 2008.
3 Aydoğdu, A., Hoar, T. J., Vukicevic, T., Anderson, J. L., Pinardi, N., Karspeck, A., Hendricks, J., Collins, N., Macchia, F., and Özsoy, E.:

OSSE for a sustainable marine observing network in the Sea of Marmara, Nonlin. Processes Geophys., 25, 537-551, doi:10.5194/npg-25-537-2018,
2018a.

4 Gürses, Ö., Aydoğdu, A., Pinardi, N., and Özsoy, E.: A finite element modeling study of the Turkish Straits System, in: The Sea of Marmara
– Marine Biodiversity, Fisheries, Conservations and Governance, edited by: Özsoy E., Çaǧatay, M. N., Balkis, N., and Öztürk, B., TUDAV
Publication, 169–184, 2016.

5 Aydoğdu, A., Pinardi, N., Özsoy, E., Danabasoglu, G., Gürses, Ö., and Karspeck, A.: Circulation of the Turkish Straits System under interan-
nual atmospheric forcing, Ocean Sci., 14, 999-1019, doi:10.5194/os-14-999-2018, 2018b.

6.109. ECHAM 305

http://www.nrlmry.navy.mil/coamps-web/web/home
https://mpimet.mpg.de/en/science/models/mpi-esm/echam
https://mpimet.mpg.de/en/science/models/mpi-esm
https://mpimet.mpg.de/en/science/models/mpi-esm
https://www.ecmwf.int/
https://www.ecmwf.int/
https://mpimet.mpg.de/
https://mpimet.mpg.de/
mailto:dart@ucar.edu
https://doi.org/10.1029/2007JC004482
https://doi.org/10.5194/npg-25-537-2018
https://doi.org/10.5194/os-14-999-2018

DART, Release 9.10.3

There is a recent version of the model called the Finite-volumE Sea ice–Ocean Model (FESOM2, Danilov et al. 20176).
A version for coastal applications FESOM-C v.2 (Androsov et al., 20197) has also been published.

The FESOM V1.4 source code can be downloaded from https://fesom.de/models/fesom14

The FESOM/DART interfaces, diagnostics and support scripting were contributed by Ali Aydoğdu. Thanks Ali!

6.110.1 Overview

model_mod.f90

A module called fesom_modules is provided to pass the information from FESOM to DART. fesom_modules.f90
includes fortran routines adopted from FESOM v1.4 to read the mesh, set the variables and dimensions of the arrays.
fesom_modules should have access to nod2d.out, nod3d.out, elem2d.out, elem3d.out, aux3d.out, depth.out and m3d.ini
mesh files.

Forward operators use an interpolation using the closest model node in the horizontal, given that the application in
Aydoğdu et al. (2018a) uses a very high-resolution mesh. In the vertical, a linear interpolation is performed between
two enclosing model layers. Interpolation in model_interpolate routine can be improved, if needed.

Note that because the FESOM-native code explicitly types reals, the DART mechanism of being able to run in reduced
precision by defining real(r8) to be the same as real(r4) via ‘types_mod.f90’ is not supported.

Workflow

1. environment.load Must be modified to contain the specifics of an experiment. This file is sourced by every other
script below.

2. experiment.launch Takes the information from environment.load and creates runnable scripts from the template
script files. This also initiates the first cycle of the experiment.

2.1. ensemble.sh

2.1.1. initialize.template (first cycle only)

2.1.2. advance_model.template (job array to advance the ensemble)

2.1.3. check_ensemble.sh (if all goes well, assimilate)

2.1.3.1. filter.template (assimilate)

2.1.3.2. finalize.sh if all goes well and experiment is not finished . . . continue to 2.1

Shell Scripts

Shell scripts are written in bash for LSF queuing system. They should be modified to work with others such as
SLURM. FESOM executables are called externally detached from DART therefore no need for an advance model.

6 Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev., 10, 765-789,
doi:10.5194/gmd-10-765-2017, 2017.

7 Androsov, A., Fofonova, V., Kuznetsov, I., Danilov, S., Rakowsky, N., Harig, S., Brix, H., and Wiltshire, K. H.: FESOM-C v.2: coastal
dynamics on hybrid unstructured meshes, Geosci. Model Dev., 12, 1009-1028, doi:10.5194/gmd-12-1009-2019, 2019.

306 Chapter 6. References

https://fesom.de/models/fesom14
https://doi.org/10.5194/gmd-10-765-2017
https://doi.org/10.5194/gmd-12-1009-2019

DART, Release 9.10.3

Script QueueDefinition
environ-
ment.load

se-
rial

Includes environment variables, relevant directories, experiment specifications. This file is
sourced by every other script below.

experi-
ment.launch

se-
rial

Main script which modifies ensemble.sh and calls ensemble.${EXPINFO}.sh.
An experiment-specific summary which should be modified before launching the scripts.

ensemble.sh se-
rial

Calls and submits initialize.template, advance_model.template
check_ensemble.sh one after the other.

initial-
ize.template

se-
rial

Called only once at the beginning of the experiment. Sets the experiment directory, copies
initial ensemble, namelists.

ad-
vance_model.template

par-
al-
lel

Submits a job array for all ensemble members.

check_ensemble.shse-
rial

Checks if the forwarding for all members is finished. If so, first calls filter.template
and then calls finalize.sh to conclude current assimilation cycle.

fil-
ter.template

par-
al-
lel

Runs the filter to perform the assimilation.

finalize.sh se-
rial

Checks if the whole experiment is finished. If so, stops. Otherwise, resubmits ensemble.
${EXPINFO}.sh for the next assimilation cycle.

Diagnostics

A toolbox for diagnostics is provided. Some are written for a specific regional application using Ferrybox observations
of temperature and salinity. However, it shouldn’t be difficult to add new tools following the present ones. A fortran
toolbox post-processes the FESOM outputs and visualization is done using Generic Mapping Tools (GMT). DART
post-processed netCDF outputs are visualized using FERRET. Please see the expanded description inside each source
file.

Directory code file description
src/

fesom_post_main.F90 main fortran routine calling each tool selected in the namelist
fesom_ocean_mod.F90 ocean diagnostic routines
fesom_dart_mod.F90 DART diagnostic output routines
fesom_forcing_mod.F90 forcing diagnostic routines
fesom_observation_mod.F90 observation diagnostic routines
gen_input.F90 routines for I/O (adapted from FESOM)
gen_modules_clock.F90 routines for timing (adapted from FESOM)
gen_modules_config.F90 routines for configuration (adapted from FESOM)
mesh_read.F90 routines for reading the mesh (adapted from FESOM)
Makefile Makefile (adapted from FESOM) but reads DART environment
oce_dens_press.F90 routines to compute density and pressure (adapted from FESOM)
oce_mesh_setup.F90 routines for mesh setup (adapted from FESOM)
oce_modules.F90 routines for ocean modules (adapted from FESOM)
random_perturbation.F90 random perturbation to observation sampling
utilities.F90 various utilities

script/
compute_ensemble_mean computes ensemble mean and extracts a transect or level
compute_increment computes increment using DART diagnostic output
compute_NR_diff computes the difference between a nature run and the ensemble prior mean
dart_obs_seq_diag DART observation-space statistics from obs_epoch.nc and obs_diag.nc

continues on next page

6.110. FESOM 307

https://www.soest.hawaii.edu/gmt/
https://ferret.pmel.noaa.gov/Ferret/

DART, Release 9.10.3

Table 3 – continued from previous page
Directory code file description

dart.postproc.env DART environment variables
fesom.postproc.env FESOM environment variables
observe_nature_run creates synthetic observations from a nature run
transect_daily_mean extracts and plots a transect of an individual ensemble member
zlevel_daily_mean extracts and plots a level of an individual ensemble member

gmt/
plot_ensemble_mean.gmt plots ensemble mean created by compute_ensemble_mean
plot_increment.gmt plots increment created by compute_increment
plot_NR_diff.gmt plots difference created by compute_NR_diff
transect_daily_mean.gmt plots transects created by transect_daily_mean
zlevel_yearly_mean.gmt plots levels created by zlevel_daily_mean

ferret/
frt.obs_diag_TeMPLaTe.jnl plot DART diags created by dart_obs_seq_diag
frt.obs_epoch_TeMPLaTe.jnl plot DART diags created by dart_obs_seq_diag

6.110.2 References

6.111 GITM

Attention: GITM works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using GITM with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

A preliminary Manhattan-compliant interface to GITM exists and has been used for science applications but has
not yet been released for public use.

6.111.1 Overview

The Global Ionosphere Thermosphere Model (GITM) is a 3-dimensional spherical code that models the Earth’s ther-
mosphere and ionosphere system using a stretched grid in latitude and altitude.

The GITM interface for Data Assimilation Research Testbed (DART) is under development. If you wish to use
GITM, you are urged to contact us. The original scripts were configured to run on the University of Michigan machine
NYX using the Portable Batch System (PBS). We have attempted to extend the scripts to work with both PBS and
LSF and are only partway through the process.

DART does not come with the GITM code. You need to get that on your own. The normal procedure of building
GITM creates some resource files that are subsequently needed by DART - just to compile. These include:

1. models/gitm/GITM2/src/ModConstants.f90

2. models/gitm/GITM2/src/ModEarth.f90

3. models/gitm/GITM2/src/ModKind.f90

4. models/gitm/GITM2/src/ModOrbital.f90

5. models/gitm/GITM2/src/ModSize.f90

6. models/gitm/GITM2/src/ModTime.f90

7. models/gitm/GITM2/src/time_routines.f90

308 Chapter 6. References

http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

DART, Release 9.10.3

GITM uses binary files for their restart mechanisms, so no metadata is available to confirm the number and order of
fields in the file. Care must be used to make sure the namelist-controlled set of variables to be included in the DART
state vector is consistent with the restart files. Each variable must also correspond to a DART “KIND”; required for
the DART interpolate routines.

For example, this configuration of input.nml is nowhere close to being correct:

&model_nml
gitm_state_variables = 'Temperature', 'QTY_TEMPERATURE',

'eTemperature', 'QTY_TEMPERATURE_ELECTRON',
'ITemperature', 'QTY_TEMPERATURE_ION',
'iO_3P_NDensityS', 'QTY_DENSITY_NEUTRAL_O3P',
'iO2_NDensityS', 'QTY_DENSITY_NEUTRAL_O2',
'iN2_NDensityS', 'QTY_DENSITY_NEUTRAL_N2',

... ...
/

These variables are then adjusted to be consistent with observations and stuffed back into the same netCDF restart
files. Since DART is an ensemble algorithm, there are multiple restart files for a single restart time: one for each
ensemble member. Creating the initial ensemble of states is an area of active research.

DART reads grid information for GITM from several sources. The UAM.in file specifies the number of lati-
tudes/longitudes per block, and the number of blocks comes from the GITM2/src/ModSize.f90module. Internal
to the DART code, the following variables exist:

Item Type Description
LON(:) real(r8) longitude array [0, 360)
LAT(:) real(r8) latitude array (-90,90)
ALT(:) real(r8) altitude array (0,~inf)
NgridLon integer the length of the longitude array
NgridLat integer the length of the latitude array
NgridAlt integer the length of the altitude array

6.111.2 Compiling

GITM has been sucessfully tested with DART using the gfortran compiler, version 4.2.3. The DART compo-
nents were built with the following mkmf.template settings.

FC = gfortran
LD = gfortran
NETCDF = /Users/thoar/GNU
INCS = -I${NETCDF}/include
LIBS = -L${NETCDF}/lib -lnetcdf -lcurl -lhdf5_hl -lhdf5 -lz -lm
FFLAGS = -O0 -fbounds-check -frecord-marker=4 -ffpe-trap=invalid $(INCS)
LDFLAGS = $(FFLAGS) $(LIBS)

6.111. GITM 309

DART, Release 9.10.3

6.111.3 Converting Between DART Files and GITM Restart Files

The binary GITM files contain no metadata, so care is needed when converting between DART state variables and
GITM files.

There are two programs - both require the list of GITM variables to use in the DART state vector: the
&model_nml:gitm_state_variables variable in the input.nml file.

gitm_to_dart.
f90

converts a set of GITM restart files (there is one restart file per block) bxxxx.rst into a DART-compatible file
normally called dart_ics . We usually wind up linking to this static filename.

dart_to_gitm.
f90

inserts the DART output into existing GITM restart files. There are two different types of DART output files,
so there is a namelist option to specify if the DART file has two time records or just one. If there are two, the
first one is the ‘advance_to’ time, followed by the ‘valid_time’ of the ensuing state. If there is just one, it is
the ‘valid_time’ of the ensuing state. dart_to_gitm determines the GITM restart file name from the input.nml
model_nml:gitm_restart_dirname. If the DART file contains an ‘advance_to’ time, dart_to_gitm creates a
DART_GITM_time_control.txt file which can be used to control the length of the GITM integration.

6.111.4 Simple Test

The simplest way to test the converter is to compile GITM and run a single model state forward using work/clean.
sh. To build GITM . . . download GITM and unpack the code into DART/models/gitm/GITM2 and run the
following commands:

$ cd models/gitm/GITM2
$./Config.pl -install -compiler=ifortmpif90 -earth
$ make
$ cd ../work
$./clean.sh 1 1 0 150.0 170.0 1.0

6.111.5 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand & and terminating with a slash / for all
our namelist input. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

This namelist is read from a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the model dynamical timestep.

Sample input.nml Configuration

The list of variables to put into the state vector is here:
The definitions for the DART kinds are in DART/observations/forward_operators/obs_
→˓def*f90
The order doesn't matter to DART. It may to you.

&model_nml
gitm_restart_dirname = 'advance_temp_e1/UA/restartOUT',
assimilation_period_days = 0,
assimilation_period_seconds = 1800,
model_perturbation_amplitude = 0.2,

(continues on next page)

310 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

output_state_vector = .false.,
calendar = 'Gregorian',
debug = 0,
gitm_state_variables = 'Temperature', 'QTY_TEMPERATURE',

'eTemperature', 'QTY_TEMPERATURE_ELECTRON',
'ITemperature', 'QTY_TEMPERATURE_ION',
'iO_3P_NDensityS', 'QTY_DENSITY_NEUTRAL_O3P',
'iO2_NDensityS', 'QTY_DENSITY_NEUTRAL_O2',
'iN2_NDensityS', 'QTY_DENSITY_NEUTRAL_N2',
'iN_4S_NDensityS', 'QTY_DENSITY_NEUTRAL_N4S',
'iNO_NDensityS', 'QTY_DENSITY_NEUTRAL_NO',
'iN_2D_NDensityS', 'QTY_DENSITY_NEUTRAL_N2D',
'iN_2P_NDensityS', 'QTY_DENSITY_NEUTRAL_N2P',
'iH_NDensityS', 'QTY_DENSITY_NEUTRAL_H',
'iHe_NDensityS', 'QTY_DENSITY_NEUTRAL_HE',
'iCO2_NDensityS', 'QTY_DENSITY_NEUTRAL_CO2',
'iO_1D_NDensityS', 'QTY_DENSITY_NEUTRAL_O1D',
'iO_4SP_IDensityS', 'QTY_DENSITY_ION_O4SP',
'iO2P_IDensityS', 'QTY_DENSITY_ION_O2P',
'iN2P_IDensityS', 'QTY_DENSITY_ION_N2P',
'iNP_IDensityS', 'QTY_DENSITY_ION_NP',
'iNOP_IDensityS', 'QTY_DENSITY_ION_NOP',
'iO_2DP_IDensityS', 'QTY_DENSITY_ION_O2DP',
'iO_2PP_IDensityS', 'QTY_DENSITY_ION_O2PP',
'iHP_IDensityS', 'QTY_DENSITY_ION_HP',
'iHeP_IDensityS', 'QTY_DENSITY_ION_HEP',
'ie_IDensityS', 'QTY_DENSITY_ION_E',
'U_Velocity_component', 'QTY_VELOCITY_U',
'V_Velocity_component', 'QTY_VELOCITY_V',
'W_Velocity_component', 'QTY_VELOCITY_W',
'U_IVelocity_component', 'QTY_VELOCITY_U_ION',
'V_IVelocity_component', 'QTY_VELOCITY_V_ION',
'W_IVelocity_component', 'QTY_VELOCITY_W_ION',
'iO_3P_VerticalVelocity', 'QTY_VELOCITY_VERTICAL_O3P',
'iO2_VerticalVelocity', 'QTY_VELOCITY_VERTICAL_O2',
'iN2_VerticalVelocity', 'QTY_VELOCITY_VERTICAL_N2',
'iN_4S_VerticalVelocity', 'QTY_VELOCITY_VERTICAL_N4S',
'iNO_VerticalVelocity', 'QTY_VELOCITY_VERTICAL_NO',
'f107', 'QTY_1D_PARAMETER',
'Rho', 'QTY_DENSITY',

/

6.111. GITM 311

DART, Release 9.10.3

Description of Each Term in the Namelist

Item Type Description
gitm_restart_dirname character(len=256) The name of the directory contain-

ing the GITM restart files and run-
time control information.

assimilation_period_days integer The number of days to advance the
model for each assimilation.

assimilation_period_seconds integer In addition to
assimilation_period_days
the number of seconds to ad-
vance the model for each each
assimilation.

model_perturbation_amplitude real(r8) Reserved for future use.
output_state_vector logical The switch to determine the form of

the of the state vector in the out-
put netCDF files. If .true. the
state vector will be output exactly as
DART uses it . . . one long array. If
.false., the state vector is parsed
into prognostic variables and output
that way – much easier to use with
‘ncview’, for example.

calendar character(len=32) Character string specifying the cal-
endar being used by GITM.

debug integer The switch to specify the run-time
verbosity.

• 0 is as quiet as it gets
• > 1 provides more run-time

messages
• > 5 provides ALL run-time

messages

gitm_state_variables character
(len=NF90_MAX_NAME)::
dimension(160)

The table that relates the GITM vari-
ables to use to build the DART
state vector, and the corresponding
DART kinds for those variables.

312 Chapter 6. References

DART, Release 9.10.3

6.111.6 Files

filename purpose
input.nml to read the model_mod namelist
Several GITM source modules: ModConstants, Mod-
SizeGitm, ModEarth . . .

provides grid dimensions, model state, and ‘valid_time’
of the model state

header.rst, bNNNN.rst provides the ‘valid_time’ of the model state and the
model state, respectively

true_state.nc the time-history of the “true” model state from an OSSE
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains

the default values

6.111.7 References

NASA’s official GITM description can be found at their Community Coordinated Modeling Center website.

6.112 PROGRAM netcdf_to_gitm_blocks

Attention: GITM works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using GITM with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

The Global Ionosphere Thermosphere Model (GITM) is a 3-dimensional spherical code that models the Earth’s
thermosphere and ionosphere system using a stretched grid in latitude and altitude. For a fuller description of using
GITM within DART, please see the GITM documentation.
netcdf_to_gitm_blocks is the program that updates the GITM restart files (i.e. b?????.rst) with the
information from a DART output/restart file (e.g. perfect_ics, filter_ics, ...).
The list of variables used to create the DART state vector are specified in the input.nml file.
Conditions required for successful execution of netcdf_to_gitm_blocks:

• a valid input.nml namelist file for DART

• a valid UAM.in control file for GITM

• a set of b?????.rst data files for GITM

• a header.rst file for GITM

• the DART/GITM interfaces must be compiled in a manner consistent with the GITM data and control files. The
following GITM source files are required to build any DART interface:

– models/gitm/GITM2/src/ModConstants.f90

– models/gitm/GITM2/src/ModEarth.f90

– models/gitm/GITM2/src/ModKind.f90

– models/gitm/GITM2/src/ModOrbital.f90

6.112. PROGRAM netcdf_to_gitm_blocks 313

http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM
http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

DART, Release 9.10.3

– models/gitm/GITM2/src/ModSize.f90

– models/gitm/GITM2/src/ModTime.f90

– models/gitm/GITM2/src/time_routines.f90

Versions of these are included in the DART release. ModSize.f90, in particular, must match what was used
to create the b????.rst files.

The individual model instances are run in unique directories. This is also where the converter routines
gitm_to_dart and netcdf_to_gitm_blocks are run. This makes it easy to use a single ‘static’ name for
the input and output filenames. advance_model.csh is responsibile for linking the appropriate files to these static
filenames.

The simplest way to test the converter is to compile GITM and run a single model state forward using work/clean.
sh. To build GITM . . . download GITM and unpack the code into DART/models/gitm/GITM2 and follow these
instructions:

cd models/gitm/GITM2
./Config.pl -install -compiler=ifortmpif90 -earth
make
cd ../work
./clean.sh 1 1 0 150.0 170.0 1.0

And then manually run netcdf_to_gitm_blocks on the result.

6.112.1 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all
our namelist input. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&netcdf_to_gitm_blocks_nml
netcdf_to_gitm_blocks_output_file = 'dart_restart',
advance_time_present = .false.
/

&model_nml
gitm_restart_dirname = 'advance_temp_e1/UA/restartOUT',
assimilation_period_days = 0,
assimilation_period_seconds = 1800,
model_perturbation_amplitude = 0.2,
output_state_vector = .false.,
calendar = 'Gregorian',
debug = 0,
gitm_state_variables = 'Temperature', 'QTY_TEMPERATURE',

'eTemperature', 'QTY_TEMPERATURE_ELECTRON',
'ITemperature', 'QTY_TEMPERATURE_ION',
'iO_3P_NDensityS', 'QTY_DENSITY_NEUTRAL_O3P',

...

314 Chapter 6. References

DART, Release 9.10.3

Con-
tents

Type Description

netcdf_to_gitm_blocks_output_filechar-
ac-
ter(len=128)

The name of the DART file containing the model state derived from the GITM restart files.

ad-
vance_time_present

logi-
cal

If you are manually converting a DART initial conditions or restart file this should be .false.
; these files have a single timestamp describing the valid time of the model state. If .true.,
TWO timestamps are expected in the DART file header and DART_GITM_time_control.
txt) is created with the settings appropriate to advance GITM to the time requested by DART.

The full description of the model_nml namelist is documented in the gitm model_mod, but the most important
variable for netcdf_to_gitm_blocks is repeated here.

Contents Type Description
gitm_restart_dirnamecharac-

ter(len=256)
The name of the directory containing the GITM restart files and runtime control
information.

gitm_state_variablescharac-
ter(len=32),
dimension(2,80)

The list of variable names in the gitm restart file to use to create the DART
state vector and their corresponding DART kind. The default list is specified
in model_mod.nml

6.112.2 Modules used

obs_def_upper_atm_mod.f90
assim_model_mod.f90
types_mod.f90
location/threed_sphere/location_mod.f90
models/gitm/GITM2/src/ModConstants.f90
models/gitm/GITM2/src/ModEarth.f90
models/gitm/GITM2/src/ModKind.f90
models/gitm/GITM2/src/ModSize.f90
models/gitm/GITM2/src/ModTime.f90
models/gitm/GITM2/src/time_routines.f90
models/gitm/dart_gitm_mod.f90
models/gitm/netcdf_to_gitm_blocks.f90
models/gitm/model_mod.f90
null_mpi_utilities_mod.f90
obs_kind_mod.f90
random_seq_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.112. PROGRAM netcdf_to_gitm_blocks 315

readme.html#Namelist

DART, Release 9.10.3

6.112.3 Files read

• gitm restart files: b????.rst

• gitm control files: header.rst

• gitm control files: UAM.in.rst

• DART namelist file: input.nml

6.112.4 Files written

• DART initial conditions/restart file; e.g. dart_ics

6.112.5 References

• The official GITM site is: can be found at ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

6.113 gitm_blocks_to_netcdf``

Attention: GITM works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using GITM with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

The Global Ionosphere Thermosphere Model (GITM) is a 3-dimensional spherical code that models the Earth’s
thermosphere and ionosphere system using a stretched grid in latitude and altitude. For a fuller description of using
GITM within DART, please see the GITM documentation.
gitm_blocks_to_netcdf is the program that reads GITM restart files (i.e. b?????.rst) and creates a DART
output/restart file (e.g. perfect_ics, filter_ics, ...).
The list of variables used to create the DART state vector are specified in the input.nml file.
Conditions required for successful execution of gitm_blocks_to_netcdf:

• a valid input.nml namelist file for DART

• a valid UAM.in control file for GITM

• a set of b?????.rst data files for GITM

• a header.rst file for GITM

• the DART/GITM interfaces must be compiled in a manner consistent with the GITM data and control files. The
following GITM source files are required to build any DART interface:

– models/gitm/GITM2/src/ModConstants.f90

– models/gitm/GITM2/src/ModEarth.f90

– models/gitm/GITM2/src/ModKind.f90

– models/gitm/GITM2/src/ModOrbital.f90

– models/gitm/GITM2/src/ModSize.f90

– models/gitm/GITM2/src/ModTime.f90

316 Chapter 6. References

http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM
http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

DART, Release 9.10.3

– models/gitm/GITM2/src/time_routines.f90

Versions of these are included in the DART release. ModSize.f90, in particular, must match what was used
to create the b????.rst files.

The individual model instances are run in unique directories. This is also where the converter routines
gitm_blocks_to_netcdf and dart_to_gitm are run. This makes it easy to use a single ‘static’ name for
the input and output filenames. advance_model.csh is responsibile for linking the appropriate files to these static
filenames.

The simplest way to test the converter is to compile GITM and run a single model state forward using work/clean.
sh. To build GITM . . . download GITM and unpack the code into DART/models/gitm/GITM2 and follow these
instructions:

cd models/gitm/GITM2
./Config.pl -install -compiler=ifortmpif90 -earth
make
cd ../work
./clean.sh 1 1 0 150.0 170.0 1.0

6.113.1 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all
our namelist input. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&gitm_blocks_to_netcdf_nml
gitm_blocks_to_netcdf_output_file = 'dart_ics',
/

&model_nml
gitm_restart_dirname = 'advance_temp_e1/UA/restartOUT',
assimilation_period_days = 0,
assimilation_period_seconds = 1800,
model_perturbation_amplitude = 0.2,
output_state_vector = .false.,
calendar = 'Gregorian',
debug = 0,
gitm_state_variables = 'Temperature', 'QTY_TEMPERATURE',

'eTemperature', 'QTY_TEMPERATURE_ELECTRON',
'ITemperature', 'QTY_TEMPERATURE_ION',
'iO_3P_NDensityS', 'QTY_DENSITY_NEUTRAL_O3P',

...

Contents Type Description
gitm_blocks_to_netcdf_output_filecharac-

ter(len=128)
The name of the DART file containing the model state derived from
the GITM restart files.

The full description of the model_nml namelist is documented in the gitm model_mod, but the most important
variable for gitm_blocks_to_netcdf is repeated here.

6.113. gitm_blocks_to_netcdf`` 317

readme.html#Namelist

DART, Release 9.10.3

Contents Type Description
gitm_restart_dirnamecharac-

ter(len=256)
The name of the directory containing the GITM restart files and runtime control
information.

gitm_state_variablescharac-
ter(len=32),
dimension(2,80)

The list of variable names in the gitm restart file to use to create the DART
state vector and their corresponding DART kind. The default list is specified
in model_mod.nml

6.113.2 Modules used

obs_def_upper_atm_mod.f90
assim_model_mod.f90
types_mod.f90
location/threed_sphere/location_mod.f90
models/gitm/GITM2/src/ModConstants.f90
models/gitm/GITM2/src/ModEarth.f90
models/gitm/GITM2/src/ModKind.f90
models/gitm/GITM2/src/ModSize.f90
models/gitm/GITM2/src/ModTime.f90
models/gitm/GITM2/src/time_routines.f90
models/gitm/dart_gitm_mod.f90
models/gitm/gitm_blocks_to_netcdf.f90
models/gitm/model_mod.f90
null_mpi_utilities_mod.f90
obs_kind_mod.f90
random_seq_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.113.3 Files read

• gitm restart files: b????.rst

• gitm control files: header.rst

• gitm control files: UAM.in.rst

• DART namelist file: input.nml

6.113.4 Files written

• DART initial conditions/restart file; e.g. dart_ics

6.113.5 References

• The official GITM site is: can be found at ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

318 Chapter 6. References

http://ccmc.gsfc.nasa.gov/models/modelinfo.php?model=GITM

DART, Release 9.10.3

6.114 Ikeda

6.114.1 Overview

DART interface module for the Ikeda model. The 16 public interfaces are standardized for all DART compliant
models. These interfaces allow DART to advance the model, get the model state and metadata describing this state,
find state variables that are close to a given location, and do spatial interpolation for model state variables.
The Ikeda model is a 2D chaotic map useful for visualization data assimilation updating directly in state space. There
are three parameters: a, b, and mu. The state is 2D, x = [X Y]. The equations are:

X(i+1) = 1 + mu * (X(i) * cos(t) - Y(i) * sin(t))
Y(i+1) = mu * (X(i) * sin(t) + Y(i) * cos(t)),

where

t = a - b / (X(i)**2 + Y(i)**2 + 1)

Note the system is time-discrete already, meaning there is no delta_t. The system stems from nonlinear optics (Ikeda
1979, Optics Communications). Interface written by Greg Lawson, CalTech. Thanks Greg!

“The initial conditions were generated by observing state variable 1 with an enormous (~1,000,000.0)
observation error variance. The observation was defined to be taken at day=0, seconds = 0.
create_fixed_network_sequence was run to create a sequence with 3000 hourly observations
starting at day=0, seconds =0. The initial conditions for filter can accomodate 100 ensemble members.”

6.114.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
a = 0.40,
b = 6.00,
mu = 0.83,
time_step_days = 0,
time_step_seconds = 3600,
output_state_vector = .true.

/

6.114. Ikeda 319

DART, Release 9.10.3

Item Type Description
a real(r8) Model parameter.
b real(r8) Model parameter.
mu real(r8) Model parameter.
time_step_days inte-

ger
Model advance time in days.

time_step_secondsinte-
ger

Model advance time in seconds.

out-
put_state_vector

logi-
cal

If true, output the state vector data to the diagnostic files as a single 1D array. If false,
break up output data into logical model variables.

6.114.3 Other modules used

types_mod
time_manager_mod
oned/location_mod
utilities_mod

320 Chapter 6. References

DART, Release 9.10.3

6.114.4 Public interfaces

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector as an integer. This is fixed at 2 for this model.

model_size The length of the model state vector.

6.114. Ikeda 321

DART, Release 9.10.3

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Advances the model for a single time step. The time associated with the initial model state is also input although it is
not used for the computation.

x State vector of length model_size.
time Unused in this model.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Returns the location of the given index, and a dummy integer as the var_type.

index_inIndex of state vector element about which information is requested.
locationReturns location of indexed state variable. The location should use a location_mod that is appropriate for

the model domain. For realistic atmospheric models, for instance, a three-dimensional spherical location
module that can represent height in a variety of ways is provided.

var_typeReturns the type of the indexed state variable as an optional argument.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

A NULL INTERFACE in this model. Always returns istatus = 0.

x A model state vector.
locationLocation to which to interpolate.
itype Integer indexing which type of state variable is to be interpolated. Can be ignored for low order models

with a single type of variable.
obs_val The interpolated value from the model.
istatus Quality control information about the observation of the model state.

322 Chapter 6. References

DART, Release 9.10.3

var = get_model_time_step()

type(time_type) :: get_model_time_step

Returns the models base time step, or forecast length, as a time_type. This is settable in the namelist.

var Smallest time step of model.

call static_init_model()

Reads the namelist, defines the 2 initial locations of the state variables, and sets the timestep.

call end_model()

A NULL INTERFACE in this model.

call init_time(time)

type(time_type), intent(out) :: time

Returns a time of 0.

time Initial model time.

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Sets 2 initial locations close to the attractor.

x Initial conditions for state vector.

ierr = nc_write_model_atts(ncFileID)

6.114. Ikeda 323

DART, Release 9.10.3

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

Uses the default template code.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

Uses the default template code.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, produces a perturbed model state. This particular model does not implement an interface for this
and so returns .false. for interf_provided.

state State vector to be perturbed.
pert_state Perturbed state vector: NOT returned.
interf_provided Returned false; interface is not implemented.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

324 Chapter 6. References

DART, Release 9.10.3

Pass-through to the 1-D locations module. See get_close_maxdist_init() for the documentation of this subroutine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 1-D locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Pass-through to the 1-D locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

A NULL INTERFACE in this model.

ens_mean State vector containing the ensemble mean.

6.114. Ikeda 325

../../location/oned/location_mod.html#get_close_obs

DART, Release 9.10.3

6.114.5 Files

filename purpose
input.nml to read the model_mod namelist
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

6.114.6 References

Ikeda 1979, Optics Communications

6.114.7 Private components

N/A

6.115 LMDZ

6.115.1 Overview

The Laboratoire de Météorologie Dynamique Zoom (LMDZ) model is a global atmospheric model developed by the
Institut Pierre-Simon Laplace (IPSL) in France. It serves as the atmospheric component of the IPSL Integrated Climate
Model.

The DART interface to LMDZ was primarily developed by Tarkeshwar Singh while he was at the Indian Institute of
Technology at Delhi. He later moved to the Nansen Environmental and Remote Sensing Center in Bergen, Norway. A
detailed description of the LMDZ DART implementation is published in Singh et al. (2015).1

Please email Tarkeshwar for documentation beyond what is contained within the repository.

Assimilation with LMDZ is supported in the Lanai release of DART. If you are interested in using LMDZ in the
Manhattan version of DART, we encourage you to contact us. We would like to participate!

1 Singh, Tarkeshwar, Rashmi Mitta, and H.C. Upadhyaya, 2015: Ensemble Adjustment Kalman Filter Data Assimilation for a Global
Atmospheric Model. International Conference on Dynamic Data-Driven Environmental Systems Science, 284-298, doi:10.1007/978-3-319-25138-
7_26.

326 Chapter 6. References

https://lmdz.lmd.jussieu.fr/le-projet-lmdz-en-bref-en
mailto:tarkphysics87@gmail.com
http://dx.doi.org/doi:10.1007/978-3-319-25138-7_26
http://dx.doi.org/doi:10.1007/978-3-319-25138-7_26

DART, Release 9.10.3

6.115.2 References

6.116 Lorenz 05

6.116.1 Naming History

In earlier versions of DART, this collection of models was referred to as Lorenz 04. Edward Lorenz provided James A.
Hansen these model formulations before they had been published, since both Lorenz and Hansen were faculty members
at MIT at the time. Hansen developed the DART model interface and incorporated it into the DART codebase in 2004.
Thus, within DART, it was named Lorenz 04.

The collection of models was published a year later in Lorenz (2005),1 thus, within the wider community, the models
are typically referred to as Lorenz 05. To reflect this fact, the collection of models was renamed within DART from
Lorenz 04 to Lorenz 05 during the Manhattan release.

6.116.2 Overview

Lorenz (2005) provides a fascinating account of the difficulties involved in designing simple models that exhibit
chaotic behavior and realistically simulate aspects of atmospheric flow. It presents three models of increasing com-
plexity:

• Model I is a single-scale model, similar to Lorenz (1996),2 intended to represent the atmosphere at a specific
height and latitude.

• Model II is also a single-scale model, similar to Model I, but with spatial continuity in the waves.

• Model III is a two-scale model. It is fundamentally different from the Lorenz 96 two-scale model because of
the spatial continuity and the fact that both scales are projected onto a single variable of integration. The scale
separation is achieved by a spatial filter and is therefore not perfect (i.e. there is leakage).

Model II and Model III are implemented in this DART model interface, and the user is free to choose Model II or III
by editing the namelist. For users interested in Model I, please use Lorenz 96. The slow scale in Model III is Model
II, and thus Model II is a deficient form of Model III.

The Lorenz 05 model has a work/workshop_setup.csh script that compiles and runs an example. This ex-
ample may be used anywhere in the DART tutorial to explore multiscale dynamics and to provide insight into
model/assimilation behavior. The example may or may not result in good (or even decent!) results!

Model Formulation

For Lorenz 05, DART to advances the model, gets the model state and metadata describing this state, finds state
variables that are close to a given location, and does spatial interpolation for model state variables.

1 Lorenz, Edward N., 2005: Designing Chaotic Models. Journal of the Atmospheric Sciences, 62, 1574-1587.
2 Lorenz, Edward N., 1996: Predictability: A Problem Partly Solved. Seminar on Predictability. 1, ECMWF, Reading, Berkshire, UK, 1-18.

6.116. Lorenz 05 327

DART, Release 9.10.3

6.116.3 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
model_size = 960,
forcing = 15.00,
delta_t = 0.001,
space_time_scale = 10.00,
coupling = 3.00,
K = 32,
smooth_steps = 12,
time_step_days = 0,
time_step_seconds = 3600,
model_number = 3

/

Description of each namelist entry

Contents Type Description
model_size inte-

ger
Number of variables in model

forcing real(r8) Forcing, F, for model
delta_t real(r8) Non-dimensional timestep
space_time_scale real(r8) Determines temporal and spatial relationship between fast and slow variables (model

III)
coupling real(r8) Linear coupling between fast and slow variables (model III)
K inte-

ger
Determines the wavenumber of the slow variables (K=1, smooth_steps=0 reduces
model II to Lorenz 96)

smooth_steps inte-
ger

Determines filter length to separate fast and slow scales

time_step_days inte-
ger

Arbitrary real time step days

time_step_secondsinte-
ger

Arbitrary real time step seconds (could choose this for proper scaling)

model_number inte-
ger

2 = single-scale, 3 = 2-scale. (This follows the notation in the paper.)

6.116.4 References

6.117 Lorenz 63

6.117.1 Overview

This 3-variable model was described in Lorenz (1963).1 In Lorenz 63, DART advances the model, gets the model state
and metadata describing this state, finds state variables that are close to a given location, and does spatial interpolation

1 Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences, 20, 130-141, doi:0.1175/1520-
0469(1963)020<0130:DNF>2.0.CO;2

328 Chapter 6. References

https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020\T1\textless {}0130:DNF\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

for model state variables. The distinctive part of the model interface is the namelist.

Lorenz 63 was developed as a simplified model to study convection rolls in the atmosphere. It is a deceptively simple
model – its formulation is simpler than Lorenz’s earlier atmospheric models – yet it demonstrates chaotic behavior. It
has thus become a widely studied model.

Plotting the location of the x, y, z values as they progress through time traces out the classic ‘butterfly’ attractor plot
which has become an iconic image of chaotic systems:

The system of equations for Lorenz 63 is:

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥)

𝑑𝑦

𝑑𝑡
= 𝑥(𝑟 − 𝑧) − 𝑦

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑧

and, within DART, the constants have default values of:

𝜎 = 10, 𝑟 = 28, 𝑏 = 8/3

that can be altered by editing the &model_nml namelist in the input.nml file.

This model is an interesting data assimilation test in that different ensemble members may bifurcate over to the other
lobe of the attractor on different cycles. Also, as they diverge from each other they do not spread out uniformly in 3D
space, but spread along the linear attractor lines.

The Lorenz 63 model has a work/workshop_setup.csh script that compiles and runs an example. This example
is referenced at various points in the DART tutorial and is intended to provide insight into model/assimilation behavior.
The example may or may not result in good (or even decent!) results!

run_lorenz_63.m is an excellent Matlab tool to explore the behavior of the Lorenz 63 model. It is part of the
DART_LAB Tutorial.

6.117.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
sigma = 10.0,
r = 28.0,
b = 2.6666666666667,
deltat = 0.01,

(continues on next page)

6.117. Lorenz 63 329

DART, Release 9.10.3

(continued from previous page)

time_step_days = 0,
time_step_seconds = 3600
solver = 'RK2'

/

Description of each namelist entry

Item Type Description
sigma real(r8) Model parameter.
r real(r8) Model parameter.
b real(r8) Model parameter.
deltat real(r8) Non-dimensional timestep. This is mapped to the dimensional timestep specified by

time_step_days and time_step_seconds.
time_step_daysinte-

ger
Number of days for dimensional timestep, mapped to deltat.

time_step_secondsinte-
ger

Number of seconds for dimensional timestep, mapped to deltat.

solver char-
ac-
ter(8)

The name of the solver to use. ‘RK2’, the default, is a two-step Runge-Kutta used in the
original Lorenz 63 paper. ‘RK4’ is the only other option which uses the four-step classic
Runge-Kutta method.

6.117.3 References

6.118 Lorenz 84

6.118.1 Overview

This model was described in Lorenz (1984).1 In Lorenz 84, DART advances the model, gets the model state and
metadata describing this state, find states variables that are close to a given location, and does spatial interpolation for
model state variables. The distinctive part of the model interfaces is the namelist.

The system of equations is:

𝑑𝑥

𝑑𝑡
= −𝑦2 − 𝑧2 − 𝑎𝑥 + 𝑎𝐹

𝑑𝑦

𝑑𝑡
= 𝑥𝑦 − 𝑏𝑥𝑧 − 𝑦 + 𝐺

𝑑𝑧

𝑑𝑡
= 𝑏𝑥𝑦 + 𝑥𝑧 − 𝑧

and, within DART, the model parameters have default values of:

𝑎 =
1

4
, 𝑏 = 4, 𝐹 = 8, 𝐺 =

5

4

that can be altered by editing the &model_nml namelist in the input.nml file.

The Lorenz 84 model has a work/workshop_setup.csh script that compiles and runs an example. This example
is referenced specifically in Section 7 of the DART tutorial and is intended to provide insight into model/assimilation
behavior. The example may or may not result in good (or even decent!) results!

The Lorenz 84 model may be used instead of the Lorenz 63 model in many sections of the Tutorial. It has a more
complex attractor, is not as periodic as Lorenz 63 and may be more challenging for certain filter variants.

1 Lorenz, Edward N., 1984: Irregularity: A Fundamental Property of the Atmosphere. Tellus, 36A, 98-110, doi:10.1111/j.1600-
0870.1984.tb00230.x

330 Chapter 6. References

https://doi.org/10.1111/j.1600-0870.1984.tb00230.x
https://doi.org/10.1111/j.1600-0870.1984.tb00230.x

DART, Release 9.10.3

6.118.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
a = 0.25,
b = 4.00,
f = 8.00,
g = 1.25,
deltat = 0.01,
time_step_days = 0,
time_step_seconds = 3600

/

Description of each namelist entry

Item Type Description
a real(r8) Model parameter.
b real(r8) Model parameter.
f real(r8) Model parameter.
g real(r8) Model parameter.
deltat real(r8) Non-dimensional timestep. This is mapped to the dimensional timestep specified by

time_step_days and time_step_seconds.
time_step_days inte-

ger
Number of days for dimensional timestep, mapped to deltat.

time_step_secondsinte-
ger

Number of seconds for dimensional timestep, mapped to deltat.

References

6.119 Lorenz 96

6.119.1 Overview

The Lorenz 96 model was first described by Edward Lorenz during a seminar at the European Centre for Medium-
Range Weather Forecasts in the Autumn of 1995, the proceedings of which were published as Lorenz (1996)1 the
following year, hence the model is commonly referred to as Lorenz 96.

Lorenz and Emmanuel (1998)2 describe the model as:

. . . consisting of 40 ordinary differential equations, with the dependent variables representing values
of some atmospheric quantity at 40 sites spaced equally about a latitude circle. The equations contain
quadratic, linear, and constant terms representing advection, dissipation, and external forcing. Numerical
integration indicates that small errors (differences between solutions) tend to double in about 2 days.
Localized errors tend to spread eastward as they grow, encircling the globe after about 14 days.

1 Lorenz, Edward N., 1996: Predictability: A Problem Partly Solved. Seminar on Predictability. 1, ECMWF, Reading, Berkshire, UK, 1-18.
2 Lorenz, Edward N., and Kerry A. Emanuel, 1998: Optimal Sites for Supplementary Weather Observations: Simulations with a Small Model.

Journal of the Atmospheric Sciences, 55, 399-414, doi:10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2

6.119. Lorenz 96 331

https://doi.org/10.1175/1520-0469(1998)055\T1\textless {}0399:OSFSWO\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

We have chosen a model with 𝐽 variables, denoted by:

𝑋1, ..., 𝑋𝑗 ;

in most of our experiments we have let 𝐽 = 40. The governing equations are:

𝑑𝑋𝑗/𝑑𝑡 = (𝑋𝑗+1 −𝑋𝑗−2)𝑋𝑗−1 −𝑋𝑗 + 𝐹 (1)

for:

𝑗 = 1, ..., 𝐽.

To make Eq. (1) meaningful for all values of j we define:

𝑋−1 = 𝑋𝐽−1, 𝑋0 = 𝑋𝐽 ,&𝑋𝐽+1 = 𝑋1,

so that the variables form a cyclic chain, and may be looked at as values of some unspecified scalar
meteorological quantity, perhaps vorticity or temperature, at J equally spaced sites extending around a
latitude circle. Nothing will simulate the atmosphere’s latitudinal or vertical extent.

For Lorenz 96, DART advances the model, gets the model state and metadata describing this state, finds state variables
that are close to a given location, and does spatial interpolation for model state variables.

The Lorenz 96 model has a work/workshop_setup.csh script that compiles and runs an example. This example
is referenced at various points in the DART tutorial and is intended to provide insight into model/assimilation behavior.
The example may or may not result in good (or even decent!) results! Be aware that the input.nml file is modified
by the workshop_setup.csh script.

There are also some excellent Matlab tools to explore the behavior of the Lorenz 96 model, namely
run_lorenz_96.m and run_lorenz_96_inf.m, both of which are part of the DART_LAB Tutorial.

6.119.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
model_size = 40,
forcing = 8.00,
delta_t = 0.05,
time_step_days = 0,
time_step_seconds = 3600

/

Description of each namelist entry

Item Type Description
model_size inte-

ger
Number of variables in model.

forcing real(r8) Forcing, F, for model.
delta_t real(r8) Non-dimensional timestep. This is mapped to the dimensional timestep specified by

time_step_days and time_step_seconds.
time_step_days inte-

ger
Number of days for dimensional timestep, mapped to delta_t.

time_step_secondsinte-
ger

Number of seconds for dimensional timestep, mapped to delta_t.

332 Chapter 6. References

DART, Release 9.10.3

6.119.3 References

6.120 Lorenz 96 2-scale

6.120.1 Overview

The Lorenz 96 2-scale model was first described by Edward Lorenz during a seminar at the European Centre for
Medium-Range Weather Forecasts in the Autumn of 1995, the proceedings of which were published as Lorenz (1996)1

the following year, hence the model is commonly referred to as Lorenz 96.

The model state varies on two separate time scales, one for the X dimension and another in the Y dimension. It is
constructed by coupling together two implementations of the Lorenz 96 single-scale model. The constant F term in
Lorenz 96 single-scale model is replaced by a term that couples the two scales together.

Lorenz 96 2-scale is a widely studied model because the differing timescales can be viewed as an analog of processes
that occur on different time and spatial scales in the atmosphere such as large-scale flow and localized convection. The
references contain some of the earlier studies including Palmer (2001),2 Smith (2001),3 Orrell (2002),4 Orrel (2003),5

Vannitsem and Toth (2002),6 Roulston and Smith (2003),7 and Wilks (2005).8

The Lorenz 96 2-scale model has a work/workshop_setup.csh script that compiles and runs an example. This
example may be explored in the DART tutorial and is intended to provide insight into model/assimilation behavior.
The example may or may not result in good (or even decent!) results!

Development History

This DART model interface was developed by Josh Hacker as an adaptation of the Lorenz 96 implementation. The
2-scale model is the second model described in Lorenz (1996).

6.120.2 Quick Start

To run Lorenz 96 2-scale with its default settings:

1. Ensure you have the correct settings in mkmf.template in <DARTROOT>/build_templates/mkmf.
template

2. Build the DART executables using the quickbuild.csh script in the ./work directory.

3. Once the executables have been built, the two Perl scripts provided in the ./shell_scripts directory,
spinup_model.pl and run_expt.pl, can be used to spin up the model and run an experiment.

1 Lorenz, Edward N., 1996: Predictability: A Problem Partly Solved. Seminar on Predictability. 1, ECMWF, Reading, Berkshire, UK, 1-18.
2 Palmer, Timothy N., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization

in weather and climate prediction models. Quarterly Journal of the Royal Meteorological Society, 127, 279–304. https://doi.org/10.1002/qj.
49712757202

3 Smith, Leonard A., 2001: Disentangling uncertainty and error: On the predictability of nonlinear systems. Nonlinear dynamics and statistics,
Alistair I. Mees, Editor, Birkhauser, Boston, USA, 31–64.

4 Orrell, David, 2002: Role of the metric in forecast error growth: How chaotic is the weather? Tellus, 54A, 350–362.
5 Orrell, David, 2003: Model error and predictability over different timescales in the Lorenz ‘96 Systems. Journal of the Atmospheric Sciences,

60, 2219–2228.
6 Vannitsem, Stéphane and Zoltan Toth, 2002: Short-term dynamics of model errors. Journal of the Atmospheric Sciences, 59, 2594–2604.
7 Roulston, Mark S. and Leonard A. Smith, 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 16–30.
8 Wilks, Daniel S., 2005: Effects of stochastic parametrizations in the Lorenz ’96 system. Quarterly Journal of the Royal Meteorological

Society. 131. 389-407. https://doi.org/10.1256/qj.04.03

6.120. Lorenz 96 2-scale 333

https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1002/qj.49712757202
https://doi.org/10.1256/qj.04.03

DART, Release 9.10.3

6.120.3 Namelist

The model also implements the variant of Smith (2001), which can be invoked by setting local_y = .true. in
the &model_nml namelist in the input.nml file.

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
model_size_x = 36,
y_per_x = 10,
forcing = 15.00,
delta_t = 0.005,
coupling_b = 10.0,
coupling_c = 10.0,
coupling_h = 1.0,
local_y = .false.,
time_step_days = 0,
time_step_seconds = 3600
template_file = 'filter_input.nc'

/

Description of each namelist entry

Item Type Description
model_size_x integer Number of variables in x-dimension.
y_per_x integer Scaling factor for number of variables in y-dimension compared to x-dimension.
forcing real(r8) Forcing, F, for model.
delta_t real(r8) Non-dimensional timestep. This is mapped to the dimensional timestep specified

by time_step_days and time_step_seconds.
coupling_b real(r8)
coupling_c real(r8)
coupling_h real(r8)
local_y boolean
time_step_daysinteger Number of days for dimensional timestep, mapped to delta_t.
time_step_secondsinteger Number of seconds for dimensional timestep, mapped to delta_t.
tem-
plate_file

charac-
ter(len=256)

this in script

References

6.121 Forced Lorenz 96

6.121.1 Overview

The forced_lorenz_96 model implements the standard Lorenz (1996)1 equations except that the forcing term, F, is
added to the state vector and is assigned an independent value at each gridpoint. The result is a model that is twice
as big as the standard L96 model. The forcing can be allowed to vary in time or can be held fixed so that the model
looks like the standard L96 but with a state vector that includes the constant forcing term. An option is also included

1 Lorenz, Edward N., 1996: Predictability: A Problem Partly Solved. Seminar on Predictability. 1, ECMWF, Reading, Berkshire, UK, 1-18.

334 Chapter 6. References

DART, Release 9.10.3

to add random noise to the forcing terms as part of the time tendency computation which can help in assimilation
performance. If the random noise option is turned off (see namelist) the time tendency of the forcing terms is 0.

DART state vector composition:

state variables forcing terms
traditional Lorenz_96 state “extended” state
indices 1 - 40 indices 41 - 80

The forced_lorenz_96 model has a work/workshop_setup.csh script that compiles and runs an example. This
example is referenced in Section 20 of the DART_tutorial and is intended to provide insight into parameter estimation
and model/assimilation behavior. Be aware that the input.nml file is modified by the workshop_setup.csh
script.

6.121.2 Quick Start

To become familiar with the model, try this quick experiment.

1. compile everything in the model/forced_lorenz_96/work directory.

cd $DARTROOT/models/forced_lorenz_96/work
./quickbuild.csh

2. make sure the input.nml looks like the following (there is a lot that has been left out for clarity, these are the
settings of interest for this example):

&perfect_model_obs_nml
start_from_restart = .true.,
output_restart = .true.,
async = 0,
restart_in_file_name = "perfect_ics",
obs_seq_in_file_name = "obs_seq.in",
obs_seq_out_file_name = "obs_seq.out",
...

/

&filter_nml
async = 0,
ens_size = 80,
start_from_restart = .true.,
output_restart = .true.,
obs_sequence_in_name = "obs_seq.out",
obs_sequence_out_name = "obs_seq.final",
restart_in_file_name = "filter_ics",
restart_out_file_name = "filter_restart",
num_output_state_members = 80,
num_output_obs_members = 80,
...

/

&model_nml
num_state_vars = 40,
forcing = 8.00,
delta_t = 0.05,
time_step_days = 0,
time_step_seconds = 3600,

(continues on next page)

6.121. Forced Lorenz 96 335

https://dart.ucar.edu/pages/Tutorial.html

DART, Release 9.10.3

(continued from previous page)

reset_forcing = .false.,
random_forcing_amplitude = 0.10

/

3. Run perfect_model_obs to generate true_state.nc and obs_seq.out. The default obs_seq.in
will cause the model to advance for 1000 time steps.

./perfect_model_obs

4. If you have ncview, explore the true_state.nc. Notice that the State Variable indices from 1-40 are the
dynamical part of the model and 41-80 are the Forcing variables.

ncview true_state.nc

5. Run filter to generate preassim.nc, analysis.nc and obs_seq.final.

./filter

6. Launch Matlab and run plot_ens_time_series.

>> plot_ens_time_series
Input name of prior or posterior diagnostics file for preassim.nc:
preassim.nc
OPTIONAL: if you have the true state and want it superimposed,
provide the name of the input file. If not, enter a dummy filename.
Input name of True State file for true_state.nc:
true_state.nc
Using state state variable IDs 1 13 27
If these are OK, ;
If not, please enter array of state variable ID's
To choose from entire state enter A 25 50 75 (between 1 and 80)
To choose traditional model state enter S 1 23 40 (between 1 and 40)
To choose forcing estimates enter F 2 12 22 (between 1 and 40)
(no intervening syntax required)
A 20 30 40 60 70 80

Indices 20, 30, and 40 will be from the dynamical part of the lorenz_96 attractor, indices 60, 70, and 80 will be
the corresponding Forcing values. Here are some images for just indices 20 and 60. Click on each image for a
high-res version.

Repeat the experiment with reset_forcing = .true. when creating the true state and reset_forcing = .false. when
assimilating. What happens?

6.121.3 Namelist

The model also implements the variant of Smith (2001), which can be invoked by setting local_y = .true. in
the &model_nml namelist in the input.nml file.

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
num_state_vars = 40,
forcing = 8.00,

(continues on next page)

336 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

delta_t = 0.05,
time_step_days = 0,
time_step_seconds = 3600,
reset_forcing = .false.,
random_forcing_amplitude = 0.10

/

Description of each namelist entry

Item Type Description
num_state_vars inte-

ger
Number of variables in model.

forcing real(r8) Forcing, F, for model.
delta_t real(r8) Non-dimensional timestep.
time_step_days real(r8) Base model time step maps to this much real time.
time_step_seconds real(r8) Base model time step maps to this.
reset_forcing logi-

cal
If true, all forcing values are held fixed at the value specified for the forcing
namelist.

ran-
dom_forcing_amplitude

real(r8) Standard deviation of the gaussian noise with zero mean that is added to each
forcing value’s time step.

6.121.4 References

6.122 MITgcm_ocean

Attention: MITgcm_ocean works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using MITgcm_ocean with more recent versions of DART, contact DAReS staff to assess
the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.122.1 Overview

The MIT ocean GCM version ‘checkpoint59a’ is the foundation of this directory. It was modified by Ibrahim Hoteit
of Scripps for his use, and so it differs from the original distribution.

Since the model is highly parallelized, it can be compiled with a target number of processors in mind. From DART’s
perspective, the most logical strategy is to run filter or perfect_model_obs with async=4: advance the
model in parallel . . . one ensemble member after another. In this mode, the same set of processors are used for the
data assimilation. The performance of the parallel assimilation algorithm has been tested up through 64 processors,
and should scale well beyond that - but it remains to be quantified. The scaling for the ocean model is unknown to me,
but Ibrahim routinely runs with many more than 64 processors.

As for all DART experiments, the overall design for an experiment is this: the DART program filter will read the
initial conditions file, the observation sequence file, and the DART namelist to decide whether or not to advance the
ocean model. All of the control of the execution of the ocean model is done by DART directly. If the model needs to be
advanced, filter makes a call to the shell to execute the script advance_model.csh. advance_model.csh
is ENTIRELY responsible for getting all the input files, data files, namelists, etc. into a temporary directory, running
the model, and copying the results back to the parent directory (which we call CENTRALDIR). The whole process
hinges on setting the ocean model namelist values such that it is doing a cold start for every model advance.

6.122. MITgcm_ocean 337

http://mitgcm.org/

DART, Release 9.10.3

Observations

The observations for the ocean model were the first observations of oceanic quantities, so there is an
observations/forward_operators/obs_def_MITgcm_ocean_mod.f90 file containing the novel ob-
servation definitions like salinity, sea surface height, current components In keeping with the DART philosophy,
there is a concept of inheritance between platform-specific observations like DRIFTER_U_CURRENT_COMPONENT
and the general U_CURRENT_COMPONENT. Using the specific types when possible will allow flexibility specifying
what kinds of observations to assimilate. PROGRAM create_ocean_obs is the program to create a DART observation
sequence from a very particular ASCII file.

Converting between DART and the model

There are a set of support programs:

PRO-
GRAM
trans_pv_sv

converts the ocean model snapshot files into a DART-compatible format

PRO-
GRAM
trans_sv_pv

converts the DART output into snapshot files to be used as ocean model input datasets (specified in
data&PARM05); creates a new data namelist file (data.DART) containing the correct &PARM03;
startTime,endTime values to advance the ocean model the expected amount; and creates a new
data.cal namelist file (data.cal.DART) containing the calendar information.

PRO-
GRAM
cre-
ate_ocean_obs

create observation sequence files

The data assimilation period is controlled in the input.nml&model_nml namelist. In combination with the ocean
model dynamics timestep data&PARM03:deltaTClock this determines the amount of time the model will ad-
vance for each assimilation cycle.

Generating the initial ensemble

The MITgcm_ocean model cannot (as of Oct 2008) take one single model state and generate its own ensemble
(typically done with pert_model_state). This means I don’t really know how to perform a ‘perfect model’ experiment
until I find a way to correctly perturb a single state to create an ensemble.
The ensemble has to come from ‘somewhere else’. I ran the model forward (outside the DART framework) for 14
days and output snapshot files ever 12 hours. One state vector can be generated from a set of snapshot files using
trans_pv_sv. I called this my ‘initial ensemble’ - it’s better than nothing, but it is ENTIRELY unknown if this
creates an intial ensemble with sufficient spread. Just for comparison, the initial ensemble for the atmospheric models
is derived from ‘climatological’ values. If they need an 80-member ensemble for July 14, 2008; they use the July 1
estimates of the atmosphere from 1900 to 1979. By the time they assimilate (every 6 hours) for several days, things
are on-track.
There is a shell_scripts/MakeInitialEnsemble.csh script that was intended to automate this process -
with modest success. It does illustrate the steps needed to convert each snapshot file to a DART initial conditions file
and then run the restart_file_utility to overwrite the timestep in the header of the initial conditions file. After you have

338 Chapter 6. References

../../utilities/restart_file_utility.f90

DART, Release 9.10.3

created all the initial conditions files, you can simply ‘cat’ them all together. Even if the script doesn’t work
out-of-the-box, it should be readable enough to be some help.

Fortran direct-access big-endian data files

The MITgcm_ocean model uses Fortran direct-access big-endian data files. It is up to you to determine the proper
compiler flags to compile DART such that DART can read and write these files. Every compiler/architecture is differ-
ent, but we have put notes in each mkmf.template if we know how to achieve this.

Controlling the model advances

The assimilation period is specified by two namelist parameters in the input.nml&model_nml namelist:
assimilation_period_days and assimilation_period_seconds. Normally, all observations within
(+/-) HALF of the total assimilation period are used in the assimilation.
The time of the initial conditions is specified by two namelist parameters in the input.nml&model_nml
namelist: init_time_days and init_time_seconds; depending on the settings of these parameters, the
times may or may not come directly from the DART initial conditions files.
The ocean model MUST always start from the input datasets defined in the data&PARM05 namelist. Apparently,
this requires data&PARM03:startTime to be 0.0. One of the DART support routines (PROGRAM trans_sv_pv)
converts the DART state vector to the files used in data&PARM05 and creates new data.cal&CAL_NML and
data&PARM03 namelists with values appropriate to advance the model to the desired time.
The ocean model then advances till data&PARM03:endTime and writes out snapshot files. PROGRAM
trans_pv_sv converts the snapshot files to a DART-compatible file which is ingested by filter. filter also reads
the observation sequence file to determine which observations are within the assimilation window, assimilates them,
and writes out a set of restart files, one for each ensemble member. filter then waits for each instance of the ocean
model (one instance for each ensemble member) to advance to data&PARM03:endTime. The whole process
repeats until 1) there are no more observations to assimilate (i.e. the observation sequence file is exhausted) or 2) the
time specified by input.nml&filter_nml:last_obs_days,last_obs_seconds has been reached.

Getting started

I always like running something akin to a ‘perfect model’ experiment to start. Since I have not come up with a good
way to perturb a single model state to generate an ensemble, here’s the next best thing. Please keep in mind that the
details for running each program are covered in their own documentation.

1. create a set of initial conditions for DART as described in Generating the intial ensemble and keep a copy of the
‘middle’ snapshot - then use it as the initial condition for perfect_model_obs.

2. create a TINY set of ‘perfect’ observations in the normal fashion: program create_obs_sequence and then
program create_fixed_network_seq to create an empty observation sequence file (usually called obs_seq.in)

3. modify data, data.cal, and input.nml to control the experiment and populate the observation sequence
file by running program perfect_model_obs

6.122. MITgcm_ocean 339

DART, Release 9.10.3

4. Now use the full ensemble of initial conditions from Step 1 and run PROGRAM filter

A perfectly sensible approach to get to know the system would be to try to

1. assimilate data for the first assimilation period and stop. Do not advance the model at all. The filter namelist
can control all of this and you do not need to have a working advance_model.csh script, or even a working
ocean model (as long as you have input data files).

2. advance the model first and then assimilate data for the first assimilation period and stop.

3. advance, assimilate and advance again. This tests the whole DART facility.

Exploring the output

Is pretty much like any other model. The netCDF files have the model prognostic variables before and after the
assimilation. There are Matlab® scripts for perusing the netCDF files in the DART/matlab directory. There are
Matlab® scripts for exploring the performance of the assimilation in observation-space (after running PROGRAM
obs_diag (for observations that use the threed_sphere location module) to explore the obs_seq.final file) - use
the scripts starting with 'plot_', e.g. DART/diagnostics/matlab/plot_*.m. As always, there are some
model-specific item you should know about in DART/models/MITgcm_ocean/matlab, and DART/models/
MITgcm_ocean/shell_scripts.

6.122.2 Other modules used

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod
obs_kind_mod
mpi_utilities_mod
random_seq_mod

6.122.3 Public interfaces

Only a select number of interfaces used are discussed here.

use location_mod, only : location_type
get_location

set_location

The ocean model namelists data, and data.cal MUST be present. These namelists are needed to reconstruct the
valid time of the snapshot files created by the ocean model. Be aware that as DART advances the model, the data
namelist gets modified to reflect the current time of the model output.

Required Interface Routines

use model_mod, only :

get_model_size

adv_1step

get_state_meta_data

340 Chapter 6. References

../../location/threed_sphere/location_mod.html#location_type
../../location/threed_sphere/location_mod.html#get_location
../../location/threed_sphere/location_mod.html#set_location

DART, Release 9.10.3

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

Unique Interface Routines

use model_mod, only :

MIT_meta_type

read_meta

write_meta

prog_var_to_vector

vector_to_prog_var

read_snapshot

write_snapshot

get_gridsize

snapshot_files_to_sv

sv_to_snapshot_files

timestep_to_DARTtime

DARTtime_to_MITtime

DARTtime_to_timestepindex

write_data_namelistfile

Ocean model namelist interfaces &PARM03, &PARM04, and &PARM04 are read from file data. Ocean model
namelist interface &CAL_NML, is read from file data.cal.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

6.122. MITgcm_ocean 341

DART, Release 9.10.3

integer :: get_model_size

Returns the length of the model state vector. Required.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

adv_1step is not used for the MITgcm_ocean model. Advancing the model is done through the advance_model
script. This is a NULL_INTERFACE, provided only for compatibility with the DART requirements.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

get_state_meta_data returns metadata about a given element of the DART representation of the model
state vector. Since the DART model state vector is a 1D array and the native model grid is multidimensional,
get_state_meta_data returns information about the native model state vector representation. Things like the
location, or the type of the variable (for instance: salinity, temperature, u current component, . . .). The integer val-
ues used to indicate different variable types in var_type are themselves defined as public interfaces to model_mod
if required.

index_inIndex of state vector element about which information is requested.
locationReturns the 3D location of the indexed state variable. The location_ type comes from DART/

location/threed_sphere/location_mod.f90. Note that the lat/lon are specified in degrees
by the user but are converted to radians internally.

var_typeReturns the type of the indexed state variable as an optional argument. The type is one of the list of supported
observation types, found in the block of code starting ! Integer definitions for DART TYPES
in DART/assimilation_code/modules/observations/obs_kind_mod.f90

The list of supported variables in DART/assimilation_code/modules/observations/
obs_kind_mod.f90 is created by preprocess using the entries in input.nml[&preprocess_nml,
&obs_kind_nml], DEFAULT_obs_kin_mod.F90 and obs_def_MITgcm_ocean_mod.f90.

342 Chapter 6. References

DART, Release 9.10.3

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given a model state, model_interpolate returns the value of the desired observation type (which could be a
state variable) that would be observed at the desired location. The interpolation method is either completely specified
by the model, or uses some standard 2D or 3D scalar interpolation routines. Put another way,
model_interpolate will apply the forward operator H to the model state to create an observation at the desired
location.
If the interpolation is valid, istatus = 0. In the case where the observation operator is not defined at the given
location (e.g. the observation is below the lowest model level, above the top level, or ‘dry’), interp_val is returned as
0.0 and istatus = 1.

x A model state vector.
location Location to which to interpolate.
itype Not used.
obs_val The interpolated value from the model.
istatus Integer flag indicating the success of the interpolation. success == 0, failure == anything else

var = get_model_time_step()

type(time_type) :: get_model_time_step

get_model_time_step returns the forecast length to be used as the “model base time step” in the filter. This
is the minimum amount of time the model can be advanced by filter. This is also the assimilation window.
All observations within (+/-) one half of the forecast length are used for the assimilation. In the MITgcm_ocean
case, this is set from the namelist values for input.nml&model_nml:assimilation_period_days,
assimilation_period_seconds, after ensuring the forecast length is a multiple of the ocean model dynamical
timestep declared by data&PARM03:deltaTClock.

var Smallest time step of model.

Please read the note concerning Controlling the model advances

call static_init_model()

static_init_model is called for runtime initialization of the model. The namelists are read to determine
runtime configuration of the model, the calendar information, the grid coordinates, etc. There are no input arguments

6.122. MITgcm_ocean 343

DART, Release 9.10.3

and no return values. The routine sets module-local private attributes that can then be queried by the public interface
routines.
The namelists (all mandatory) are:
input.nml&model_mod_nml,
data.cal&CAL_NML,
data&PARM03,
data&PARM04, and
data&PARM05.

call end_model()

end_model is used to clean up storage for the model, etc. when the model is no longer needed. There are no
arguments and no return values. This is required by DART but nothing needs to be done for the MITgcm_ocean
model.

call init_time(time)

type(time_type), intent(out) :: time

init_time returns the time at which the model will start if no input initial conditions are to be used. This is
frequently used to spin-up models from rest, but is not meaningfully supported for the MITgcm_ocean model. The only
time this routine would get called is if the input.nml&perfect_model_obs_nml:start_from_restart
is .false., which is not supported in the MITgcm_ocean model.

time the starting time for the model if no initial conditions are to be supplied. As of Oct 2008, this is hardwired
to 0.0

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

init_conditions returns default initial conditions for model; generally used for spinning up initial model states.
For the MITgcm_ocean model it is just a stub because the initial state is always provided by the input files.

x Model state vector. [default is 0.0 for every element of the state vector]

ierr = nc_write_model_atts(ncFileID)

344 Chapter 6. References

DART, Release 9.10.3

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

nc_write_model_atts writes model-specific attributes to an opened netCDF file: In the MITgcm_ocean case,
this includes information like the coordinate variables (the grid arrays: XG, XC, YG, YC, ZG, ZC, . . .), information
from some of the namelists, and either the 1D state vector or the prognostic variables (S,T,U,V,Eta). All the required
information (except for the netCDF file identifier) is obtained from the scope of the model_mod module.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

nc_write_model_atts is responsible for the model-specific attributes in the following DART-output netCDF
files: true_state.nc, preassim.nc, and analysis.nc.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

nc_write_model_vars writes a copy of the state variables to a NetCDF file. Multiple copies of the state
for a given time are supported, allowing, for instance, a single file to include multiple ensemble estimates of the
state. Whether the state vector is parsed into prognostic variables (S,T,U,V,Eta) or simply written as a 1D array is
controlled by input.nml&model_mod_nml:output_state_vector. If output_state_vector = .
true. the state vector is written as a 1D array (the simplest case, but hard to explore with the diagnostics). If
output_state_vector = .false. the state vector is parsed into prognostic variables before being written.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, pert_model_state produces a perturbed model state. This is used to generate ensemble
initial conditions perturbed around some control trajectory state when one is preparing to spin-up ensembles. Since
the DART state vector for the MITgcm_ocean model contains both ‘wet’ and ‘dry’ cells, (the ‘dry’ cells having a

6.122. MITgcm_ocean 345

DART, Release 9.10.3

value of a perfect 0.0 - not my choice) it is imperative to provide an interface to perturb just the wet cells
(interf_provided == .true.).
At present (Oct 2008) the magnitude of the perturbation is wholly determined by
input.nml&model_mod_nml:model_perturbation_amplitude and utterly, completely fails. The
resulting model states cause a fatal error when being read in by the ocean model - something like

*** ERROR *** S/R INI_THETA: theta = 0 identically.
If this is intentional you will need to edit ini_theta.F to avoid this safety check

A more robust perturbation mechanism is needed (see, for example this routine in the CAM model_mod.f90). Until
then, you can avoid using this routine by using your own ensemble of initial conditions. This is determined by setting
input.nml&filter_nml:start_from_restart = .false. See also Generating the initial ensemble at
the start of this document.

state State vector to be perturbed.
pert_state The perturbed state vector.
interf_providedBecause of the ‘wet/dry’ issue discussed above, this is always .true., indicating a model-

specific perturbation is available.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

Pass-through to the 3-D sphere locations module. See get_close_maxdist_init() for the documentation of this subrou-
tine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3-D sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)

(continues on next page)

346 Chapter 6. References

../../location/threed_sphere/location_mod.html#get_close_maxdist_init
../../location/threed_sphere/location_mod.html#get_close_obs_init

DART, Release 9.10.3

(continued from previous page)

integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Pass-through to the 3-D sphere locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

ens_mean_for_model saves a copy of the ensemble mean to module-local storage. Sometimes the ensemble
mean is needed rather than individual copy estimates. This is a NULL_INTERFACE for the MITgcm_ocean model.
At present there is no application which requires module-local storage of the ensemble mean. No storage is allocated.

ens_mean Ensemble mean state vector

6.122.4 Unique interface routines

type MIT_meta_type
private
integer :: nDims
integer :: dimList(3)
character(len=32) :: dataprec
integer :: reclen
integer :: nrecords
integer :: timeStepNumber

end type MIT_meta_type

MIT_meta_type is a derived type used to codify the metadata associated with a snapshot file.

6.122. MITgcm_ocean 347

../../location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

Com-
po-
nent

Description

nDims the number of dimensions for the associated object. S,T,U,V all have nDims==3, Eta has nDims==2
dim-
List

the extent of each of the dimensions

dat-
aprec

a character string depicting the precision of the data storage. Commonly ‘float32’

reclen the record length needed to correctly read using Fortran direct-access. This is tricky business. Each
vendor has their own units for record length. Sometimes it is bytes, sometimes words, sometimes ???.
See comments in code for item_size_direct_access

nrecords the number of records (either 2D or 3D hyperslabs) in the snapshot file
timeStep-
Num-
ber

the timestep number . . . the snapshot filenames are constructed using the timestepcount as the unique
part of the filename. To determine the valid time of the snapshot, you must multiply the timeStepNumber
by the amount of time in each timestep and add the start time.

metadata = read_meta(fbase [, vartype])

character(len=*), intent(in) :: fbase
character(len=*), OPTIONAL, intent(in) :: vartype
type(MIT_meta_type), intent(out) :: metadata

read_meta reads the metadata file for a particular snapshot file. This routine is primarily bulletproofing, since the
snapshot files tend to move around a lot. I don’t want to use a snapshot file from a 70-level case in a 40-level
experiment; and without checking the metadata, you’d never know. The metadata for the file originally comes from
the namelist values specifying the grid resolution, etc. If the metadata file exists, the metadata in the file is compared
to the original specifications. If the metadata file does not exist, no comparison is done.
The filename is fundamentally comprised of three parts. Take ‘U.0000000024.meta’ for example. The first part of the
name is the variable, the second part of the name is the timestepnumber, the last part is the file extension. For various
reasons, sometimes it is convenient to call this function without the building the entire filename outside the function
and then passing it in as an argument. Since the ‘.meta’ extension seems to be fixed, we will only concern ourselves
with building the ‘base’ part of the filename, i.e., the first two parts.

fbase If vartype is supplied, this is simply the timestepnumber converted to a character string of length 10.
For example, ‘0000000024’. If vartype is not supplied, it is the entire filename without the extension;
‘U.0000000024’, for example.

var-
type

is an optional argument specifying the first part of the snapshot filename. Generally, ‘S’,’T’,’U’,’V’, or
‘Eta’.

metadataThe return value of the function is the metadata for the file, packed into a user-derived variable type
specifically designed for the purpose.

348 Chapter 6. References

DART, Release 9.10.3

Metadata example

metadata = read_meta('U.0000000024')
... or ...

metadata = read_meta('0000000024','U')

call write_meta(metadata, filebase)

type(MIT_meta_type), intent(in) :: metadata
character(len=*), intent(in) :: filebase

write_meta writes a metadata file. This routine is called by routines write_2d_snapshot, and
write_3d_snapshot to support converting the DART state vector to something the ocean model can ingest.

metadata The user-derived varible, filled with the metadata for the file.
filebase the filename without the extension; ‘U.0000000024’, for example. (see the Description in

read_meta)

call prog_var_to_vector(s,t,u,v,eta,x)

real(r4), dimension(:,:,:), intent(in) :: s,t,u,v
real(r4), dimension(:,:), intent(in) :: eta
real(r8), dimension(:), intent(out) :: x

prog_var_to_vector packs the prognostic variables [S,T,U,V,Eta] read from the snapshot files into a DART
vector. The DART vector is simply a 1D vector that includes all the ‘dry’ cells as well as the ‘wet’ ones. This routine
is not presently used (since we never have [S,T,U,V,Eta] as such in memory). See snapshot_files_to_sv.

s,
t,
u,v

The 3D arrays read from the individual snapshot files.

eta The 2D array read from its snapshot file.
x the 1D array containing the concatenated s,t,u,v,eta variables. To save storage, it is possible to modify the

definition of r8 in DART/common/types_mod.f90 to be the same as that of r4.

call vector_to_prog_var(x,varindex,hyperslab)

real(r8), dimension(:), intent(in) :: x
integer, intent(in) :: varindex
real(r4), dimension(:,:,:), intent(out) :: hyperslab -or-
real(r4), dimension(:,:), intent(out) :: hyperslab

6.122. MITgcm_ocean 349

DART, Release 9.10.3

vector_to_prog_var unpacks a prognostic variable [S,T,U,V,Eta] from the DART vector x.

x the 1D array containing the 1D DART state vector.
varindex an integer code specifying which variable to unpack.

The following parameters are in module storage:

integer, parameter :: S_index = 1
integer, parameter :: T_index = 2
integer, parameter :: U_index = 3
integer, parameter :: V_index = 4
integer, parameter :: Eta_index = 5

hyperslab The N-D array containing the prognostic variable. The
function is overloaded to be able to return both 2D and
3D arrays.

Vector_to_prog_var

call vector_to_prog_var(statevec,V_index,data_3d)
- or -

call vector_to_prog_var(statevec,Eta_index,data_2d)

call read_snapshot(fbase, x, timestep, vartype)

character(len=*), intent(in) :: fbase
real(r4), dimension(:,:,:), intent(out) :: x - or -
real(r4), dimension(:,:), intent(out) :: x
integer, intent(out) :: timestep
character(len=*), optional, intent(in) :: vartype

read_snapshot reads a snapshot file and returns a hyperslab that includes all the ‘dry’ cells as well as the ‘wet’
ones. By design, the MITgcm_ocean model writes out Fortran direct-access big-endian binary files, independent of
the platform. Since it is not guaranteed that the binary file we need to read is on the same architecture that created the
file, getting the compiler settings in mkmf.template correct to read Fortran direct-access big-endian binary files is
imperative to the process. Since each compiler issues its own error, there’s no good way to even summarize the error
messages you are likely to encounter by improperly reading the binary files. Read each template file for hints about the
proper settings. See also the section Fortran direct-access big-endian datafiles in the “Discussion” of this document.

fbase The ‘base’ portion of the filename, i.e., without the [.meta, .data] extension. If vartype is supplied, vartype
is prepended to fbase to create the ‘base’ portion of the filename.

x The hyperslab containing what is read. The function is overloaded to be able to return a 2D or 3D array.
x must be allocated before the call to read_snapshot.

timestepthe timestepcount in the 'fbase'.meta file, if the .meta file exists. Provided for bulletproofing.
var-
type

The character string representing the ‘prognostic variable’ portion of the snapshot filename. Commonly
‘S’,’T’,’U’,’V’, or ‘Eta’. If supplied, this is prepended to fbase to create the ‘base’ portion of the
filename.

350 Chapter 6. References

DART, Release 9.10.3

Code snippet

real(r4), allocatable :: data_2d_array(:,:), data_3d_array(:,:,:)
...
allocate(data_2d_array(Nx,Ny), data_3d_array(Nx,Ny,Nz))
...
call read_snapshot('S.0000000024', data_3d_array, timestepcount_out)
call read_snapshot('0000000024', data_2d_array, timestepcount_out, 'Eta')
call read_snapshot('0000000024', data_3d_array, timestepcount_out, 'T')
...

call write_snapshot(x, fbase, timestepcount)

real(r4), dimension(:,:), intent(in) :: x - or -
real(r4), dimension(:,:,:), intent(in) :: x
character(len=*), intent(in) :: fbase
integer, optional, intent(in) :: timestepcount

write_snapshot writes a hyperslab of data to a snapshot file and corresponding metadata file. This routine is an
integral part of sv_to_snapshot_files, the routine that is responsible for unpacking the DART state vector and writing
out a set of snapshot files used as input to the ocean model.

x The hyperslab containing the prognostic variable data to be written. The function is overloaded to be
able to ingest a 2D or 3D array.

fbase The ‘base’ portion of the filename, i.e., without the [.meta, .data] extension.
timestepcountthe timestepcount to be written into the 'fbase'.meta file. If none is supplied, timestepcount

is 0. I’m not sure this is ever used, since the timestepcount can be gotten from fbase.

call get_gridsize(num_x, num_y, num_z)

integer, intent(out) :: num_x, num_y, num_z

get_gridsize returns the dimensions of the compute domain. The gridsize is determined from
data&PARM04:delY,delX, and delZ when the namelist is read by static_init_model. The MIT-
gcm_ocean model is interesting in that it has a staggered grid but all grid variables are declared the same length.

num_x The number of longitudinal gridpoints.
num_y The number of latitudinal gridpoints.
num_z The number of vertical gridpoints.

call snapshot_files_to_sv(timestepcount, state_vector)

6.122. MITgcm_ocean 351

DART, Release 9.10.3

integer, intent(in) :: timestepcount
real(r8), intent(inout) :: state_vector

snapshot_files_to_sv reads the snapshot files for a given timestepcount and concatenates them into a DART-
compliant 1D array. All the snapshot filenames are constructed given the timestepcount - read the ‘Description’
section of read_meta, particularly the second paragraph.

timestepcount The integer that corresponds to the middle portion of the snapshot filename.
state_vector The 1D array of the DART state vector.

The files are read in this order [S,T,U,V,Eta] (almost alphabetical!) and the multidimensional arrays are unwrapped
with the leftmost index being the fastest-varying. You shouldn’t need to know this, but it is critical to the way
prog_var_to_vector and vector_to_prog_var navigate the array.

do k = 1, Nz ! depth
do j = 1, Ny ! latitudes
do i = 1, Nx ! longitudes

state_vector(indx) = data_3d_array(i, j, k)
indx = indx + 1

enddo
enddo
enddo

call sv_to_snapshot_files(state_vector, date1, date2)

real(r8), intent(in) :: state_vector
integer, intent(in) :: date1, date2

sv_to_snapshot_files takes the DART state vector and creates a set of snapshot files. The filenames of these
snapshot files is different than that of snapshot files created by the ocean model. See the ‘Notes’ section for an
explanation.

state_vectorThe DART 1D state vector.
date1 The year/month/day of the valid time for the state vector, in YYYYMMDD format - an 8-digit integer.

This is the same format as data.cal&CAL_NML:startDate_1
date2 The hour/min/sec of the valid time for the state vector, in HHMMSS format. This is the same format

as data.cal&CAL_NML:startDate_2

Since the snapshot files have the potential to move around a lot, I thought it best to have a more descriptive name
than simply the snapshot number. DART creates snapshot files with names like S.19960718.060000.data to
let you know it is a snapshot file for 06Z 18 July 1996. This is intended to make it easier to create initial conditions
files and, should the assimilation fail, inform as to _when_ the assimilation failed. Since DART needs the ocean
model to coldstart (data&PARM02:startTime = 0.0) for every model advance, every snapshot file has the
same timestamp. The advance_model.csh script actually has to rename the DART-written snapshot files to that
declared by the data&PARM05 namelist, so the name is not really critical from that perspective. However, the
components of the DART-derived snapshot files are used to create an appropriate data.cal&CAL_NML for each
successive model advance.

352 Chapter 6. References

DART, Release 9.10.3

mytime = timestep_to_DARTtime(TimeStepIndex)

integer, intent(in) :: TimeStepIndex
type(time_type), intent(out) :: mytime

timestep_to_DARTtime combines the TimeStepIndex with the time per timestep (from data&PARM03)
and the start date supplied by data.cal&CAL_NML to form a Gregorian calendar date which is then converted to a
DART time object. As of Oct 2008, this model_mod is forced to use the Gregorian calendar.

TimeStepIndexan integer referring to the ocean model timestep . . . the middle part of the ocean-model-flavor
snapshot filename.

mytime The DART representation of the time indicated by the TimeStepIndex

The time per timestep is something I don’t understand that well. The data&PARM03 namelist has three variables:
deltaTmom, deltaTtracer, and deltaTClock. Since I don’t know which one is relavent, and every case I
looked at had them set to be the same, I decided to require that they all be identical and then it wouldn’t matter which
one I used. The values are checked when the namelist is read.

! Time stepping parameters are in PARM03
call find_namelist_in_file("data", "PARM03", iunit)
read(iunit, nml = PARM03, iostat = io)
call check_namelist_read(iunit, io, "PARM03")

if ((deltaTmom == deltaTtracer) .and. &
(deltaTmom == deltaTClock) .and. &
(deltaTClock == deltaTtracer)) then

timestep = deltaTmom ! need a time_type version
else

write(msgstring,*)"namelist PARM03 has deltaTmom /= deltaTtracer /= deltaTClock"
call error_handler(E_MSG,"static_init_model", msgstring, source, revision, revdate)
write(msgstring,*)"values were ",deltaTmom, deltaTtracer, deltaTClock
call error_handler(E_MSG,"static_init_model", msgstring, source, revision, revdate)
write(msgstring,*)"At present, DART only supports equal values."
call error_handler(E_ERR,"static_init_model", msgstring, source, revision, revdate)

endif

call DARTtime_to_MITtime(darttime, date1, date2)

type(time_type), intent(in) :: darttime
integer, intent(out) :: date1, date2

DARTtime_to_MITtime converts the DART time to a pair of integers that are compatible with the format used in
data.cal&CAL_NML

darttimeThe DART time to be converted.
date1 The year/month/day component of the time in YYYYMMDD format - an 8-digit integer. This is the

same format as data.cal&CAL_NML:startDate_1
date2 The hour/min/sec component of the time in HHMMSS format. This is the same format as data.

cal&CAL_NML:startDate_2

6.122. MITgcm_ocean 353

DART, Release 9.10.3

timeindex = DARTtime_to_timestepindex(darttime)

type(time_type), intent(in) :: darttime
integer, intent(out) :: timeindex

DARTtime_to_timestepindex converts the DART time to an integer representing the number of timesteps since
the date in data.cal&CAL_NML, i.e., the start of the model run. The size of each timestep is determined as discussed
in the timestep_to_DARTtime section.

darttime The DART time to be converted.
timeindex The number of timesteps corresponding to the DARTtime . . .

call write_data_namelistfile()

There are no input arguments to write_data_namelistfile. write_data_namelistfile reads the
data namelist file and creates an almost-identical copy named data.DART that differs only in the namelist
parameters that control the model advance.
(NOTE) advance_model.csh is designed to first run trans_sv_pv to create appropriate data.DART and
data.cal.DART files. The script then renames them to that expected by the ocean model.

6.122.5 Namelists

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all
our namelist input. Consider yourself forewarned that character strings that contain a ‘/’ must be enclosed in quotes to
prevent them from prematurely terminating the namelist.

namelist /model_nml/ assimilation_period_days, &
assimilation_period_seconds, output_state_vector, model_perturbation_amplitude

This namelist is read in a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the ocean model dynamical timestep indicated by PARM03:deltaTClock.

354 Chapter 6. References

DART, Release 9.10.3

Con-
tents

Type Description

as-
simila-
tion_period_days

inte-
ger
[de-
fault:
7]

The number of days to advance the model for each assimilation.

as-
simila-
tion_period_seconds

inte-
ger
[de-
fault:
0]

In addition to assimilation_period_days, the number of seconds to advance the
model for each assimilation.

out-
put_state_vector

log-
ical
[de-
fault:
.true.]

The switch to determine the form of the state vector in the output netcdf files. If .true.
the state vector will be output exactly as DART uses it . . . one long array. If .false., the
state vector is parsed into prognostic variables and output that way – much easier to use with
‘ncview’, for example.

model_perturbation_amplitudereal(r8)
[de-
fault:
0.2]

The amount of noise to add when trying to perturb a single state vector to create an ensemble.
Only needed when inpu t.nml&filter_nml:start_from_restart = .false.
See also Generating the initial ensemble at the start of this document. units: standard deviation
of a gaussian distribution with the mean at the value of the state vector element.

Model namelist

&model_nml
assimilation_period_days = 1,
assimilation_period_seconds = 0,
model_perturbation_amplitude = 0.2,
output_state_vector = .false. /

namelist /CAL_NML/ TheCalendar, startDate_1, startDate_2, calendarDumps

This namelist is read in a file called data.cal This namelist is the same one that is used by the ocean model. The
values must correspond to the date at the start of an experiment. This is more important for create_ocean_obs,
trans_pv_sv than for filter and PROGRAM trans_sv_pv since trans_sv_pv takes the start time of the
experiment from the DART initial conditions file and actually writes a new data.cal.DART and a new
data.DART file. advance_model.csh renames data.DART and data.cal.DART to be used for the model
advance.
Still, the files must exist before DART runs to avoid unnecessarily complex logic. If you are running the support
programs in a standalone fashion (as you might if you are converting snapshot files into an intial ensemble), it is
critical that the values in this namelist are correct to have accurate times in the headers of the restart files. You can
always patch the times in the headers with restart_file_utility.

6.122. MITgcm_ocean 355

DART, Release 9.10.3

namelist /PARM03/ startTime, endTime, deltaTmom, &
deltaTtracer, deltaTClock, dumpFreq, taveFreq, ...

This namelist is read in a file called data. This namelist is the same one that is used by the ocean model. Only the
variables listed here are used by the DART programs, there are more variables that are used only by the ocean model.
There are two scenarios of interest for this namelist.

1. During an experiment, the advance_model.csh script is invoked by filter and the namelist is read by
trans_sv_pv and REWRITTEN for use by the ocean model. Since this all happens in a local directory for
the model advance, only a copy of the input data file is overwritten. The intent is that the data file is pre-
served ‘perfectly’ except for the values in &PARM03 that pertain to controlling the model advance: endTime,
dumpFreq, and taveFreq.

2. Outside the confines of trans_sv_pv, this namelist is always simply read and is unchanged.

Contents Type Description
startTime real(r8)This must be 0.0 to tell the ocean model to read from the input files named in

data&PARM05.
endTime real(r8)The number of seconds for one model advance. (normally set by trans_sv_pv)
deltaT-
mom,
deltaT-
tracer,
deltaT-
Clock

real(r8)These are used when trying to interpret the timestepcount in the snapshot files. They must
all be identical unless someone can tell me which one is used when the ocean model creates
snapshot filenames.

dumpFreq,
taveFreq

real(r8)Set to the same value value as endTime. I have never run with different settings, my one
concern would be how this affects a crappy piece of logic in advance_model.csh that
requires there to be exactly ONE set of snapshot files - and that they correspond to the com-
pleted model advance.

This namelist is the same one that is used by the ocean model. Only some of the namelist variables are needed
by DART; the rest are ignored by DART but could be needed by the ocean model. Here is a fragment for a daily
assimilation timestep with the model dynamics having a much shorter timestep.

Parm03 namelist

&PARM03
startTime = 0.,

endTime = 86400.,
deltaTmom = 900.,
deltaTtracer = 900.,
deltaTClock = 900.,
dumpFreq = 86400.,
taveFreq = 86400.,

...

This would result in snapshot files with names like [S,T,U,V,Eta].0000000096.data since 86400/900 = 96.
These values remain fixed for the entire assimilation experiment, the only thing that changes from the ocean model’s
perspective is a new data.cal gets created for every new assimilation cycle. filter is responsible for starting
and stopping the ocean model. The DART model state has a valid time associated with it, this information is used to
create the new data.cal.

356 Chapter 6. References

DART, Release 9.10.3

namelist /PARM04/ phiMin, thetaMin, delY, delX, delZ, ...

This namelist is read in a file called data. This namelist is the same one that is used by the ocean model. Only the
variables listed here are used by the DART programs, there are more variables that are used only by the ocean model.

Con-
tents

Type Description

phiMinreal(r8) The latitude of the southmost grid edge. In degrees.
thetaMinreal(r8) The longitude of the leftmost grid edge. In degrees.
delY real(r8),

dimen-
sion(1024)

The latitudinal distance between grid cell edges. In degrees. The array has a default value of
0.0. The number of non-zero entries determines the number of latitudes. static_init_model()
converts the namelist values to grid centroids and edges.

delX real(r8),
dimen-
sion(1024)

The longitudinal distance between grid cell edges. In degrees. The array has a default value of
0.0. The number of non-zero entries determines the number of longitudes. static_init_model()
converts the namelist values to grid centroids and edges.

delZ real(r8),
dimen-
sion(512)

The vertical distance between grid cell edges i.e., the thickness of the layer. In meters. The array
has a default value of 0.0. The number of non-zero entries determines the number of depths.
static_init_model() converts the namelist values to grid centroids and edges.

This namelist is the same one that is used by the ocean model. Only some of the namelist variables are needed by
DART; the rest are ignored by DART but could be needed by the ocean model. Here is a fragment for a (NY=225,
NX=256, NZ=. . .) grid

Parm04 namelist

&PARM04
phiMin = 8.4,
thetaMin = 262.0,
delY = 225*0.1,
delX = 256*0.1,
delZ = 5.0037,

5.5860,
6.2725,
7.0817,
8.0350,
9.1575,

10.4786,
12.0322,
13.8579,
16.0012,
...

Note that the 225*0.1 construct exploits the Fortran repeat mechanism to achieve 225 evenly-spaced gridpoints
without having to manually enter 225 identical values. No such construct exists for the unevenly-spaced vertical layer
thicknesses, so each layer thickness is explicitly entered.

6.122. MITgcm_ocean 357

DART, Release 9.10.3

namelist /PARM05/ bathyFile, hydrogSaltFile, hydrogThetaFile, &
uVelInitFile, vVelInitFile, pSurfInitFile

This namelist is read in a file called data. The only DART component to use this namelist is the shell script respon-
sible for advancing the model - advance_model.csh.

Contents Type Description
bathyFile charac-

ter(len=*)
The Fortran direct-access big-endian binary file containing the bathymetry.

hy-
drogSalt-
File

charac-
ter(len=*)

The Fortran direct-access big-endian binary (snapshot) file containing the salinity. S.
0000000096.data, for example. Units: psu

hydrog-
ThetaFile

charac-
ter(len=*)

The Fortran direct-access big-endian binary (snapshot) file containing the temperatures.
T.0000000096.data, for example. Units: degrees C

uVelInit-
File

charac-
ter(len=*)

The Fortran direct-access big-endian binary (snapshot) file containing the U current ve-
locities. U.0000000096.data, for example. Units: m/s

vVelInit-
File

charac-
ter(len=*)

The Fortran direct-access big-endian binary (snapshot) file containing the V current ve-
locities. V.0000000096.data, for example. Units: m/s

pSurfInit-
File

charac-
ter(len=*)

The Fortran direct-access big-endian binary (snapshot) file containing the sea surface
heights. Eta.0000000096.data, for example. Units: m

This namelist specifies the input files to the ocean model. DART must create these input files. advance_model.
csh has an ugly block of code that actually ‘reads’ this namelist and extracts the names of the input files expected by
the ocean model. advance_model.csh then renames the snapshot files to be that expected by the ocean model.
For this reason (and several others) a DART experiment occurrs in a separate directory we call CENTRALDIR, and
each model advance happens in a run-time subdirectory. The data files copied to the run-time directory are deemed to
be volatile, i.e., we can overwrite them and change them during the course of an experiment.

6.122.6 Files

• input namelist files: data, data.cal, input.nml

• input data file: filter_ics, perfect_ics

• output data files: [S,T,U,V,Eta].YYYYMMDD.HHMMSS.[data,meta]

Please note that there are many more files needed to advance the ocean model, none of which are discussed here.

6.122.7 References

• none

358 Chapter 6. References

DART, Release 9.10.3

6.122.8 Private components

N/A

6.123 MPAS_ATM

6.123.1 Overview

This document describes the DART interface module for the atmospheric component of the Model for Prediction
Across Scales MPAS (or briefly, MPAS-ATM) global model, which uses an unstructured Voronoi grid mesh, formally
Spherical Centriodal Voronoi Tesselations (SCVTs). This allows for both quasi-uniform discretization of the sphere
and local refinement. The MPAS/DART interface was built on the SCVT-dual mesh and does not regrid to regular
lat/lon grids. In the C-grid discretization, the normal component of velocity on cell edges is prognosed; zonal and
meridional wind components are diagnosed on the cell centers. We provide several options to choose from in the
assimilation of wind observations as shown below.

The grid terminology used in MPAS is as shown in the figure below:

The wind options during a DART assimilation are controlled by combinations of 4 different namelist values. The
values determine which fields the forward operator uses to compute expected observation values; how the horizontal
interpolation is computed in that forward operator; and how the assimilation increments are applied to update the wind
quantities in the state vector. Preliminary results based on real data assimilation experiments indicate that performance

6.123. MPAS_ATM 359

https://ncar.ucar.edu/what-we-offer/models/model-prediction-across-scales-mpas

DART, Release 9.10.3

is better when the zonal and meridional winds are used as input to the forward operator that uses Barycentric interpo-
lation, and when the prognostic u wind is updated by the incremental method described in the figure below. However
there remain scientific questions about how best to handle the wind fields under different situations. Thus we have
kept all implemented options available for use in experimental comparisons. See the figure below for a flow-chart
representation of how the 4 namelist items interact:

Cycling of MPAS/DART is run in a restart mode. As for all DART experiments, the overall design for an experiment
is this: the DART program filter will read the initial condition file, the observation sequence file, and the DART
namelist to decide whether or not to advance the MPAS-ATM model. All of the control of the execution of the MPAS
model is done by DART directly. If the model needs to be advanced, filter makes a call to the shell to execute the
script advance_model.csh, which is ENTIRELY responsible for getting all the input files, data files, namelists,
etc. into a temporary directory, running the model, and copying the results back to the parent directory (which we call
CENTRALDIR). The whole process hinges on setting the MPAS-ATM model namelist values such that it is doing
a restart for every model advance. Unlike MPAS-ATM free forecast runs, the forecast step in MPAS/DART requires
to set up one more namelist parameter called config_do_DAcycling = .true. in &restart section of
namelist.input to recouple the state vectors (updated by filter) with the mass field for the restart mode. For more
information, check the advance_model.csh script in ./shell_scripts/ directory.

Since DART is an ensemble algorithm, there are multiple analysis files for a single analysis time: one for each
ensemble member. Because MPAS/DART is run in a restart mode, each member should keep its own MPAS restart
file from the previous cycle (rather than having a single template file in CENTRALDIR). Creating the initial ensemble
of states is an area of active research.

360 Chapter 6. References

DART, Release 9.10.3

6.123.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash ‘/’.
Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
init_template_filename = 'mpas_init.nc',
vert_localization_coord = 3,
assimilation_period_days = 0,
assimilation_period_seconds = 21600,
model_perturbation_amplitude = 0.0001,
log_p_vert_interp = .true.,
calendar = 'Gregorian',
use_u_for_wind = .false.,
use_rbf_option = 2,
update_u_from_reconstruct = .true.,
use_increments_for_u_update = .true.,
highest_obs_pressure_mb = 100.0,
sfc_elev_max_diff = -1.0,
outside_grid_level_tolerance = -1.0,
extrapolate = .false.,
debug = 0,

/

6.123. MPAS_ATM 361

DART, Release 9.10.3

Item Type Description
init_template_filename character(len=256) [de-

fault: ‘mpas_init.nc’]
The name of the MPAS analysis
file to be read and/or written by the
DART programs for the state data.

highest_obs_pressure_mb real(r8) [default: 100.0] Observations higher than this pres-
sure are ignored. Set to -1.0 to ig-
nore this test. For models with a
prescribed top boundary layer, try-
ing to assimilate very high obser-
vations results in problems because
the model damps out any changes
the assimilation tries to make. With
adaptive algorithms this results in
larger and larger coefficients as the
assimilation tries to effect state vec-
tor change.

assimilation_period_days integer [default: 0] The number of days to advance the
model for each assimilation. Even
if the model is being advanced out-
side of the DART filter program,
the assimilation period should be set
correctly. Only observations with a
time within +/- 1/2 this window size
will be assimilated.

assimilation_period_seconds integer [default: 21600] In addition to
assimilation_period_days,
the number of seconds to advance
the model for each assimilation.

vert_localization_coord integer [default: 3] Vertical coordinate for vertical lo-
calization.

• 1 = model level
• 2 = pressure (in pascals)
• 3 = height (in meters)
• 4 = scale height (unitless)

sfc_elev_max_diff real(r8)[default: -1.0] If > 0, the maximum difference,
in meters, between an observation
marked as a ‘surface obs’ as the
vertical type (with the surface ele-
vation, in meters, as the numerical
vertical location), and the surface
elevation as defined by the model.
Observations further away from the
surface than this threshold are re-
jected and not assimilated. If the
value is negative, this test is skipped.

log_p_vert_interp logical [default: .true.] If .true., vertical interpolation is
done in log-pressure. Otherwise,
linear.

use_u_for_wind logical [default: .false.] If .false., zonal and meridional
winds at cell centers are used for the
wind observation operator [default].
In that case, triangular meshes are
used for the barycentric (e.g., area-
weighted) interpolation. If .true.
, wind vectors at an arbitrary (e.g.,
observation) point are reconstructed
from the normal component of ve-
locity on cell edges (u) using radial
basis functions (RBFs) provided by
the MPAS model.

use_rbf_option integer [default: 2] If use_u_for_wind = .
true., this option controls how
many points will be used in the
RBF interpolation. Options are
available as 0, 1, 2, and 3. All the
edges available in N (= 0,1,2, or 3)
neighboring cells go into the RBF
reconstruction.

update_u_from_reconstruct logical [default: .true.] When zonal and meridional
winds at cell centers are used
for the wind observation op-
erator (use_u_for_wind =
.false.), this option decides if
the normal component of velocity
on cell edges (which is the only
wind prognostic variable in MPAS-
ATM) should be updated from the
winds at cell centers. If .true.,
use_increments_for_u_update
should be also decided. If
use_u_for_wind = .true.
and the normal component of
velocity on cell edges is defined as
a state vector, this option should be
.false. so the edge winds can be
directly updated by filter.

use_increments_for_u_update logical [default: .true.] Only if
update_u_from_reconstruct
= .true., this option is used to
decide if the edge winds are re-
placed by averaging from the
analysis winds at cell centers (.
false.), or just updated by the
analysis increments at cell centers
(.true.). If .true., all the
wind components (e.g., both at
cell centers and edges) are read
from prior and used to compute the
increments [Recommended].

model_perturbation_amplitude real(r8) [default: 0.0001] The amplitude of random noise
to add when trying to perturb
a single state vector to create
an ensemble. Only used when
start_from_restart = .
false. in the &filter_nml
namelist within input.nml
Multiplied by the state vector, it
produces standard deviation of a
gaussian distribution with the mean
at the value of the state vector
element.

calendar character(len=32) [default: ‘Grego-
rian’]

Character string specifying the cal-
endar being used by MPAS.

outside_grid_level_tolerance real(r8) [default: -1.0] If greater than 0.0, amount of dis-
tance in fractional model levels that
a vertical location can be above or
below the top or bottom of the grid
and still be evaluated without er-
ror. Since extrapolate is not imple-
mented yet, the value of .false.
will be assumed. In this case, ver-
tical locations equivalent to level 1
or level N will be used. Eventually,
if extrapolate is .true., extrapo-
late from the first or last model level.
If extrapolate is .false., simply
use the value at level 1 for low ver-
tical locations, or at level N for high
vertical locations.

extrapolate logical [default: .false.] NOT IMPLEMENTED YET. Verti-
cal locations equivalant to level 1
or level N will be used. When this
is implemented, it will do: If out-
side_grid_level_tolerance is greater
than 0.0, then control how values
are assigned to locations where the
vertical is exterior to the grid. If this
is .true., then extrapolate low
locations from levels 1 and 2, and
high locations from levels N-1 and
N. If this is .false., then simply
use the corresponding values at
level 1 or N. This item is ignored if
outside_grid_level_tolerance
is less than or equal to 0.0.

debug integer [default: 0] The switch to specify the run-time
verbosity.

• 0 is as quiet as it gets
• >1 prints more run-time mes-

sages
• >5 prints ALL run-time mes-

sages

362 Chapter 6. References

DART, Release 9.10.3

The &mpas_vars_nml namelist within input.nml contains the list of MPAS variables that make up the DART
state vector. The order the items are specified controls the order of the data in the state vector, so it should not be
changed without regenerating all DART initial condition or restart files. These variables are directly updated by the
filter assimilation.

Any variables whose values cannot exceed a given minimum or maximum can be listed in mpas_state_bounds.
When the data is written back into the MPAS NetCDF files values outside the allowed range will be detected and
changed. Data inside the DART state vector and data written to the DART diagnostic files will not go through this
test and values may exceed the allowed limits. Note that changing values at the edges of the distribution means it is
no longer completely gaussian. In practice this technique has worked effectively, but if the assimilation is continually
trying to move the values outside the permitted range the results may be of poor quality. Examine the diagnostics for
these fields carefully when using bounds to restrict their values.

&mpas_vars_nml
mpas_state_variables = 'theta', 'QTY_POTENTIAL_TEMPERATURE',

'uReconstructZonal', 'QTY_U_WIND_COMPONENT',
'uReconstructMeridional','QTY_V_WIND_COMPONENT',
'qv', 'QTY_VAPOR_MIXING_RATIO',
'qc', 'QTY_CLOUDWATER_MIXING_RATIO',
'surface_pressure', 'QTY_SURFACE_PRESSURE'

mpas_state_bounds = 'qv','0.0','NULL','CLAMP',
'qc','0.0','NULL','CLAMP',

/

Item Type Description
mpas_vars_nmlcharac-

ter(len=NF90_MAX_NAME)::
dimen-
sion(160)

The table that both specifies which MPAS-ATM variables will be placed in the state vector,
and also relates those variables to the corresponding DART kinds. The first column in each
pair must be the exact NetCDF name of a field in the MPAS file. The second column in each
pair must be a KIND known to the DART system. See the obs_kind_mod.f90 file within
assimilation_code/modules/observations/ for known names. This file is auto-
generated when DART builds filter for a particular model, so run quickbuild.csh in the
work directory first before examining this file. Use the generic kind list in the obs_kind_mod
tables, not the specific type list.

mpas_state_boundscharac-
ter(len=NF90_MAX_NAME)::
dimen-
sion(160)

List only MPAS-ATM variables that must restrict their values to remain between given lower
and/or upper bounds. Columns are: NetCDF variable name, min value, max value, and action to
take for out-of-range values. Either min or max can have the string ‘NULL’ to indicate no limiting
will be done. If the action is ‘CLAMP’ out of range values will be changed to the corresponding
bound and execution continues; ‘FAIL’ stops the executable if out of range values are detected.

6.123.3 Grid Information

As the forward operators use the unstructured grid meshes in MPAS-ATM, the DART/MPAS interface
needs to read static variables related to the grid structure from the MPAS ATM ‘history’ file (specified in
model_analysis_filename). These variables are used to find the closest cell to an observation point in the
cartesian coordinate (to avoid the polar issues).

6.123. MPAS_ATM 363

DART, Release 9.10.3

integer :: nCells the number of cell centers
integer :: nEdges the number of cell edges
integer :: nVertices the number of cell vertices
integer :: nVertLevels the number of vertical levels for mass fields
integer :: nVertLevelsP1 the number of vertical levels for vertical velocity
integer :: nSoilLevels the number of soil levels
real(r8) :: latCell(:) the latitudes of the cell centers [-90,90]
real(r8) :: lonCell(:) the longitudes of the cell centers [0, 360]
real(r8) :: latEdge(:) the latitudes of the edges [-90,90], if edge winds are used.
real(r8) :: lonEdge(:) the longitudes of the edges [0, 360], if edge winds are used.
real(r8) :: xVertex(:) The cartesian location in x-axis of the vertex
real(r8) :: yVertex(:) The cartesian location in y-axis of the vertex
real(r8) :: zVertex(:) The cartesian location in z-axis of the vertex
real(r8) :: xEdge(:) The cartesian location in x-axis of the edge, if edge winds are used.
real(r8) :: yEdge(:) The cartesian location in y-axis of the edge, if edge winds are used.
real(r8) :: zEdge(:) The cartesian location in z-axis of the edge, if edge winds are used.
real(r8) :: zgrid(:,:) geometric height at cell centers (nCells, nVertLevelsP1)
integer :: CellsOnVertex(:,:) list of cell centers defining a triangle
integer :: edgesOnCell(:,:) list of edges on each cell
integer :: verticesOnCell(:,:) list of vertices on each cell
integer :: edgeNormalVectors(:,:) unit direction vectors on the edges (only used if use_u_for_wind = .true.)

6.123.4 model_mod variable storage

The &mpas_vars_nml within input.nml defines the list of MPAS variables used to build the DART state vector.
Combined with an MPAS analysis file, the information is used to determine the size of the DART state vector and
derive the metadata. To keep track of what variables are contained in the DART state vector, an array of a user-defined
type called “progvar” is available with the following components:

type progvartype
private
character(len=NF90_MAX_NAME) :: varname
character(len=NF90_MAX_NAME) :: long_name
character(len=NF90_MAX_NAME) :: units
character(len=NF90_MAX_NAME), dimension(NF90_MAX_VAR_DIMS) :: dimname
integer, dimension(NF90_MAX_VAR_DIMS) :: dimlens
integer :: xtype ! netCDF variable type (NF90_double, etc.)
integer :: numdims ! number of dimensions - excluding TIME
integer :: numvertical ! number of vertical levels in variable
integer :: numcells ! number of cell locations (typically cell centers)
integer :: numedges ! number of edge locations (edges for normal velocity)
logical :: ZonHalf ! vertical coordinate for mass fields (nVertLevels)
integer :: varsize ! variable size (dimlens(1:numdims))
integer :: index1 ! location in dart state vector of first occurrence
integer :: indexN ! location in dart state vector of last occurrence
integer :: dart_kind
character(len=paramname_length) :: kind_string
logical :: clamping ! does variable need to be range-restricted before
real(r8) :: range(2) ! lower and upper bounds for the data range.
logical :: out_of_range_fail ! is out of range fatal if range-checking?

end type progvartype

type(progvartype), dimension(max_state_variables) :: progvar

364 Chapter 6. References

DART, Release 9.10.3

The variables are simply read from the MPAS analysis file and stored in the DART state vector such that all
quantities for one variable are stored contiguously. Within each variable; they are stored vertically-contiguous for
each horizontal location. From a storage standpoint, this would be equivalent to a Fortran variable dimensioned
x(nVertical,nHorizontal,nVariables). The fastest-varying dimension is vertical, then horizontal, then variable . . . nat-
urally, the DART state vector is 1D. Each variable is also stored this way in the MPAS analysis file.

6.123.5 Compilation

The DART interface for MPAS-ATM can be compiled with various fortran compilers such as (but not limited to)
gfortran, pgf90, and intel. It has been tested on a Mac and NCAR IBM supercomputer (yellowstone).

Note: While MPAS requires the PIO (Parallel IO) and pNetCDF (Parallel NetCDF) libraries, DART uses only the
plain NetCDF libraries. If an altered NetCDF library is required by the parallel versions, there may be incompatibilities
between the run-time requirements of DART and MPAS. Static linking of one or the other executable, or swapping of
modules between executions may be necessary.

6.123.6 Conversions

A Welcome Development

MPAS files no longer need to be converted to DART formatted files, they can be read in directly from a input file list!

Analysis File NetCDF header

The header of an MPAS analysis file is presented below - simply for context. Keep in mind that many variables
have been removed for clarity. Also keep in mind that the multi-dimensional arrays listed below have the dimensions
reversed from the Fortran convention. Note: the variables marked ‘available in dart’ are available as metadata variables
in DART. Just to be perfectly clear, they are not ‘state’.

$ ncdump -h mpas_init.nc
netcdf mpas_analysis {
dimensions:

StrLen = 64 ;
Time = UNLIMITED ; // (1 currently)
nCells = 10242 ; available in DART
nEdges = 30720 ; available in DART
maxEdges = 10 ;
maxEdges2 = 20 ;
nVertices = 20480 ; available in DART
TWO = 2 ;
THREE = 3 ;
vertexDegree = 3 ;
FIFTEEN = 15 ;
TWENTYONE = 21 ;
R3 = 3 ;
nVertLevels = 41 ; available in DART
nVertLevelsP1 = 42 ; available in DART
nMonths = 12 ;
nVertLevelsP2 = 43 ;
nSoilLevels = 4 ; available in DART

variables:

(continues on next page)

6.123. MPAS_ATM 365

DART, Release 9.10.3

(continued from previous page)

char xtime(Time, StrLen) ; available in DART
double latCell(nCells) ; available in DART
double lonCell(nCells) ; available in DART
double latEdge(nEdges) ; available in DART
double lonEdge(nEdges) ; available in DART
int indexToEdgeID(nEdges) ;
double latVertex(nVertices) ;
double lonVertex(nVertices) ;

double xVertex(nVertices) ; available in DART
double yVertex(nVertices) ; available in DART
double zVertex(nVertices) ; available in DART
double xEdge(nVertices) ; available in DART
double yEdge(nVertices) ; available in DART
double zEdge(nVertices) ; available in DART

int indexToVertexID(nVertices) ;
int cellsOnEdge(nEdges, TWO) ;
int nEdgesOnCell(nCells) ;
int nEdgesOnEdge(nEdges) ;
int edgesOnCell(nCells, maxEdges) ; available in DART
int edgesOnEdge(nEdges, maxEdges2) ;
double weightsOnEdge(nEdges, maxEdges2) ;
double dvEdge(nEdges) ;
double dcEdge(nEdges) ;
double angleEdge(nEdges) ;
double edgeNormalVectors(nEdges, R3) ; available in DART
double cellTangentPlane(nEdges, TWO, R3) ;
int cellsOnCell(nCells, maxEdges) ;
int verticesOnCell(nCells, maxEdges) ; available in DART
int verticesOnEdge(nEdges, TWO) ;
int edgesOnVertex(nVertices, vertexDegree) ;
int cellsOnVertex(nVertices, vertexDegree) ; available in DART
double kiteAreasOnVertex(nVertices, vertexDegree) ;
double rainc(Time, nCells) ;
double cuprec(Time, nCells) ;
double cutop(Time, nCells) ;
double cubot(Time, nCells) ;
double relhum(Time, nCells, nVertLevels) ;
double qsat(Time, nCells, nVertLevels) ;
double graupelnc(Time, nCells) ;
double snownc(Time, nCells) ;
double rainnc(Time, nCells) ;
double graupelncv(Time, nCells) ;
double snowncv(Time, nCells) ;
double rainncv(Time, nCells) ;
double sr(Time, nCells) ;
double surface_temperature(Time, nCells) ;
double surface_pressure(Time, nCells) ;
double coeffs_reconstruct(nCells, maxEdges, R3) ;
double theta_base(Time, nCells, nVertLevels) ;
double rho_base(Time, nCells, nVertLevels) ;
double pressure_base(Time, nCells, nVertLevels) ;
double exner_base(Time, nCells, nVertLevels) ;
double exner(Time, nCells, nVertLevels) ;
double h_divergence(Time, nCells, nVertLevels) ;
double uReconstructMeridional(Time, nCells, nVertLevels) ;
double uReconstructZonal(Time, nCells, nVertLevels) ;
double uReconstructZ(Time, nCells, nVertLevels) ;

(continues on next page)

366 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

double uReconstructY(Time, nCells, nVertLevels) ;
double uReconstructX(Time, nCells, nVertLevels) ;
double pv_cell(Time, nCells, nVertLevels) ;
double pv_vertex(Time, nVertices, nVertLevels) ;
double ke(Time, nCells, nVertLevels) ;
double rho_edge(Time, nEdges, nVertLevels) ;
double pv_edge(Time, nEdges, nVertLevels) ;
double vorticity(Time, nVertices, nVertLevels) ;
double divergence(Time, nCells, nVertLevels) ;
double v(Time, nEdges, nVertLevels) ;
double rh(Time, nCells, nVertLevels) ;
double theta(Time, nCells, nVertLevels) ;
double rho(Time, nCells, nVertLevels) ;
double qv_init(nVertLevels) ;
double t_init(nCells, nVertLevels) ;
double u_init(nVertLevels) ;
double pressure_p(Time, nCells, nVertLevels) ;
double tend_theta(Time, nCells, nVertLevels) ;
double tend_rho(Time, nCells, nVertLevels) ;
double tend_w(Time, nCells, nVertLevelsP1) ;
double tend_u(Time, nEdges, nVertLevels) ;
double qv(Time, nCells, nVertLevels) ;
double qc(Time, nCells, nVertLevels) ;
double qr(Time, nCells, nVertLevels) ;
double qi(Time, nCells, nVertLevels) ;
double qs(Time, nCells, nVertLevels) ;
double qg(Time, nCells, nVertLevels) ;
double tend_qg(Time, nCells, nVertLevels) ;
double tend_qs(Time, nCells, nVertLevels) ;
double tend_qi(Time, nCells, nVertLevels) ;
double tend_qr(Time, nCells, nVertLevels) ;
double tend_qc(Time, nCells, nVertLevels) ;
double tend_qv(Time, nCells, nVertLevels) ;
double qnr(Time, nCells, nVertLevels) ;
double qni(Time, nCells, nVertLevels) ;
double tend_qnr(Time, nCells, nVertLevels) ;
double tend_qni(Time, nCells, nVertLevels) ;

6.123.7 Files

filename purpose
input.nml to read the namelist - model_mod_nml and mpas_vars_nml
mpas_init.nc provides model state, and ‘valid_time’ of the model state
static.nc provides grid dimensions
true_state.nc the time-history of the “true” model state from an OSSE
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

6.123. MPAS_ATM 367

DART, Release 9.10.3

6.123.8 References

The Data Assimilation section in the MPAS documentation found at http://mpas-dev.github.io.

6.124 PROGRAM mpas_dart_obs_preprocess

6.124.1 Overview

Program to preprocess observations, with specific knowledge of the MPAS grid.

This program can superob (average) aircraft and satellite wind obs if they are too dense, based on the given MPAS
ATM grid. It will average all observations of the same type in each grid cell. The averaging grid can be different than
the grid used for the assimilation run.

This program can read up to 10 additional obs_seq files and merge their data in with the basic obs_sequence file which
is the main input.

This program can reject surface observations if the elevation encoded in the observation is too different from the mpas
surface elevation.

This program can exclude observations above a specified height or pressure.

This program can exclude observations outside a given time window defined by the specified analysis time and a
window width in hours.

This program can overwrite the incoming Data QC value with another.

6.124.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&mpas_obs_preproc_nml

file_name_input = 'obs_seq.old'
file_name_output = 'obs_seq.new'

sonde_extra = 'obs_seq.rawin'
land_sfc_extra = 'obs_seq.land_sfc'
metar_extra = 'obs_seq.metar'
marine_sfc_extra = 'obs_seq.marine'
sat_wind_extra = 'obs_seq.satwnd'
profiler_extra = 'obs_seq.profiler'
gpsro_extra = 'obs_seq.gpsro'
acars_extra = 'obs_seq.acars'
gpspw_extra = 'obs_seq.gpspw'
trop_cyclone_extra = 'obs_seq.tc'

overwrite_obs_time = .false.
windowing_obs_time = .false.
windowing_int_hour = 1.5

obs_boundary = 0.0
increase_bdy_error = .false.

(continues on next page)

368 Chapter 6. References

http://mpas-dev.github.io

DART, Release 9.10.3

(continued from previous page)

maxobsfac = 2.5
obsdistbdy = 15.0

sfc_elevation_check = .false.
sfc_elevation_tol = 300.0
obs_pressure_top = 0.0
obs_height_top = 2.0e10

include_sig_data = .true.
tc_sonde_radii = -1.0
superob_qc_threshold = 4

superob_aircraft = .false.
aircraft_horiz_int = 36.0
aircraft_pres_int = 2500.0

superob_sat_winds = .false.
sat_wind_horiz_int = 100.0
sat_wind_pres_int = 2500.0

overwrite_ncep_satwnd_qc = .false.
overwrite_ncep_sfc_qc = .false.

max_num_obs = 1000000
/

6.124. PROGRAM mpas_dart_obs_preprocess 369

DART, Release 9.10.3

Item Type Description
Generic parameters:
file_name_input character(len=129) The input obs_seq file.
file_name_output character(len=129) The output obs_seq file.

sonde_extra, land_sfc_extra,
metar_extra, marine_sfc_extra,
sat_wind_extra, profiler_extra,
gpsro_extra, acars_extra,
gpspw_extra, trop_cyclone_extra

character(len=129) The names of additional input
obs_seq files, which if they exist,
will be merged in with the obs
from the file_name_input obs_seq
file. If the files do not exist, they are
silently ignored without error.

max_num_obs integer Must be larger than the total number
of observations to be processed.

Parameters to reduce observation
count:
sfc_elevation_check logical If true, check the height of sur-

face observations against the surface
height in the model. Observations
further away than the specified tol-
erance will be excluded.

sfc_elevation_tol real(r8) If sfc_elevation_check is true, the
maximum difference between the
elevation of a surface observation
and the model surface height, in me-
ters. If the difference is larger than
this value, the observation is ex-
cluded.

obs_pressure_top real(r8) Observations with a vertical coordi-
nate in pressure which are located
above this pressure level (i.e. the
obs vertical value is smaller than the
given pressure) will be excluded.

obs_height_top real(r8) Observations with a vertical coor-
dinate in height which are located
above this height value (i.e. the obs
vertical value is larger than the given
height) will be excluded.

Radio/Rawinsonde-specific pa-
rameters:
include_sig_data logical If true, include significant level data

from radiosondes.
tc_sonde_radii real(r8) If greater than 0.0 remove any sonde

observations closer than this dis-
tance in Kilometers to the center of
a Tropical Cyclone.

Aircraft-specific parameters:
superob_aircraft logical If true, average all aircraft observa-

tions within the same MPAS grid
cell, at the given vertical levels. The
output obs will be only a single ob-
servation per cell, per vertical level.

aircraft_pres_int real(r8) If superob_aircraft is true, the ver-
tical distance in pressure which de-
fines a series of superob vertical
bins.

superob_qc_threshold integer If superob_aircraft is true, the Qual-
ity Control threshold at which ob-
servations are ignored when doing
superob averaging. The value spec-
ified here is the largest acceptable
QC; values equal to or lower are
kept, and values larger than this are
rejected.

Satellite Wind-specific parame-
ters:
superob_sat_winds logical If true, average all satellite wind ob-

servations within the same MPAS
grid cell, at the given vertical levels.
The output obs will be only a sin-
gle observation per cell, per vertical
level.

sat_wind_pres_int real(r8) If superob_sat_winds is true, the
vertical distance in pressure which
defines a series of superob vertical
bins.

overwrite_ncep_satwnd_qc logical If true, replace the incoming Data
QC value in satellite wind observa-
tions with 2.0.

Surface Observation-specific pa-
rameters:
overwrite_ncep_sfc_qc logical If true, replace the incoming Data

QC value in surface observations
with 2.0.

Parameters to select by time or al-
ter observation time:
windowing_obs_time logical If true, exclude observations with a

time outside the given window. The
window is specified as a number of
hours before and after the current
analysis time.

windowing_int_hour real(r8) The window half-width, in hours.
If ‘windowing_obs_time’ is .false.
this value is ignored. If ‘window-
ing_obs_time’ is true, observations
with a time further than this num-
ber of hours away from the analy-
sis time will be excluded. To ensure
disjoint subsets from a continueous
sequence of observations, time val-
ues equal to the earliest time bound-
aries are discarded while time val-
ues equal to the latest time boundary
are retained.

overwrite_obs_time logical If true, replace the incoming obser-
vation time with the analysis time.
Not recommended.

370 Chapter 6. References

DART, Release 9.10.3

6.124.3 Modules used

types_mod
obs_sequence_mod
utilities_mod
obs_kind_mod
time_manager_mod
model_mod
netcdf

6.124.4 Files

• Input namelist ; input.nml

• Input MPAS state netCDF file: mpas_init.nc

• Input obs_seq files (as specified in namelist)

• Output obs_seq file (as specified in namelist)

File formats

This utility can read one or more obs_seq files and combine them while doing the rest of the processing. It uses the
standard DART observation sequence file format. It uses the grid information from an MPAS file to define the bins for
combining nearby aircraft and satellite wind observations.

6.124.5 References

• Developed by Soyoung Ha, based on the WRF observation preprocessor contributed by Ryan Torn.

6.125 MPAS OCN

Attention: mpas_ocn was being developed with versions of DART before Manhattan (9.x.x) and has yet to be
updated. If you are interested in using mpas_ocn with more recent versions of DART, contact DAReS staff to
assess the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.125.1 Overview

The MPAS OCN interface for Data Assimilation Research Testbed (DART) is under development.
Since MPAS OCN uses netcdf files for their restart mechanism, a namelist-controlled set of variables is used to build
the DART state vector. Each variable must also correspond to a DART “QUANTITY”; required for the DART
interpolate routines. For example:

6.125. MPAS OCN 371

DART, Release 9.10.3

&mpas_vars_nml
mpas_state_variables = 'uReconstructZonal', 'QTY_U_WIND_COMPONENT',

'uReconstructMeridional', 'QTY_V_WIND_COMPONENT',
'w', 'QTY_VERTICAL_VELOCITY',
'theta', 'QTY_POTENTIAL_TEMPERATURE',
'qv', 'QTY_VAPOR_MIXING_RATIO',
'qc', 'QTY_CLOUDWATER_MIXING_RATIO',
'qr', 'QTY_RAINWATER_MIXING_RATIO',
'qi', 'QTY_ICE_MIXING_RATIO',
'qs', 'QTY_SNOW_MIXING_RATIO',
'qg', 'QTY_GRAUPEL_MIXING_RATIO',
'surface_pressure', 'QTY_SURFACE_PRESSURE'

/

These variables are then adjusted to be consistent with observations and stuffed back into the same netCDF analysis
files. Since DART is an ensemble algorithm, there are multiple analysis files for a single analysis time: one for each
ensemble member. Creating the initial ensemble of states is an area of active research.
DART reads grid information from the MPAS OCN ‘history’ file, I have tried to keep the variable names the same.
Internal to the DART code, the following variables exist:

integer :: nCells the number of Cell Centers
integer :: nEdges the number of Cell Edges
integer :: nVertices the number of Cell Vertices
integer :: nVertLevels the number of vertical level midpoints
integer :: nVertLevelsP1 the number of vertical level edges
integer :: nSoilLevels the number of soil level ?midpoints?
real(r8) :: latCell(:) the latitudes of the Cell Centers (-90,90)
real(r8) :: lonCell(:) the longitudes of the Cell Centers [0, 360)
real(r8) :: zgrid(:,:) cell center geometric height at cell centers (ncells,nvert)
integer :: CellsOnVertex(:,:) list of cell centers defining a triangle

6.125.2 model_mod variable storage

input.nml&mpas_vars_nml defines the list of MPAS variables used to build the DART state vector. Combined
with an MPAS analysis file, the information is used to determine the size of the DART state vector and derive the
metadata. To keep track of what variables are contained in the DART state vector, an array of a user-defined type
called “progvar” is available with the following components:

type progvartype
private
character(len=NF90_MAX_NAME) :: varname
character(len=NF90_MAX_NAME) :: long_name
character(len=NF90_MAX_NAME) :: units
character(len=NF90_MAX_NAME), dimension(NF90_MAX_VAR_DIMS) :: dimname
integer, dimension(NF90_MAX_VAR_DIMS) :: dimlens
integer :: xtype ! netCDF variable type (NF90_double, etc.)
integer :: numdims ! number of dims - excluding TIME
integer :: numvertical ! number of vertical levels in variable
integer :: numcells ! number of horizontal locations (typically cell centers)
logical :: ZonHalf ! vertical coordinate has dimension nVertLevels

(continues on next page)

372 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

integer :: varsize ! prod(dimlens(1:numdims))
integer :: index1 ! location in dart state vector of first occurrence
integer :: indexN ! location in dart state vector of last occurrence
integer :: dart_kind
character(len=paramname_length) :: kind_string
logical :: clamping ! does variable need to be range-restricted before
real(r8) :: range(2) ! being stuffed back into MPAS analysis file.

end type progvartype

type(progvartype), dimension(max_state_variables) :: progvar

The variables are simply read from the MPAS analysis file and stored in the DART state vector such that all
quantities for one variable are stored contiguously. Within each variable; they are stored vertically-contiguous for
each horizontal location. From a storage standpoint, this would be equivalent to a Fortran variable dimensioned
x(nVertical,nHorizontal,nVariables). The fastest-varying dimension is vertical, then horizontal, then variable . . . nat-
urally, the DART state vector is 1D. Each variable is also stored this way in the MPAS analysis file.

The DART interface for MPAS (atm)

was compiled with the gfortran 4.2.3 compilers and run on a Mac.
The DART components were built with the following mkmf.template settings:

FC = gfortran
LD = gfortran
NETCDF = /Users/thoar/GNU
INCS = -I${NETCDF}/include
LIBS = -L${NETCDF}/lib -lnetcdf -lcurl -lhdf5_hl -lhdf5 -lz -lm
FFLAGS = -O0 -fbounds-check -frecord-marker=4 -ffpe-trap=invalid $(INCS)
LDFLAGS = $(FFLAGS) $(LIBS)

Converting between DART files and MPAS analysis files

is relatively straighforward. Given the namelist mechanism for determining the state variables and the MPAS history
netCDF files exist, - everything that is needed is readily determined.
There are two programs - both require the list of MPAS variables to use in the DART state vector: the
mpas_vars_nml namelist in the input.nml file. The MPAS file name being read and/or written is - in all
instances - specified by the model_nml:model_analysis_filename variable in the input.nml namelist
file.

6.125. MPAS OCN 373

DART, Release 9.10.3

PRO-
GRAM
model_to_dart
for
MPAS
OCN

converts an MPAS analysis file (nominally named mpas_analysis.nc) into a DART-compatible file
normally called dart_ics . We usually wind up linking the actual analysis file to a static name that is
used by DART.

dart_
to_
model.
f90

inserts the DART output into an existing MPAS analysis netCDF file by overwriting the variables in
the analysis netCDF file. There are two different types of DART output files, so there is a namelist
option to specify if the DART file has two time records or just one (if there are two, the first one is the
‘advance_to’ time, followed by the ‘valid_time’ of the ensuing state). dart_to_model updates the
MPAS analysis file specified in input.nmlmodel_nml:model_analysis_filename. If the
DART file contains an ‘advance_to’ time, separate control information is written to an auxiliary file that
is used by the advance_model.csh script.

The header of an MPAS analysis file is presented below - simply for context. Keep in mind that many variables
have been removed for clarity. Also keep in mind that the multi-dimensional arrays listed below have the dimensions
reversed from the Fortran convention.

366 mirage2:thoar% ncdump -h mpas_analysis.nc
netcdf mpas_analysis {
dimensions:

StrLen = 64 ;
Time = UNLIMITED ; // (1 currently)
nCells = 10242 ; available in DART
nEdges = 30720 ; available in DART
maxEdges = 10 ;
maxEdges2 = 20 ;
nVertices = 20480 ; available in DART
TWO = 2 ;
THREE = 3 ;
vertexDegree = 3 ; available in DART
FIFTEEN = 15 ;
TWENTYONE = 21 ;
R3 = 3 ;
nVertLevels = 41 ; available in DART
nVertLevelsP1 = 42 ; available in DART
nMonths = 12 ;
nVertLevelsP2 = 43 ;
nSoilLevels = 4 ; available in DART

variables:
char xtime(Time, StrLen) ; available in DART
double latCell(nCells) ; available in DART
double lonCell(nCells) ; available in DART
double latEdge(nEdges) ;
double lonEdge(nEdges) ;
int indexToEdgeID(nEdges) ;
double latVertex(nVertices) ;
double lonVertex(nVertices) ;
int indexToVertexID(nVertices) ;
int cellsOnEdge(nEdges, TWO) ;
int nEdgesOnCell(nCells) ;
int nEdgesOnEdge(nEdges) ;
int edgesOnCell(nCells, maxEdges) ;
int edgesOnEdge(nEdges, maxEdges2) ;
double weightsOnEdge(nEdges, maxEdges2) ;
double dvEdge(nEdges) ;

(continues on next page)

374 Chapter 6. References

dart_to_model.f90
dart_to_model.f90
dart_to_model.f90
dart_to_model.f90

DART, Release 9.10.3

(continued from previous page)

double dcEdge(nEdges) ;
double angleEdge(nEdges) ;
double edgeNormalVectors(nEdges, R3) ;
double cellTangentPlane(nEdges, TWO, R3) ;
int cellsOnCell(nCells, maxEdges) ;
int verticesOnCell(nCells, maxEdges) ;
int verticesOnEdge(nEdges, TWO) ;
int edgesOnVertex(nVertices, vertexDegree) ;
int cellsOnVertex(nVertices, vertexDegree) ; available in DART
double kiteAreasOnVertex(nVertices, vertexDegree) ;
double rainc(Time, nCells) ;
double cuprec(Time, nCells) ;
double cutop(Time, nCells) ;
double cubot(Time, nCells) ;
double relhum(Time, nCells, nVertLevels) ;
double qsat(Time, nCells, nVertLevels) ;
double graupelnc(Time, nCells) ;
double snownc(Time, nCells) ;
double rainnc(Time, nCells) ;
double graupelncv(Time, nCells) ;
double snowncv(Time, nCells) ;
double rainncv(Time, nCells) ;
double sr(Time, nCells) ;
double surface_temperature(Time, nCells) ;
double surface_pressure(Time, nCells) ;
double coeffs_reconstruct(nCells, maxEdges, R3) ;
double theta_base(Time, nCells, nVertLevels) ;
double rho_base(Time, nCells, nVertLevels) ;
double pressure_base(Time, nCells, nVertLevels) ;
double exner_base(Time, nCells, nVertLevels) ;
double exner(Time, nCells, nVertLevels) ;
double h_divergence(Time, nCells, nVertLevels) ;
double uReconstructMeridional(Time, nCells, nVertLevels) ;
double uReconstructZonal(Time, nCells, nVertLevels) ;
double uReconstructZ(Time, nCells, nVertLevels) ;
double uReconstructY(Time, nCells, nVertLevels) ;
double uReconstructX(Time, nCells, nVertLevels) ;
double pv_cell(Time, nCells, nVertLevels) ;
double pv_vertex(Time, nVertices, nVertLevels) ;
double ke(Time, nCells, nVertLevels) ;
double rho_edge(Time, nEdges, nVertLevels) ;
double pv_edge(Time, nEdges, nVertLevels) ;
double vorticity(Time, nVertices, nVertLevels) ;
double divergence(Time, nCells, nVertLevels) ;
double v(Time, nEdges, nVertLevels) ;
double rh(Time, nCells, nVertLevels) ;
double theta(Time, nCells, nVertLevels) ;
double rho(Time, nCells, nVertLevels) ;
double qv_init(nVertLevels) ;
double t_init(nCells, nVertLevels) ;
double u_init(nVertLevels) ;
double pressure_p(Time, nCells, nVertLevels) ;
double tend_theta(Time, nCells, nVertLevels) ;
double tend_rho(Time, nCells, nVertLevels) ;
double tend_w(Time, nCells, nVertLevelsP1) ;
double tend_u(Time, nEdges, nVertLevels) ;
double qv(Time, nCells, nVertLevels) ;

(continues on next page)

6.125. MPAS OCN 375

DART, Release 9.10.3

(continued from previous page)

double qc(Time, nCells, nVertLevels) ;
double qr(Time, nCells, nVertLevels) ;
double qi(Time, nCells, nVertLevels) ;
double qs(Time, nCells, nVertLevels) ;
double qg(Time, nCells, nVertLevels) ;
double tend_qg(Time, nCells, nVertLevels) ;
double tend_qs(Time, nCells, nVertLevels) ;
double tend_qi(Time, nCells, nVertLevels) ;
double tend_qr(Time, nCells, nVertLevels) ;
double tend_qc(Time, nCells, nVertLevels) ;
double tend_qv(Time, nCells, nVertLevels) ;
double qnr(Time, nCells, nVertLevels) ;
double qni(Time, nCells, nVertLevels) ;
double tend_qnr(Time, nCells, nVertLevels) ;
double tend_qni(Time, nCells, nVertLevels) ;

6.125.3 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all
our namelist input. Consider yourself forewarned that character strings that contain a ‘/’ must be enclosed in quotes to
prevent them from prematurely terminating the namelist.

namelist /model_nml/ model_analysis_filename, &
assimilation_period_days, assimilation_period_seconds, &
model_perturbation_amplitude, output_state_vector, calendar, debug

This namelist is read in a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the model dynamical timestep. This also specifies the MPAS analysis file that will be read
and/or written by the different program units.

376 Chapter 6. References

DART, Release 9.10.3

Con-
tents

Type Description

model_analysis_filenamecharac-
ter(len=256)
[default:
‘mpas_analysis.nc’]

Character string specifying the name of the MPAS analysis file to be read and/or
written by the different program units.

out-
put_state_vector

logical [de-
fault: .true.]

The switch to determine the form of the state vector in the output netCDF files. If
.true. the state vector will be output exactly as DART uses it . . . one long array. If
.false., the state vector is parsed into prognostic variables and output that way –
much easier to use with ‘ncview’, for example.

as-
simila-
tion_period_days

integer [de-
fault: 1]

The number of days to advance the model for each assimilation.

as-
simila-
tion_period_seconds

integer [de-
fault: 0]

In addition to assimilation_period_days, the number of seconds to advance
the model for each assimilation.

model_perturbation_amplitudereal(r8)
[default: 0.2]

Reserved for future use.

calendar charac-
ter(len=32)
[default:
‘Gregorian’]

Character string specifying the calendar being used by MPAS.

debug integer [de-
fault: 0]

The switch to specify the run-time verbosity. 0 is as quiet as it gets. > 1 provides
more run-time messages. > 5 provides ALL run-time messages.

Example namelist

&model_nml
model_analysis_filename = 'mpas_restart.nc';
assimilation_period_days = 0,
assimilation_period_seconds = 60,
model_perturbation_amplitude = 0.2,
output_state_vector = .true.,
calendar = 'Gregorian',
debug = 0
/

namelist /mpas_vars_nml/ mpas_state_variables

This namelist is read from input.nml and contains the list of MPAS variables that make up the DART state vector.

Con-
tents

Type Description

mpas_vars_nmlcharac-
ter(len=NF90_MAX_NAME)::
dimension(160) [default: see
example]

The table that relates the GITM variables to use to build the
DART state vector, and the corresponding DART kinds for those
variables.

6.125. MPAS OCN 377

DART, Release 9.10.3

Example

The following mpas_vars_nml is just for demonstration purposes. You application will likely involve a different DART
state vector.

&mpas_vars_nml
mpas_state_variables = 'theta', 'QTY_POTENTIAL_TEMPERATURE',

'uReconstructZonal', 'QTY_U_WIND_COMPONENT',
'uReconstructMeridional','QTY_V_WIND_COMPONENT',
'w', 'QTY_VERTICAL_VELOCITY',
'qv', 'QTY_VAPOR_MIXING_RATIO',
'qc', 'QTY_CLOUDWATER_MIXING_RATIO',
'qr', 'QTY_RAINWATER_MIXING_RATIO',
'qi', 'QTY_ICE_MIXING_RATIO',
'qs', 'QTY_SNOW_MIXING_RATIO',
'qg', 'QTY_GRAUPEL_MIXING_RATIO'
'surface_pressure', 'QTY_SURFACE_PRESSURE'

/

The variables are simply read from the MPAS analysis file and stored in the DART state vector such that all
quantities for one variable are stored contiguously. Within each variable; they are stored vertically-contiguous for
each horizontal location. From a storage standpoint, this would be equivalent to a Fortran variable dimensioned
x(nVertical,nHorizontal,nVariables). The fastest-varying dimension is vertical, then horizontal, then variable . . . nat-
urally, the DART state vector is 1D. Each variable is also stored this way in the MPAS analysis file.

6.125.4 Other modules used

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod
obs_kind_mod
mpi_utilities_mod
random_seq_mod

Warning: DAReS staff began creating the MPAS_OCN interface to DART in preparation for the model’s
inclusion as the ocean component of the Community Earth System Model (CESM). The plans for including
MPAS_OCN in CESM were abandoned and the Modular Ocean Model version 6 (MOM6) was included instead.
Thus, the documentation on this page after this point describes an incomplete interface. Please contact DAReS
staff by emailing dart@ucar.edu if you want to use DART with MPAS_OCN.

378 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

6.125.5 Public interfaces

Only a select number of interfaces used are discussed here. Each module has its own discussion of their routines.

Required interface routines

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

6.125. MPAS OCN 379

DART, Release 9.10.3

Unique interface routines

use model_mod, only : get_gridsize
restart_file_to_sv

sv_to_restart_file

get_gitm_restart_filename

get_base_time

get_state_time

use location_mod, only : get_close_o bs

A note about documentation style. Optional arguments are enclosed in brackets [like this].

Interface routine descriptions

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector. Required.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

adv_1step is not used for the gitm model. Advancing the model is done through the advance_model script.
This is a NULL_INTERFACE, provided only for compatibility with the DART requirements.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

380 Chapter 6. References

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

get_state_meta_data returns metadata about a given element of the DART representation of the model
state vector. Since the DART model state vector is a 1D array and the native model grid is multidimensional,
get_state_meta_data returns information about the native model state vector representation. Things like the
location, or the type of the variable (for instance: temperature, u wind component, . . .). The integer values used to
indicate different variable types in var_type are themselves defined as public interfaces to model_mod if required.

index_inIndex of state vector element about which information is requested.
locationReturns the 3D location of the indexed state variable. The location_ type comes from DART/

assimilation_code/location/threed_sphere/location_mod.f90. Note that the lat/lon
are specified in degrees by the user but are converted to radians internally.

var_typeReturns the type of the indexed state variable as an optional argument. The type is one of the list of supported
observation types, found in the block of code starting ! Integer definitions for DART TYPES
in DART/assimilation_code/modules/observations/obs_kind_mod.f90

The list of supported variables in DART/assimilation_code/modules/observations/
obs_kind_mod.f90 is created by preprocess.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given a model state, model_interpolate returns the value of the desired observation type (which could be a
state variable) that would be observed at the desired location. The interpolation method is either completely specified
by the model, or uses some standard 2D or 3D scalar interpolation routines. Put another way,
model_interpolate will apply the forward operator H to the model state to create an observation at the desired
location.
If the interpolation is valid, istatus = 0. In the case where the observation operator is not defined at the given
location (e.g. the observation is below the lowest model level, above the top level, or ‘dry’), interp_val is returned as
0.0 and istatus = 1.

x A model state vector.
location Location to which to interpolate.
itype Integer indexing which type of observation is desired.
obs_val The interpolated value from the model.
istatus Integer flag indicating the success of the interpolation. success == 0, failure == anything else

6.125. MPAS OCN 381

DART, Release 9.10.3

var = get_model_time_step()

type(time_type) :: get_model_time_step

get_model_time_step returns the forecast length to be used as the “model base time step” in the filter. This
is the minimum amount of time the model can be advanced by filter. This is also the assimilation win-
dow. All observations within (+/-) one half of the forecast length are used for the assimilation. In the GITM
case, this is set from the namelist values for input.nml&model_nml:assimilation_period_days,
assimilation_period_seconds.

var Smallest time step of model.

call static_init_model()

static_init_model is called for runtime initialization of the model. The namelists are read to determine
runtime configuration of the model, the grid coordinates, etc. There are no input arguments and no return values. The
routine sets module-local private attributes that can then be queried by the public interface routines.
See the GITM documentation for all namelists in gitm_in . Be aware that DART reads the GITM &grid_nml
namelist to get the filenames for the horizontal and vertical grid information as well as the topography information.
The namelists (all mandatory) are:
input.nml&model_mod_nml,
gitm_in&time_manager_nml,
gitm_in&io_nml,
gitm_in&init_ts_nml,
gitm_in&restart_nml,
gitm_in&domain_nml, and
gitm_in&grid_nml.

call end_model()

end_model is used to clean up storage for the model, etc. when the model is no longer needed. There are no
arguments and no return values. The grid variables are deallocated.

call init_time(time)

type(time_type), intent(out) :: time

init_time returns the time at which the model will start if no input initial conditions are to be used. This is
frequently used to spin-up models from rest, but is not meaningfully supported for the GITM model. The only time

382 Chapter 6. References

DART, Release 9.10.3

this routine would get called is if the input.nml&perfect_model_obs_nml:start_from_restart is
.false., which is not supported in the GITM model.

time the starting time for the model if no initial conditions are to be supplied. This is hardwired to 0.0

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

init_conditions returns default initial conditions for model; generally used for spinning up initial model states.
For the GITM model it is just a stub because the initial state is always provided by the input files.

x Initial conditions for state vector. This is hardwired to 0.0

ierr = nc_write_model_atts(ncFileID)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

nc_write_model_atts writes model-specific attributes to an opened netCDF file: In the GITM case, this in-
cludes information like the coordinate variables (the grid arrays: ULON, ULAT, TLON, TLAT, ZG, ZC, KMT,
KMU), information from some of the namelists, and either the 1D state vector or the prognostic variables
(SALT,TEMP,UVEL,VVEL,PSURF). All the required information (except for the netCDF file identifier) is obtained
from the scope of the model_mod module. Both the input.nml and gitm_in files are preserved in the netCDF
file as variables inputnml and gitm_in, respectively.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

nc_write_model_atts is responsible for the model-specific attributes in the following DART-output netCDF
files: true_state.nc, preassim.nc, and analysis.nc.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex
integer :: ierr

6.125. MPAS OCN 383

DART, Release 9.10.3

nc_write_model_vars writes a copy of the state variables to a NetCDF file. Multiple copies of the state
for a given time are supported, allowing, for instance, a single file to include multiple ensemble estimates of
the state. Whether the state vector is parsed into prognostic variables (SALT, TEMP, UVEL, VVEL, PSURF) or
simply written as a 1D array is controlled by input.nml&model_mod_nml:output_state_vector. If
output_state_vector = .true. the state vector is written as a 1D array (the simplest case, but hard to
explore with the diagnostics). If output_state_vector = .false. the state vector is parsed into prognostic
variables before being written.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, pert_model_state produces a perturbed model state. This is used to generate ensemble
initial conditions perturbed around some control trajectory state when one is preparing to spin-up ensembles. Since
the DART state vector for the GITM model contains both ‘wet’ and ‘dry’ cells, it is imperative to provide an interface
to perturb just the wet cells (interf_provided == .true.).
The magnitude of the perturbation is wholly determined by
input.nml&model_mod_nml:model_perturbation_amplitude and utterly, completely fails.
A more robust perturbation mechanism is needed. Until then, avoid using this routine by using your own ensemble of
initial conditions. This is determined by setting input.nml&filter_nml:start_from_restart =
.false.

state State vector to be perturbed.
pert_state The perturbed state vector.
interf_providedBecause of the ‘wet/dry’ issue discussed above, this is always .true., indicating a model-

specific perturbation is available.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

Pass-through to the 3-D sphere locations module. See get_close_maxdist_init() for the documentation of this subrou-
tine.

384 Chapter 6. References

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_maxdist_init

DART, Release 9.10.3

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3-D sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, & num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), optional, dimension(:), intent(out) :: dist

Given a DART location (referred to as “base”) and a set of locations, and a definition of ‘close’ - return a subset of
locations that are ‘close’, as well as their distances to the DART location and their indices. This routine intentionally
masks a routine of the same name in location_mod because we want to be able to discriminate against selecting
‘dry land’ locations.
Given a single location and a list of other locations, returns the indices of all the locations close to the single one
along with the number of these and the distances for the close ones. The list of locations passed in via the obs
argument must be identical to the list of obs passed into the most recent call to get_close_obs_init(). If the
list of locations of interest changes, get_close_obs_destroy() must be called and then the two initialization
routines must be called before using get_close_obs() again.
For vertical distance computations, the general philosophy is to convert all vertical coordinates to a common
coordinate. This coordinate type is defined in the namelist with the variable “vert_localization_coord”.

gc Structure to allow efficient identification of locations ‘close’ to a given location.
base_obs_loc Single given location.
base_obs_kind Kind of the single location.
obs List of candidate locations.
obs_kind Kind associated with candidate locations.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

6.125. MPAS OCN 385

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs_init

DART, Release 9.10.3

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

ens_mean_for_model normally saves a copy of the ensemble mean to module-local storage. This is a
NULL_INTERFACE for the GITM model. At present there is no application which requires module-local storage
of the ensemble mean. No storage is allocated.

ens_mean State vector containing the ensemble mean.

Unique interface routine descriptions

call get_gridsize(num_x, num_y, num_z)

integer, intent(out) :: num_x, num_y, num_z

get_gridsize returns the dimensions of the compute domain. The horizontal gridsize is determined from
gitm_restart.nc.

num_x The number of longitudinal gridpoints.
num_y The number of latitudinal gridpoints.
num_z The number of vertical gridpoints.

call restart_file_to_sv(filename, state_vector, model_time)

character(len=*), intent(in) :: filename
real(r8), dimension(:), intent(inout) :: state_vector
type(time_type), intent(out) :: model_time

restart_file_to_sv Reads a GITM netCDF format restart file and packs the desired variables into a DART
state vector. The desired variables are specified in the gitm_vars_nml namelist.

filename The name of the netCDF format GITM restart file.
state_vector the 1D array containing the concatenated GITM variables.
model_time the time of the model state. The last time in the netCDF restart file.

call sv_to_restart_file(state_vector, filename, statedate)

386 Chapter 6. References

DART, Release 9.10.3

real(r8), dimension(:), intent(in) :: state_vector
character(len=*), intent(in) :: filename
type(time_type), intent(in) :: statedate

sv_to_restart_file updates the variables in the GITM restart file with values from the DART vector
state_vector. The last time in the file must match the statedate.

filename the netCDF-format GITM restart file to be updated.
state_vector the 1D array containing the DART state vector.
statedate the ‘valid_time’ of the DART state vector.

call get_gitm_restart_filename(filename)

character(len=*), intent(out) :: filename

get_gitm_restart_filename returns the name of the gitm restart file - the filename itself is in private module
storage.

filename The name of the GITM restart file.

time = get_base_time(filehandle)

integer, intent(in) :: filehandle -OR-
character(len=*), intent(in) :: filehandle
type(time_type), intent(out) :: time

get_base_time extracts the start time of the experiment as contained in the netCDF restart file. The file may be
specified by either a character string or the integer netCDF fid.

time = get_state_time(filehandle)

integer, intent(in) :: filehandle -OR-
character(len=*), intent(in) :: filehandle
type(time_type), intent(out) :: time

get_state_time extracts the time of the model state as contained in the netCDF restart file. In the case of multiple
times in the file, the last time is the time returned. The file may be specified by either a character string or the integer
netCDF fid.

6.125. MPAS OCN 387

DART, Release 9.10.3

6.125.6 Files

filename purpose
input.nml to read the model_mod namelist
gitm_vars.nml to read the gitm_vars_nml namelist
gitm_restart.nc provides grid dimensions, model state, and ‘valid_time’ of the model state
true_state.nc the time-history of the “true” model state from an OSSE
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

6.125.7 References

• none

6.125.8 Private components

N/A

6.126 PROGRAM model_to_dart for MPAS OCN

Attention: mpas_ocn was being developed with versions of DART before Manhattan (9.x.x) and has yet to be
updated. If you are interested in using mpas_ocn with more recent versions of DART, contact DAReS staff to
assess the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.126.1 Overview

model_to_dart is the program that reads an MPAS OCN analysis file (nominally named mpas_restart.nc)
and creates a DART state vector file (e.g. perfect_ics, filter_ics, ...). The MPAS analysis files have
a Time UNLIMITED Dimension, which indicates there may (at some point) be more than one timestep in the file.
The DART routines are currently designed to use the LAST timestep. If the Time dimension of length 3, we use the
third timestep. A warning message is issued and indicates exactly the time being used.
input.nml&mpas_vars_nml defines the list of MPAS variables used to build the DART state vector. This
namelist is more fully described in the MPAS OCN documentation. For example:

&mpas_vars_nml
mpas_state_variables = 'temperature', 'QTY_TEMPERATURE',

'salinity', 'QTY_SALINITY',
'rho', 'QTY_DENSITY',
'u', 'QTY_EDGE_NORMAL_SPEED',
'h', 'QTY_SEA_SURFACE_HEIGHT'

(continues on next page)

388 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

'tracer1', 'QTY_TRACER_CONCENTRATION'
/

Conditions required for successful execution of model_to_dart are:

• a valid input.nml namelist file for DART which contains

• a MPAS OCN analysis file (nominally named mpas_analysis.nc).

Since this program is called repeatedly for every ensemble member, we have found it convenient to link the MPAS
OCN analysis files to a static input filename (e.g. mpas_analysis.nc). The default DART filename is dart_ics
- this may be moved or linked as necessary.

6.126.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_to_dart_nml
model_to_dart_output_file = 'dart_ics'
/

&model_nml
model_analysis_filename = 'mpas_analysis.nc'
/

(partial namelist)

&mpas_vars_nml
mpas_state_variables = '',
mpas_state_bounds = '',
/

The model_to_dart namelist includes:

Item Type Description
model_to_dart_output_filecharac-

ter(len=128)
The name of the DART file containing the model state derived from the
MPAS analysis file.

6.126. PROGRAM model_to_dart for MPAS OCN 389

DART, Release 9.10.3

Two more namelists need to be mentioned. The model_nml namelist specifies the MPAS analysis file to be used as the
source. The mpas_vars_nml namelist specifies the MPAS variables that will comprise the DART state vector.

For example:

&mpas_vars_nml
mpas_state_variables = 'temperature', 'QTY_TEMPERATURE',

'salinity', 'QTY_SALINITY',
'rho', 'QTY_DENSITY',
'u', 'QTY_EDGE_NORMAL_SPEED',
'h', 'QTY_SEA_SURFACE_HEIGHT'
'tracer1', 'QTY_TRACER_CONCENTRATION'

/

6.126.3 Modules used

assim_model_mod.f90
types_mod.f90
location_mod.f90
model_to_dart.f90
model_mod.f90
null_mpi_utilities_mod.f90
obs_kind_mod.f90
random_seq_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.126.4 Files read

• MPAS analysis file; mpas_analysis.nc

• DART namelist file; input.nml

6.126.5 Files written

• DART initial conditions/restart file; e.g. dart_ics

390 Chapter 6. References

readme.html#Namelist
readme.html#mpas_vars_nml

DART, Release 9.10.3

6.126.6 References

none

6.127 NCOMMAS

Attention: NCOMMAS works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using NCOMMAS with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.127.1 Overview

NCOMMAS 7_1 may now be used with the Data Assimilation Research Testbed (DART).
Since NCOMMAS uses netCDF files or their restart mechanisms, it was possible to make a namelist-controlled set of
variables to be included in the DART state vector. Each variable must also correspond to a DART “KIND”; required
for the DART interpolate routines. For example,

&ncommas_vars_nml
ncommas_state_variables = 'U', 'QTY_U_WIND_COMPONENT',

'V', 'QTY_V_WIND_COMPONENT',
'W', 'QTY_VERTICAL_VELOCITY',
'TH', 'QTY_POTENTIAL_TEMPERATURE',
'DBZ', 'QTY_RADAR_REFLECTIVITY',
'WZ', 'QTY_VERTICAL_VORTICITY',
'PI', 'QTY_EXNER_FUNCTION',
'QV', 'QTY_VAPOR_MIXING_RATIO',
'QC', 'QTY_CLOUDWATER_MIXING_RATIO',
'QR', 'QTY_RAINWATER_MIXING_RATIO',
'QI', 'QTY_ICE_MIXING_RATIO',
'QS', 'QTY_SNOW_MIXING_RATIO',
'QH', 'QTY_GRAUPEL_MIXING_RATIO' /

These variables are then adjusted to be consistent with observations and stuffed back into the same netCDF restart
files. Since DART is an ensemble algorithm, there are multiple restart files for a single restart time: one for each
ensemble member. Creating the initial ensemble of states is an area of active research.
DART reads the grid information for NCOMMAS from the restart file specified in the DART
input.nml&model_nml:ncommas_restart_filename and checks for the existence and shape of the
desired state variables. This not only determines the size of the DART state vector, but DART also inherits much of
the metadata for the variables from the NCOMMAS restart file. When DART is responsible for starting/stopping
NCOMMAS, the information is conveyed through the command line arguments to NCOMMAS.

6.127. NCOMMAS 391

DART, Release 9.10.3

NCOMMAS 7_1

was compiled with the Intel 10.1 compilers and run on a linux cluster running SLES10. Initially, DART simply runs
‘end-to-end’ at every assimilation time, while the NCOMMAS ensemble mechanism is responsible for slicing and
dicing the observation sequences and running correct_ensemble at the desired times. This is a complete
role-reversal from the normal DART operation.
The DART components were built with the following settings:

MPIFC = mpif90
MPILD = mpif90
FC = ifort
LD = ifort
INCS = -I/coral/local/netcdf-3.6.3_intel-10.1-64/include
LIBS = -L/coral/local/netcdf-3.6.3_intel-10.1-64/lib -lnetcdf
FFLAGS = -pc64 -fpe0 -mp -O0 -vec-report0 $(INCS)
LDFLAGS = $(FFLAGS) $(LIBS)

Converting between DART files and NCOMMAS restart files

is blissfully straighforward. Given the namelist mechanism for determining the state variables and the fact that the
NCOMMAS netCDF file has all the grid and time information in it - everything that is needed can be readily
determined.
There are two programs - both require the list of NCOMMAS variables to use in the DART state vector: the
ncommas_vars_nml namelist in the ncommas_vars.nml file.

PRO-
GRAM
ncom-
mas_to_dart

converts the ncommas restart file ncommas_restart.nc into a DART-compatible file normally called
dart_ics . We usually wind up linking the restart file to a static name that is used by DART.

PRO-
GRAM
dart_to_ncommas

inserts the DART output into an existing ncommas restart netCDF file by overwriting the variables in the
ncommas restart netCDF file. There are two different types of DART output files, so there is a namelist
option to specify if the DART file has two time records or just one (if there are two, the first one is the
‘advance_to’ time, followed by the ‘valid_time’ of the ensuing state). dart_to_ncommas determines the
ncommas restart file name from the input.nml model_nml:ncommas_restart_filename. If the
DART file contains an ‘advance_to’ time, dart_to_ncommas creates a new &time_manager_nml
for ncommas in a file called ncommas_in.DART which can be used to control the length of the ncommas
integration.

Generating the initial ensemble

Creating the initial ensemble is an area of active research. The ncommas model cannot take one single model state
and generate its own ensemble (typically done with pert_model_state).
The ensemble has to come from ‘somewhere else’. At present, it may be sufficient to use a climatological ensemble;
e.g., using the ncommas restarts for ‘1 January 00Z’ from 50 consecutive years from a hindcast experiment.
There is not yet a shell_scripts/MakeInitialEnsemble.csh script to demonstrate how to convert a set
of ncommas netCDF restart files into a set of DART files that have a consistent timestamp. If you simply convert each
ncommas file to a DART file using ncommas_to_dart, each DART file will have a ‘valid time’ that reflects the
ncommas time of that state - instead of an ensemble of states reflecting one single time. The restart_file_tool can be

392 Chapter 6. References

DART, Release 9.10.3

used to overwrite the timestep in the header of each DART initial conditions file. The namelist for this program must
look something like:

&restart_file_tool_nml
input_file_name = "dart_input",
output_file_name = "dart_output",
ens_size = 1,
single_restart_file_in = .true.,
single_restart_file_out = .true.,
write_binary_restart_files = .true.,
overwrite_data_time = .true.,
new_data_days = 145731,
new_data_secs = 0,
input_is_model_advance_file = .false.,
output_is_model_advance_file = .false.,
overwrite_advance_time = .false.,
new_advance_days = -1,
new_advance_secs = -1,
gregorian_cal = .true. /

The time of days = 145731 seconds = 0 relates to 00Z 1 Jan 2000 in the DART world.

6.127.2 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all
our namelist input. Consider yourself forewarned that character strings that contain a ‘/’ must be enclosed in quotes to
prevent them from prematurely terminating the namelist.

namelist /model_nml/ ncommas_restart_filename, &
assimilation_period_days, assimilation_period_seconds, &
model_perturbation_amplitude, output_state_vector, calendar, debug

This namelist is read in a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the model dynamical timestep.

6.127. NCOMMAS 393

DART, Release 9.10.3

Con-
tents

Type Description

out-
put_state_vector

logical
[default:
.true.]

The switch to determine the form of the state vector in the output netCDF files. If .
true. the state vector will be output exactly as DART uses it . . . one long array. If
.false., the state vector is parsed into prognostic variables and output that way –
much easier to use with ‘ncview’, for example.

assimila-
tion_period_days

integer [de-
fault: 1]

The number of days to advance the model for each assimilation.

assimila-
tion_period_seconds

integer [de-
fault: 0]

In addition to assimilation_period_days, the number of seconds to advance
the model for each assimilation.

model_perturbation_amplitudereal(r8)
[default:
0.2]

Reserved for future use.

calendar charac-
ter(len=32)
[default:
‘Grego-
rian’]

Character string specifying the calendar being used by NCOMMAS.

debug integer [de-
fault: 0]

The switch to specify the run-time verbosity. 0 is as quiet as it gets. > 1 provides more
run-time messages. > 5 provides ALL run-time messages. All values above 0 will also
write a netCDF file of the grid information and perform a grid interpolation test.

Example model namelist

&model_nml
ncommas_restart_filename = 'ncommas_restart.nc';
assimilation_period_days = 1,
assimilation_period_seconds = 0,
model_perturbation_amplitude = 0.2,
output_state_vector = .true.,
calendar = 'Gregorian',
debug = 0
/

namelist /ncommas_vars_nml/ ncommas_state_variables

This namelist is read in a file called ncommas_vars.nml and contains the list of NCOMMAS variables that make
up the DART state vector.

Contents Type Description
ncom-
mas_state_variables

charac-
ter(len=NF90_MAX_NAME)::
dimension(160) [default: see
example]

The table that relates the NCOMMAS variables to use to build
the DART state vector, and the corresponding DART kinds for
those variables.

394 Chapter 6. References

DART, Release 9.10.3

Ncommas_vars namelist

&ncommas_vars_nml
ncommas_state_variables = 'U', 'QTY_U_WIND_COMPONENT',

'V', 'QTY_V_WIND_COMPONENT',
'W', 'QTY_VERTICAL_VELOCITY',
'TH', 'QTY_POTENTIAL_TEMPERATURE',
'DBZ', 'QTY_RADAR_REFLECTIVITY',
'WZ', 'QTY_VERTICAL_VORTICITY',
'PI', 'QTY_EXNER_FUNCTION',
'QV', 'QTY_VAPOR_MIXING_RATIO',
'QC', 'QTY_CLOUDWATER_MIXING_RATIO',
'QR', 'QTY_RAINWATER_MIXING_RATIO',
'QI', 'QTY_ICE_MIXING_RATIO',
'QS', 'QTY_SNOW_MIXING_RATIO',
'QH', 'QTY_GRAUPEL_MIXING_RATIO'

/

6.127.3 Other modules used

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod
obs_kind_mod
mpi_utilities_mod
random_seq_mod

6.127.4 Public interfaces

Only a select number of interfaces used are discussed here. Each module has its own discussion of their routines.

6.127. NCOMMAS 395

DART, Release 9.10.3

Required interface routines

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

Unique interface routines

use model_mod, only : get_gridsize
restart_file_to_sv

sv_to_restart_file

get_ncommas_restart_filename

get_base_time

get_state_time

use location_mod, only : get_close_o bs

396 Chapter 6. References

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

A note about documentation style. Optional arguments are enclosed in brackets [like this].

Required interface routines

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector. Required.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

adv_1step is not used for the ncommas model. Advancing the model is done through the advance_model script.
This is a NULL_INTERFACE, provided only for compatibility with the DART requirements.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

get_state_meta_data returns metadata about a given element of the DART representation of the model
state vector. Since the DART model state vector is a 1D array and the native model grid is multidimensional,
get_state_meta_data returns information about the native model state vector representation. Things like the
location, or the type of the variable (for instance: temperature, u wind component, . . .). The integer values used to
indicate different variable types in var_type are themselves defined as public interfaces to model_mod if required.

index_inIndex of state vector element about which information is requested.
locationReturns the 3D location of the indexed state variable. The location_ type comes from DART/

assimilation_code/location/threed_sphere/location_mod.f90. Note that the lat/lon
are specified in degrees by the user but are converted to radians internally.

var_typeReturns the type of the indexed state variable as an optional argument. The type is one of the list of supported
observation types, found in the block of code starting ! Integer definitions for DART TYPES
in DART/assimilation_code/modules/observations/obs_kind_mod.f90

6.127. NCOMMAS 397

DART, Release 9.10.3

The list of supported variables in DART/assimilation_code/modules/observations/
obs_kind_mod.f90 is created by preprocess.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given a model state, model_interpolate returns the value of the desired observation type (which could be a
state variable) that would be observed at the desired location. The interpolation method is either completely specified
by the model, or uses some standard 2D or 3D scalar interpolation routines. Put another way,
model_interpolate will apply the forward operator H to the model state to create an observation at the desired
location.
If the interpolation is valid, istatus = 0. In the case where the observation operator is not defined at the given
location (e.g. the observation is below the lowest model level, above the top level, or ‘dry’), interp_val is returned as
0.0 and istatus = 1.

x A model state vector.
location Location to which to interpolate.
itype Integer indexing which type of observation is desired.
obs_val The interpolated value from the model.
istatus Integer flag indicating the success of the interpolation. success == 0, failure == anything else

var = get_model_time_step()

type(time_type) :: get_model_time_step

get_model_time_step returns the forecast length to be used as the “model base time step” in the filter. This
is the minimum amount of time the model can be advanced by filter. This is also the assimilation win-
dow. All observations within (+/-) one half of the forecast length are used for the assimilation. In the ncommas
case, this is set from the namelist values for input.nml&model_nml:assimilation_period_days,
assimilation_period_seconds.

var Smallest time step of model.

call static_init_model()

398 Chapter 6. References

DART, Release 9.10.3

static_init_model is called for runtime initialization of the model. The namelists are read to determine
runtime configuration of the model, the grid coordinates, etc. There are no input arguments and no return values. The
routine sets module-local private attributes that can then be queried by the public interface routines.
See the ncommas documentation for all namelists in ncommas_in . Be aware that DART reads the ncommas
&grid_nml namelist to get the filenames for the horizontal and vertical grid information as well as the topography
information.
The namelists (all mandatory) are:
input.nml&model_mod_nml,
ncommas_in&time_manager_nml,
ncommas_in&io_nml,
ncommas_in&init_ts_nml,
ncommas_in&restart_nml,
ncommas_in&domain_nml, and
ncommas_in&grid_nml.

call end_model()

end_model is used to clean up storage for the model, etc. when the model is no longer needed. There are no
arguments and no return values. The grid variables are deallocated.

call init_time(time)

type(time_type), intent(out) :: time

init_time returns the time at which the model will start if no input initial conditions are to be used. This is
frequently used to spin-up models from rest, but is not meaningfully supported for the ncommas model. The only
time this routine would get called is if the input.nml&perfect_model_obs_nml:start_from_restart
is .false., which is not supported in the ncommas model.

time the starting time for the model if no initial conditions are to be supplied. This is hardwired to 0.0

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

init_conditions returns default initial conditions for model; generally used for spinning up initial model states.
For the ncommas model it is just a stub because the initial state is always provided by the input files.

x Initial conditions for state vector. This is hardwired to 0.0

6.127. NCOMMAS 399

DART, Release 9.10.3

ierr = nc_write_model_atts(ncFileID)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

nc_write_model_atts writes model-specific attributes to an opened netCDF file: In the ncommas case,
this includes information like the coordinate variables (the grid arrays: ULON, ULAT, TLON, TLAT, ZG, ZC,
KMT, KMU), information from some of the namelists, and either the 1D state vector or the prognostic variables
(SALT,TEMP,UVEL,VVEL,PSURF). All the required information (except for the netCDF file identifier) is obtained
from the scope of the model_mod module. Both the input.nml and ncommas_in files are preserved in the
netCDF file as variables inputnml and ncommas_in, respectively.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

nc_write_model_atts is responsible for the model-specific attributes in the following DART-output netCDF
files: true_state.nc, preassim.nc, and analysis.nc.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex
integer :: ierr

nc_write_model_vars writes a copy of the state variables to a NetCDF file. Multiple copies of the state
for a given time are supported, allowing, for instance, a single file to include multiple ensemble estimates of
the state. Whether the state vector is parsed into prognostic variables (SALT, TEMP, UVEL, VVEL, PSURF) or
simply written as a 1D array is controlled by input.nml&model_mod_nml:output_state_vector. If
output_state_vector = .true. the state vector is written as a 1D array (the simplest case, but hard to
explore with the diagnostics). If output_state_vector = .false. the state vector is parsed into prognostic
variables before being written.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

400 Chapter 6. References

DART, Release 9.10.3

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state, pert_model_state produces a perturbed model state. This is used to generate ensemble
initial conditions perturbed around some control trajectory state when one is preparing to spin-up ensembles. Since
the DART state vector for the ncommas model contains both ‘wet’ and ‘dry’ cells, it is imperative to provide an
interface to perturb just the wet cells (interf_provided == .true.).
The magnitude of the perturbation is wholly determined by
input.nml&model_mod_nml:model_perturbation_amplitude and utterly, completely fails.
A more robust perturbation mechanism is needed. Until then, avoid using this routine by using your own ensemble of
initial conditions. This is determined by setting input.nml&filter_nml:start_from_restart =
.false.

state State vector to be perturbed.
pert_state The perturbed state vector.
interf_providedBecause of the ‘wet/dry’ issue discussed above, this is always .true., indicating a model-

specific perturbation is available.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

Pass-through to the 3-D sphere locations module. See get_close_maxdist_init() for the documentation of this subrou-
tine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3-D sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, & num_close, close_ind [, dist])

6.127. NCOMMAS 401

../../assimilation_code/location/threed_sphere/location_mod.html#get_close_maxdist_init
../../assimilation_code/location/threed_sphere/location_mod.html#get_close_obs_init

DART, Release 9.10.3

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), optional, dimension(:), intent(out) :: dist

Given a DART location (referred to as “base”) and a set of locations, and a definition of ‘close’ - return a subset of
locations that are ‘close’, as well as their distances to the DART location and their indices. This routine intentionally
masks a routine of the same name in location_mod because we want to be able to discriminate against selecting
‘dry land’ locations.
Given a single location and a list of other locations, returns the indices of all the locations close to the single one
along with the number of these and the distances for the close ones. The list of locations passed in via the obs
argument must be identical to the list of obs passed into the most recent call to get_close_obs_init(). If the
list of locations of interest changes, get_close_obs_destroy() must be called and then the two initialization
routines must be called before using get_close_obs() again.
For vertical distance computations, the general philosophy is to convert all vertical coordinates to a common
coordinate. This coordinate type is defined in the namelist with the variable “vert_localization_coord”.

gc Structure to allow efficient identification of locations ‘close’ to a given location.
base_obs_loc Single given location.
base_obs_kind Kind of the single location.
obs List of candidate locations.
obs_kind Kind associated with candidate locations.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

ens_mean_for_model normally saves a copy of the ensemble mean to module-local storage. This is a
NULL_INTERFACE for the ncommas model. At present there is no application which requires module-local storage
of the ensemble mean. No storage is allocated.

ens_mean State vector containing the ensemble mean.

402 Chapter 6. References

DART, Release 9.10.3

Unique interface routines

call get_gridsize(num_x, num_y, num_z)

integer, intent(out) :: num_x, num_y, num_z

get_gridsize returns the dimensions of the compute domain. The horizontal gridsize is determined from
ncommas_restart.nc.

num_x The number of longitudinal gridpoints.
num_y The number of latitudinal gridpoints.
num_z The number of vertical gridpoints.

call restart_file_to_sv(filename, state_vector, model_time)

character(len=*), intent(in) :: filename
real(r8), dimension(:), intent(inout) :: state_vector
type(time_type), intent(out) :: model_time

restart_file_to_sv Reads a NCOMMAS netCDF format restart file and packs the desired variables into a
DART state vector. The desired variables are specified in the ncommas_vars_nml namelist.

filename The name of the netCDF format NCOMMAS restart file.
state_vector the 1D array containing the concatenated NCOMMAS variables.
model_time the time of the model state. The last time in the netCDF restart file.

call sv_to_restart_file(state_vector, filename, statedate)

real(r8), dimension(:), intent(in) :: state_vector
character(len=*), intent(in) :: filename
type(time_type), intent(in) :: statedate

sv_to_restart_file updates the variables in the NCOMMAS restart file with values from the DART vector
state_vector. The last time in the file must match the statedate.

filename the netCDF-format ncommas restart file to be updated.
state_vector the 1D array containing the DART state vector.
statedate the ‘valid_time’ of the DART state vector.

6.127. NCOMMAS 403

DART, Release 9.10.3

call get_ncommas_restart_filename(filename)

character(len=*), intent(out) :: filename

get_ncommas_restart_filename returns the name of the NCOMMAS restart file - the filename itself is in
private module storage.

filename The name of the NCOMMAS restart file.

time = get_base_time(filehandle)

integer, intent(in) :: filehandle -OR-
character(len=*), intent(in) :: filehandle
type(time_type), intent(out) :: time

get_base_time extracts the start time of the experiment as contained in the netCDF restart file. The file may be
specified by either a character string or the integer netCDF fid.

time = get_state_time(filehandle)

integer, intent(in) :: filehandle -OR-
character(len=*), intent(in) :: filehandle
type(time_type), intent(out) :: time

get_state_time extracts the time of the model state as contained in the netCDF restart file. In the case of multiple
times in the file, the last time is the time returned. The file may be specified by either a character string or the integer
netCDF fid.

6.127.5 Files

filename purpose
input.nml to read the model_mod namelist
ncommas_vars.nml to read the ncommas_vars_nml namelist
ncommas_restart.nc provides grid dimensions, model state, and ‘valid_time’ of the model state
true_state.nc the time-history of the “true” model state from an OSSE
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

404 Chapter 6. References

DART, Release 9.10.3

6.127.6 References

• none

6.127.7 Private components

N/A

6.128 NOAH, NOAH-MP

6.128.1 Overview

The Manhattan-compliant version of the NOAH (technically NOAH-MP) supports NOAH-MP V3.6 and was largely
updated in support of the data assimilation efforts with wrf_hydro. Experiments to perform data assimilation strictly
with the NOAH-MP model have been run at the University of Texas at Austin by Jingjing Liang. We know other
people are using DART and NOAH-MP. however, we have not had the chance to update the documentation for the
Manhattan release. Consequently, we readily welcome any advice on how to improve the documentation and heartily
encourage participation.

The NOAH Land Surface Model and Data Assimilation Research Testbed (DART) may now be used for assimila-
tion experiments. The Classic or Lanai version should be considered an ‘alpha’ release – the code has only been tested
for a single column configuration of NOAH.

Any of the variables in the NOAH restart file are available to be adjusted by the assimilation. The list of variables
is set though a simple namelist interface. Since we are testing in a column configuration, there is no practical reason
not to include all the variables necessary for a bit-for-bit restart: SOIL_T, SOIL_M, SOIL_W, SKINTEMP, SNODEP,
WEASD, CANWAT, and QFX. These variables are then adjusted to be consistent with real observations and stuffed
back into the same netCDF restart files. Since DART is an ensemble algorithm there are multiple restart files for a
single restart time; one for each ensemble member. Creating the initial ensemble of land surface states is an area of
active research. At present, it may be sufficient to use a climatological ensemble; e.g., using the restarts for ‘1 January
00Z’ from 50 consecutive years.

There is reason to believe that the ensemble system will benefit from having unique atmospheric forcing for each
ensemble member. A reasonable ensemble size is 50 or 80 or so.

DART reads the NOAH namelist &NOAHLSM_OFFLINE from a file called namelist.hrldas for several pieces of
information. DART is responsible for starting/stopping NOAH; the restart information is conveyed through the NOAH
namelist. Unpleasant Reality #1 : managing the tremendous number of hourly forcing files for every ensemble
member is tedious. To facilitate matters, the DART/NOAH system uses a single netCDF file for each ensemble
member that contains ALL of the forcing for that ensemble member.

dart_to_noah.f90updates some or all of a NOAH restart file with the posterior DART state vector. There is the ability to
selectively avoid updating the NOAH variables. This allows one to include NOAH variables in the DART
state vector to aid in the application of observation operators, etc., without having to modify those variables
in the NOAH restart file. [dart_to_noah.html]

6.128. NOAH, NOAH-MP 405

http://www.ral.ucar.edu/research/land/technology/lsm.php
dart_to_noah.html
dart_to_noah.html

DART, Release 9.10.3

Running a “Perfect Model” experiment . . . OSSE

The example requires a basic knowledge of running NOAH. Four scripts are provided to demonstrate how to set up
and run a perfect model experiment for a single site - with one caveat. You must provide your own initial ensemble
for the experiment. The scripts are not intended to be black boxes. You are expected to read them and modify them to
your own purpose.

The scripts assume the directory containing the DART executables is ${DARTDIR}/work, and assume that the
directory containing the NOAH executables is ${NOAHDIR}/Run.

1. shell_scripts/setup_pmo.csh
This script stages the run of program per-
fect_model_obs. The directory where you run the
script is called CENTRALDIR and will be the working
directory for the experiment. The required input
observation sequence file must be created in the
normal DART way. This obs_seq.in file must
exist before running this script. All the necessary data
files and exectuables for a perfect model experiment
get copied to CENTRALDIR so that you may run
multiple experiments at the same time - in separate
CENTRALDIRs.

2. shell_scripts/run_pmo.csh
very simply - it advances NOAH and applies the obser-
vation operator to put the “perfect” observations in an
observation sequence file that can then be used for an
assimilation.

3. shell_scripts/setup_filter.csh
builds upon the work of setup_pmo.csh and stages
a PRE-EXISTING initial ensemble.

4. shell_scripts/run_filter.csh
Actually runs the filtering (assimilation) experiment.

Generating the initial ensemble

Creating the initial ensemble of soil moisture states is an area of active research. The ensemble must come from
‘somewhere else’. At present, it may be sufficient to use a climatological ensemble; e.g., using the NOAH restarts for
‘1 January 00Z’ from 50 consecutive years from a hindcast experiment. It may also be sufficient to take a single model
state, replicate it N times and force each of the N instances with different atmospheric conditions for ‘a long time’.

By The Way

Experience has shown that having a paired (unique) atmospheric forcing maintains the ensemble spread during an
assimilation better than simply forcing all the ensemble members with one single atmospheric state.

DART has routines to perturb a single NOAH state and generate its own ensemble (typically done with
pert_model_state), but this produces model states that are incompatible with NOAH. We are interested in adopt-
ing/adapting strategies to create sensible initial conditions for NOAH.

If you have an algorithm you believe will be useful, please contact us!

406 Chapter 6. References

DART, Release 9.10.3

6.128.2 Observations

Some novel observations come from the Cosmic-ray Soil Moisture Observing System: COSMOS and are processed
by DART routines in the $DARTROOT/observations/COSMOS directory.

DART has a very object-oriented approach to observation support. All observations that are intended to be supported
must be preprocessed (see $DARTROOT/preprocess/ into a single obs_def_mod.f90 and obs_kind_mod.
f90 in the standard DART way.

Exploring the Output

There are Matlab® scripts for exploring the performance of the assimilation in observation-space (after run-
ning obs_diag). See $DARTROOT/diagnostics/threed_sphere/obs_diag.html to explore the
obs_seq.final file) - use the scripts starting with plot_, i.e. $DARTROOT/diagnostics/matlab/plot_*.m*.
As always, there are some model-specific items Matlab® will need to know about in $DARTROOT/models/NOAH/
matlab.

The Prior_Diag.nc and Posterior_Diag.nc (and possibly True_State.nc) netCDF files have the model
prognostic variables before and after the assimilation. The ./matlab scripts for NOAH are under development.

It is also worthwhile to convert your obs_seq.final file to a netCDF format obs_sequence file with
obs_seq_to_netcdf. See $DARTROOT/obs_sequence/obs_seq_to_netcdf.html and use any of the
standard plots. Be aware that the COSMOS site-specific metadata will not get conveyed to the netCDF file.

6.128.3 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist. The standard values are shown below:

&model_nml
lsm_model_choice = 'noahMP_36'
domain_shapefiles = 'RESTART.2003051600_DOMAIN1_01'
assimilation_period_days = 0
assimilation_period_seconds = 3600
model_perturbation_amplitude = 0.2
perturb_distribution = 'gaussian'
debug = 0
polar = .false.
periodic_x = .false.
periodic_y = .false.
lsm_variables = 'SOIL_T', 'QTY_SOIL_TEMPERATURE', '0.0', 'NA', 'UPDATE',

'SMC', 'QTY_SOIL_MOISTURE', '0.0', '1.0', 'UPDATE',
'WA', 'QTY_AQUIFER_WATER', '0.0', 'NA', 'UPDATE',
'SNEQV', 'QTY_SNOW_WATER', '0.0', 'NA', 'UPDATE',
'FSNO', 'QTY_SNOWCOVER_FRAC', '0.0', '1.0', 'UPDATE'

/

This namelist is read from a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the NOAH model dynamical timestep.

6.128. NOAH, NOAH-MP 407

http://cosmos.hwr.arizona.edu/

DART, Release 9.10.3

Item Type Description
lsm_model_choicecharac-

ter(len=256)
The version of the NOAH namelist to read

do-
main_shapefiles

an ar-
ray of
charac-
ter(len=256)

The name of the NOAH RESTART files to use to specify the shape of the variables and
geographic metadata. One per domain.

as-
simila-
tion_period_days

integer The number of days to advance the model for each assimilation.

as-
simila-
tion_period_seconds

integer In addition to assimilation_period_days, the number of seconds to advance the
model for each assimilation.

model_perturbation_amplitudereal(r8) The amount of noise to add when trying to perturb a single state vector to create an ensem-
ble. Only used when input.nml is set with &filter_nml:start_from_restart
= .false.. See also Generating the initial ensemble. units: standard deviation of the
specified distribution the mean at the value of the state vector element.

per-
turb_distribution

charac-
ter(len=256)

The switch to determine the distribution of the perturbations used to create an initial en-
semble from a single model state. Valid values are : lognormal or gaussian

peri-
odic_x

logical Switch to determine if the configuration has periodicity in the X direction.

peri-
odic_y

logical Switch to determine if the configuration has periodicity in the Y direction.

lsm_variablescharac-
ter(len=32)::
dimen-
sion(5,40)

The list of variable names in the NOAH restart file to use to create the DART state vector
and their corresponding DART kind. [default: see example below]

The columns of lsm_variables needs some explanation. Starting with the column 5, UPDATE denotes whether
or not to replace the variable with the Posterior (i.e. assimilated) value. Columns 3 and 4 denote lower and upper
bounds that should be enforced when writing to the files used to restart the model. These limits are not enforced for
the DART diagnostic files. Column 2 specifies the relationship between the netCDF variable name for the model and
the corresponding DART QUANTITY.

The DART ‘QTY’s match what the model_mod knows how to interpolate, so you can’t just add a new quantity and
expect it to work. There is a complex interplay between obs_def_mod and preprocess, and model_mod that
defines what QUANTITIES are supported. There is only a single QUANTITY that works with each variable and the
example shows the current QUANTITYs. Support for these QUANTITYs was provided by running preprocess
with the following namelist settings:

&preprocess_nml
input_obs_kind_mod_file = '../../../assimilation_code/modules/observations/

→˓DEFAULT_obs_kind_mod.F90'
output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_

→˓kind_mod.f90'
input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT_obs_

→˓def_mod.F90'
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90

→˓'
input_files = '../../../observations/forward_operators/obs_def_land_

→˓mod.f90',
'../../../observations/forward_operators/obs_def_COSMOS_

→˓mod.f90',
'../../../observations/forward_operators/obs_def_GRACE_

→˓mod.f90' (continues on next page)

408 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

/

NOAHLSM_OFFLINE NAMELIST

namelist /NOAHLSM_OFFLINE/
hrldas_constants_file, &
indir, outdir, &
restart_filename_requested, &
khour, kday, &
forcing_timestep, &
noah_timestep, &
output_timestep, &
restart_frequency_hours, &
split_output_count, &
nsoil, &
zsoil

The remaining variables are not used by DART - but are used by NOAH. Since DART verifies namelist accuracy, any
namelist entry in NOAHLSM_OFFLINE that is not in the following list will cause a FATAL DART ERROR.

zlvl, zlvl_wind, iz0tlnd, sfcdif_option, update_snow_from_forcing,
start_year, start_month, start_day, start_hour, start_min,
external_fpar_filename_template, external_lai_filename_template,
subwindow_xstart, subwindow_xend, subwindow_ystart, subwindow_yend

This namelist is read from a file called namelist.hrldas. This namelist is the same one that is used by NOAH.
The values are explained in full in the NOAH documentation. Only the namelist variables of interest to DART are
discussed. All other namelist variables are ignored by DART - but mean something to NOAH.

Item Type Description
hrl-
das_constants_file

charac-
ter(len=256)

The name of the netCDF file containing the grid information. [default: wrfinput]

indir charac-
ter(len=256)

The DART/NOAH environment requires all the input files to be in the current working
directory. [default: '.']

outdir charac-
ter(len=256)

The DART/NOAH environment requires all output files are in the current working
directory. [default: '.']

restart_filename_requestedcharac-
ter(len=256)

The name of the file containing the grid information. The default value is implicitly
used by the scripting examples. Change at your own risk. [default: 'restart.nc']

khour integer The duration (in hours) of the model integration. [default: 1]
kday integer The duration (in days) of the model integration. [default: 0]
forc-
ing_timestep

integer The timestep (in seconds) of the atmospheric forcing. [default: 3600]

noah_timestep integer The internal (dynamical) timestep (in seconds). [default: 3600]
out-
put_timestep

integer The output interval (in seconds). [default: 3600]

restart_frequency_hoursinteger How often the NOAH restart files get written. [default: 1]
split_output_countinteger should be 1 or bad things happen. [default: 1]
nsoil integer The number of soil interfaces. As I understand it, NOAH requires this to be 4. [de-

fault: 4]
zsoil inte-

ger(NSOLDX)
The depth (in meters) of the soil interfaces. [default: -0.1, -0.4, -1.0, -2.
04]

6.128. NOAH, NOAH-MP 409

DART, Release 9.10.3

Example

Note: the FORCING_FILE_DIRECTORY line is not required by NOAH but IS required by DART - specifically in
the advance_model.csh script.

THIS IS FOR DART
FORCING_FILE_DIRECTORY = "/path/to/your/forcing/files"

&NOAHLSM_OFFLINE
HRLDAS_CONSTANTS_FILE = "wrfinput"
INDIR = "."
OUTDIR = "."
RESTART_FILENAME_REQUESTED = "restart.nc"
KHOUR = 1
FORCING_TIMESTEP = 3600
NOAH_TIMESTEP = 3600
OUTPUT_TIMESTEP = 3600
RESTART_FREQUENCY_HOURS = 1
SPLIT_OUTPUT_COUNT = 1
NSOIL=4
ZSOIL(1) = -0.10
ZSOIL(2) = -0.40
ZSOIL(3) = -1.00
ZSOIL(4) = -2.00

/

6.128.4 Input Files

filename purpose
input.nml to read the model_mod namelist
namelist.hrldas to read the NOAHLSM_OFLINE namelist
wrfinput provides NOAH grid information
&model_nml:noah_netcdf_filename the RESTART file containing the NOAH model state.

6.129 null_model

6.129.1 Overview

DART interface module for the ‘null_model’. This model provides very simple models for evaluating filtering algo-
rithms. It can provide simple linear growth around a fixed point, a random draw from a Gaussian, or combinations
of the two. Namelist controls can set the width of the Gaussian and change both the model advance method and the
expected observation interpolation method.

The 18 public interfaces are standardized for all DART compliant models. These interfaces allow DART to advance
the model, get the model state and metadata describing this state, find state variables that are close to a given location,
and do spatial interpolation for model state variables.

410 Chapter 6. References

DART, Release 9.10.3

6.129.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
model_size = 2,
delta_t = 0.05,
time_step_days = 0,
time_step_seconds = 3600
noise_amplitude = 0.0_r8
advance_method = 'simple'
interpolation_method = 'standard'

/

Description of each namelist entry

Item Type Description
model_sizein-

te-
ger

Model size.

delta_t real(r8)Internal model timestep parameter.
time_step_daysin-

te-
ger

Minimum model advance time in days.

time_step_secondsin-
te-
ger

Minimum model advance time in seconds.

noise_amplitudereal(r8)If greater than 0.0 sets the standard deviation of the added Gaussian noise during the model advance.
ad-
vance_method

char-
ac-
ter(64)

Controls the model advance method. The default is ‘simple’ timestepping. A 4-step Runga Kutta
method can be selected with the string ‘rk’.

in-
ter-
po-
la-
tion_method

char-
ac-
ter(64)

Controls how the expected value of an observation is computed. The default is ‘standard’ which uses
a linear interpolation between the two surrounding model points. Other options include ‘square’
which returns the square of the computed value, ‘opposite_side’ which adds on a value from the
opposite side of the cyclical domain, and ‘average’ which averages 15 points to get the expected
value. Model size should be > 15 to use the last option.

6.129.3 Files

filename purpose
input.nml to read the model_mod namelist
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

6.129. null_model 411

DART, Release 9.10.3

6.130 PBL_1D

6.130.1 Overview

The PBL_1D directory has been deprecated in favor of using the WRF/DART model interface. There is now support
for WRF single column mode built into the standard model_mod in that directory.

If you are interested in more information on this configuration, please email us at dart@ucar.edu.

If you really want the files that used to be in this directory, check them out from the Kodiak release of DART.

6.131 pe2lyr

Attention: pe2lyr works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using pe2lyr with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.131.1 Overview

DART standard interfaces for a two-layer isentropic primitive equation model.

The 16 public interfaces are standardized for all DART compliant models. These interfaces allow DART to advance
the model, get the model state and metadata describing this state, find state variables that are close to a given location,
and do spatial interpolation for model state variables.

This model is a 2-layer, isentropic, primitive equation model on a sphere. TODO: add more detail here, including
equations, etc.

Contact: Jeffrey.S.Whitaker@noaa.gov

6.131.2 Other modules used

types_mod
time_manager_mod
utilities_mod
random_seq_mod
threed_sphere/location_mod

412 Chapter 6. References

mailto:dart@ucar.edu
mailto:Jeffrey.S.Whitaker@noaa.gov

DART, Release 9.10.3

6.131.3 Public interfaces

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer :: get_model_size

Returns the size of the model as an integer. For this model the default grid size is 96 (lon) by 48 (lat) by 2 levels, and 3
variables (U, V, Z) at each grid location, for a total size of 27,648. There are alternative include files which, if included
at compile time instead of the default file, defines a grid at twice and 4 times this resolution. They have corresponding
truncation values of T63 and T127 (the default grid uses T31).

model_size The length of the model state vector.

6.131. pe2lyr 413

DART, Release 9.10.3

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Advances the model for a single time step. The time associated with the initial model state is also input although it is
not used for the computation.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Returns metadata about a given element, indexed by index_in, in the model state vector. The location defines
where the state variable is located.
For this model, the default grid is a global lat/lon grid, 96 (lon) by 48 (lat) by 2 levels. The variable types are U, V,
and Z:

• 1 = TYPE_u

• 2 = TYPE_v

• 901 = TYPE_z

Grids at twice and 4 times the resolution can be compiled in instead by using one of the alternative header files (see
resolt31.h (the default), resolt63.h, and resolt127.h).

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_type The type of the state variable element.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

414 Chapter 6. References

DART, Release 9.10.3

Given a state vector, a location, and a model state variable type, interpolates the state variable field to that location and
returns the value in obs_val. The istatus variable is always returned as 0 (OK).

x A model state vector.
location Location to which to interpolate.
itype Type of state field to be interpolated.
obs_val The interpolated value from the model.
istatus Integer value returning 0 for successful, other values can be defined for various failures.

var = get_model_time_step()

type(time_type) :: get_model_time_step

Returns the the time step of the model; the smallest increment in time that the model is capable of advancing the state
in a given implementation. For this model the default value is 20 minutes (1200 seconds), but also comes with header
files with times steps of 10 and 5 minutes (for higher grid resolution and truncation constants).

var Smallest time step of model.

call static_init_model()

Used for runtime initialization of a model, for instance calculating storage requirements, initializing model
parameters, etc. This is the first call made to a model by any DART compliant assimilation routines.
In this model, it allocates space for the grid, and initializes the grid locations, data values, and various parameters,
including spherical harmonic weights.

call end_model()

A stub since the pe2lyr model does no cleanup.

call init_time(time)

type(time_type), intent(out) :: time

Returns the time at which the model will start if no input initial conditions are to be used. This model sets the time to
0.

6.131. pe2lyr 415

DART, Release 9.10.3

time Initial model time.

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Returns default initial conditions for model; generally used for spinning up initial model states. This model sets the
default state vector based on the initialized fields in the model. (TODO: which are what?)

x Initial conditions for state vector.

ierr = nc_write_model_atts(ncFileID)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

This routine writes the model-specific attributes to a netCDF file. This includes coordinate variables and any metadata,
but NOT the model state vector. This model writes out the data as U, V, and Z arrays on a lat/lon/height grid, so the
attributes are organized in the same way.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

This routine writes the model-specific state vector (data) to a netCDF file. This model writes out the data as U, V, and
Z arrays on a lat/lon/height grid.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

416 Chapter 6. References

DART, Release 9.10.3

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

Given a model state vector, perturbs this vector. Used to generate initial conditions for spinning up ensembles. This
model has no code to generate these values, so it returns interf_provided as .false. and the default algorithms in
filter are then used by the calling code.

state State vector to be perturbed.
pert_state Perturbed state vector
interf_provided Returned false; interface is not implemented.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

In distance computations any two locations closer than the given maxdist will be considered close by the
get_close_obs() routine. Pass-through to the 3-D sphere locations module. See get_close_maxdist_init() for
the documentation of this subroutine.

gc The get_close_type which stores precomputed information about the locations to speed up searching
maxdist Anything closer than this will be considered close.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3-D sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind

(continues on next page)

6.131. pe2lyr 417

../../location/threed_sphere/location_mod.html#get_close_maxdist_init
../../location/threed_sphere/location_mod.html#get_close_obs_init

DART, Release 9.10.3

(continued from previous page)

type(location_type), intent(in) :: obs(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Given a location and kind, compute the distances to all other locations in the obs list. The return values are the
number of items which are within maxdist of the base, the index numbers in the original obs list, and optionally the
distances. The gc contains precomputed information to speed the computations.
Pass-through to the 3-D sphere locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

Stub only. Not needed by this model.

ens_mean State vector containing the ensemble mean.

This model currently has no values settable by namelist.

6.131.4 Files

• The model source is in pe2lyr_mod.f90, and the spherical harmonic code is in spharmt_mod.f90. The various
resolution settings are in resolt31.h, resolt63.h, and resolt127.h.

6.131.5 References

Zou, X., Barcilon, A., Navon, I.M., Whitaker, J., Cacuci, D.G.. 1993: An Adjoint Sensitivity Study of Blocking in a
Two-Layer Isentropic Model. Monthly Weather Review: Vol. 121, No. 10, pp. 2833-2857.

418 Chapter 6. References

../../location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

6.131.6 Private components

N/A

6.132 POP

6.132.1 Overview

This document describes the DART interface to the Parallel Ocean Program (POP). It covers the Development history
of the interface with two implementations of POP:

• the Los Alamos National Laboratory Parallel Ocean Program (LANL POP), and

• the Community Earth System Model Parallel Ocean Program 2 (CESM POP2; Smith et al. 20101).

This document also provides Detailed instructions for using DART and CESM POP2 on NCAR’s supercomputer,
including information about the availability of restart files for Creating an initial ensemble of model states and Obser-
vation sequence files for assimilation.

6.132.2 Development History

When the DART interface to POP was originally developed circa 2009-2010, the interface worked with both the LANL
POP and CESM POP2 implementations of POP.

LANL POP

In years subsequent to the initial development of the DART interface, the Computer, Computational, and Statistical
Sciences Division at LANL transitioned from using POP as their primary ocean model to using the Model for Predic-
tion Across Scales-Ocean (MPAS-Ocean). Thus it became difficult for staff in the Data Assimilation Research Section
(DAReS) at NCAR to maintain access to the LANL POP source code. As a result, LANL POP has been tested using
DART’s Lanai framework but has not been tested using DART’s Manhattan framework. If you intend to use LANL
POP with DART Manhattan, contact DAReS staff for assistance by emailing dart@ucar.edu.

CESM POP2

The NCAR implementation of POP, CESM POP2, has been used extensively with DART throughout multiple genera-
tions of NCAR’s supercomputer (Bluefire, Yellowstone & Cheyenne) and multiple iterations of NCAR’s earth system
model (CCSM4, CESM1 and CESM2). CESM POP2 is supported under DART’s Manhattan framework.

For DART’s CESM POP2 interface, the CESM Interactive Ensemble facility is used to manage the ensemble and
the Flux Coupler is responsible for stopping POP2 at the times required to perform an assimilation. CESM runs
continuously and all of the DART routines run at each assimilation time.

1 Smith, R., and Coauthors, 2010: The Parallel Ocean Program (POP) Reference Manual Ocean Component of the Community Climate Sys-
tem Model (CCSM) and Community Earth System Model (CESM). National Center for Atmospheric Research, http://www.cesm.ucar.edu/ mod-
els/cesm1.0/pop2/doc/sci/POPRefManual.pdf.

6.132. POP 419

https://climatemodeling.science.energy.gov/projects/climate-ocean-and-sea-ice-modeling-cosim
mailto:dart@ucar.edu
https://ncar.github.io/POP/doc/build/html/index.html
http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf
http://www.cesm.ucar.edu/models/cesm1.0/pop2/doc/sci/POPRefManual.pdf

DART, Release 9.10.3

6.132.3 Detailed instructions for using DART and CESM POP2 on NCAR’s super-
computer

If you’re using NCAR’s supercomputer, you can run the setup scripts after making minor edits to set details that are
specific to your project. The setup scripts create a CESM case in which POP is configured using a 1° horizontal
grid, and uses the eddy-paremetrization of Gent and McWilliams (1990).2 The CICE model is active and atmospheric
forcing is provided by the CAM6 DART Reanalysis.

The filesystem attached to NCAR’s supercomputer is known as the Globally Accessible Data Environment (GLADE).
All filepaths on GLADE have the structure:

/glade/*

If you aren’t using NCAR’s supercomputer, take note of when the /glade/ filepath is present in the setup scripts,
since this will indicate sections that you must alter in order to get the scripts to work on your supercomputer. Addition-
ally, you’ll need to generate your own initial condition and observation sequence files or you’ll need to copy these files
from GLADE. If you want to copy these files from GLADE and don’t have access, contact DAReS staff by emailing
dart@ucar.edu for assistance.

6.132.4 Summary

To use DART and CESM POP2 on NCAR’s supercomputer, you will need to complete the following steps.

1. Configure the scripts for your specific experiment by editing DART_params.csh.

2. Stage your initial ensemble using copy_POP_JRA_restarts.py.

3. Run the appropriate DART setup script to create and build the CESM case.

If the DART setup script runs to completion, it will print instructions to the screen. Follow these instructions to submit
your case.

6.132.5 Shell scripts

Since CESM requires many third-party modules in order to compile, it is often difficult to compile older versions of
CESM because the older modules become unavailable. You should attempt to use the most recent setup scripts. The
Discuss CESM bulletin board specifies which releases of CESM are supported.

The setup scripts are stored in:

DART/models/POP/shell_scripts

in subdirectories that correspond releases of CESM. For example:

DART/models/POP/shell_scripts/cesm2_1

contains scripts that should be used with CESM releases 2.1.0-2.1.3.

2 Gent, P. R., and J. C. McWilliams, 1990: Isopycnal Mixing in Ocean Circulation Models. Journal of Physical Oceanography, 20, 150–155,
doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

420 Chapter 6. References

https://rda.ucar.edu/datasets/ds345.0/
mailto:dart@ucar.edu
https://bb.cgd.ucar.edu/cesm/
https://doi.org/10.1175/1520-0485(1990)020\T1\textless {}0150:IMIOCM\T1\textgreater {}2.0.CO;2

DART, Release 9.10.3

copy_POP_JRA_restarts.py

This script stages an intial ensemble of POP2 restart files by copying files from a prior experiment run by Who Kim.
Thanks Who!

These restart files can be used as an initial ensemble of model states. The files are kept in a directory on GLADE that
is owned by the Climate and Global Dynamics (CGD) Ocean Section:

/glade/campaign/cgd/oce/people/whokim/csm/g210.G_JRA.v14.gx1v7.01

Unless you’re already a member of the CGD Ocean Section, you must be granted access to this directory by CISL.
Use the Service Desk to request permission. If you’re unable to get permission, contact DAReS staff for assistance by
emailing dart@ucar.edu.

Filepaths beginning with /glade/campaign/* can’t be accessed from NCAR’s supercomputer nodes. You must
log on to NCAR’s data visualization computer to copy files from /glade/campaign/*.

This python script was created by Dan Amrhein. Thanks Dan!

Script
name

Description

copy_POP_JRA_restarts.
py

This script copies restart files from the g210.G_JRA.v14.gx1v7.01 experiment that are saved in cam-
paign storage. You must be granted access to the CGD Ocean Section campaign storage directory
and be logged on to NCAR’s data visualization computer in order to run this script. The assignment
of the stagedir variable in this script should match the assignment of the stagedir variable in
DART_params.csh.

In order to use this script, log in to NCAR’s data visualization computer and use python to run the script. For example:

$ cd DART/models/POP/shell_scripts/cesm2_1
$ python copy_POP_JRA_restarts.py

DART_params.csh

This is the essential script you must edit to get your cases to build properly. While you need to configure this script,
you don’t need to run this script. It is run by the setup scripts.

Script
name

Description

DART_params.
csh

This script contains most, if not all, of the variables that you need to set in order to build and run
cases. You must read this file carefully and configure the variables to match your needs. The assign-
ment of the stagedir variable in this script should match the assignment of the stagedir variable
in copy_POP_JRA_restarts.py.

6.132. POP 421

https://servicedesk.ucar.edu/plugins/servlet/desk
mailto:dart@ucar.edu

DART, Release 9.10.3

Setup scripts

These are the primary scripts used to setup CESM cases in which data assimilation is enabled in POP2. The only
variable that you might need to set in these scripts is the extra_string variable. It is appended to the end of the
CESM case name. You can use it to differentiate experiments with the same configuration.

Script name Description
setup_CESM_perfect_model.
csh

This script creates a CESM case with a single model instance in order to run DART’s
perfect_model_obs program to collect observations from the model run.

setup_CESM_hybrid_ensemble.
csh

This script creates a CESM case with multiple model instances in order to run DART’s
filter program to complete assimilation.

After configuring your experiment in DART_params.csh, you can setup a case by running these scripts. For
example, to setup an assimilation experiment:

$ cd DART/models/POP/shell_scripts/cesm2_1
$./setup_CESM_hybrid_ensemble.csh

If the setup scripts run to completion, they will print instructions that you can follow to use CESM’s case submit tool
to begin a model integration.

CESM_DART_config.csh

This script is copied by the setup scripts into the CESM case directory. It configures CESM to run DART.

Script name Description
CESM_DART_config.
csh

This script is copied into the CESM case directory where it configures CESM to run
DART.

Runtime scripts

These scripts are copied into the CESM case directory. They are called by CESM and contain the logic to run DART’s
perfect_model_obs or filter programs. You shouldn’t need to run these scripts directly, unless they exit
before completion and halt a CESM integration. In this case you may need to run the script directly to complete an
assimilation in order to continue the integration.

Script name Description
perfect_model.
csh

This script runs perfect_model_obs to collect synthetic data in a single-instance
CESM case.

assimilate.csh This script runs filter to perform assimilation in a multi-instance CESM case.

422 Chapter 6. References

DART, Release 9.10.3

6.132.6 Other files needed for assimilation

Creating an initial ensemble

Karspeck et al. (2013)3 find that an ensemble of 1 January model states selected from a multi-decade free-running
integration of POP2 can be used as an initial ensemble.

If you have access to CGD’s Ocean Section directory on /glade/campaign you can use the
copy_POP_JRA_restarts.py script to stage a collection of POP restart files from Who Kim’s mulit-century g210.
G_JRA.v14.gx1v7.01 experiment to serve as an initial ensemble. This experiment uses the JRA-55 dataset for
atmospheric forcing (Tsujino et al. 20184).

Observation sequence files

When setup_CESM_hybrid_ensemble.csh is used to create an assimilation experiment, DART_params.
csh configures the experiment to assimilate observation sequence files from the World Ocean Database 2013
(WOD13; Boyer et al. 20135).

The WOD13 dataset comprises data from 2005-01-01 to 2016-12-31 and contains the following observation types:

FLOAT_SALINITY FLOAT_TEMPERATURE
DRIFTER_SALINITY DRIFTER_TEMPERATURE
GLIDER_SALINITY GLIDER_TEMPERATURE
MOORING_SALINITY MOORING_TEMPERATURE
BOTTLE_SALINITY BOTTLE_TEMPERATURE
CTD_SALINITY CTD_TEMPERATURE
XCTD_SALINITY XCTD_TEMPERATURE
APB_SALINITY APB_TEMPERATURE
XBT_TEMPERATURE

The W0D13 observations have already been converted into DART’s observation sequence file format by Fred Cas-
truccio. Thanks Fred! The files are stored in the following directory on GLADE:

/glade/p/cisl/dares/Observations/WOD13

The subdirectories are formatted in YYYYMM order.

Observation sequence files converted from the World Ocean Database 2009 (WOD09; Johnson et al. 20096), which
comprises data from 1960-01-01 to 2008-12-31, are also stored in the following directory on GLADE:

/glade/p/cisl/dares/Observations/WOD09

These observation sequence files can be assimilated by changing the BASEOBSDIR variable in DART_params.csh.

DART extracts the following variables from the POP2 restart files and adjusts them to be consistent with the observa-
tions: SALT_CUR, TEMP_CUR, UVEL_CUR, VVEL_CUR, and PSURF_CUR.

3 Karspeck, A., Yeager, S., Danabasoglu, G., Hoar, T. J., Collins, N. S., Raeder, K. D., Anderson, J. L, Tribbia, J. 2013: An ensemble adjustment
Kalman filter for the CCSM4 ocean component. Journal of Climate, 26, 7392-7413, doi:10.1175/JCLI-D-12-00402.1.

4 Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., . . . Yamazaki, D., 2018: JRA-55 based surface dataset for
driving ocean-sea-ice models (JRA55-do). Ocean Modelling, 130, 79-139, doi:10.1016/j.ocemod.2018.07.002.

5 Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D.
O’Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72, S.
Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., doi:10.7289/V5NZ85MT.

6 Johnson, D.R., T.P. Boyer, H.E. Garcia, R.A. Locarnini, O.K. Baranova, and M.M. Zweng, 2009. World Ocean Database 2009 Documentation.
Edited by Sydney Levitus. NODC Internal Report 20, NOAA Printing Office, Silver Spring, MD, 175 pp., http://www.nodc.noaa.gov/OC5/WOD09/
pr_wod09.html.

6.132. POP 423

https://doi.org/10.1175/JCLI-D-12-00402.1
https://doi.org/10.1016/j.ocemod.2018.07.002
http://doi.org/10.7289/V5NZ85MT
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html
http://www.nodc.noaa.gov/OC5/WOD09/pr_wod09.html

DART, Release 9.10.3

Data atmosphere streams files

The setup scripts configure the CESM case with atmospheric forcing from the CAM6 DART Reanalysis. The coupler
history files from this reanalysis are referenced in user_datm.streams*template files. These user_datm.
streams*template files are contained in the same directory as the setup scripts and are configured and copied
into the CESM case directory by the setup scripts.

6.132.7 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand, &, and terminate
with a slash, /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

The variables and their default values are listed here:

&model_nml
assimilation_period_days = -1
assimilation_period_seconds = -1
model_perturbation_amplitude = 0.2
binary_grid_file_format = 'big_endian'
debug = 0,
model_state_variables = 'SALT_CUR ', 'QTY_SALINITY ', 'UPDATE',

'TEMP_CUR ', 'QTY_POTENTIAL_TEMPERATURE', 'UPDATE',
'UVEL_CUR ', 'QTY_U_CURRENT_COMPONENT ', 'UPDATE',
'VVEL_CUR ', 'QTY_V_CURRENT_COMPONENT ', 'UPDATE',
'PSURF_CUR', 'QTY_SEA_SURFACE_PRESSURE ', 'UPDATE'

/

This namelist provides control over the assimilation period for the model. All observations within (+/-) half of the as-
similation period are assimilated. The assimilation period is the minimum amount of time the model can be advanced,
and checks are performed to ensure that the assimilation window is a multiple of the ocean model dynamical timestep.

424 Chapter 6. References

https://rda.ucar.edu/datasets/ds345.0/

DART, Release 9.10.3

Item Type Description
assimilation_period_days integer The number of days to advance the

model for each assimilation. If both
assimilation_period_days
and
assimilation_period_seconds
are 0; the value of the POP namelist
variables restart_freq and
restart_freq_opt are used to
determine the assimilation period.
WARNING: in the CESM frame-
work, the restart_freq is set to
a value that is not useful so DART
defaults to 1 day - even if you are
using POP in the LANL framework.

assimilation_period_secondsinteger In addition to
assimilation_period_days,
the number of seconds to ad-
vance the model for each
assimilation. Make sure
you read the description of
assimilation_period_days.

model_perturbation_amplitudereal(r8) Reserved for future use.
binary_grid_file_format character(len=32) The POP grid files are in a bi-

nary format. Valid values are
native, big_endian, or
little_endian. Modern
versions of Fortran allow you to
specify the endianness of the file
you wish to read when they are
opened as opposed to needing to set
a compiler switch or environment
variable.

debug integer The switch to specify the run-time
verbosity.

• 0 is as quiet as it gets.
• > 1 provides more run-time

messages.
• > 5 provides ALL run-time

messages.
All values above 0 will also write
a netCDF file of the grid informa-
tion and perform a grid interpolation
test.

model_state_variables character(:,3) Strings that associate POP variables
with a DART quantity and whether
or not to write the updated values to
the restart files. These variables will
be read from the POP restart file and
modified by the assimilation. Some
(perhaps all) will be used by the for-
ward observation operators. If the
3rd column is ‘UPDATE’, the out-
put files will have the modified (as-
similated,posterior) values. If the
3rd column is ‘NO_COPY_BACK’,
that variable will not be written to
the restart files. The DART diag-
nostic files will always have the
(modified) posterior values. Diag-
nostic variables that are useful for
the calculation of the forward ob-
servation operator but have no im-
pact on the forecast trajectory of
the model could have a value of
NO_COPY_BACK.

6.132. POP 425

DART, Release 9.10.3

6.132.8 References

6.133 MODULE dart_pop_mod (POP)

6.133.1 Overview

dart_pop_mod provides a consistent collection of routines that are useful for multiple programs e.g.
dart_to_pop, pop_to_dart, etc.

6.133.2 Namelist

There are no namelists unique to this module. It is necessary for this module to read some of the POP namelists, and
so they are declared in this module. In one instance, DART will read the time_manager_nml namelist and write
an updated version to control the length of the integration of POP. All other information is simply read from the
namelists and is used in the same context as POP itself. The POP documentation should be consulted. Only the
variables of interest to DART are described in this document.
All namelists are read from a file named pop_in.

namelist /time_manager_nml/ allow_leapyear, stop_count, stop_option

dart_to_pop controls the model advance of LANL/POP by creating a &time_manager_nml in pop_in.DART
IFF the DART state being converted has the ‘advance_to_time’ record. The pop_in.DART must be concatenated
with the other namelists needed by POP into a file called pop_in . We have chosen to store the other namelists
(which contain static information) in a file called pop_in.part2. Initially, the time_manager_nml is stored in
a companion file called pop_in.part1 and the two files are concatenated into the expected pop_in - then, during
the course of an assimilation experiment, DART keeps writing out a new time_manager_nml with new integration
information - which gets appended with the static information in pop_in.part2

Con-
tents

Type Description

al-
low_leapyear

logical DART ignores the setting of this parameter. All observations must use a Gregorian calendar.
There are pathological cases, but if you are doing data assimilation, just use the Gregorian
calendar. [default: .true.]

stop_countinteger the number of model advance steps to take. [default: 1]
stop_optioncharac-

ter(len=64)
The units for the number of model advance steps (stop_count) to take. [default: ‘ndays’]

namelist /io_nml/ luse_pointer_files, pointer_filename

426 Chapter 6. References

DART, Release 9.10.3

Con-
tents

Type Description

luse_pointer_fileslogical switch to indicate the use of pointer files or not. If .true., a pointer file is used to contain
the name of the restart file to be used. DART requires this to be .true. [default: .true.]

pointer_filenamecharac-
ter(len=100)

The name of the pointer file. All of the DART scripts presume and require the use of
the default. Each ensmeble member gets its own pointer file. [default: rpointer.ocn.[1-
N].restart]

namelist /restart_nml/ restart_freq_opt, restart_freq

Con-
tents

Type Description

luse_pointer_fileslogical switch to indicate the use of pointer files or not. If .true., a pointer file is used to contain
the name of the restart file to be used. DART requires this to be .true. [default: .true.]

pointer_filenamecharac-
ter(len=100)

The name of the pointer file. All of the DART scripts presume and require the use of
the default. Each ensmeble member gets its own pointer file. [default: rpointer.ocn.[1-
N].restart]

namelist /init_ts_nml/ init_ts_option, init_ts_file, init_ts_file_fmt

The dart_pop_mod:initialize_module() routine reads pop_in . There are several code stubs for future
use that may allow for a more fully-supported POP namelist implementation. This namelist is one of them. Until
further notice, the init_ts_nml is completely ignored by DART.

Contents Type Description
init_ts_option charac-

ter(len=64)
NOT USED by DART. All T,S information comes from a netCDF restart file named
pop.r.nc [default: ‘restart’]

init_ts_file charac-
ter(len=100)

NOT USED by DART. All T,S information comes from pop.r.nc [default:
‘pop.r’]

init_ts_file_fmtcharac-
ter(len=64)

NOT USED by DART. The file format is 'nc' [default: ‘nc’]

namelist /domain_nml/ ew_boundary_type

DART needs to know if the East-West domain is cyclic for spatial interpolations. Presently, DART has only been
tested for the dipole grid, which is cyclic E-W and closed N-S.

6.133. MODULE dart_pop_mod (POP) 427

DART, Release 9.10.3

Con-
tents

Type Description

ew_boundary_typecharac-
ter(len=64)

switch to indicate whether the East-West domain is cyclic or not. DART/POP has not
been tested in a regional configuration, so DART requires this to be 'cyclic'. [default:
‘cyclic’]

namelist /grid_nml/ horiz_grid_opt, vert_grid_opt, topography_opt, &
horiz_grid_file, vert_grid_file, topography_file

The POP grid information comes in several files: horizontal grid lat/lons in one, the vertical grid spacing in another,
and the topography (lowest valid vertical level) in a third.
Here is what we can get from the (binary) horizontal grid file:

real(r8), dimension(:,:) :: ULAT, &! latitude (radians) of U points
real(r8), dimension(:,:) :: ULON, &! longitude (radians) of U points
real(r8), dimension(:,:) :: HTN , &! length (cm) of north edge of T box
real(r8), dimension(:,:) :: HTE , &! length (cm) of east edge of T box
real(r8), dimension(:,:) :: HUS , &! length (cm) of south edge of U box
real(r8), dimension(:,:) :: HUW , &! length (cm) of west edge of U box
real(r8), dimension(:,:) :: ANGLE &! angle

The vertical grid file is ascii, with 3 columns/line:

cell thickness(in cm) cell center(in m) cell bottom(in m)

Here is what we can get from the topography file:

integer, dimension(:,:), :: KMT &! k index of deepest grid cell on T grid

These must be derived or come from someplace else . . .

KMU k index of deepest grid cell on U grid
HT real(r8) value of deepest valid T depth (in cm)
HU real(r8) value of deepest valid U depth (in cm)

428 Chapter 6. References

DART, Release 9.10.3

Contents Type Description
horiz_grid_opt,
vert_grid_opt,
topogra-
phy_opt

char-
ac-
ter(len=64)

switch to indicate whether or not the grids will come from an external file or not. DART
requires ALL of these to be 'file'. [default: ‘file’]

horiz_grid_file char-
ac-
ter(len=100)

The name of the binary file containing the values for the horizontal grid. The dimensions
of the grid are read from pop.r.nc. It would have been nice to include the actual grid
information in the netCDF files. [default: ‘horiz_grid.gx3v5.r8ieee.le’]

vert_grid_file char-
ac-
ter(len=100)

The name of the ASCII file containing the values for the vertical grid. The file must contain
three columns of data pertaining to the cell thickness (in cm), the cell center (in meters),
and the cell bottom (in meters). Again, it would have been nice to include the vertical grid
information in the netCDF files. [default: ‘vert_grid.gx3v5’]

topogra-
phy_grid_file

char-
ac-
ter(len=100)

The name of the binary file containing the values for the topography information. The
dimensions of the grid are read from pop.r.nc. [default: ‘topography.gx3v5.r8ieee.le’]

6.133.3 Other modules used

types_mod
time_manager_mod
utilities_mod
typesizes
netcdf

6.133.4 Public interfaces

Only a select number of interfaces used are discussed here. Each module has its own discussion of their routines.

6.133. MODULE dart_pop_mod (POP) 429

DART, Release 9.10.3

Interface routines

use dart_pop_mod, only : get_pop_calendar
set_model_time_step

get_horiz_grid_dims

get_vert_grid_dim

read_horiz_grid

read_topography

read_vert_grid

write_pop_namelist

get_pop_restart_filename

Required interface routines

call get_pop_calendar(calstring)

character(len=*), intent(out) :: calstring

Returns a string containing the type of calendar in use.

calstring DART/POP uses a ‘gregorian’ calendar.

poptimestep = set_model_time_step()

type(time_type), intent(out) :: poptimestep

set_model_time_step returns the model time step that was set in the restart_nmlrestart_freq. This is
the minimum amount of time DART thinks the POP model can advance. Indirectly, this specifies the minimum
assimilation interval.

poptimestep the minimum assimilation interval

call get_horiz_grid_dims(Nx, Ny)

430 Chapter 6. References

DART, Release 9.10.3

integer, intent(out) :: Nx, Ny

get_horiz_grid_dims reads pop.r.nc to determine the number of longitudes and latitudes.

Nx the length of the ‘i’ dimension in the POP restart file. The number of longitudes in use.
Ny the length of the ‘j’ dimension in the POP restart file. The number of latitudes in use.

call get_vert_grid_dim(Nz)

integer, intent(out) :: Nz

get_vert_grid_dim reads pop.r.nc to determine the number of vertical levels in use.

Nz the length of the ‘k’ dimension in the POP restart file. The number of vertical levels in use.

call read_horiz_grid(nx, ny, ULAT, ULON, TLAT, TLON)

integer, intent(in) :: nx, ny
real(r8), dimension(nx,ny), intent(out) :: ULAT, ULON, TLAT, TLON

read_horiz_grid reads the direct access binary files containing the POP grid information. The first record is
REQUIRED to be ‘ULAT’, the second record is REQUIRED to be ‘ULON’.

nx The number of longitudes in the grid.
ny The number of latitudes in the grid.
ULAT The matrix of latitudes for the UVEL and VVEL variables. Units are degrees [-90,90].
ULON The matrix of longitudes for the UVEL and VVEL variables. Units are degrees. [0,360]
TLAT The matrix of latitudes for the SALT and TEMP variables. Units are degrees [-90,90].
TLON The matrix of longitudes for the SALT and TEMP variables. Units are degrees. [0,360]

call read_topography(nx, ny, KMT, KMU)

integer, intent(in) :: nx, ny
integer, dimension(nx,ny), intent(out) :: KMT, KMU

read_topography reads the direct access binary files containing the POP topography information. The first
record is REQUIRED to be ‘KMT’. ‘KMU’ is calculated from ‘KMT’.

6.133. MODULE dart_pop_mod (POP) 431

DART, Release 9.10.3

nx The number of longitudes in the grid.
ny The number of latitudes in the grid.
KMT The matrix containing the lowest valid depth index at grid centroids.
KMU The matrix containing the lowest valid depth index at grid corners.

call read_vert_grid(nz, ZC, ZG)

integer, intent(in) :: nz
real(r8), dimension(nz), intent(out) :: ZC, ZG

read_vert_grid reads the ASCII file containing the information about the vertical levels. The file must contain
three columns of data pertaining to; 1) the cell thickness (in cm),
2) the cell center (in meters),
and 3) the cell bottom (in meters).

nz The number of vertical levels.
ZC The depth (in meters) at the grid centers.
ZG The depth (in meters) at the grid edges.

call write_pop_namelist(model_time, adv_to_time)

type(time_type), intent(in) :: model_time
type(time_type), intent(in) :: adv_to_time

write_pop_namelist writes the POP namelist time_manager_nml with the information necessary to ad-
vance POP to the next assimilation time. The namelist is written to a file called pop_in.DART. Presently, DART
is configured to minimally advance POP for 86400 seconds - i.e. 1 day. The forecast length (the difference between
‘model_time’ and ‘adv_to_time’) must be an integer number of days with the current setup. An error will result if it is
not.

model_time The ‘valid’ time of the current model state.
adv_to_time The time of the next assimilation.

call get_pop_restart_filename(filename)

character(len=*), intent(out) :: filename

432 Chapter 6. References

DART, Release 9.10.3

get_pop_restart_filename returns the filename containing the POP restart information. At this point the
filename is hardwired to pop.r.nc, but may become more flexible in future versions. The filename may be derived
from the restart_nml but is currently ignored.

filename The name of the POP restart file.

6.133.5 Files

filename purpose
pop_in to read the POP namelists
pop.r.nc provides grid dimensions and ‘valid_time’ of the model state
&grid_nml “horiz_grid_file” contains the values of the horizontal grid
&grid_nml “vert_grid_file” contains the number and values of the vertical levels
&grid_nml “topography_grid_file” contains the indices of the wet/dry cells
pop_in.DART to control the integration of the POP model advance

6.133.6 References

• none

6.133.7 Private components

N/A

6.134 ROMS

There are several DART users who have working DART interface code to the Regional Ocean Modeling System
(ROMS), as the model is a community ocean model funded by the Office of Naval Research. Please visit MyRoms for
more information on the model.

The lead developers are at Rutgers and UCLA, but the list of associate developers is extensive. Please read ROMS
developers for more information.

If you are interested in running DART with this model please contact the DART group at dart@ucar.edu for more in-
formation. We are currently working with collaborators to optimize the model_mod interface and associated scripting
to run data assimilation experiments with this model. We may be able to put you in contact with the right people to
get a copy of the code.

6.134. ROMS 433

https://www.myroms.org/
https://www.myroms.org/index.php?page=roms_devs
https://www.myroms.org/index.php?page=roms_devs
mailto:dart@ucar.edu

DART, Release 9.10.3

6.134.1 Overview

This document describes the relationship between ROMS and DART and provides an overview of how to perform
ensemble data assimilation with ROMS to provide ocean states that are consistent with the information provided by
various ocean observations.

Running ROMS is complicated. It is strongly recommended that you become very familiar with running ROMS before
you attempt a ROMS-DART assimilation experiment. Running DART is complicated. It is strongly recommended that
you become very familiar with running DART before you attempt a ROMS-DART assimilation experiment. Running
ROMS-DART takes expertise in both areas.

We recommend working through the DART tutorial to learn the concepts of ensemble data assimilation and the capa-
bilities of DART.

The ROMS code is not distributed with DART, it can be obtained from the ROMS website. There you will also find
instructions on how to compile and run ROMS. DART can use the ‘verification observations’ from ROMS (basically
the estimate of the observation at the location and time computed as the model advances) so it would be worthwhile
to become familiar with that capability of ROMS.

DART calls these ‘precomputed forward operators’. DART can also use observations from the World Ocean Database
- WOD. The conversion from the WOD formats to the DART observation sequence format is accomplished by the
converters in the DART/observations/obs_converters/WOD directory.

The DART forward operators require interpolation from the ROMS terrain-following and horizontally curvilinear
orthogonal coordinates to the observation location. Please contact us for more information about this interpolation.

6.134.2 A Note About Filenames

During the course of an experiment, many files are created. To make them unique, the ocean_time is converted from
“seconds since 1900-01-01 00:00:00” to the equivalent number of DAYS. An integer number of days. The intent is to
tag the filename to reflect the valid time of the model state. This could be used as the DSTART for the next cycle, so
it makes sense to me. The confusion comes when applied to the observation files.

The input observation files for the ROMS 4DVAR system typically have a DSTART that designates the start of the
forecast cycle and the file must contain observation from DSTART to the end of the forecast. Makes sense.

The model runs to the end of the forecast, harvesting the verification observations along the way. So then DART
converts all those verification observations and tags that file . . . with the same time tag as all the other output files . . .
which reflects the ocean_time (converted to days). The input observation file to ROMS will have a different DSTART
time in the filename than the corresponding verification files. Ugh. You are free to come up with a better plan.

These are just examples. . . after all; hopefully good examples.

6.134.3 Procedure

The procedure to perform an assimilation experiment is outlined in the following steps:

1. Compile ROMS (as per the ROMS instructions).

2. Compile all the DART executables (in the normal fashion).

3. Stage a directory with all the files required to advance an ensemble of ROMS models and DART.

4. Modify the run-time controls in ocean.in, s4dvar.in and input.nml. Since ROMS has a Bin/subsitute
command, it is used to replace temporary placeholders with actual values at various parts during the process.

5. Advance all the instances of ROMS; each one will produce a restart file and a verification observation file.

434 Chapter 6. References

https://www.myroms.org
https://www.nodc.noaa.gov/OC5/indprod.html

DART, Release 9.10.3

6. Convert all the verification observation files into a single DART observation sequence file with the
convert_roms_obs.f90 program in DART/observations/obs_converters/ROMS/.

7. Run filter to assimilate the data (DART will read and update the ROMS files directly - no conversion is neces-
sary.)

8. Update the control files for ROMS in preparation for the next model advance.

6.134.4 Shell scripts

The shell_scripts directory has several scripts that are intended to provide examples. These scripts WILL need
to be modified to work on your system and are heavily internally commented. It will be necessary to read through
and understand the scripts. As mentioned before, the ROMS Bin/subsitute command is used to replace temporary
placeholders with actual values at various parts during the process.

Script Description
en-
sem-
ble.sh

Was written by Hernan Arango to run an ensemble of ROMS models. It is an appropriate example of what
is required from the ROMS perspective. It does no data assimilation.

stage_experiment.cshprepares a directory for an assimilation experiment. The idea is basically that everything you need should be
assembled by this script and that this should only be run ONCE per experiment. After everything is staged
in the experiment directory, another script can be run to advance the model and perform the assimilation.
stage_experiment.csh will also modify some of the template scripts and copy working versions into the
experiment directory. This script may be run interactively, i.e. from the UNIX command line.

sub-
mit_multiple_cycles_lsf.csh

is an executable script that submits a series of dependent jobs to an LSF queuing system. Each job runs
cycle.csh in the experiment directory and only runs if the previous dependent job completes successfully.

cy-
cle.csh.template

is a non-executable template that is modified by stage_experiment.csh and results in an exectuable cycle.csh
in the experiment directory. cycle.csh is designed to be run as a batch job and advances the ROMS model
states one-by-one for the desired forecast length. The assimilation is performed and the control information
for the next ROMS forecast is updated. Each model execution and filter use the same set of MPI tasks.

sub-
mit_multiple_jobs_slurm.csh

is an executable script that submits a series of dependent jobs to an LSF queuing system. It is possible to
submit many jobs the queue, but the jobs run one-at-a-time. Every assimilation cycle is divided into two
scripts to be able to efficiently set the resources for each phase. advance_ensemble.csh is a job array that
advances each ROMS instance in separate jobs. When the entire job array finishes - and only if they all
finish correctly - will the next job start to run. run_filter.csh performs the assimilation and prepares the
experiment directory for another assimilation cycle. submit_multiple_jobs_slurm.csh may be run from the
command line in the experiment directory. Multiple assimilation cycles can be specified, so it is possible to
put many jobs in the queue.

ad-
vance_ensemble.csh.template

is a non-executable template that is modified by stage_experiment.csh and results in an exectuable ad-
vance_ensemble.csh in the experiment directory. advance_ensemble.csh is designed to submit an job array
to the queueing system (PBS,SLURM, or LSF) to advance the ensemble members in separate jobs.

run_filter.csh.templateis a non-executable template that is modified by stage_experiment.csh and results in an exectuable
run_filter.csh in the experiment directory. run_filter.csh is very similar to cycle.csh but does not advance
the ROMS model instances.

The variables from ROMS that are copied into the DART state vector are controlled by the input.nml model_nml
namelist. See below for the documentation on the &model_nml entries. The state vector should include all variables
needed to apply the forward observation operators as well as the prognostic variables important to restart ROMS.

The example input.nml model_nml demonstrates how to construct the DART state vector. The following table explains
in detail each entry for the variables namelist item:

6.134. ROMS 435

DART, Release 9.10.3

Vari-
able name

This is the ROMS variable name as it appears in the ROMS netCDF file.

DART QUAN-
TITY

This is the character string of the corresponding DART QUANTITY. The complete list of possible
DART QUANTITY values is available in the obs_def_mod that is built by preprocess.

mini-
mum

If the variable is to be updated in the ROMS restart file, this specifies the minimum value. If set to ‘NA’,
there is no minimum value.

maxi-
mum

If the variable is to be updated in the ROMS restart file, this specifies the maximum value. If set to ‘NA’,
there is no maximum value.

update The updated variable may or may not be written to the ROMS restart file. ‘UPDATE’ means the variable
in the restart file is updated. This is case-insensitive. ‘NO_COPY_BACK’ (or anything else) means the
variable in the restart file remains unchanged.

6.134.5 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash ‘/’.
Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist. The default namelist is presented below, a more realistic namelist is presented at the end of this section.

&model_nml
roms_filename = 'roms_input.nc'
assimilation_period_days = 1
assimilation_period_seconds = 0
vert_localization_coord = 3
debug = 0
variables = ''

/

436 Chapter 6. References

DART, Release 9.10.3

Item Type Description
roms_filename character(len=256) This is the name of the file used

to provide information about the
ROMS variable dimensions, etc.

assi milation_period_days, assimi
lation_period_seconds

integer Combined, these specify the width
of the assimilation window. The
current model time is used as the
center time of the assimilation win-
dow. All observations in the as-
similation window are assimilated.
BEWARE: if you put observations
that occur before the beginning of
the assimilation_period, DART will
error out because it cannot move
the model ‘back in time’ to process
these observations.

variables character(:, 5) A 2D array of strings, 5 per ROMS
variable to be added to the dart state
vector.

1. ROMS field name - must
match netCDF variable name
exactly

2. DART QUANTITY -
must match a valid DART
QTY_xxx exactly

3. minimum physical value - if
none, use ‘NA’

4. maximum physical value - if
none, use ‘NA’

5. case-insensitive string de-
scribing whether to copy
the updated variable into
the ROMS restart file (‘UP-
DATE’) or not (any other
value). There is generally
no point copying diagnostic
variables into the restart file.
Some diagnostic variables
may be useful for computing
forward operators, however.

ve rt_localization_coord integer Vertical coordinate for vertical lo-
calization.

• 1 = model level
• 2 = pressure (in pascals)
• 3 = height (in meters)
• 4 = scale height (unitless)

Currently, only 3 (height) is sup-
ported for ROMS.

A more realistic ROMS namelist is presented here, along with one of the more unusual settings that is generally
necessary when running ROMS. The use_precomputed_FOs_these_obs_types variable needs to list the observation
types that are present in the ROMS verification observation file.

6.134. ROMS 437

DART, Release 9.10.3

&model_nml
roms_filename = 'roms_input.nc'
assimilation_period_days = 1
assimilation_period_seconds = 0
vert_localization_coord = 3
debug = 1
variables = 'temp', 'QTY_TEMPERATURE', 'NA', 'NA', 'update',

'salt', 'QTY_SALINITY', '0.0', 'NA', 'update',
'u', 'QTY_U_CURRENT_COMPONENT', 'NA', 'NA', 'update',
'v', 'QTY_V_CURRENT_COMPONENT', 'NA', 'NA', 'update',
'zeta', 'QTY_SEA_SURFACE_HEIGHT' 'NA', 'NA', 'update'

/
&obs_kind_nml

evaluate_these_obs_types = ''
assimilate_these_obs_types = 'SATELLITE_SSH',

'SATELLITE_SSS',
'XBT_TEMPERATURE',
'CTD_TEMPERATURE',
'CTD_SALINITY',
'ARGO_TEMPERATURE',
'ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST',
'SATELLITE_MICROWAVE_SST',
'SATELLITE_INFRARED_SST'

use_precomputed_FOs_these_obs_types = 'SATELLITE_SSH',
'SATELLITE_SSS',
'XBT_TEMPERATURE',
'CTD_TEMPERATURE',
'CTD_SALINITY',
'ARGO_TEMPERATURE',
'ARGO_SALINITY',
'GLIDER_TEMPERATURE',
'GLIDER_SALINITY',
'SATELLITE_BLENDED_SST',
'SATELLITE_MICROWAVE_SST',
'SATELLITE_INFRARED_SST'

/

6.135 ROSE

Attention: rose works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using rose with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

6.135.1 Overview

The rose model is an atmospheric model for the Mesosphere Lower-Thermosphere (MLT). The DART interface was
developed by Tomoko Matsuo (now at CU-Boulder).

The source code for rose is not distributed with DART, thus the DART/models/rose/work/workshop_setup.csh script
is SUPPOSED to fail without the rose code.

438 Chapter 6. References

DART, Release 9.10.3

The rose model is a research model that is still being developed. The DART components here are simply to help the
rose developers with the DART framework.

As of Mon Mar 22 17:23:20 MDT 2010 the rose project has been substantially streamlined. There is no need for the
trans_time and build_nml routines. dart_to_model has assumed those responsibilities.

6.136 Simple advection

6.136.1 Overview

This simple advection model simulates a wind field using Burger’s Equation with an upstream semi-lagrangian dif-
ferencing on a periodic one-dimensional domain. This diffusive numerical scheme is stable and forcing is provided
by adding in random gaussian noise to each wind grid variable independently at each timestep. The domain mean
value of the wind is relaxed to a constant fixed value set by the namelist parameter mean_wind. The random forcing
magnitude is set by namelist parameter wind_random_amp and the damping of the mean wind is controlled by
parameter wind_damping_rate. An Eulerian option with centered in space differencing is also provided and can
be used by setting namelist parameter lagrangian_for_wind to .false. The Eulerian differencing is both
numerically unstable and subject to shock formation. However, it can sometimes be made stable in assimilation mode
(see recent work by Majda and collaborators).

The model state includes a single passive tracer that is advected by the wind field using semi-lagrangian upstream
differencing. The state also includes a tracer source value at each gridpoint. At each time step, the source is added
into the concentration at each gridpoint. There is also a constant global destruction of tracer that is controlled by
the namelist parameter destruction_rate. The appropriate percentage of tracer is destroyed at each gridpoint at each
timestep.

The model also includes an associated model for the tracer source rate. At each gridpoint, there is a value of the time
mean source rate and a value of the phase offset for a diurnal component of the source rate. The diurnal source
rate has an amplitude that is proportional to the source rate (this proportion is controlled by namelist parameter
source_diurnal_rel_amp). At each grid point, the source is the sum of the source rate plus the appropriate
diurnally varying component. The phase_offset at the gridpoint controls the diurnal phase. The namelist parameter
source_phase_noise controls the amplitude of random gaussian noise that is added into the source phase at each
time step. If source_phase_noise is zero then the phase offset is fixed. Finally, the time mean source rate is
constant in time in the present model version. The time mean source rate controls the amplitude of the diurnal cycle
of the tracer source.

For the simple advection model, DART advances the model, gets the model state and metadata describing this state,
finds state variables that are close to a given location, and does spatial interpolation for model state variables.

The simple advection model has a work/workshop_setup.csh script that compiles and runs an example. This
example is referenced in Section 25 of the DART tutorial. and is intended to provide insight into model/assimilation
behavior. The example may or may not result in good (or even decent!) results!

6.136.2 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
num_grid_points = 10,
grid_spacing_meters = 100000.0,
time_step_days = 0,

(continues on next page)

6.136. Simple advection 439

DART, Release 9.10.3

(continued from previous page)

time_step_seconds = 3600,
mean_wind = 20.0,
wind_random_amp = 0.00027778,
wind_damping_rate = 0.0000027878,
lagrangian_for_wind = .true.,
destruction_rate = 0.000055556,
source_random_amp_frac = 0.00001,
source_damping_rate = 0.0000027878,
source_diurnal_rel_amp = 0.05,
source_phase_noise = 0.0,
output_state_vector = .false.

/

Description of each namelist entry

Item Type Description
num_grid_pointsin-

te-
ger

Number of grid points in model. State vector size is 5 times this number.

grid_spacing_metersin-
te-
ger

Grid spacing in meters.

time_step_days real(r8)Number of days for dimensional timestep, mapped to delta_t.
time_step_secondsreal(r8)Number of seconds for dimensional timestep, mapped to delta_t.
mean_wind real(r8)Base wind velocity (expected value over time) in meters/second.
wind_random_ampreal(r8)Random walk amplitude for wind in meters/second2.
wind_damping_ratereal(r8)Rate of damping towards mean wind value in fraction/second.
la-
grangian_for_wind

log-
ical

Can use Lagrangian (stable) or Eulerian (unstable) scheme for wind.

destruc-
tion_rate

real(r8)Tracer destruction rate in fraction/second.

source_random_amp_fracreal(r8)Random walk amplitude for source as a fraction of mean source (per second)2.
source_damping_ratereal(r8)Damping towards mean source rate in fraction/second.
source_diurnal_rel_ampreal(r8)Relative amplitude of diurnal cycle of source (dimensionless).
source_phase_noisereal(r8)Amplitude of gaussian noise to be added to source phase offset (per second).
out-
put_state_vector

log-
ical

Controls the output to netCDF files. If .true., output the raw dart state vector. If .false.
output the prognostic version (gridded data) for easier plotting (recommended).

6.137 SQG

Attention: sqg works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you are
interested in using sqg with more recent versions of DART, contact DAReS staff to assess the feasibility of an
update. Until that time, you should consider this documentation as out-of-date.

6.137.1 Overview

This is a uniform PV two-surface QG+1 spectral model contributed by Rahul Majahan.

440 Chapter 6. References

DART, Release 9.10.3

The underlying model is described in: Hakim, Gregory J., 2000: Role of Nonmodal Growth and Non-
linearity in Cyclogenesis Initial-Value Problems. J. Atmos. Sci., 57, 2951-2967. doi: 10.1175/1520-
0469(2000)057<2951:RONGAN>2.0.CO;2

6.137.2 Other modules used

types_mod
time_manager_mod
threed_sphere/location_mod
utilities_mod

6.137.3 Public interfaces

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

Optional namelist interface &model_nml may be read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

6.137. SQG 441

DART, Release 9.10.3

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Advances the model for a single time step. The time associated with the initial model state is also input although it is
not used for the computation.

x State vector of length model_size.
time Specifies time of the initial model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Returns metadata about a given element, indexed by index_in, in the model state vector. The location defines where
the state variable is located.

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_type Returns the type (always 1) of the indexed state variable as an optional argument.

call model_interpolate(x, location, itype, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: itype
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given model state, returns the value interpolated to a given location.

442 Chapter 6. References

DART, Release 9.10.3

x A model state vector.
location Location to which to interpolate.
itype Not used.
obs_val The interpolated value from the model.
istatus Quality control information, always returned 0.

var = get_model_time_step()

type(time_type) :: get_model_time_step

Returns the time step (forecast length) of the model;

var Smallest time step of model.

call static_init_model()

Used for runtime initialization of model; reads namelist, initializes model parameters, etc. This is the first call made
to the model by any DART-compliant assimilation routine.

call end_model()

A stub.

call init_time(time)

type(time_type), intent(out) :: time

Returns the time at which the model will start if no input initial conditions are to be used. This is used to spin-up the
model from rest.

time Initial model time.

call init_conditions(x)

6.137. SQG 443

DART, Release 9.10.3

real(r8), dimension(:), intent(out) :: x

Returns default initial conditions for the model; generally used for spinning up initial model states.

x Initial conditions for state vector.

ierr = nc_write_model_atts(ncFileID)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

Function to write model specific attributes to a netCDF file. At present, DART is using the NetCDF format to output
diagnostic information. This is not a requirement, and models could choose to provide output in other formats. This
function writes the metadata associated with the model to a NetCDF file opened to a file identified by ncFileID.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

Writes a copy of the state variables to a netCDF file. Multiple copies of the state for a given time are supported,
allowing, for instance, a single file to include multiple ensemble estimates of the state.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

444 Chapter 6. References

DART, Release 9.10.3

Given a model state, produces a perturbed model state.

state State vector to be perturbed.
pert_state Perturbed state vector: NOT returned.
interf_provided Returned false; interface is not implemented.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

Pass-through to the 3D Sphere locations module. See get_close_maxdist_init() for the documentation of this subrou-
tine.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

Pass-through to the 3D Sphere locations module. See get_close_obs_init() for the documentation of this subroutine.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Pass-through to the 3D Sphere locations module. See get_close_obs() for the documentation of this subroutine.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

6.137. SQG 445

../../location/threed_sphere/location_mod.html#get_close_maxdist_init
../../location/threed_sphere/location_mod.html#get_close_obs_init
../../location/threed_sphere/location_mod.html#get_close_obs

DART, Release 9.10.3

A NULL INTERFACE in this model.

ens_mean State vector containing the ensemble mean.

6.137.4 Namelist

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’ for all our
namelist input.

&model_nml
output_state_vector = .false.
channel_center = 45.0
channel_width = 40.0
assimilation_period_days = 0
assimilation_period_seconds = 21600
debug = .false.

/

This namelist is read in a file called input.nml

Contents Type Description
out-
put_state_vector

log-
ical

If .true. write state vector as a 1D array to the diagnostic output file. If .false. break
state vector up into fields before writing to the outputfile.

channel_center real(r8)Channel center
channel_width real(r8)Channel width
assimila-
tion_period_days

in-
te-
ger

Number of days for timestep

assimila-
tion_period_seconds

in-
te-
ger

Number of seconds for timestep

debug log-
ical

Set to .true. for more output

6.137.5 Files

filename purpose
input.nml to read the model_mod namelist
preassim.nc the time-history of the model state before assimilation
analysis.nc the time-history of the model state after assimilation
dart_log.out [default name] the run-time diagnostic output
dart_log.nml [default name] the record of all the namelists actually USED - contains the default values

446 Chapter 6. References

DART, Release 9.10.3

6.137.6 References

The underlying model is described in:
Hakim, Gregory J., 2000: Role of Nonmodal Growth and Nonlinearity in Cyclogenesis Initial-Value Problems. J.
Atmos. Sci., 57, 2951-2967. doi: 10.1175/1520-0469(2000)057<2951:RONGAN>2.0.CO;2

6.137.7 Private components

N/A

6.138 TIEGCM

Attention: TIEGCM works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using TIEGCM with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.138.1 Overview

This is the DART interface to the Thermosphere Ionosphere Electrodynamic General Circulation Model (TIEGCM),
which is a community model developed at the NCAR High Altitude Observatory. TIEGCM is widely used by the
space physics and aeronomy community and is one of the most well-validated models of the Earth’s upper
atmosphere. DART/TIEGCM has been used to assimilate neutral mass density retrieved from satellite-borne
accelerometers and electon density obtained from ground-based and space-based GNSS signals. Unlike other
ionospheric data assimilation applications, this approach allows simultaneous assimilation of thermospheric and
ionospheric parameters by taking advantage of the coupling of plasma and neutral constituents described in
TIEGCM. DART/TIEGCM’s demonstrated capability to infer under-observed thermospheric parameters from
abundant electron density observations has important implications for the future of upper atmosphere research.

DART is designed so that the TIEGCM source code can be used with no modifications, as DART runs TIEGCM as a
completely separate executable. The TIEGCM source code and restart files are not included in DART, so you must
obtain them from the NCAR High Altitude Observatory (download website). It is strongly recommended that you
become familiar with running TIEGCM before you try to run DART/TIEGCM (See the TIEGCM User’s Guide).
Some assumptions are made about the mannner in which TIEGCM is run: (1) There can only be 1 each of the
TIEGCM primary (restart) and secondary NetCDF history files. The TIEGCM primary history files contain the
prognostic variables necessary to restart the model, while the secondary history files contain diagnostic variables; (2)
The last timestep in the restart file is the only timestep which is converted to a DART state vector, and only the last
timestep in the TIEGCM primary file is ever modified by DART. The TIEGCM variables to be included in a DART
state vector, and possibly updated by the assimilation, are specified in the DART namelist. (Some of the TIEGCM
variables used to compute observation priors need not to be updated.) It is required to associate the TIEGCM variable
name with a ‘generic’ DART counterpart (e.g., NE is QTY_ELECTRON_DENSITY). The composition of the DART
state vector and which variables get updated in the TIEGCM primary file are under complete user control.

In the course of a filtering experiment, it is necessary to make a short forecast with TIEGCM. DART writes out an
ancillary file with the information necessary to advance TIEGCM to the required time. The DART script
advance_model.csh reads this information and modifies the TIEGCM namelist tiegcm.nml such that
TIEGCM runs upto the requested time when DART assimilates the next set of observations. The run scripts
run_filter.csh and run_perfect_model_obs.csh are configured to run under the LSF queueing

6.138. TIEGCM 447

http://www.hao.ucar.edu/modeling/tgcm/tie.php
http://www.hao.ucar.edu/modeling/tgcm/download.php
http://www.hao.ucar.edu/modeling/tgcm/doc/userguide/html

DART, Release 9.10.3

system. The scripting examples exploit an ‘embarassingly-simple’ parallel paradigm in that each TIEGCM instance
is a single-threaded executable and all ensemble members may run simultaneously. To use these run scripts, the
TIECGM executable needs to be compiled with no MPI option. As such, there is an advantage to matching the
ensemble size to the number of tasks. Requesting more tasks than the number of ensemble members may speed up
the DART portion of an assimilation (i.e., filter) but will not make the model advance faster. The filter may
be compiled with MPI and can exploit all available tasks.

6.138.2 Quickstart guide to running

It is important to understand basic DART nomenclature and mechanisms. Please take the time to read and run the
DART tutorial.
Both run_filter.csh and run_perfect_model_obs.csh are heavily internally commented. Please read
and understand the scripts. The overall process is to

1. Specify resources (wall-clock time, number of nodes, tasks that sort of thing).

2. Set shell variables to identify the location of the DART exectuables, the TIEGCM executables, initial ensemble,
etc.

3. Establish a temporary working directory for the experiment.

4. Populate that directory with the initial ensemble and required namelists.

5. Convert each TIEGCM ensemble member to a DART initial conditions file.

6. Run either filter or run_perfect_model_obs.csh.

7. perfect_model_obs will

8. Check for any desired observations at the current time of the model state and create the synthetic observations
for all observation times in the specified assimilation window. If the model needs to be advanced, it then

9. creates a unique run-time directory for the model advance,

10. copies the required information into that directory,

11. conveys the desired forecast stopping time to TIEGCM via the tiegcm.nml and

12. runs a single executable of TIEGCM.

13. Steps 1-5 are repeated until the input DART observation sequence file has been exhausted.

14. filter will

15. Check for any desired observations at the current time of the model state and assimilates all the observations in
the specified assimilation window. If the model needs to be advanced, it then

16. creates a set of run-time directories, one for each task. A single task may be responsible for advancing more
than one TIEGCM instance. If so, each instance is done serially, one after another. See the documentation for
Filter async modes.

17. Copy the required information into that directory.

18. Update the TIEGCM restart file with the most current DART-modified state and convey the desired forecast
stopping time to TIEGCM via the unique tiegcm.nml for this ensemble member.

19. Runs a single executable of TIEGCM.

20. Steps 1-5 are repeated until the input DART observation sequence file

448 Chapter 6. References

DART, Release 9.10.3

What to check when things go wrong

The scripts are designed to send email to the user that contains the run-time output from the script. Check that first. If
that does not provide the information needed, go to the run directory (i.e. CENTRALDIR) and check the dart_log.
out. It usually provides the same information as the email, but sometimes it can help. If that does not help, go to any
of the CENTRALDIR/advance_tempnnnn directories and read the log_advance.nnnn.txt file.

6.138.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
output_state_vector = .false.
tiegcm_restart_file_name = 'tiegcm_restart_p.nc'
tiegcm_secondary_file_name = 'tiegcm_s.nc'
tiegcm_namelist_file_name = 'tiegcm.nml'
assimilation_period_seconds = 3600
estimate_f10_7 = .false.
debug = 1
variables = 'NE', 'QTY_ELECTRON_DENSITY', '1000.0', 'NA',

→˓'restart', 'UPDATE'
'OP', 'QTY_DENSITY_ION_OP', 'NA', 'NA',

→˓'restart', 'UPDATE',
'TI', 'QTY_TEMPERATURE_ION', 'NA', 'NA',

→˓'restart', 'UPDATE',
'TE', 'QTY_TEMPERATURE_ELECTRON', 'NA', 'NA',

→˓'restart', 'UPDATE',
'OP_NM', 'QTY_DENSITY_ION_OP', 'NA', 'NA',

→˓'restart', 'UPDATE',
'O1', 'QTY_ATOMIC_OXYGEN_MIXING_RATIO','0.00001', '0.99999',

→˓'secondary', 'NO_COPY_BACK',
'O2', 'QTY_MOLEC_OXYGEN_MIXING_RATIO', '0.00001', '0.99999',

→˓'secondary', 'NO_COPY_BACK',
'TN', 'QTY_TEMPERATURE', '0.0', '6000.0',

→˓'secondary', 'NO_COPY_BACK',
'ZG', 'QTY_GEOMETRIC_HEIGHT', 'NA', 'NA',

→˓'secondary', 'NO_COPY_BACK',
'VTEC', 'QTY_VERTICAL_TEC', 'NA', 'NA',

→˓'calculate', 'NO_COPY_BACK'
/

6.138. TIEGCM 449

DART, Release 9.10.3

Item Type Description
out-
put_state_vector

log-
ical

If .true. write state vector as a 1D array to the DART diagnostic output files. If .false. break state
vector up into variables before writing to the output files.

tiegcm_restart_file_namechar-
ac-
ter(len=256)

The TIEGCM restart file name.

tiegcm_secondary_file_namechar-
ac-
ter(len=256)

The TIEGCM secondary file name.

tiegcm_namelist_file_namechar-
ac-
ter(len=256)

The TIEGCM namelist file name.

as-
sim-
ila-
tion_period_seconds

in-
te-
ger

This specifies the width of the assimilation window. The current model time is used as the
center time of the assimilation window. All observations in the assimilation window are as-
similated. BEWARE: if you put observations that occur before the beginning of the assimi-
lation_period, DART will error out because it cannot move the model ‘back in time’ to pro-
cess these observations. assimilation_period_seconds must be an integer number of
TIEGCM dynamical timesteps (as specified by tiegcm.nml:STEP) AND be able to be expressed
by tiegcm.nml:STOP. Since STOP has three components: day-of-year, hour, and minute, the
assimilation_period_seconds must be an integer number of minutes.

es-
ti-
mate_f10_7

log-
ical

Switch to specify that the f10.7 index should be estimated by augmenting the DART state vector with
a scalar. The location of the f10.7 index is taken to be longitude of local noon and latitude zero.
WARNING: this is provided with no guarantees. Please read the comments in model_mod.f90
and act accordingly.

de-
bug

in-
te-
ger

Set to 0 (zero) for minimal output. Successively larger values generate successively more output.

vari-
ables

char-
ac-
ter(:,6)

Strings that identify the TIEGCM variables, their DART kind, the min & max values, what file to
read from, and whether or not the file should be updated after the assimilation. A complete list is
found in below.

Vari-
able

Description

variables(:,
1)

Specifies the TIEGCM variable name in the netCDF file.

variables(:,
2)

Specifies the DART kind for that variable.

variables(:,
3)

Specifies a minimum bound (if any) for that variable.

variables(:,
4)

Specifies a maximum bound (if any) for that variable.

variables(:,
5)

Specifies what file the variable should come from. The only valid possibilies are “restart”, “secondary”,
or “calculate”. “restart” will read from whatever file is specified by ` tiegcm_restart_file_name`. “sec-
ondary” will read from whatever file is specified by tiegcm_secondar y_file_name. “calculate”
will call a variable-dependent function – see model_mod.f90 :tiegcm_to_dart_vector() for
the create_vtec() example.

variables(:,
6)

Specifies if the variable should be updated in the TIEGCM restart file. The value may be “UPDATE”
or anything else. If and only if the variable comes from the restart file and variables(:,6) ==
“UPDATE” will the variable be modified in the TIEGCM restart file. No variables in the secondary file are
EVER modified.

The DART kind must be one found in the DART/assimilation_code/modules/observations/

450 Chapter 6. References

DART, Release 9.10.3

obs_kind_mod.f90 after it gets built by preprocess. Most of the upper atmosphere observation kinds are
specified by DART/observations/forward_operators/obs_def_upper_atm_mod.f90, so it should
be specified in the preprocess_nml:input_files variable. Since TIEGCM has an entire class of variables (all
the variables that end in _NM) that are simply 1 dynamical timestep behind the variables at the output time, it is im-
perative that these variables be specified to occur AFTER their counterparts in the DART namelist. This will ensure
that the most current variables are used in the calculation of the forward observation operators.

6.138.4 Other modules used

adaptive_inflate_mod.f90
assim_model_mod.f90
assim_tools_mod.f90
types_mod.f90
cov_cutoff_mod.f90
ensemble_manager_mod.f90
filter.f90
location/threed_sphere/location_mod.f90
[null_,]mpi_utilities_mod.f90
obs_def_mod.f90
obs_kind_mod.f90
obs_model_mod.f90
obs_sequence_mod.f90
random_seq_mod.f90
reg_factor_mod.f90
smoother_mod.f90
sort_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.138. TIEGCM 451

DART, Release 9.10.3

6.138.5 Public interfaces - required

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

get_model_time_step

static_init_model

end_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_state

get_close_maxdist_init

get_close_obs_init

get_close_obs

ens_mean_for_model

6.138.6 Public interfaces - optional

use model_mod, only : tiegcm_to_dart_vector
dart_vector_to_tiegcm

get_f107_value

test_interpolate

A namelist interface &model_nml is defined by the module, and is read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

452 Chapter 6. References

DART, Release 9.10.3

model_size = get_model_size()

integer :: get_model_size

Returns the length of the model state vector. Required.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Since TIEGCM is not called as a subroutine, this is a NULL interface. TIEGCM is advanced as a separate ex-
ecutable - i.e. async == 2. adv_1step only gets called if async == 0. The subroutine must still exist,
but contains no code and will not be called. An error message is issued if an unsupported value of filter,
perfect_model_obs:async is used.

call get_state_meta_data (index_in, location, [, var_kind])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_kind

Given an integer index into the state vector structure, returns the associated location. A second intent(out)
optional argument returns the generic kind of this item, e.g. QTY_MOLEC_OXYGEN_MIXING_RATIO,
QTY_ELECTRON_DENSITY, . . . This interface is required to be functional for all applications.

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_kind The generic kind of the state variable element.

call model_interpolate(x, location, ikind, obs_val, istatus)

real(r8), dimension(:), intent(in) :: x
type(location_type), intent(in) :: location
integer, intent(in) :: ikind
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus

Given a state vector, a location, and a model state variable kind interpolates the state variable field to that location and
returns the value in obs_val. The istatus variable should be returned as 0 unless there is some problem in computing

6.138. TIEGCM 453

DART, Release 9.10.3

the interpolation in which case a positive value should be returned. The ikind variable is one of the KIND parameters
defined in the MODULE obs_kind_mod file and defines which generic kind of item is being interpolated.

x A model state vector.
location Location to which to interpolate.
itype Kind of state field to be interpolated.
obs_val The interpolated value from the model.
istatus Integer value returning 0 for success. Other values can be defined for various failures.

var = get_model_time_step()

type(time_type) :: get_model_time_step

Returns the smallest useful forecast length (time step) of the model. This is set by input.
nml:assimilation_period_seconds and must be an integer number of TIEGCM dynamical timesteps (as
specified by tiegcm.nml:STEP) AND be able to be expressed by tiegcm.nml:STOP. Since STOP has three
components: day-of-year, hour, and minute, the assimilation_period_seconds must be an integer number
of minutes.

var Smallest forecast step of model.

call static_init_model()

Called to do one-time initialization of the model. There are no input arguments. static_init_model reads the
DART and TIEGCM namelists and reads the grid geometry and constructs the shape of the DART vector given the
TIEGCM variables specified in the DART namelist.

call end_model()

Does all required shutdown and clean-up needed.

call init_time(time)

type(time_type), intent(out) :: time

This is a NULL INTERFACE for TIEGCM. If input.nml:start_from_restart == .FALSE., this routine
is called and will generate a fatal error.

454 Chapter 6. References

DART, Release 9.10.3

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

This is a NULL INTERFACE for TIEGCM. If input.nml:start_from_restart == .FALSE., this routine
is called and will generate a fatal error.

ierr = nc_write_model_atts(ncFileID)

integer :: nc_write_model_atts
integer, intent(in) :: ncFileID

This routine writes the model-specific attributes to a netCDF file. This includes the coordinate variables and any
metadata, but NOT the model state vector. We do have to allocate SPACE for the model state vector, but that vari-
able gets filled as the model advances. If input.nml:model_nml:output_state_vector == .TRUE.,
the DART state vector is written as one long vector. If input.nml:model_nml:output_state_vector ==
.FALSE., the DART state vector is reshaped into the original TIEGCM variables and those variables are written.

ncFileID Integer file descriptor to previously-opened netCDF file.
ierr Returns a 0 for successful completion.

ierr = nc_write_model_vars(ncFileID, statevec, copyindex, timeindex)

integer :: nc_write_model_vars
integer, intent(in) :: ncFileID
real(r8), dimension(:), intent(in) :: statevec
integer, intent(in) :: copyindex
integer, intent(in) :: timeindex

This routine writes the DART state vector to a netCDF file. If input.
nml:model_nml:output_state_vector == .TRUE., the DART state vector is written as one long
vector. If input.nml:model_nml:output_state_vector == .FALSE., the DART state vector is
reshaped into the original TIEGCM variables and those variables are written.

ncFileID file descriptor to previously-opened netCDF file.
statevec A model state vector.
copyindex Integer index of copy to be written.
timeindex The timestep counter for the given state.
ierr Returns 0 for normal completion.

6.138. TIEGCM 455

DART, Release 9.10.3

call pert_model_state(state, pert_state, interf_provided)

real(r8), dimension(:), intent(in) :: state
real(r8), dimension(:), intent(out) :: pert_state
logical, intent(out) :: interf_provided

pert_model_state is intended to take a single model state vector and perturbs it in some way to generate initial
conditions for spinning up ensembles. TIEGCM does this is a manner that is different than most other models. The
F10_7 parameter must be included in the DART state vector as a QTY_1D_PARAMETER and gaussian noise is
added to it. That value must be conveyed to the tiegcm namelist and used to advance the model.
Most other models simply add noise with certain characteristics to the model state.

state State vector to be perturbed.
pert_state Perturbed state vector.
interf_providedThis is returned as .TRUE. since the routine exists. A value of .FALSE. would indicate that the

default DART routine should just add noise to every element of state.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist

This is a PASS-THROUGH routine, the actual routine is the default one in location_mod. In distance computations
any two locations closer than the given maxdist will be considered close by the get_close_obs() routine.
get_close_maxdist_init is listed on the use line for the locations_mod, and in the public list for this module,
but has no subroutine declaration and no other code in this module.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(num)

This is a PASS-THROUGH routine. The default routine in the location module precomputes information to accelerate
the distance computations done by get_close_obs(). Like the other PASS-THROUGH ROUTINES it is listed
on the use line for the locations_mod, and in the public list for this module, but has no subroutine declaration and no
other code in this module:

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs_loc, obs_kind, num_close, close_ind [, dist])

456 Chapter 6. References

DART, Release 9.10.3

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs_loc(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

Given a location and kind, compute the distances to all other locations in the obs_loc list. The return values are the
number of items which are within maxdist of the base, the index numbers in the original obs_loc list, and optionally
the distances. The gc contains precomputed information to speed the computations.
This is different than the default location_mod:get_close_obs() in that it is possible to modify the
‘distance’ based on the DART ‘kind’. This allows one to apply specialized localizations.

gc The get_close_type which stores precomputed information about the locations to speed up searching
base_obs_locReference location. The distances will be computed between this location and every other location in

the obs list
base_obs_kindThe kind of base_obs_loc
obs_loc Compute the distance between the base_obs_loc and each of the locations in this list
obs_kindThe corresponding kind of each item in the obs list
num_closeThe number of items from the obs_loc list which are within maxdist of the base location
close_indThe list of index numbers from the obs_loc list which are within maxdist of the base location
dist If present, return the distance between each entry in the close_ind list and the base location. If not

present, all items in the obs_loc list which are closer than maxdist will be added to the list but the
overhead of computing the exact distances will be skipped.

call ens_mean_for_model(ens_mean)

real(r8), dimension(:), intent(in) :: ens_mean

A model-size vector with the means of the ensembles for each of the state vector items. The model should save a local
copy of this data if it needs to use it later to compute distances or other values. This routine is called after each model
advance and contains the updated means.

ens_mean State vector containing the ensemble mean.

6.138. TIEGCM 457

DART, Release 9.10.3

TIEGCM public routines

call tiegcm_to_dart_vector(statevec, model_time)

real(r8), dimension(:), intent(out) :: statevec
type(time_type), intent(out) :: model_time

Read TIEGCM fields from the TIEGCM restart file and/or TIEGCM secondary file and pack them into a DART vector.

statevec variable that contains the DART state vector
model_time variable that contains the LAST TIME in the TIEGCM restart file.

call dart_vector_to_tiegcm(statevec, dart_time)

real(r8), dimension(:), intent(in) :: statevec
type(time_type), intent(in) :: dart_time

Unpacks a DART vector and updates the TIEGCM restart file variables. Only those variables designated as
‘UPDATE’ are put into the TIEGCM restart file. All variables are written to the DART diagnostic files prior to the
application of any “clamping”. The variables are “clamped” before being written to the TIEGCM restart file. The
clamping limits are specified in columns 3 and 4 of &model_nml:variables.
The time of the DART state is compared to the time in the restart file to ensure that we are not improperly updating a
restart file.

statevec Variable containing the DART state vector.
dart_time Variable containing the time of the DART state vector.

var = get_f107_value(x)

real(r8) :: get_f107_value
real(r8), dimension(:), intent(in) :: x

If the F10_7 value is part of the DART state, return that value. If it is not part of the DART state, just return the F10_7
value from the TIEGCM namelist.

x Variable containing the DART state vector.
var The f10_7 value.

458 Chapter 6. References

DART, Release 9.10.3

call test_interpolate(x, locarray)

real(r8), dimension(:), intent(in) :: x
real(r8), dimension(3), intent(in) :: locarray

This function is only used by program model_mod_check and can be modified to suit your
needs. test_interpolate() exercises model_interpolate(), get_state_meta_data(),
static_init_model() and a host of supporting routines.

x variable containing the DART state vector.
locarrayvariable containing the location of interest. locarray(1) is the longitude (in degrees East) locarray(2) is

the latitude (in degrees North) locarray(3) is the height (in meters).

6.138.7 Files

filename purpose
tiegcm.nml TIEGCM control file modified to control starting and stopping.
input.nml to read the model_mod namelist
tiegcm_restart_p.
nc

both read and modified by the TIEGCM model_mod

tiegcm_s.nc read by the GCOM model_mod for metadata purposes.
namelist_updateDART file containing information useful for starting and stopping TIEGCM.

advance_model.csh uses this to update the TIEGCM file tiegcm.nml
dart_log.
out

the run-time diagnostic output

dart_log.
nml

the record of all the namelists (and their values) actually USED

log_advance.nnnn.txtthe run-time output of everything that happens in advance_model.csh. This file will be
in the advance_tempnnnn directory.

6.138.8 References

• Matsuo, T., and E. A. Araujo-Pradere (2011), Role of thermosphere-ionosphere coupling in a global ionosphere
specification, Radio Science, 46, RS0D23, doi:10.1029/2010RS004576

•

• Lee, I. T., T, Matsuo, A. D. Richmond, J. Y. Liu, W. Wang, C. H. Lin, J. L. Anderson, and M. Q. Chen (2012), As-
similation of FORMOSAT-3/COSMIC electron density profiles into thermosphere/Ionosphere coupling model
by using ensemble Kalman filter, Journal of Geophysical Research, 117, A10318, doi:10.1029/2012JA017700

•

• Matsuo, T., I. T. Lee, and J. L. Anderson (2013), Thermospheric mass density specification using an ensemble
Kalman filter, Journal of Geophysical Research, 118, 1339-1350, doi:10.1002/jgra.50162

•

• Lee, I. T., H. F. Tsai, J. Y. Liu, Matsuo, T., and L. C. Chang (2013), Modeling impact of FORMOSAT-
7/COSMIC-2 mission on ionospheric space weather monitoring, Journal of Geophysical Research, 118, 6518-
6523, doi:10.1002/jgra.50538

6.138. TIEGCM 459

http://dx.doi.org/doi:10.1029/2010RS004576
http://dx.doi.org/doi:10.1029/2012JA017700
http://dx.doi.org/doi:10.1002/jgra.50162
http://dx.doi.org/doi:10.1002/jgra.50538

DART, Release 9.10.3

•

• Matsuo, T. (2014), Upper atmosphere data assimilation with an ensemble Kalman filter, in Modeling the
Ionosphere-Thermosphere System, Geophys. Monogr. Ser., vol. 201, edited by J. Huba, R. Schunk, and G.
Khazanov, pp. 273-282, John Wiley & Sons, Ltd, Chichester, UK, doi:10.1002/9781118704417

•

• Hsu, C.-H., T. Matsuo, W. Wang, and J. Y. Liu (2014), Effects of inferring unobserved thermospheric and iono-
spheric state variables by using an ensemble Kalman filter on global ionospheric specification and forecasting,
Journal of Geophysical Research, 119, 9256-9267, doi:10.1002/2014JA020390

•

• Chartier, A., T. Matsuo, J. L. Anderson, G. Lu, T. Hoar, N. Collins, A. Coster, C. Mitchell, L. Paxton, G. Bust
(2015), Ionospheric Data Assimilation and Forecasting During Storms, Journal of Geophysical Research, under
review

•

6.139 WRF-Hydro

6.139.1 Overview

The Weather Research and Forecasting Hydrologic Model (WRF-Hydro) is a community modeling system and frame-
work for hydrologic modeling and model coupling. WRF-Hydro is configured to use the Noah-MP Land Surface
Model to simulate land surface processes. Combined with DART, the facility is called HydroDART.

The development of HydroDART was a collaboration between James McCreight of the Research Applications Lab-
oratory of NCAR and Moha Gharamti of the Data Assimilation Research Section of NCAR.

Streamflow assimilation is an active area of research and provides many interesting research challenges.

6.139.2 Description of this directory within the DART repository

Contents of the $DARTROOT/models/wrf_hydro/:

ensemble_config_files/
Files which configure ensembles in wrfhydropy.

experiment_config_files/
File which configure hydro_dart_py experiments.

hydro_dart_py/
Python package/library for configuring and executing experiments.

python/
Python scripts for various purposes.

R/
R scripts for various purposes.

shell_scripts/
Shell scripts for various purposes.

templates/
Obsolete?

work/
Dart executables build directory and other testing.

model_mod.html
The model_mod documentation.

model_mod.nml

(continues on next page)

460 Chapter 6. References

http://dx.doi.org/doi:10.1002/9781118704417
http://dx.doi.org/doi:10.1002/2014JA020390
http://www.ral.ucar.edu/projects/wrf_hydro/overview

DART, Release 9.10.3

(continued from previous page)

The model_mod namelist (subsumed by work/input.nml)
model_mod.f90

The model_mod code.
noah_hydro_mod.f90

Some model_mod interfaces more specific to Noah?
create_identity_streamflow_obs.f90

For creating identity streamflow obs for the NHDPlus-based
channel-network configuration of WRF-Hydro.

README.rst
This file.

6.139.3 To set up an experiment

To set up an experiment, consult the ./python/experiment directory.

6.139.4 Description of external directories on GLADE

The gridded version of the model has bits/bobs in these directories:

• /gpfs/fs1/work/jamesmcc/domains/public/croton_NY/Gridded/DOMAIN

• /gpfs/fs1/work/jamesmcc/domains/public/croton_NY/Gridded/RESTART

Only the gridcells with flow are retained in the qlink[1,2], hlink variables, so they must be unpacked in EX-
ACTLY the same way as wrfHydo packs them from the grid to their ‘sparse’ representation.

6.139.5 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
assimilation_period_days = 0
assimilation_period_seconds = 3600
lsm_model_choice = 'noahMP'
model_perturbation_amplitude = 0.5
perturb_distribution = 'lognormal'
max_link_distance = 2000.0
streamflow_4_local_multipliers = 0.0001
debug = 0
domain_order = 'hydro'
domain_shapefiles = 'restart.hydro.nc'
lsm_variables = 'SH2O', 'QTY_SOIL_LIQUID_WATER', '0.0', 'NA',

→˓'NOUPDATE',
'SUBSURFACE_FLUX', 'QTY_SUBSURFACE', '0.0', 'NA',

→˓'NOUPDATE',
'OVERLAND_FLUX', 'QTY_OVERLAND_FLOW', '0.0', 'NA',

→˓'NOUPDATE'
hydro_variables = 'qlink1', 'QTY_STREAM_FLOW', '0.0', 'NA',

→˓'UPDATE',
'z_gwsubbas', 'QTY_AQUIFER_WATER', 'NA', 'NA',

→˓'UPDATE'

(continues on next page)

6.139. WRF-Hydro 461

DART, Release 9.10.3

(continued from previous page)

parameters = 'qBucketMult', 'QTY_BUCKET_MULTIPLIER', '0.001', '50',
→˓'UPDATE',

'qSfcLatRunoffMult', 'QTY_RUNOFF_MULTIPLIER', '0.001', '50',
→˓'UPDATE'
/

This namelist is read from a file called input.nml. This namelist provides control over the assimilation period for
the model. All observations within (+/-) half of the assimilation period are assimilated. The assimilation period is
the minimum amount of time the model can be advanced, and checks are performed to ensure that the assimilation
window is a multiple of the NOAH model dynamical timestep.

462 Chapter 6. References

DART, Release 9.10.3

Item Type Description
assimilation_period_days integer The number of days to advance the

model for each assimilation. [de-
fault: 1]

assimilation_period_seconds integer In addition to
assimilation_period_days,
the number of seconds to advance
the model for each assimilation.
[default: 0]

lsm_model_choice character(len=128) case-insensitive specification of the
Land Surface model. Valid values
are noahmp and noahmp_36

model_perturbation_amplitude real(r8) The amount of noise to add when
trying to perturb a single state
vector to create an ensemble. Only
used when input.nml is set with
&filter_nml:start_from_restart
= .false.. See also Generating
the initial ensemble. units: standard
deviation of the specified distribu-
tion the mean at the value of the
state vector element.

perturb_distribution character(len=256) The switch to determine the distri-
bution of the perturbations used to
create an initial ensemble from a
single model state. Valid values are
: lognormal or gaussian

max_link_distance real(r8) The along-the-stream localization
distance. In meters.

streamflow_4_local_multipliers real(r8)
debug integer The switch to specify the run-time

verbosity.
• 0 is as quiet as it gets
• > 1 provides more run-time

messages
• > 5 provides ALL run-time

messages
All values above 0 will also write
a netCDF file of the grid informa-
tion and perform a grid interpolation
test. [default: 0]

domain_order character(len=256):: dimension(3) There are three possible domains to
include in the HydroDART state:
hydro, parameters, lsm This
variable specifies the ordering of the
domains.

domain_shapefiles character(len=256):: dimension(3) There are input files used to deter-
mine the shape of the input variables
and any geographic metadata. They
must be specified in the same order
as listed in domain_order

lsm_variables character(len=32):: dimen-
sion(5,40)

The list of variable names in the
NOAH restart file to use to cre-
ate the DART state vector and their
corresponding DART QUANTITY.
[see example below]

hydro_variables character(len=32):: dimen-
sion(5,40)

The list of variable names in the
channel model file to use to cre-
ate the DART state vector and their
corresponding DART QUANTITY.
[see example below]

parameters character(len=32):: dimen-
sion(5,40)

The list of variable names in the
parameter file to use to create the
DART state vector and their corre-
sponding DART QUANTITY. [see
example below]

6.139. WRF-Hydro 463

DART, Release 9.10.3

The columns of lsm_variables, hydro_variables, and parameters needs some explanation. Starting
with the column 5, UPDATE denotes whether or not to replace the variable with the Posterior (i.e. assimilated) value.
Columns 3 and 4 denote lower and upper bounds that should be enforced when writing to the files used to restart the
model. These limits are not enforced for the DART diagnostic files. Column 2 specifies the relationship between the
netCDF variable name for the model and the corresponding DART QUANTITY.

Support for these QUANTITYs is provided by running preprocess with the following namelist settings:

&preprocess_nml
overwrite_output = .true.

input_obs_kind_mod_file = '../../../assimilation_code/modules/observations/
→˓DEFAULT_obs_kind_mod.F90'

output_obs_kind_mod_file = '../../../assimilation_code/modules/observations/obs_
→˓kind_mod.f90'

input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT_obs_
→˓def_mod.F90'

output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90
→˓'

input_files = '../../../observations/forward_operators/obs_def_
→˓streamflow_mod.f90',

'../../../observations/forward_operators/obs_def_land_
→˓mod.f90',

'../../../observations/forward_operators/obs_def_COSMOS_
→˓mod.f90'
/

6.140 WRF

6.140.1 Overview

DART interface module for the Weather Research and Forecasting (WRF) model. This page documents the details of
the module compiled into DART that interfaces with the WRF data in the state vector.

6.140.2 WRF+DART Tutorial

There is additional overview and tutorial documentation for running a WRF/DART assimilation in WRF/DART
Tutorial Materials for the Manhattan Release.

Please work through the tutorial in order to learn how to run WRF and DART.

Items of Note

• The model_mod reads WRF netCDF files directly to acquire the model state data. The wrf_to_dart and
dart_to_wrf programs are no longer necessary.

• A netCDF file named wrfinput_d01 is required and must be at the same resolution and have the same surface
elevation data as the files converted to create the DART initial conditions. No data will be read from this file,
but the grid information must match exactly.

The model interface code supports WRF configurations with multiple domains. Data for all domains is read into the
DART state vector. During the computation of the forward operators (getting the estimated observation values from
each ensemble member), the search starts in the domain with the highest number, which is generally the finest nest or
one of multiple finer nests. The search stops as soon as a domain contains the observation location, working its way
from largest number to smallest number domain, ending with domain 1. For example, in a 4 domain case the data

464 Chapter 6. References

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

DART, Release 9.10.3

in the state vector that came from wrfinput_d04 is searched first, then wrfinput_d03, wrfinput_d02, and
finally wrfinput_d01.

The forward operator is computed from the first domain grid that contains the lat/lon of the observation. During
the assimilation phase, when the state values are adjusted based on the correlations and assimilation increments, all
points in all domains that are within the localization radius are adjusted, regardless of domain. The impact of an
observation on the state depends only on the distance between the observation and the state vector point, and the
regression coefficient based on the correlation between the distributions of the ensemble of state vector points and the
ensemble of observation forward operator values.

The fields from WRF that are copied into the DART state vector are controlled by namelist. See below for the
documentation on the &model_nml entries. The state vector should include all fields needed to restart a WRF
run. There may be additional fields needed depending on the microphysics scheme selected. See the ascii file
wrf_state_variables_table in the models/wrf directory for a list of fields that are often included in
the DART state.

6.140.3 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
default_state_variables = .true.
wrf_state_variables = 'NULL'
wrf_state_bounds = 'NULL'
num_domains = 1
calendar_type = 3
assimilation_period_seconds = 21600
allow_obs_below_vol = .false.
vert_localization_coord = 3
center_search_half_length = 500000.
center_spline_grid_scale = 10
circulation_pres_level = 80000.0
circulation_radius = 108000.0
sfc_elev_max_diff = -1.0
polar = .false.
periodic_x = .false.
periodic_y = .false.
scm = .false.
allow_perturbed_ics = .false. # testing purposes only

/

Notes for model_nml:
(1) vert_localization_coord must be one of:
1 = model level
2 = pressure
3 = height
4 = scale height
(2) see bottom of this file for explanations of polar, periodic_x,
periodic_y, and scm
(3) calendar = 3 is GREGORIAN, which is what WRF uses.
(4) if 'default_state_variables' is .true. the model_mod.f90 code will
fill the state variable table with the following wrf vars:
U, V, W, PH, T, MU
you must set it to false before you change the value

(continues on next page)

6.140. WRF 465

DART, Release 9.10.3

(continued from previous page)

of 'wrf_state_variables' and have it take effect.
(5) the format for 'wrf_state_variables' is an array of 5 strings:
wrf netcdf variable name, dart QTY_xxx string, type string (must be
unique, will soon be obsolete, we hope), 'UPDATE', and '999' if the
array is part of all domains. otherwise, it is a string with the domain
numbers (e.g. '12' for domains 1 and 2, '13' for domains 1 and 3).
example:
wrf_state_variables='U','QTY_U_WIND_COMPONENT','TYPE_U','UPDATE','999',
'V','QTY_V_WIND_COMPONENT','TYPE_V','UPDATE','999',
'W','QTY_VERTICAL_VELOCITY','TYPE_W','UPDATE','999',
'T','QTY_POTENTIAL_TEMPERATURE','TYPE_T','UPDATE','999',
'PH','QTY_GEOPOTENTIAL_HEIGHT','TYPE_GZ','UPDATE','999',
'MU','QTY_PRESSURE','TYPE_MU','UPDATE','999',
'QVAPOR','QTY_VAPOR_MIXING_RATIO','TYPE_QV','UPDATE','999',
'QCLOUD','QTY_CLOUD_LIQUID_WATER','TYPE_QC','UPDATE','999',
'QRAIN','QTY_RAINWATER_MIXING_RATIO','TYPE_QR','UPDATE','999

→˓',
'U10','QTY_U_WIND_COMPONENT','TYPE_U10','UPDATE','999',
'V10','QTY_V_WIND_COMPONENT','TYPE_V10','UPDATE','999',
'T2','QTY_TEMPERATURE','TYPE_T2','UPDATE','999',
'TH2','QTY_POTENTIAL_TEMPERATURE','TYPE_TH2','UPDATE','999',
'Q2','QTY_SPECIFIC_HUMIDITY','TYPE_Q2','UPDATE','999',
'PSFC','QTY_PRESSURE','TYPE_PS','UPDATE','999',
(6) the format for 'wrf_state_bounds' is an array of 4 strings:
wrf netcdf variable name, minimum value, maximum value, and either
FAIL or CLAMP. FAIL will halt the program if an out of range value
is detected. CLAMP will set out of range values to the min or max.
The special string 'NULL' will map to plus or minus infinity and will
not change the values. arrays not listed in this table will not
be changed as they are read or written.
#
#
polar and periodic_x are used in global wrf. if polar is true, the
grid interpolation routines will wrap over the north and south poles.
if periodic_x is true, when the east and west edges of the grid are
reached the interpolation will wrap. note this is a separate issue
from regional models which cross the GMT line; those grids are marked
as having a negative offset and do not need to wrap; this flag controls
what happens when the edges of the grid are reached.

the scm flag is used for the 'single column model' version of WRF.
it needs the periodic_x and periodic_y flags set to true, in which
case the X and Y directions are periodic; no collapsing of the grid
into a single location like the 3d-spherical polar flag implies.

466 Chapter 6. References

DART, Release 9.10.3

6.140. WRF 467

DART, Release 9.10.3

Description of each namelist entry

Item Type Description
default_state_variables logical If .true., the dart state vector con-

tains the fields U, V, W, PH,
T, MU, in that order, and only
those. Any values listed in the
wrf_state_variables namelist item
will be ignored.

wrf_state_variables character(:, 5) A 2D array of strings, 5 per wrf
array to be added to the dart state
vector. If default_state_variables
is .true., this is ignored. When
.false., this list of array names con-
trols which arrays and the order that
they are added to the state vector.
The 5 strings are:

1. WRF field name - must match
netcdf name exactly

2. DART KIND name -
must match a valid DART
QTY_xxx exactly

3. TYPE_NN - will hopefully
be obsolete, but for now NN
should match the field name.

4. the string UPDATE. at some
future point, non-updatable
fields may become part of the
state vector.

5. A numeric string listing the
domain numbers this array is
part of. The specical string
999 means all domains. For
example, ‘12’ means domains
1 and 2, ‘13’ means 1 and 3.

wrf_state_bounds character(:, 4) A 2D array of strings, 4 per wrf ar-
ray. During the copy of data to and
from the wrf netcdf file, variables
listed here will have minimum and
maximum values enforced. The 4
strings are:

1. WRF field name - must match
netcdf name exactly

2. Minimum – specified as a
string but must be a numeric
value (e.g. ‘0.1’) Can be
‘NULL’ to allow any mini-
mum value.

3. Maximum – specified as a
string but must be a numeric
value (e.g. ‘0.1’) Can be
‘NULL’ to allow any maxi-
mum value.

4. Action – valid strings are
‘CLAMP’, ‘FAIL’. ‘FAIL’
means if a value is found
outside the range, the code
fails with an error. ‘CLAMP’
simply sets the out of range
values to the given minimum
or maximum without error.

num_domains integer Total number of WRF domains, in-
cluding nested domains.

calendar_type integer Calendar type. Should be 3 (GRE-
GORIAN) for WRF.

assimilation_period_seconds integer The time (in seconds) between as-
similations. This is modified if nec-
essary to be an integer multiple of
the underlying model timestep.

periodic_x logical If .true., the grid is periodic in longi-
tude, and points above the last grid
cell and points below the first grid
cell are wrapped. Note this is not
the same as a grid which crosses
the prime meridian. WRF handles
that with an offset in longitude and
points beyond the last grid index are
outside the domain.

periodic_y logical Used for the Single Column Model
to make the grid wrap in Y (see scm
below). This is NOT the same as
wrapping in latitude (see polar be-
low).

polar logical If .true., points at the poles are
wrapped across the grid. It is not
clear this is a good idea since the
grid is degnerate here.

scm logical If .true. the Single Column Model
is assumed. The grid is a single ver-
tical column, and there are 9 cells
arranged in a 3x3 grid. See the
WRF documentation for more infor-
mation on this configuration. peri-
odic_x and periodic_y should also
be .true. in this case.

sfc_elev_max_diff real(r8) If > 0, the maximum difference,
in meters, between an observation
marked as a ‘surface obs’ as the
vertical type (with the surface ele-
vation, in meters, as the numerical
vertical location), and the surface
elevation as defined by the model.
Observations further away from the
surface than this threshold are re-
jected and not assimilated. If the
value is negative, this test is skipped.

allow_obs_below_vol logical If .false. then if an observation with
a vertical coordinate of pressure or
height (i.e. not a surface observa-
tion) is below the lowest 3d sigma
level, it is outside the field volume
and the interpolation routine rejects
it. If this is set to .true. and the ob-
servation is above the surface eleva-
tion but below the lowest field vol-
ume level, the code will extrapolate
downward from data values at levels
1 and 2.

center_search_half_length real(r8) The model_mod now contains two
schemes for searching for a vor-
tex center location. If the old
scheme is compiled in, then this
and the center_spline_grid_scale
namelist items are used. (Search
code for ‘use_old_vortex’.) Half
length (in meters) of a square box
for searching the vortex center.

center_spline_grid_scale integer The model_mod now contains two
schemes for searching for a vortex
center location. If the old scheme
is compiled in, then this and the
center_search_half_length namelist
items are used. (Search code for
‘use_old_vortex’.) Ratio of refining
grid for spline-interpolation in de-
termining the vortex center.

circulation_pres_level real(r8) The model_mod now contains two
schemes for searching for a vor-
tex center location. If the new
scheme is compiled in, then this
and the circulation_radius namelist
items are used. (Search code for
‘use_old_vortex’.) Pressure, in pas-
cals, of the level at which the circu-
lation is computed when searching
for the vortex center.

circulation_radius real(r8) The model_mod now contains two
schemes for searching for a vor-
tex center location. If the new
scheme is compiled in, then this and
the circulation_pres_level namelist
items are used. (Search code for
‘use_old_vortex’.) Radius, in me-
ters, of the circle over which the
circulation calculation is done when
searching for the vortex center.

vert_localization_coord integer Vertical coordinate for vertical lo-
calization.

• 1 = model level
• 2 = pressure (in pascals)
• 3 = height (in meters)
• 4 = scale height (unitless)

allow_perturbed_ics logical allow_perturbed_ics should not be
used in most cases. It is provided
only as a means to create a tiny
ensemble for non-advancing tests.
Creating an initial ensemble is cov-
ered in WRF/DART Tutorial Materi-
als for the Manhattan Release.

468 Chapter 6. References

DART, Release 9.10.3

The following items used to be in the WRF namelist but have been removed. The first 4 are no longer needed, and the
last one was moved to the &dart_to_wrf_nml namelist in 2010. In the Lanai release having these values in the
namelist does not cause a fatal error, but more recent versions of the code will fail if any of these values are specified.
Remove them from your namelist to avoid errors.

Item Type Description
surf_obs logical OBSOLETE – now an error to specify this.
soil_data logical OBSOLETE – now an error to specify this.
h_diab logical OBSOLETE – now an error to specify this.
num_moist_vars integer OBSOLETE – now an error to specify this.
adv_mod_command character(len=32) OBSOLETE – now an error to specify this.

6.140.4 Files

• model_nml in input.nml

• wrfinput_d01, wrfinput_d02, . . . (one file for each domain)

• netCDF output state diagnostics files

6.140.5 References

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

6.141 PROGRAM replace_wrf_fields

6.141.1 Overview

Program to copy various fields from one WRF netCDF file to another.

There are many existing utilities to process netCDF files, i.e. the NCO operators and NCL scripts, which have more
functionality than this program. The only purpose for having this one is that it is a standalone program with no
prerequisites or dependencies other than the netCDF libraries. If you already have other tools available they can do
the same functions that this program does.

This program copies the given data fields from the input file to the output file, failing if their sizes, shapes, or data
types do not match exactly. The expected use is to copy fields which are updated by the WRF program but are not
part of the DART state vector, for example, sea surface temperature or soil fields. After DART has updated the WRF
restart wrfinput_d01 file, this program can be used to update other fields in the file before running the model.

6.141.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&replace_wrf_fields_nml
fieldnames = 'SST',
fieldlist_file = '',
fail_on_missing_field = .true.

(continues on next page)

6.141. PROGRAM replace_wrf_fields 469

http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3/contents.html

DART, Release 9.10.3

(continued from previous page)

debug = .false.,
/

Item Type Description
field-
names

char-
ac-
ter(len=129)
(:)

An array of ASCII field names to be copied from the input netCDF file to the output netCDF
file. The names must match exactly, and the size and shape of the data must be the same in the
input and output files for the data to be copied. If the field names are set here, the fieldlist_file
item must be ‘ ‘.

field-
list_file

char-
ac-
ter(len=129)

An alternative to an explicit list of field names to copy. This is a single string, the name of a file
which contains a single field name, one per line. If this option is set, the fieldnames namelist
item must be ‘ ‘.

fail_on_missing_fieldlogical If any fields in the input list are not found in either the input or output netcdf files, fail if this is
set to true. If false, a warning message will be printed but execution will continue.

debug logical If true, print out debugging messages about which fields are found in the input and output files.

6.141.3 Modules used

types_mod
utilities_mod
parse_args_mod

6.141.4 Files

• input namelist ; input.nml

• Input - output WRF state netCDF files; wrfinput_d01, wrfinput_d02, ...

• fieldlist_file (if specified in namelist)

File formats

This utility works on any pair of netCDF files, doing a simple read and copy from one to the other.

470 Chapter 6. References

DART, Release 9.10.3

Error codes and conditions

Rou-
tine

Message Comment

re-
place_wrf_fields

Usage: echo in-
file.nc outfile.nc |
./replace_wrf_fields

The program did not read 2 filenames from the console.

re-
place_wrf_fields

cannot specify both
fieldnames and field-
list_file

In the namelist you must either specify an explicit list of fieldnames to copy
between the files, or give a single filename which contains the list of field
names. You cannot specify both.

re-
place_wrf_fields

field not found in in-
put/output file

If ‘fail_on_missing_field’ is true in the namelist and a field is not found in
either the input or output file.

re-
place_wrf_fields

field does not match If the input and output files have different sizes, number of dimensions, or data
types, the program cannot copy the data.

6.141.5 References

• none

6.142 PROGRAM wrf_dart_obs_preprocess

6.142.1 Overview

Program to preprocess observations, with specific knowledge of the WRF domain.

This program will exclude all observations outside of the given WRF domain. There are options to exclude or increase
the error values of obs close to the domain boundaries. The program can superob (average) aircraft and satellite wind
obs if they are too dense.

This program can read up to 9 additional obs_seq files and merge their data in with the basic obs_sequence file which
is the main input.

This program can reject surface observations if the elevation encoded in the observation is too different from the wrf
surface elevation.

This program can exclude observations above a specified height or pressure.

This program can overwrite the incoming Data QC value with another.

6.142.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&wrf_obs_preproc_nml

file_name_input = 'obs_seq.old'
file_name_output = 'obs_seq.new'

sonde_extra = 'obs_seq.rawin'

(continues on next page)

6.142. PROGRAM wrf_dart_obs_preprocess 471

DART, Release 9.10.3

(continued from previous page)

land_sfc_extra = 'obs_seq.land_sfc'
metar_extra = 'obs_seq.metar'
marine_sfc_extra = 'obs_seq.marine'
sat_wind_extra = 'obs_seq.satwnd'
profiler_extra = 'obs_seq.profiler'
gpsro_extra = 'obs_seq.gpsro'
acars_extra = 'obs_seq.acars'
trop_cyclone_extra = 'obs_seq.tc'

overwrite_obs_time = .false.

obs_boundary = 0.0
increase_bdy_error = .false.
maxobsfac = 2.5
obsdistbdy = 15.0

sfc_elevation_check = .false.
sfc_elevation_tol = 300.0
obs_pressure_top = 0.0
obs_height_top = 2.0e10

include_sig_data = .true.
tc_sonde_radii = -1.0

superob_aircraft = .false.
aircraft_horiz_int = 36.0
aircraft_pres_int = 2500.0

superob_sat_winds = .false.
sat_wind_horiz_int = 100.0
sat_wind_pres_int = 2500.0

overwrite_ncep_satwnd_qc = .false.
overwrite_ncep_sfc_qc = .false.

/

472 Chapter 6. References

DART, Release 9.10.3

Item Type Description
Generic parameters:
file_name_input character(len=129) The input obs_seq file.
file_name_output character(len=129) The output obs_seq file.

sonde_extra, land_sfc_extra,
metar_extra,
marine_sfc_extra, sat_wind_extra,
profiler_extra, gpsro_extra,
acars_extra, trop_cyclone_extra

character(len=129) The names of additional input
obs_seq files, which if they exist,
will be merged in with the obs
from the file_name_input obs_seq
file. If the files do not exist, they are
silently ignored without error.

overwrite_obs_time logical If true, replace the incoming obser-
vation time with the analysis time.
Not recommended.

Boundary-specific parameters:
obs_boundary real(r8) Number of grid points around do-

main boundary which will be con-
sidered the new extent of the do-
main. Observations outside this
smaller area will be excluded.

increase_bdy_error logical If true, observations near the do-
main boundary will have their ob-
servation error increased by maxob-
sfac.

maxobsfac real(r8) If increase_bdy_error is true, mul-
tiply the error by a ramped factor.
This item sets the maximum error.

obsdistbdy real(r8) If increase_bdy_error is true, this
defines the region around the bound-
ary (in number of grid points) where
the observation error values will be
altered. This is ramped, so when
you reach the innermost points the
change in observation error is 0.0.

Parameters to reduce observation
count :
sfc_elevation_check logical If true, check the height of sur-

face observations against the surface
height in the model.

sfc_elevation_tol real(r8) If sfc_elevation_check is true, the
maximum difference between the
elevation of a surface observation
and the model surface height, in me-
ters. If the difference is larger than
this value, the observation is ex-
cluded.

obs_pressure_top real(r8) Observations with a vertical coordi-
nate in pressure which are located
above this pressure level (i.e. the
obs vertical value is smaller than the
given pressure) will be excluded.

obs_height_top real(r8) Observations with a vertical coor-
dinate in height which are located
above this height value (i.e. the obs
vertical value is larger than the given
height) will be excluded.

Radio/Rawinsonde-specific pa-
rameters :
include_sig_data logical If true, include significant level data

from radiosondes.
tc_sonde_radii real(r8) If greater than 0.0 remove any sonde

observations closer than this dis-
tance in Kilometers to the center of
a Tropical Cyclone.

Aircraft-specific parameters :
superob_aircraft logical If true, average all aircraft obser-

vations within the given radius and
output only a single observation.
Any observation that is used in com-
puting a superob observation is re-
moved from the list and is not used
in any other superob computation.

aircraft_horiz_int real(r8) If superob_aircraft is true, the hori-
zontal distance in Kilometers which
defines the superob area. All other
unused aircraft observations within
this radius will be averaged with the
current observation.

aircraft_vert_int real(r8) If superob_aircraft is true, the verti-
cal distance in Pascals which defines
the maximum separation for includ-
ing an observation in the superob
computation.

Satellite Wind-specific parame-
ters :
superob_sat_winds logical If true, average all sat_wind ob-

servations within the given radius
and output only a single observa-
tion. Any observation that is used
in computing a superob observation
is removed from the list and is not
used in any other superob computa-
tion.

sat_wind_horiz_int real(r8) If superob_sat_winds is true, the
horizontal distance in Kilometers
which defines the superob area. All
other unused sat_wind observations
within this radius will be averaged
with the current observation.

sat_wind_vert_int real(r8) If superob_sat_winds is true, the
vertical distance in Pascals which
defines the maximum separation for
including an observation in the su-
perob computation.

overwrite_ncep_satwnd_qc logical If true, replace the incoming Data
QC value in satellite wind observa-
tions with 2.0.

Surface Observation-specific pa-
rameters :
overwrite_ncep_sfc_qc logical If true, replace the incoming Data

QC value in surface observations
with 2.0.

6.142. PROGRAM wrf_dart_obs_preprocess 473

DART, Release 9.10.3

6.142.3 Modules used

types_mod
obs_sequence_mod
utilities_mod
obs_kind_mod
time_manager_mod
model_mod
netcdf

6.142.4 Files

• Input namelist ; input.nml

• Input WRF state netCDF files; wrfinput_d01, wrfinput_d02, ...

• Input obs_seq files (as specified in namelist)

• Output obs_seq file (as specified in namelist)

File formats

This utility can read one or more obs_seq files and combine them while doing the rest of the processing. It uses the
standard DART observation sequence file format.

6.142.5 References

• Generously contributed by Ryan Torn.

6.143 MODULE model_mod

6.143.1 Overview

Every model that is DART compliant must provide an interface as documented here. The file
models/template/model_mod.f90 provides the fortran interfaces for a minimal implementation meeting
these requirements. When adding a new model to DART you can either start by modifying a model_mod.f90 file
from a similar model already in DART or start with the template file. Either way, the supplied interface must match
these descriptions exactly; no details of the underlying model can impact the interface.
Several of the routines listed below are allowed to be a NULL INTERFACE. This means the subroutine or function
name must exist in this file, but it is ok if it contains no executable code.
A few of the routines listed below are allowed to be a PASS-THROUGH INTERFACE. This means the subroutine or
function name can be listed on the ‘use’ line from the location_mod, and no subroutine or function with that
name is supplied in this file. Alternatively, this file can provide an implementation which calls the underlying routines
from the location_mod and then alters or augments the results based on model-specific requirements.
The system comes with several types of location modules for computing distances appropriately. Two of the ones
most commonly used are for data in a 1D system and for data in a 3D spherical coordinate system. Make the
selection by listing the appropriate choice from location/*/location_mod.f90 in the corresponding
path_names_* file at compilation time.

474 Chapter 6. References

DART, Release 9.10.3

6.143.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
/

Models are free to include a model namelist which can be read when static_init_model is called. A good
example can be found in the lorenz_96 model_mod.f90.

6.143.3 Other modules used

types_mod
time_manager_mod
location_mod (multiple choices here)
utilities_mod
POSSIBLY MANY OTHERS DEPENDING ON MODEL DETAILS

6.143. MODULE model_mod 475

DART, Release 9.10.3

6.143.4 Public interfaces

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

shortest_time_between_assimilations

static_init_model

init_time

init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_copies

get_close_obs

get_close_state

convert_vertical_obs

convert_vertical_state

read_model_time

write_model_time

end_model

A namelist interface &model_nml may be defined by the module, in which case it will be read from file input.
nml. The details of the namelist are always model-specific (there are no generic namelist values).

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer(i8) :: get_model_size

Returns the length of the model state vector. Required.

476 Chapter 6. References

DART, Release 9.10.3

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Does a single timestep advance of the model. The input value of the vector x is the starting condition and x must be
updated to reflect the changed state after a timestep. The time argument is intent in and is used for models that need to
know the date/time to compute a timestep, for instance for radiation computations. This interface is only called if the
namelist parameter async is set to 0 in perfect_model_obs or filter or if the program integrate_model
is to be used to advance the model state as a separate executable. If one of these options is not going to be used
(the model will only be advanced as a separate model-specific executable), this can be a NULL INTERFACE. (The
subroutine name must still exist, but it can contain no code and it will not be called.)

x State vector of length model_size.
time Current time of the model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Given an integer index into the state vector, returns the associated location. An optional argument re-
turns the generic quantity of this item, e.g. QTY_TEMPERATURE, QTY_DENSITY, QTY_SALINITY,
QTY_U_WIND_COMPONENT. This interface is required to be functional for all applications.

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_type The generic quantity of the state variable element.

call model_interpolate(state_handle, ens_size, location, obs_quantity, expected_obs, istatus)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: ens_size
type(location_type), intent(in) :: location
integer, intent(in) :: obs_quantity
real(r8), intent(out) :: expected_obs(ens_size)
integer, intent(out) :: istatus(ens_size)

6.143. MODULE model_mod 477

DART, Release 9.10.3

Given a handle containing information for a state vector, an ensemble size, a location, and a model state vari-
able quantity interpolates the state variable field to that location and returns an ensemble-sized array of values in
expected_obs(:). The istatus(:) array should be 0 for successful ensemble members and a positive
value for failures. The obs_quantity variable is one of the quantity (QTY) parameters defined in the MOD-
ULE obs_kind_mod file and defines the quantity to interpolate. In low-order models that have no notion of kinds of
variables this argument may be ignored. For applications in which only perfect model experiments with identity ob-
servations (i.e. only the value of a particular state variable is observed), this can be a NULL INTERFACE. Otherwise
it is required (which is the most common case).

state_handleThe handle to the state structure containing information about the state vector about which infor-
mation is requested.

ens_size The ensemble size.
location Location to which to interpolate.
obs_quantityQuantity of state field to be interpolated.
expected_obsThe interpolated values from the model.
istatus Integer values return 0 for success. Other positive values can be defined for various failures.

var = shortest_time_between_assimilations()

type(time_type) :: shortest_time_between_assimilations

Returns the smallest increment in time that the model is capable of advancing the state in a given implementation.
The actual value may be set by the model_mod namelist (depends on the model). This interface is required for all
applications.

var Smallest advance time of the model.

call static_init_model()

Called to do one time initialization of the model. As examples, might define information about the model size or
model timestep, read in grid information, read a namelist, set options, etc. In models that require pre-computed static
data, for instance spherical harmonic weights, these would also be computed here. Can be a NULL INTERFACE for
the simplest models.

call init_time(time)

type(time_type), intent(out) :: time

Companion interface to init_conditions. Returns a time that is somehow appropriate for starting up a long
integration of the model. At present, this is only used if the perfect_model_obs namelist parameter
read_input_state_from_file = .false. If this option should not be used in perfect_model_obs,
calling this routine should issue a fatal error.

478 Chapter 6. References

DART, Release 9.10.3

time Initial model time.

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Returns a model state vector, x, that is some sort of appropriate initial condition for starting up a long in-
tegration of the model. At present, this is only used if the perfect_model_obs namelist parameter
read_input_state_from_file = .false. If this option should not be used in perfect_model_obs,
calling this routine should issue a fatal error.

x Initial conditions for state vector.

call nc_write_model_atts(ncFileID, domain_id)

integer, intent(in) :: ncFileID
integer, intent(in) :: domain_id

This routine writes the model-specific attributes to netCDF files that DART creates. This includes coordinate
variables and any metadata, but NOT the actual model state vector. models/template/model_mod.f90
contains code that can be used for any model as-is.
The typical sequence for adding new dimensions, variables, attributes:

NF90_OPEN ! open existing netCDF dataset
NF90_redef ! put into define mode
NF90_def_dim ! define additional dimensions (if any)
NF90_def_var ! define variables: from name, kind, and dims
NF90_put_att ! assign attribute values

NF90_ENDDEF ! end definitions: leave define mode
NF90_put_var ! provide values for variable

NF90_CLOSE ! close: save updated netCDF dataset

ncFileIDInteger file descriptor to previously-opened netCDF file.
domain_idinteger describing the domain (which can be a nesting level, a component model . . .) Models with nested

grids are decomposed into ‘domains’ in DART. The concept is extended to refer to ‘coupled’ models where
one model component may be the atmosphere, another component may be the ocean, or land, or ionosphere
. . . these would be referenced as different domains.

6.143. MODULE model_mod 479

DART, Release 9.10.3

call nc_write_model_vars(ncFileID, domain_id, state_ens_handle [, memberindex] [, timeindex])

integer, intent(in) :: ncFileID
integer, intent(in) :: domain_id
type(ensemble_type), intent(in) :: state_ens_handle
integer, optional, intent(in) :: memberindex
integer, optional, intent(in) :: timeindex

This routine may be used to write the model-specific state vector (data) to a netCDF file. Only used if
model_mod_writes_state_variables = .true.

Typical sequence for adding new dimensions,variables,attributes:

NF90_OPEN ! open existing netCDF dataset
NF90_redef ! put into define mode
NF90_def_dim ! define additional dimensions (if any)
NF90_def_var ! define variables: from name, kind, and dims
NF90_put_att ! assign attribute values

NF90_ENDDEF ! end definitions: leave define mode
NF90_put_var ! provide values for variable

NF90_CLOSE ! close: save updated netCDF dataset

ncFileID file descriptor to previously-opened netCDF file.
domain_id integer describing the domain (which can be a nesting level, a component model . . .)
state_ens_handleThe handle to the state structure containing information about the state vector about which

information is requested.
memberindex Integer index of ensemble member to be written.
timeindex The timestep counter for the given state.

call pert_model_copies(state_ens_handle, ens_size, pert_amp, interf_provided)

type(ensemble_type), intent(inout) :: state_ens_handle
integer, intent(in) :: ens_size
real(r8), intent(in) :: pert_amp
logical, intent(out) :: interf_provided

Given an ensemble handle, the ensemble size, and a perturbation amplitude; perturb the ensemble. Used to generate
initial conditions for spinning up ensembles. If the model_mod does not want to do this, instead allowing the
default algorithms in filter to take effect, interf_provided =&nbps;.false. and the routine can be
trivial. Otherwise, interf_provided must be returned as .true.

state_ens_handle The handle containing an ensemble of state vectors to be perturbed.
ens_size The number of ensemble members to perturb.
pert_amp the amplitude of the perturbations. The interpretation is based on the model-specific im-

plementation.
interf_provided Returns false if model_mod cannot do this, else true.

480 Chapter 6. References

DART, Release 9.10.3

call get_close_obs(gc, base_loc, base_type, locs, loc_qtys, loc_types, num_close, close_ind [, dist] [, state_handle)

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_loc
integer, intent(in) :: base_type
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)
type(ensemble_type), optional, intent(in) :: state_handle

Given a location and quantity, compute the distances to all other locations in the obs list. The return values are the
number of items which are within maxdist of the base, the index numbers in the original obs list, and optionally the
distances. The gc contains precomputed information to speed the computations.
In general this is a PASS-THROUGH ROUTINE. It is listed on the use line for the locations_mod, and in the public
list for this module, but has no subroutine declaration and no other code in this module:

use location_mod, only: get_close_obs

public :: get_close_obs

However, if the model needs to alter the values or wants to supply an alternative implementation it can intercept the
call like so:

use location_mod, only: &
lm_get_close_obs => get_close_obs

public :: get_close_obs

In this case a local get_close_obs() routine must be supplied. To call the original code in the location module
use:

call lm_get_close_obs(gc, base_loc, ...)

This subroutine will be called after get_close_maxdist_init and get_close_obs_init.
In most cases the PASS-THROUGH ROUTINE will be used, but some models need to alter the actual distances
depending on the observation or state vector kind, or based on the observation or state vector location. It is
reasonable in this case to leave get_close_maxdist_init() and get_close_obs_init() as
pass-through routines and intercept only get_close_obs(). The local get_close_obs() can first call the
location mod routine and let it return a list of values, and then inspect the list and alter or remove any entries as
needed. See the CAM and WRF model_mod files for examples of this use.

6.143. MODULE model_mod 481

DART, Release 9.10.3

gc The get_close_type which stores precomputed information about the locations to speed up searching
base_locReference location. The distances will be computed between this location and every other location in

the obs list
base_typeThe DART quantity at the base_loc
locs(:)Compute the distance between the base_loc and each of the locations in this list
loc_qtys(:)The corresponding quantity of each item in the locs list
loc_types(:)The corresponding type of each item in the locs list. This is not available in the default implementation

but may be used in custom implementations.
num_closeThe number of items from the locs list which are within maxdist of the base location
close_ind(:)The list of index numbers from the locs list which are within maxdist of the base location
dist(:)If present, return the distance between each entry in the close_ind list and the base location. If not

present, all items in the obs list which are closer than maxdist will be added to the list but the overhead
of computing the exact distances will be skipped.

state_handleThe handle to the state structure containing information about the state vector about which information
is requested.

call get_close_state(gc, base_loc, base_type, state_loc, state_qtys, state_indx, num_close, close_ind [, dist,
state_handle])

type(get_close_type), intent(in) :: gc
type(location_type), intent(inout) :: base_loc
integer, intent(in) :: base_type
type(location_type), intent(inout) :: state_loc(:)
integer, intent(in) :: state_qtys(:)
integer(i8), intent(in) :: state_indx(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)
type(ensemble_type), optional, intent(in) :: state_handle

Given a location and quantity, compute the distances to all other locations in the state_loc list. The return values
are the number of items which are within maxdist of the base, the index numbers in the original state_loc list, and
optionally the distances. The gc contains precomputed information to speed the computations.
In general this is a PASS-THROUGH ROUTINE. It is listed on the use line for the locations_mod, and in the public
list for this module, but has no subroutine declaration and no other code in this module:

use location_mod, only: get_close_state

public :: get_close_state

However, if the model needs to alter the values or wants to supply an alternative implementation it can intercept the
call like so:

use location_mod, only: &
lm_get_close_state => get_close_state

public :: get_close_state

482 Chapter 6. References

DART, Release 9.10.3

In this case a local get_close_state() routine must be supplied. To call the original code in the location module
use:

call loc_get_close_state(gc, base_loc, ...)

This subroutine will be called after get_close_maxdist_init and get_close_state_init.
In most cases the PASS-THROUGH ROUTINE will be used, but some models need to alter the actual distances
depending on the observation or state vector kind, or based on the observation or state vector location. It is
reasonable in this case to leave get_close_maxdist_init() and get_close_state_init() as
pass-through routines and intercept only get_close_state(). The local get_close_state() can first call
the location mod routine and let it return a list of values, and then inspect the list and alter or remove any entries as
needed. See the CAM and WRF model_mod files for examples of this use.

gc The get_close_type which stores precomputed information about the locations to speed up searching
base_locReference location. The distances will be computed between this location and every other location in

the list
base_typeThe DART quantity at the base_loc
state_loc(:)Compute the distance between the base_loc and each of the locations in this list
state_qtys(:)The corresponding quantity of each item in the state_loc list
state_indx(:)The corresponding DART index of each item in the state_loc list. This is not available in the default

implementation but may be used in custom implementations.
num_closeThe number of items from the state_loc list which are within maxdist of the base location
close_ind(:)The list of index numbers from the state_loc list which are within maxdist of the base location
dist(:) If present, return the distance between each entry in the close_ind list and the base location. If not

present, all items in the state_loc list which are closer than maxdist will be added to the list but the
overhead of computing the exact distances will be skipped.

state_handleThe handle to the state structure containing information about the state vector about which information
is requested.

call convert_vertical_obs(state_handle, num, locs, loc_qtys, loc_types, which_vert, status)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: num
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(in) :: which_vert
integer, intent(out) :: status(:)

Converts the observations to the desired vertical localization coordinate system. Some models (toy models with no
‘real’ observations) will not need this. Most (real) models have observations in one or more coordinate systems
(pressure, height) and the model is generally represented in only one coordinate system. To be able to interpolate the
model state to the observation location, or to compute the true distance between the state and the observation, it is
necessary to convert everything to a single coodinate system.

6.143. MODULE model_mod 483

DART, Release 9.10.3

state_handleThe handle to the state.
num the number of observation locations
locs the array of observation locations
loc_qtys the array of observation quantities.
loc_types the array of observation types.
which_vert the desired vertical coordinate system. There is a table in the location_mod.f90 that relates

integers to vertical coordinate systems.
status Success or failure of the vertical conversion. If istatus = 0, the conversion was a success.

Any other value is a failure.

call convert_vertical_state(state_handle, num, locs, loc_qtys, loc_types, which_vert, status)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: num
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(in) :: which_vert
integer, intent(out) :: status(:)

Converts the state to the desired vertical localization coordinate system. Some models (toy models with no ‘real’
observations) will not need this. To compute the true distance between the state and the observation, it is necessary to
convert everything to a single coodinate system.

state_handleThe handle to the state.
num the number of state locations
locs the array of state locations
loc_qtys the array of state quantities.
loc_types the array of state types.
which_vert the desired vertical coordinate system. There is a table in the location_mod.f90 that relates

integers to vertical coordinate systems.
status Success or failure of the vertical conversion. If istatus = 0, the conversion was a success.

Any other value is a failure.

model_time = read_model_time(filename)

character(len=*), intent(in) :: filename
type(time_type) :: model_time

Reads the valid time of the model state in a netCDF file. There is a default routine in assimilation_code/
modules/io/dart_time_io_mod.f90 that can be used as a pass-through. That routine will read the last
timestep of a ‘time’ variable - which is the same strategy used for reading netCDF files that have multiple timesteps in
them. If your model has some other representation of time (i.e. it does not use a netCDF variable named ‘time’) - you
will have to write this routine.

484 Chapter 6. References

DART, Release 9.10.3

ncid handle to an open netCDF file
dart_time The current time of the model state.

call write_model_time(ncid, dart_time)

integer, intent(in) :: ncid
type(time_type), intent(in) :: dart_time

Writes the assimilation time to a netCDF file. There is a default routine in assimilation_code/modules/io/
dart_time_io_mod.f90 that can be used as a pass-through. If your model has some other representation of time
(i.e. it does not use a netCDF variable named ‘time’) - you will have to write this routine.

ncid handle to an open netCDF file
dart_time The current time of the model state.

call end_model()

Does any shutdown and clean-up needed for model. Can be a NULL INTERFACE if the model has no need to clean
up storage, etc.

6.143.5 Files

• Models are free to read and write files as they see fit.

6.143.6 References

1. none

6.143.7 Private components

N/A

6.144 MODULE model_mod

6.144.1 Overview

Every model that is DART compliant must provide an set of interfaces that will be called by DART code. For models
which have no special code for some of these routines, they can pass through the call to this default module, which
satisfies the call but does no work. To use these routines in a model_mod.f90, add at the top:

6.144. MODULE model_mod 485

DART, Release 9.10.3

use default_model_mod, only : xxx, yyy

and then leave them in the public list.

6.144.2 Namelist

The default routines have no namelist.

6.144.3 Other modules used

types_mod
time_manager_mod
location_mod
utilities_mod
netcdf_utilities_mod
ensemble_manager_mod
dart_time_io_mod

486 Chapter 6. References

DART, Release 9.10.3

6.144.4 Public interfaces

use model_mod, only : get_model_size
adv_1step

get_state_meta_data

model_interpolate

shortest_time_between_assimilations

static_init_model

init_time

fail_init_time

init_conditions

fail_init_conditions

nc_write_model_atts

nc_write_model_vars

pert_model_copies

get_close_obs

get_close_state

convert_vertical_obs

convert_vertical_state

read_model_time

write_model_time

end_model

A note about documentation style. Optional arguments are enclosed in brackets [like this].

model_size = get_model_size()

integer(i8) :: get_model_size

6.144. MODULE model_mod 487

DART, Release 9.10.3

Returns the length of the model state vector as 1. Probably not what you want. The model_mod should set this to the
right size and not use this routine.

model_size The length of the model state vector.

call adv_1step(x, time)

real(r8), dimension(:), intent(inout) :: x
type(time_type), intent(in) :: time

Throws a fatal error. If the model_mod can advance the model it should provide a real routine. This default routine is
intended for use by models which cannot advance themselves from inside filter.

x State vector of length model_size.
time Current time of model state.

call get_state_meta_data (index_in, location, [, var_type])

integer, intent(in) :: index_in
type(location_type), intent(out) :: location
integer, optional, intent(out) :: var_type

Sets the location to missing and the variable type to 0. The model_mod should provide a routine that sets a real location
and a state vector type for the requested item in the state vector.

index_in Index of state vector element about which information is requested.
location The location of state variable element.
var_type The generic quantity of the state variable element.

call model_interpolate(state_handle, ens_size, location, obs_quantity, expected_obs, istatus)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: ens_size
type(location_type), intent(in) :: location
integer, intent(in) :: obs_quantity
real(r8), intent(out) :: expected_obs(ens_size)
integer, intent(out) :: istatus(ens_size)

Sets the expected obs to missing and returns an error code for all obs. This routine should be supplied by the
model_mod.

488 Chapter 6. References

DART, Release 9.10.3

state_handleThe handle to the state structure containing information about the state vector about which infor-
mation is requested.

ens_size The ensemble size.
location Location to which to interpolate.
obs_quantityQuantity of state field to be interpolated.
expected_obsThe interpolated values from the model.
istatus Integer values return 0 for success. Other positive values can be defined for various failures.

var = shortest_time_between_assimilations()

type(time_type) :: shortest_time_between_assimilations

Returns 1 day.

var Smallest advance time of the model.

call static_init_model()

Does nothing.

call init_time(time)

type(time_type), intent(out) :: time

Returns a time of 0.

time Initial model time.

call fail_init_time(time)

type(time_type), intent(out) :: time

Throws a fatal error. This is appropriate for models that cannot start from arbitrary initial conditions.

time NOT SET. Initial model time.

6.144. MODULE model_mod 489

DART, Release 9.10.3

call init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Returns x(:) = 0.0

x Initial conditions for state vector.

call fail_init_conditions(x)

real(r8), dimension(:), intent(out) :: x

Throws a fatal error. This is appropriate for models that cannot start from arbitrary initial conditions.

x NOT SET: Initial conditions for state vector.

call nc_write_model_atts(ncFileID, domain_id)

integer, intent(in) :: ncFileID
integer, intent(in) :: domain_id

Does nothing.

ncFileIDInteger file descriptor to previously-opened netCDF file.
domain_idinteger describing the domain (which can be a nesting level, a component model . . .) Models with nested

grids are decomposed into ‘domains’ in DART. The concept is extended to refer to ‘coupled’ models where
one model component may be the atmosphere, another component may be the ocean, or land, or ionosphere
. . . these would be referenced as different domains.

call nc_write_model_vars(ncFileID, domain_id, state_ens_handle [, memberindex] [, timeindex])

integer, intent(in) :: ncFileID
integer, intent(in) :: domain_id
type(ensemble_type), intent(in) :: state_ens_handle
integer, optional, intent(in) :: memberindex
integer, optional, intent(in) :: timeindex

490 Chapter 6. References

DART, Release 9.10.3

Does nothing

ncFileID file descriptor to previously-opened netCDF file.
domain_id integer describing the domain (which can be a nesting level, a component model . . .)
state_ens_handleThe handle to the state structure containing information about the state vector about which

information is requested.
memberindex Integer index of ensemble member to be written.
timeindex The timestep counter for the given state.

call pert_model_copies(state_ens_handle, ens_size, pert_amp, interf_provided)

type(ensemble_type), intent(inout) :: state_ens_handle
integer, intent(in) :: ens_size
real(r8), intent(in) :: pert_amp
logical, intent(out) :: interf_provided

Returns ‘interface provided’ flag as false, so the default perturb routine in DART will add small amounts of gaussian
noise to all parts of the state vector.

state_ens_handle The handle containing an ensemble of state vectors to be perturbed.
ens_size The number of ensemble members to perturb.
pert_amp the amplitude of the perturbations. The interpretation is based on the model-specific im-

plementation.
interf_provided Returns false if model_mod cannot do this, else true.

call get_close_obs(gc, base_loc, base_type, locs, loc_qtys, loc_types, num_close, close_ind [, dist] [, state_handle)

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_loc
integer, intent(in) :: base_type
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)
type(ensemble_type), optional, intent(in) :: state_handle

Passes the call through to the location module code.

6.144. MODULE model_mod 491

DART, Release 9.10.3

gc The get_close_type which stores precomputed information about the locations to speed up searching
base_locReference location. The distances will be computed between this location and every other location in

the obs list
base_typeThe DART quantity at the base_loc
locs(:)Compute the distance between the base_loc and each of the locations in this list
loc_qtys(:)The corresponding quantity of each item in the locs list
loc_types(:)The corresponding type of each item in the locs list. This is not available in the default implementation

but may be used in custom implementations.
num_closeThe number of items from the locs list which are within maxdist of the base location
close_ind(:)The list of index numbers from the locs list which are within maxdist of the base location
dist(:)If present, return the distance between each entry in the close_ind list and the base location. If not

present, all items in the obs list which are closer than maxdist will be added to the list but the overhead
of computing the exact distances will be skipped.

state_handleThe handle to the state structure containing information about the state vector about which information
is requested.

call get_close_state(gc, base_loc, base_type, state_loc, state_qtys, state_indx, num_close, close_ind, dist,
state_handle)

type(get_close_type), intent(in) :: gc
type(location_type), intent(inout) :: base_loc
integer, intent(in) :: base_type
type(location_type), intent(inout) :: state_loc(:)
integer, intent(in) :: state_qtys(:)
integer(i8), intent(in) :: state_indx(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), intent(out) :: dist(:)
type(ensemble_type), intent(in) :: state_handle

Passes the call through to the location module code.

gc The get_close_type which stores precomputed information about the locations to speed up searching
base_locReference location. The distances will be computed between this location and every other location in

the obs list
base_typeThe DART quantity at the base_loc
state_loc(:)Compute the distance between the base_loc and each of the locations in this list
state_qtys(:)The corresponding quantity of each item in the state_loc list
state_indx(:)The corresponding DART index of each item in the state_loc list. This is not available in the default

implementation but may be used in custom implementations.
num_closeThe number of items from the state_loc list which are within maxdist of the base location
close_ind(:)The list of index numbers from the state_loc list which are within maxdist of the base location
dist(:) If present, return the distance between each entry in the close_ind list and the base location. If not

present, all items in the state_loc list which are closer than maxdist will be added to the list but the
overhead of computing the exact distances will be skipped.

state_handleThe handle to the state structure containing information about the state vector about which information
is requested.

492 Chapter 6. References

DART, Release 9.10.3

call convert_vertical_obs(state_handle, num, locs, loc_qtys, loc_types, which_vert, status)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: num
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(in) :: which_vert
integer, intent(out) :: status(:)

Passes the call through to the location module code.

state_handleThe handle to the state.
num the number of observation locations
locs the array of observation locations
loc_qtys the array of observation quantities.
loc_types the array of observation types.
which_vert the desired vertical coordinate system. There is a table in the location_mod.f90 that relates

integers to vertical coordinate systems.
status Success or failure of the vertical conversion. If istatus = 0, the conversion was a success.

Any other value is a failure.

call convert_vertical_state(state_handle, num, locs, loc_qtys, loc_types, which_vert, status)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: num
type(location_type), intent(in) :: locs(:)
integer, intent(in) :: loc_qtys(:)
integer, intent(in) :: loc_types(:)
integer, intent(in) :: which_vert
integer, intent(out) :: status(:)

Passes the call through to the location module code.

state_handleThe handle to the state.
num the number of state locations
locs the array of state locations
loc_qtys the array of state quantities.
loc_types the array of state types.
which_vert the desired vertical coordinate system. There is a table in the location_mod.f90 that relates

integers to vertical coordinate systems.
status Success or failure of the vertical conversion. If istatus = 0, the conversion was a success.

Any other value is a failure.

6.144. MODULE model_mod 493

DART, Release 9.10.3

model_time = read_model_time(filename)

character(len=*), intent(in) :: filename
type(time_type) :: model_time

Passes the call through to the dart_time_io module code.

filename netCDF file name
model_time The current time of the model state.

call write_model_time(ncid, dart_time)

integer, intent(in) :: ncid
type(time_type), intent(in) :: dart_time

Passes the call through to the dart_time_io module code.

ncid handle to an open netCDF file
dart_time The current time of the model state.

call end_model()

Does nothing.

6.144.5 Files

none

6.144.6 References

1. none

6.144.7 Private components

N/A

494 Chapter 6. References

DART, Release 9.10.3

6.145 Contributors’ guide

6.145.1 Contributing to DART

This section describes how you can contribute your work to DART. Because DART is an open-source project, your
contributions are welcome. Many user-provided contributions have widely benefited the earth science community.

To ensure you aren’t duplicating efforts, contact DAReS staff by emailing dart@ucar.edu before you expend consid-
erable development time.

All of the source code is hosted in the DART GitHub repository.

Before you start developing, you should be familiar with the GitHub workflow. The GitHub worflow involves:

1. Creating a fork of the DART project. A fork is a publically visible copy of the repository that is stored in your
GitHub account.

2. Creating a branch for your feature with an appropriate name for your project, and when you are finished with
your changes you can commit them to your fork. After testing locally on your machine, you can push them to
your fork.

Important: At this point, everyone can see the changes you made on your fork.

When you are ready to begin the conversation about merging your work into the original project (called the
DART repository master), you can create a pull request, which will show your changes. After reviewing and
testing your changes, the pull request will be addressed appropriately by the DART development team.

6.145.2 Keeping your work private until you publish

You may want to keep your work private until it is ready for publication or public viewing.

Follow these steps to hide sensitive code until you are ready to contribute it to DART your work has been published.

1. First, create a public fork of the DART repository by following the steps listed above.

2. Next, create a private repository on GitHub.com. The name of your private repository is arbitrary, since only
you and your private collaborators can see it.

3. Add your public fork as a remote repository of your private repository. Your remote repository can be named
“public_fork” or “upstream.”

4. Add additional team members, if necessary.

5. Instead of pulling and pushing from your public fork, develop on your private repository.

Note: Only three collaborators are allowed on a free non-institutional private repository. DAReS staff can collaborate
with you on your private repository, but keep this three collaborator limit in mind if you using a free GitHub account.

6.145. Contributors’ guide 495

mailto:dart@ucar.edu
https://github.com/NCAR/DART
https://guides.github.com/introduction/flow/
https://help.github.com/en/articles/create-a-repo
https://help.github.com/en/articles/adding-a-remote
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

DART, Release 9.10.3

6.146 Requesting features and reporting bugs

DAReS staff uses GitHub’s project management tools to track development.

To request a feature or to request a bug fix, use the GitHub issue tracker on the DART repository.

Make sure you explore the closed Issues! There’s some good stuff in there.

6.147 Mailing list

DAReS staff send periodic updates to DART users. These updates summarize changes to the DART repository, in-
cluding recent bug fixes.

To subscribe to the DART users mailing list, see Dart-users.

The mailing list is not generally used for discussion so emails are infrequent.

Discussions are encouraged on the GitHub DART Issues forum.

6.148 DART Manhattan Differences from Lanai Release Notes

6.148.1 Overview

This document includes an overview of the changes in the DART system since the Lanai release. For further details
on any of these items look at the HTML documentation for that specific part of the system.

The two most significant changes in the Manhattan version of DART are it can support running models with a state
vector larger than the memory of a single task, removing a limit from the Lanai version of DART. It also reads and
writes NetCDF files directly instead of requiring a conversion from one file to another. There are many other smaller
changes, detailed below.

Manhattan supported models:

• 9var

• bgrid_solo

• cam-fv

• cice

• clm

• cm1

• forced_lorenz_96

• ikeda

• lorenz_63

• lorenz_84

• lorenz_96

• lorenz_96_2scale

• lorenz_04

• mpas_atm (NetCDF overwrite not supported for update_u_from_reconstruct = .true.)

496 Chapter 6. References

https://github.com/NCAR/DART/issues
http://mailman.ucar.edu/mailman/listinfo/dart-users
https://github.com/NCAR/DART/issues

DART, Release 9.10.3

• null_model

• POP

• ROMS

• simple_advection

• wrf

If your model of interest is not on the list consider checking out the ‘Classic’ release of DART, which is Lanai plus
bug fixes and minor enhancements. All models previously supported by Lanai are still in DART ‘Classic’.

These are the major differences between the Lanai/Classic and Manhattan releases of DART:

• Read and write NetCDF restarts

• Calculation of forward operators

• Vertical conversion of observation locations

• Diagnostic file changes

• State Stucture

• model_mod interface changes

• Observation Quantity replaces Kind

• Perturbation of the state

6.148.2 NetCDF restart files

The programs filter and perfect_model_obs now read/write directly from NetCDF files rather than having to run
converters (model_to_dart and dart_to_model). To facilitate this there is a new required call add_domain
which must be called during static_init_model. It can be called multiple times in static_model_mod, e.g. once
for each NetCDF file that contains state variables. There are three ways to add a domain:

• From File : This is for models which have NetCDF restart files

– dom_id = add_domain(template_file, num_vars, var_names, ...)

• From Spec : Creates a skeleton structure for a domain (currently only used in bgrid_solo)

– dom_id = add_domain(num_vars, var_names, ...)

– call add_dimension_to_variable(dom_id, var_id, dim_nam, dim_size)

– call finished_adding_domain

• From Blank : This is for small models such as lorenz_96 and no NetCDF restarts

– dom_id = add_domain(model_size)

For models without NetCDF restarts, use add_domain(model_size). This is the minimum amount of informa-
tion needed by DART to create a netdcf file. For models with NetCDF restarts use add_domain(info_file,
num_vars, var_names) which lets DART read the NetCDF dimensions for a list of variables from a file
(info_file). There are several routines that can be used together to create a domain from a description:
add_domain, add_dimension_to_variable, finished_adding_domain. This can be used in mod-
els such as bgrid_solo where the model is spun up in perfect_model_obs, but the model itself has variable structure
(3D variables with names). See Additions/Changes to existing namelists for how to use NetCDF IO.

Note when using NetCDF restarts, inflation files are NetCDF also. The inflation mean and inflation standard deviation
are in separate files when you use NetCDF restarts. See Netcdf Inflation Files for details.

6.148. DART Manhattan Differences from Lanai Release Notes 497

DART, Release 9.10.3

6.148.3 Calculation of forward operators

The forward operator code in model_mod now operates on an array of state values. See Forward Operator for more
detail about distributed vs. non-distributed forward operators. In distributed mode the forward operators for all ensem-
ble members are calculated in the same model_interpolate call. In non-distributed mode, the forward operators
for all ensemble members a task owns (1-ens_size) are calculated at once.

6.148.4 Vertical conversion of observation and state locations

The vertical conversion of observation locations is done before the assimilation by default. This can be changed by
namelist options.

In Lanai this calculation is done in the assimilation as part of get_close_obs if a model_mod does vertical conver-
sion. Note that not all models do vertical conversion or even have a concept of vertical location, but every model_mod
must have the following routines:

call set_vertical_localization_coord(vert_localization_coord)

call convert_vertical_obs(ens_handle, num, locs, loc_qtys, loc_types, &
which_vert, status)

call convert_vertical_state(ens_handle, num, locs, loc_qtys, loc_indx, &
which_vert, istatus)

If there are NOT multiple choices for a vertical coordinate (e.g. cartesian, one dimensional), all these routines can be
no-ops.

If there are multiple types of vertical coordinates, the convert routines must be able to convert between them. The
‘set_vertical_localization_coord()’ routine should be called from ‘static_init_model()’ to set what localization coordi-
nate type is being requested.

The three routines related to vertical coordinates/localization choices are:

• set_vert_localization_coord - sets the vertical localization coordiate (not required if there is no
vertical conversion)

• convert_vertical_obs - converts observation location to required vertical type (does nothing if there is
no vertical conversion)

• convert_vertical_state - converts state vector location to required vertical type (does nothing if there
is no vertical conversion)

6.148.5 DART diagnostic file changes

For large models DART format diagnostic files (Prior_Diag.nc and Posterior_Diag.nc) have been replaced
with separate files for each copy that would have gone into Prior_Diag.nc and Posterior_Diag.nc.

For Prior_Diag.nc:

• Mean and standard deviation: preassim_mean.nc preassim_sd.nc

• Inflation mean and standard deviation (if state space inflation is used): preassim_priorinf_mean.nc preas-
sim_priorinf_sd.nc

• The number of ensemble members specifed in filter_nml (num_output_state_members): preas-
sim_member_####.nc

For Posterior_Diag.nc:

498 Chapter 6. References

DART, Release 9.10.3

• Mean and standard deviation: postassim_mean.nc postassim_sd.nc

• Inflation mean and standard deviation (if state space inflation is used): postassim_priorinf_mean.nc postas-
sim_priorinf_sd.nc

• The number of ensemble members specifed in filter_nml (num_output_state_members): postas-
sim_member_####.nc

The num_output_state_members are not written separately from the restarts. Note that restarts will have been
clamped if any clamping is applied (given as an arguement to add_domain). This is different to Posterior_Diag.nc
which contains unclamped values. Note also that there are 2 more “stages” which might be output, in addition to the
preassim and postassim discussed here.

For models with multiple domains the filenames above are appended with the domain number, e.g. preassim_mean.nc
becomes preassim_mean_d01.nc, preassim_mean_d02.nc, etc.

Changes to nc_write_model_atts

nc_write_model_atts now has 2 arguments:

• ncid - open netcdf file identifier

• domain_id - domain number being written

The calling code will write the model state, so this routine should only add attributes and optionally, non-state infor-
mation like grid arrays.

This routine will only be called if DART is creating an output NetCDF file from scratch. This may include any of the
preassim, postassim, or output files.

Changes to nc_write_model_vars

nc_write_model_vars is currently unused (and in fact uncalled). It remains for possible future expansion.

6.148.6 Model_mod.f90 interface changes

The model_mod.f90 file contains all code that is specific to any particular model. The code in this file is highly
constrained since these routines are *called by* other code in the DART system. All routine interfaces – the names,
number of arguments, and the names of those arguments – must match the prescribed interfaces exactly. Since not all
required interfaces are needed for every model there are default routines provided that can be referenced from a ‘use’
statement and then the routine name can be put in the module ‘public’ list without any code for that routine having to
be written in the model_mod.f90 file.

The following 18 routines are required:

• static_init_model

• get_model_size

• get_state_meta_data

• shortest_time_between_assimilations

• model_interpolate

• end_model

• nc_write_model_atts

• nc_write_model_vars

6.148. DART Manhattan Differences from Lanai Release Notes 499

DART, Release 9.10.3

• init_time

• init_conditions

• adv_1step

• pert_model_copies

• get_close_obs

• get_close_state

• convert_vertical_obs

• convert_vertical_state

• read_model_time

• write_model_time

Here is an example of code from the top of a model_mod file, including the modules where the default routines live
and the required public list.

use location_mod, only : location_type, get_close_type, &
get_close_obs, get_close_state, &
convert_vertical_obs, convert_vertical_state, &
set_location, set_location_missing, &
set_vertical_localization_coord

use utilities_mod, only : register_module, error_handler, &
E_ERR, E_MSG
! nmlfileunit, do_output, do_nml_file, do_nml_term, &
! find_namelist_in_file, check_namelist_read

use netcdf_utilities_mod, only : nc_add_global_attribute, nc_synchronize_file, &
nc_add_global_creation_time, &
nc_begin_define_mode, nc_end_define_mode

use state_structure_mod, only : add_domain
use ensemble_manager_mod, only : ensemble_type
use dart_time_io_mod, only : read_model_time, write_model_time
use default_model_mod, only : pert_model_copies, nc_write_model_vars

implicit none
private

! required by DART code - will be called from filter and other
! DART executables. interfaces to these routines are fixed and
! cannot be changed in any way.
public :: static_init_model, &

get_model_size, &
get_state_meta_data, &
shortest_time_between_assimilations, &
model_interpolate, &
end_model, &
nc_write_model_atts, &
adv_1step, &
init_time, &
init_conditions

! public but in another module
public :: nc_write_model_vars, &

pert_model_copies, &
get_close_obs, &
get_close_state, &

(continues on next page)

500 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

convert_vertical_obs, &
convert_vertical_state, &
read_model_time, &
write_model_time

6.148.7 Observation quantity replaces kinds

Historically there has been confusion about the terms for specific observation types (which often include the name of
the instrument collecting the data) and the generic quantity that is being measured (e.g. temperature). The previous
terms for these were ‘types’ and ‘kinds’, respectively.

Starting with the Manhattan release we have tried to clarify the terminology and make the interfaces consistent. The
following table lists the original names from the Lanai/Classic release and the replacement routines in Manhattan.

All code that is part of the DART code repository has been updated to use the replacment routines, but if you have
your own utilities written using this code, you will need to update your code. Contact us (dart@ucar.edu) for help if
you have any questions.

public subroutines, existing name on left, replacement on right:

assimilate_this_obs_kind() => assimilate_this_type_of_obs(type_index)
evaluate_this_obs_kind() => evaluate_this_type_of_obs(type_index)
use_ext_prior_this_obs_kind() => use_ext_prior_this_type_of_obs(type_index)

get_num_obs_kinds() => get_num_types_of_obs()
get_num_raw_obs_kinds() => get_num_quantities()

get_obs_kind_index() => get_index_for_type_of_obs(type_name)
get_obs_kind_name() => get_name_for_type_of_obs(type_index)

get_raw_obs_kind_index() => get_index_for_quantity(quant_name)
get_raw_obs_kind_name() => get_name_for_quantity(quant_index)

get_obs_kind_var_type() => get_quantity_for_type_of_obs(type_index)

get_obs_kind() => get_obs_def_type_of_obs(obs_def)
set_obs_def_kind() => set_obs_def_type_of_obs(obs_def)

get_kind_from_menu() => get_type_of_obs_from_menu()

read_obs_kind() => read_type_of_obs_table(file_unit, file_format)
write_obs_kind() => write_type_of_obs_table(file_unit, file_format)

maps obs_seq nums to specific type nums, only used in read_obs_seq:
map_def_index() => map_type_of_obs_table()

removed. apparently unused, and simply calls get_obs_kind_name():
get_obs_name()

apparently unused anywhere, removed:
add_wind_names()
do_obs_form_pair()

public integer parameter constants and subroutine formal argument names,
old on left, new on right:

(continues on next page)

6.148. DART Manhattan Differences from Lanai Release Notes 501

mailto:dart@ucar.edu

DART, Release 9.10.3

(continued from previous page)

KIND_ => QTY_
kind => quantity

TYPE_ => TYPE_
type => type_of_obs

integer parameters:
max_obs_generic => max_defined_quantities (not currently public, leave private)
max_obs_kinds => max_defined_types_of_obs

6.148.8 Additions/changes to existing namelists

Quality_control_nml

These namelist options used to be in filter_nml, now they are in quality_control_nml.

&quality_control_nml
input_qc_threshold = 3,
outlier_threshold = 4,
enable_special_outlier_code = .false.

/

New namelist variables

filter_nml

&filter_nml
single_file_in = .false.,
single_file_out = .false.,

input_state_file_list = 'null',
output_state_file_list = 'null',
input_state_files = 'null',
output_state_files = 'null',

stages_to_write = 'output'
write_all_stages_at_end = .false.
output_restarts = .true.
output_mean = .true.
output_sd = .true.

perturb_from_single_instance = .false.,
perturbation_amplitude = 0.2_r8,

distributed_state = .true.
/

502 Chapter 6. References

DART, Release 9.10.3

Item Type Description
single_file_in logical True means that all of the restart

and inflation information is
read from a single NetCDF
file. False means that you must
specify an input_state_file_list
and DART will be expecting in-
put_{priorinf,postinf}_{mean,sd}.nc
files for inflation.

single_file_out logical True means that all of the restart
and inflation information is writ-
ten to a single NetCDF file.
False means that you must
specify a output_state_files and
DART will be output files spec-
ified in the list. Inflation files
will be written in the form in-
put_{priorinf,postinf}_{mean,sd}.nc.

input_state_files character array This is used for single file input for
low order models. For multiple do-
mains you can specify a file for each
domain. When specifying a list sin-
gle_file_in, single_file_out must be
set to .true.

output_state_files character array This is used for single file input for
low order models. For multiple do-
mains you can specify a file for each
domain. When specifying a list sin-
gle_file_in, single_file_out must be
set to .true.

input_state_file_list character array A list of files containing input model
restarts. For multiple domains you
can specify a file for each do-
main. When specifying a list sin-
gle_file_in, single_file_out must be
set to .false.

output_state_file_list character array A list of files containing output
model restarts. For multiple do-
mains you can specify a file for each
domain. When specifying a list sin-
gle_file_in, single_file_out must be
set to .false.

stages_to_write character array Controls which stages to write.
Case-insensitive input. Currently
there are six options:

• input – writes input mean
and sd only

• forecast – before assimi-
lation, before prior inflation is
applied

• preassim – before assimi-
lation, before prior inflation is
applied

• postassim – after assimi-
lation, before posterior infla-
tion is applied

• analysis – after assimila-
tion, after posterior inflation
is applied

• output – final output from
filter which includes clamp-
ing and inflation

write_all_stages_at_end logical True means output all stages at the
end of filter. This is more mem-
ory intensive but requires less time.
For larger models IO begins to dom-
inate the overall cost of the assimila-
tion, so writting all stages at the end
writes more files in parallel, reduc-
ing the IO time. Filenames are de-
fined in output_state_files.

output_restarts logical True means output a restart
file(s). Filenames are defined in
output_state_files.

output_mean logical True means output a restart file
which contains the ensemble mean
for the stages that have been turned
on in stages_to_write. The
file name will have the stage with
_mean appended.

output_sd logical True means output a restart file
which contains the ensemble
standard deviation for the stages
that have been turned on in
stages_to_write. The file
name will have the stage with _sd
appended.

perturb_from_single_instance logical Read a single file and perturb this to
create an ensemble

perturbation_amplitude float Perturbation amplitude
distribute_state logical True keeps the state distributed

across all tasks throughout the entire
execution of filter.

6.148. DART Manhattan Differences from Lanai Release Notes 503

DART, Release 9.10.3

NetCDF reads and writes:

For input file names:

• give input_state_file_list a file for each domain, each of which contains a list of restart files. An
example of an ‘input_list.txt’ might look something like :

advance_temp1/wrfinput_d01
advance_temp2/wrfinput_d01
advance_temp3/wrfinput_d01
advance_temp4/wrfinput_d01
advance_temp5/wrfinput_d01
....

• if no input_state_file_list is provided then default filenames will be used e.g. in-
put_member_####.nc, input_priorinf_mean.nc, input_priorinf_sd.nc

For output file names:

• give output_state_file_list a file for each domain, each of which contains a list of restart files. An
example of an ‘input_list.txt’ might for WRF might look something like :

wrf_out_d01.0001.nc
wrf_out_d01.0002.nc
wrf_out_d01.0003.nc
wrf_out_d01.0004.nc
wrf_out_d01.0005.nc
....

if you would like to simply like to overwrite your previous data input_list.txt = output_list.txt

• if no output_state_files is provided then default filenames will be used e.g. output_member_####.nc,
output_priorinf_mean.nc, output_priorinf_sd.nc

For small models you may want to use single_file_in, single_file_out which contains all copies needed
to run filter.

State_vector_io_nml

&state_vector_io_nml
buffer_state_io = .false.,
single_precision_output = .false.,

/

When buffer_state_io is .false. the entire state is read into memory at once if .true. variables are read one
at a time. If your model can not fit into memory at once this must be set to .true. .

single_precision_output allows you to run filter in double precision but write NetCDF files in single presi-
sion

504 Chapter 6. References

DART, Release 9.10.3

Assim_tools_nml

&assim_tools_nml
distribute_mean = .true.

/

In previous DART releases, each processor gets a copy of the mean (in ens_mean_for_model). In RMA DART, the
mean is distributed across all processors. However, a user can choose to have a copy of the mean on each processor
by setting distribute_mean = .false. . Note that the mean state is accessed through get_state whether
distribute_mean is .true. or .false.

Removed from existing namelists

&filter_nml
input_qc_threshold = 3,
outlier_threshold = 4,
enable_special_outlier_code = .false.
start_from_restart = .false.
output_inflation = .true.
output_restart = .true.
/

NOTE : output_restart has been renamed to output_restarts. ``output_inflation`` is no longer sup-
ported and only writes inflation files if inf_flavor > 1

&ensemble_manager_nml
single_restart_file_out = .true.
perturbation_amplitude = 0.2,
/

&assim_manager_nml
write_binary_restart_files = .true.,
netCDF_large_file_support = .false.
/

6.148.9 Perturbations

The option to perturb one ensemble member to produce an ensemble is in fil-
ter_nml:perturb_from_single_instance. The model_mod interface is now pert_model_copies
not pert_model_state. Each task perturbs every ensemble member for its own subsection of state. This
is more complicated than the Lanai routine pert_model_state, where a whole state vector is available. If
a model_mod does not provide a perturb interface, filter will do the perturbing with an amplitude set in fil-
ter_nml:perturbation_amplitude. Note the perturb namelist options have been removed from ensemble_manager_nml

6.148. DART Manhattan Differences from Lanai Release Notes 505

DART, Release 9.10.3

6.149 Forward Operator

In Lanai the forward operator is performed by the first ens_size processors. This was because access to the whole
state vector is required for the forward operator, and only the first ens_size processors had the whole state vector.
The distributed state forward operator has a diffent loop structure to Lanai because all processors can do the foward
operator for their observations.

The forward operator is performed in get_obs_ens_distrb_state. A limited call tree for
get_obs_ens_distrb_state is shown below.

The QC_LOOP is in get_obs_ens_distrb_state because the qc across the ensemble is known. This removes
the need for a transpose of the forward_op_ens_handle. Note this is different from Lanai. The window opening and
closing in get_obs_ens_distrb_state is as follows:

1. State window created (processors can access other processor’s memory)

2. Forward operator called

3. QC calculated

4. State window destroyed (processors can no longer access other processor’s memory)

However, there may be occasions where having only the first ens_size processors perform the forward operator. For
example, if the forward operator is being read from a file, or the forward operator uses a large portion of the state. Or
when debugging it may be easier to have 1 task per ensemble member.

To transpose and do the forward operators like Lanai, you can use the filter_nml namelist option distribute_state =
.false. The process is the same as above except the window creation and destruction are transposing the state.

1. State window created (state ensemble is transposed var complete)

2. Forward operator called

3. QC calculated

4. State window destroyed (state ensemble is tranaposed to copy complete)

Note, that if you have fewer tasks than ensemble members some tasks will still be doing vectorized forward operators
(because they own more than one ensemble member).

6.149.1 State access

Model_mod routines no longer get an array containing the state. The state is accessed through the function
get_state.

x = get_state(i, state_handle)

where x is the state at index i. state_handle is passed from above. During model_interpolate get_state returns
an array. Durring get_state returns a single value (the mean state).

506 Chapter 6. References

DART, Release 9.10.3

6.150 Netcdf Inflation Files

The filter_nml now read restart and inflation files directly from NetCDF files

Netcdf inflation files are no longer special files. DART format inflation files were always 2 copies in one file (mean
and standard devation). Taking away this special status of inflation files has the advantage that all copies (restarts,
ensemble mean, ensemble standard deviation, inflation mean, inflation sd, etc.) can all be treated the same for IO
purposes. Since there are two inflation files when reading/writing netcdf the filenames are different to DART format
restart files.

The names of the netcdf inflation files are now fixed.

Input inflation file names

The filter_nml option:

inf_in_file_name = prior_inflation_ics, post_inflation_ics

has been deprecated and for 1 domain filter is expecting to read:

input_{priorinf,postinf}_mean.nc
input_{priorinf,postinf}_sd.nc

For multiple domains filter is expecting to read:

input_{priorinf,postinf}_mean_d01.nc
input_{priorinf,postinf}_sd_d01.nc
input_{priorinf,postinf}_mean_d02.nc
input_{priorinf,postinf}_sd_d02.nc

where d0* is the domain number.

Output inflation file names

The filter_nml option:

inf_out_file_name = prior_inflation_restart, post_inflation_restart

has been deprecated and for 1 domain filter is expecting to read:

output_{priorinf,postinf}_mean.nc
output_{priorinf,postinf}_sd.nc

For multiple domains filter is expecting to write:

prior_inflation_restart_mean_d01
prior_inflation_restart_sd_d01
prior_inflation_restart_mean_d02
prior_inflation_restart_sd_d02

6.150. Netcdf Inflation Files 507

DART, Release 9.10.3

where d0* is the domain number.

6.151 State Stucture

state_structure_mod is a module that holds all the domain, variable, dimension info about the model_mods in the state.
Note it stores only metadata about the state, not the actual state variables themselves.

It is the foundation for two parts of the code:

• Read/write state variables from/to netcdf files

• Calculate DART index from x,y,z variable indices and the inverse: x,y,z, variable from DART index.

Inside static_init_model a call is made to add_domain. This call is required as it communicates to the state
structure that a new domain has been added to the state. The state structure keeps track of the number of domains in
the state. These may be multiple domains in one model_mod, e.g. nested domains in WRF, or multiple model_mods,
e.g. POP coupled with CAM. The minimum amount of information add_domain needs is model size which means
vector of length model size has been added to the state. This equivalent to Lanai where the only information filter has
is that the model is a vector of length model_size. For models with netcdf restart files you supply add_domain with:

• a netcdf file

• the number of variables to read from the file

• the name of the variables

• Optionally:

– the DART KINDS of the variables

– clamping upper and lower bounds

– update/not update this variable

For models that are spun up in perfect_model_obs you can manually describe the variables so you can create netcdf
files containing the varibles in the model state, e.g. Temperature, Surface Pressure, etc. There are 3 steps to this
process:

1. Supply add_domain with almost the same arguments as you would for a netcdf file, but skip the first argue-
ment (netcdf filename).

2. For each variable, loop around the required number of dimensions and call add_dimension_to_variable

3. Call finished_adding_domain to let the state structure know that you have finished adding dimensions
to variables.

6.151.1 DART index

To get the dart index for an i,j,k,variable in a domain use:
get_dart_vector_index(i, j, k, dom_id, var_id)

To get the i,j,k, variable, domain from the dart index use:
get_model_variable_indices(dart_index, i, j, k, var_id, dom_id)

Note That (i,j,k) needs to be converted to (lon, lat, lev) or to whatever grid the variable is on. get_dim_name can
be used to get the dimension name from i,j,k if needed.

508 Chapter 6. References

DART, Release 9.10.3

6.151.2 Unlimited dimensions: io vs model_mod routines

Some model restart files have an unlimited dimension. For IO purposes, e.g. creating netcdf files, the unlimited
dimension is used. For state structure accessor functions called be the model_mod the unlimited dimension is ignored.
So if you have a variable TEMPERATURE in your netcdf file, with dimensions (lon, lat, level, time) the IO routines
will see a 4D variable, but get_num_dims used in model_mod will return 3D.

6.152 Filter async modes

6.152.1 Options for parallelism both in DART and in the model advances

Simplest case, async=0:

This is a single MPI executable, with each call to the model being simply a subroutine call from each MPI task.
To the DART mpi intro document
Parallel advance, async=2:

The filter executable is one MPI program, and the model is a single, sequential executable. Each MPI task uses the
unix “system()” call to invoke a shell script (advance_model.csh) which runs the models as independent programs.
To the DART mpi intro document
Other views of how the async=2 option is structured; these may be more or less helpful.
Parallel advance, async=2:

Parallel advance, async=2, second version:

Parallel model advance, async=2, showing how data is communicated between filter and the model thru intermediate
files. IC are ‘initial condition’ files, UD are ‘updated’ files.

Parallel model advance, async=4:

The filter executable is one MPI program, and the model is also an MPI program. The filter executable communicates
with the runme_filter shell script, which sequentially invokes mpirun to advance each of the model runs, one per
ensemble member, still using advance_model.csh.
To the DART mpi intro document
Parallel model advance, async=4, showing how data is communicated between filter and the model thru intermediate
files. IC are ‘initial condition’ files, UD are ‘updated’ files.

6.152. Filter async modes 509

mpi_intro.html#async0
mpi_intro.html#async2
mpi_intro.html#async4

DART, Release 9.10.3

6.153 Distributed State

The key part of DART is having a state that is physically distributed across processors. The location in memory of any
part of the state vector (which processor and where in memory on that processor) is completely under the control of
filter, not model_mod. This improvement was released in, and was the major reason for, Manhattan.

Implications of this:

• The model_mod never gets a whole state vector to use. So no whole vector for a forward operator, and no whole
vector for the mean.

• The model_mod can not make any assumptions about the order of elements in the state. Currently, filter is
ordering variables in the order they are listed in add_domain and with the dimension order of the netcdf file.

So, how does the model_mod access the state without having the vector and not knowing the state order? - state
accessor routines.

6.153.1 State accessor routines

Getting the dart index

function get_dart_vector_index(i, j, k, dom_id, var_id)

get_dart_vector_index returns the dart index for a given i,j,k of a variable. Note if the variable is 1D j and k are
ignored. If a variable is 2D k is ignored. Note only variables upto 3D are supported, but this could be extended to
support up to 7 dimensional variables (or whatever fortran and netcdf will support).

Getting the state at a given dart index

function x = get_state(index, state_handle)

get_state returns the state x at the given index. state_handle is a derived type which contains the state information.
state_handle is passed to the model_mod from above. get_state returns an array of values (the whole ensemble at
index) during model_mod and a single value (the mean) during get_close_obs or vert_convert.

If you have an array of indices, for example a forward operator which is located in different levels on different ensemble
members you can use get_state_array. An example of this is in CAM when an observation is in pressure, the level an
observation is in depends on the state and so can vary across the ensemble.

subroutine get_state_array(x(:), index(:), state_handle)

The code inside get_state_array will do the minimum amount of communication to get you the indices you need. For
example if

index = [3 4 3 3 4 3]

get_state_array will only do 2 mpi communications and return

x = [state(3), state(4), state(3), state(3), state(4), state(3)]

A limited module diagram is shown below. A -> B means A uses B:

filter_mod and assim_tools_mod take care of making data available for use with get_state. Note get_state will only
return data during model_interpolate, get_close_obs, or vert_convert. If you use get_state outside these routines you
will get and error.

510 Chapter 6. References

DART, Release 9.10.3

Compilation Notes

The Remote Memory Access programming model DART employs uses mpi_windows. There are 2 ways to compile
window mods for mpi and non-mpi filter. This is taken care of automatically when you run quickbuild.csh or an
mkmf_* with -mpi or -nompi. However, if you use mpi, there is a choice of mpi_window mods:

• cray_win_mod.f90

• no_cray_win_mod.f90

We have these two modules that you can swap in your path_names files because the MPI 2 standard states:
Implementors may restrict the use of RMA communication that is synchronized by lock calls to windows in memory
allocated by MPI_ALLOC_MEM.
MPI_ALLOC_MEM uses cray pointers, thus we have supplied a window module that uses cray pointers. However,
no_cray_win_mod.f90 is the default since some versions of gfortran (4.9.0) do not support cray pointers. These
different modules will go away when we swap to MPI 3.

6.154 MODULE location_mod (channel)

6.154.1 Overview

THIS HAS NOT BEEN UPDATED YET - ONLY COPIED FROM 3D SPHERE VERSION

THIS HAS NOT BEEN UPDATED YET - ONLY COPIED FROM 3D SPHERE VERSION

THIS HAS NOT BEEN UPDATED YET - ONLY COPIED FROM 3D SPHERE VERSION

The DART framework needs to be able to compute distances between locations, to pass location information to and
from the model interface code (model_mod.f90), and to be able to read and write location information to files. DART
isolates all this location information into separate modules so that the main algorithms can operate with the same code
independent of whether the model uses latitude/longitude/height, 1D unit sphere coordinates, cylindrical coordinates,
etc. DART provides about half a dozen possible coordinate systems, and others can be added. The most common one
for geophysical models is this one: threed_sphere.

This location module provides a representation of a physical location on a 3-D spherical shell, using latitude and
longitude plus a vertical component with choices of vertical coordinate type such as pressure or height in meters. A
type that abstracts the location is provided along with operators to set, get, read, write, and compute distances between
locations. This is a member of a class of similar location modules that provide the same abstraction for different
represenations of physical space.

Location-independent code

All types of location modules define the same module name location_mod. Therefore, the DART framework and
any user code should include a Fortran 90 use statement of location_mod. The selection of which location module
will be compiled into the program is controlled by which source file name is specified in the path_names_xxx file,
which is used by the mkmf_xxx scripts.

All types of location modules define the same Fortran 90 derived type location_type. Programs that need to pass
location information to subroutines but do not need to interpret the contents can declare, receive, and pass this derived
type around in their code independent of which location module is specified at compile time. Model and location-
independent utilities should be written in this way. However, as soon as the contents of the location type needs to be
accessed by user code then it becomes dependent on the exact type of location module that it is compiled with.

6.154. MODULE location_mod (channel) 511

DART, Release 9.10.3

Usage of distance routines

Regardless of the fact that the distance subroutine names include the string ‘obs’, there is nothing specific to observa-
tions in these routines. They work to compute distances between any set of locations. The most frequent use of these
routines in the filter code is to compute the distance between a single observation and items in the state vector, and
also between a single observation and other nearby observations. However, any source for locations is supported.

In simpler location modules (like the oned version) there is no need for anything other than a brute force search
between the base location and all available state vector locations. However in the case of large geophysical models
which typically use the threed_sphere locations code, the brute-force search time is prohibitive. The location
code pre-processes all locations into a set of bins and then only needs to search the lists of locations in nearby bins
when looking for locations that are within a specified distance.

The expected calling sequence of the get_close routines is as follows:

call get_close_maxdist_init() ! is called before get_close_obs_init()
call get_close_obs_init()

call get_close_obs() ! called many, many times

call get_close_obs_destroy()

In the threed_sphere implementation the first routine initializes some data structures, the second one bins up the
list of locations, and then the third one is called multiple times to find all locations within a given radius of some
reference location, and to optionally compute the exact separation distance from the reference location. The last
routine deallocates the space. See the documentation below for the specific details for each routine.

All 4 of these routines must be present in every location module but in most other versions all but
get_close_obs() are stubs. In this threed_sphere version of the locations module all are fully implemented.

Interaction with model_mod.f90 code

The filter and other DART programs could call the get_close routines directly, but typically do not. They declare
them (in a use statement) to be in the model_mod module, and all model interface modules are required to supply
them. However in many cases the model_mod only needs to contain another use statement declaring them to come
from the location_mod module. Thus they ‘pass through’ the model_mod but the user does not need to provide a
subroutine or any code for them.

However, if the model interface code wants to intercept and alter the default behavior of the get_close routines, it is
able to. Typically the model_mod still calls the location_mod routines and then adjusts the results before passing them
back to the calling code. To do that, the model_mod must be able to call the routines in the location_mod which have
the same names as the subroutines it is providing. To allow the compiler to distinguish which routine is to be called
where, we use the Fortran 90 feature which allows a module routine to be renamed in the use statement. For example,
a common case is for the model_mod to want to supply additions to the get_close_obs() routine only. At the top of the
model_mod code it would declare:

use location_mod, only :: location_get_close_obs => get_close_obs, &
get_close_maxdist_init, get_close_obs_init, &
get_close_obs_destroy

That makes calls to the maxdist_init, init, and destroy routines simply pass through to the code in the location_mod,
but the model_mod must supply a get_close_obs() subroutine. When it wants to call the code in the location_mod it
calls location_get_close_obs().

One use pattern is for the model_mod to call the location get_close_obs() routine without the dist argument. This
returns a list of any potentially close locations without computing the exact distance from the base location. At this
point the list of locations is a copy and the model_mod routine is free to alter the list in any way it chooses: it can

512 Chapter 6. References

DART, Release 9.10.3

change the locations to make certain types of locations appear closer or further away from the base location; it can
convert the vertical coordinates into a common coordinate type so that calls to the get_dist() routine can do
full 3d distance computations and not just 2d (the vertical coordinates must match between the base location and the
locations in the list in order to compute a 3d distance). Then typically the model_mod code loops over the list calling
the get_dist() routine to get the actual distances to be returned to the calling code. To localize in the vertical in a
particular unit type, this is the place where the conversion to that vertical unit should be done.

Horizontal distance only

If horiz_distance_only is .true. in the namelist, then the vertical coordinate is ignored and only the great-circle distance
between the two locations is computed, as if they were both on the surface of the sphere.

If horiz_distance_only is .false. in the namelist then the appropriate normalization constant determines the relative
impact of vertical and horizontal separation. Since only a single localization distance is specified, and the vertical
scales might have very different distance characteristics, the vert_normalization_xxx values can be used to scale the
vertical appropriately to control the desired influence of observations in the vertical.

Precomputation for run-time search efficiency

For search efficiency all locations are pre-binned. The surface of the sphere is divided up into nlon by nlat boxes and
the index numbers of all items (both state vector entries and observations) are stored in the appropriate box. To locate
all points close to a given location, only the locations listed in the boxes within the search radius must be checked.
This speeds up the computations, for example, when localization controls which state vector items are impacted by
any given observation. The search radius is the localization distance and only those state vector items in boxes closer
than the radius to the observation location are processed.

The default values have given good performance on many of our existing model runs, but for tuning purposes the box
counts have been added to the namelist to allow adjustment. By default the code prints some summary information
about how full the average box is, how many are empty, and how many items were in the box with the largest count.
The namelist value output_box_info can be set to .true. to get even more information about the box statistics. The best
performance will be obtained somewhere between two extremes; the worst extreme is all the points are located in just
a few boxes. This degenerates into a (slow) linear search through the index list. The other extreme is a large number
of empty or sparsely filled boxes. The overhead of creating, managing, and searching a long list of boxes will impact
performance. The best performance lies somewhere in the middle, where each box contains a reasonable number of
values, more or less evenly distributed across boxes. The absolute numbers for best performance will certainly vary
from case to case.

For latitude, the nlat boxes are distributed evenly across the actual extents of the data. (Locations are in radians, so
the maximum limits are the poles at −𝜋/2 and +𝜋/2. For longitude, the code automatically determines if the data is
spread around more than half the sphere, and if so, the boxes are distributed evenly across the entire sphere (longitude
range 0 to 2𝜋). If the data spans less than half the sphere in longitude, the actual extent of the data is determined
(including correctly handling the cyclic boundary at 0) and the boxes are distributed only within the data extent.
This simplifies the actual distance calculations since the distance from the minimum longitude box to the maximum
latitude box cannot be shorter going the other way around the sphere. In practice, for a global model the boxes are
evenly distributed across the entire surface of the sphere. For local or regional models, the boxes are distributed only
across the the extent of the local grid.

For efficiency in the case where the boxes span less than half the globe, the 3D location module needs to be able to
determine the greatest longitude difference between a base point at latitude 𝜑𝑠 and all points that are separated from
that point by a central angle of 𝜃. We might also want to know the latitude, 𝜑𝑓 , at which the largest separation occurs.
Note also that an intermediate form below allows the computation of the maximum longitude difference at a particular
latitude.

The central angle between a point at latitude 𝜑𝑠 and a second point at latitude 𝜑𝑓 that are separated in longitude by

6.154. MODULE location_mod (channel) 513

DART, Release 9.10.3

∆𝜆 is:

𝜃 = 𝑐𝑜𝑠−1(𝑠𝑖𝑛𝜑𝑠𝑠𝑖𝑛𝜑𝑓 + 𝑐𝑜𝑠𝜑𝑠𝑐𝑜𝑠𝜑𝑓𝑐𝑜𝑠∆𝜆)

Taking the 𝑐𝑜𝑠 of both sides gives:

𝑐𝑜𝑠𝜃 = (𝑠𝑖𝑛𝜑𝑠𝑠𝑖𝑛𝜑𝑓 + 𝑐𝑜𝑠𝜑𝑠𝑐𝑜𝑠𝜑𝑓𝑐𝑜𝑠∆𝜆)

Solving for 𝑐𝑜𝑠∆𝜆 gives:

𝑐𝑜𝑠∆𝜆 =
𝑎− 𝑏𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓

𝑐𝑜𝑠∆𝜆 =
𝑎

𝑐𝑠𝑒𝑐𝜑𝑓
− 𝑏

𝑐𝑡𝑎𝑛𝜑𝑓

where 𝑎 = 𝑐𝑜𝑠𝜃, 𝑏 = 𝑠𝑖𝑛𝜑𝑠, and 𝑐 = 𝑐𝑜𝑠𝜑𝑠. We want to maximize ∆𝜆 which implies minimizing 𝑐𝑜𝑠∆𝜆 subject to
constraints.

Taking the derivative with respect to 𝜑𝑓 gives:

𝑑𝑐𝑜𝑠∆𝜆

𝑑𝜑𝑓
=

𝑎

𝑐𝑠𝑒𝑐𝜑𝑓 𝑡𝑎𝑛𝜑𝑓
− 𝑏

𝑐𝑠𝑒𝑐2𝜑𝑓
= 0

Factoring out 𝑠𝑒𝑐𝜑𝑓 which can never be 0 and using the definitions of 𝑠𝑒𝑐 and 𝑡𝑎𝑛 gives:

𝑎𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓
− 𝑏

𝑐𝑐𝑜𝑠𝜑𝑓
= 0

Solving in the constrained range from 0 to 𝜋/2 gives:

𝑠𝑖𝑛𝜑𝑓 =
𝑏

𝑎
=

𝑠𝑖𝑛𝜑𝑠

𝑐𝑜𝑠𝜃

So knowing base point (𝜑𝑠, 𝜆𝑠), latitude 𝜑𝑓 , and distance 𝜃 we can use the great circle equation to find the longitude
difference at the greatest separation point:

∆𝜆 = 𝑐𝑜𝑠−1

(︂
𝑎− 𝑏𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓

)︂
Note that if the angle between the base point and a pole is less than or equal to the central angle, all longitude
differences will occur as the pole is approached.

6.154.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand & and terminate with a slash
/. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&location_nml
use_octree = .false.
nboxes = 1000
maxdepth = 4
filled = 10
output_box_info = .false.
print_box_level = 0
compare_to_correct = .false.

/

514 Chapter 6. References

DART, Release 9.10.3

Items in this namelist either control the way in which distances are computed and/or influence the code performance.

Item Type Description
use_octreelog-

ical
There are two variations of search code. For now, this must be set to .false.

nboxes in-
te-
ger

An optimization parameter which controls how many boxes the space is divided up
into for precomputing nearby points. Larger numbers use more memory but may
make searching faster if the model contains a large grid.

filled in-
te-
ger

An optimization parameter for the octree code. Set the lower item count limit where
a box no longer splits.

out-
put_box_info

log-
ical

If true, print more details about the distribution of locations across the array of boxes.

print_box_levelin-
te-
ger

If output_box_info is true, controls the amount of output.

com-
pare_to_correct

log-
ical

If true do an exhaustive (and slow) search to ensure the results are the same as using
optimized search code. Should only be used for debugging.

6.154.3 Other modules used

types_mod
utilities_mod
random_seq_mod

6.154.4 Public interfaces

use location_mod, only : location_type
get_close_type
get_location
set_location
write_location
read_location
interactive_location
set_location_missing
query_location
get_close_maxdist_init
get_close_obs_init
get_close_obs
get_close_obs_destroy
get_dist
continues on next page

6.154. MODULE location_mod (channel) 515

DART, Release 9.10.3

Table 4 – continued from previous page
LocationDims
LocationName
LocationLName
horiz_dist_only
vert_is_undef
vert_is_surface
vert_is_pressure
vert_is_scale_height
vert_is_level
vert_is_height
VERTISUNDEF
VERTISSURFACE
VERTISLEVEL
VERTISPRESSURE
VERTISHEIGHT
VERTISSCALEHEIGHT
operator(==)
operator(/=)

Namelist interface &location_nml must be read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type location_type

private
real(r8) :: lon, lat, vloc
integer :: which_vert

end type location_type

Provides an abstract representation of physical location on a three-d spherical shell.

Compo-
nent

Description

lon longitude in radians
lat latitude in radians
vloc vertical location, units as selected by which_vert
which_vert type of vertical location: -2=no specific vert location; -1=surface; 1=level; 2=pressure; 3=height,

4=scale height

The vertical types have parameters defined for them so they can be referenced by name instead of number.

type get_close_type

516 Chapter 6. References

DART, Release 9.10.3

private
integer :: num
real(r8) :: maxdist
integer, pointer :: lon_offset(:, :)
integer, pointer :: obs_box(:)
integer, pointer :: count(:, :)
integer, pointer :: start(:, :)

end type get_close_type

Provides a structure for doing efficient computation of close locations.

Compo-
nent

Description

num Number of locations in list
maxdist Threshhold distance. Anything closer is close.
lon_offset Dimensioned nlon by nlat. For a given offset in longitude boxes and difference in latitudes, gives max

distance from base box to a point in offset box.
obs_box Dimensioned num. Gives index of what box each location is in.
count Dimensioned nlon by nlat. Number of obs in each box.
start Dimensioned nlon by nlat. Index in straight storage list where obs in each box start.

var = get_location(loc)

real(r8), dimension(3) :: get_location
type(location_type), intent(in) :: loc

Extracts the longitude and latitude (converted to degrees) and the vertical location from a location type and returns in
a 3 element real array.

get_location The longitude and latitude (in degrees) and vertical location
loc A location type

var = set_location(lon, lat, vert_loc, which_vert)

type(location_type) :: set_location
real(r8), intent(in) :: lon
real(r8), intent(in) :: lat
real(r8), intent(in) :: vert_loc
integer, intent(in) :: which_vert

Returns a location type with the input longitude and latitude (input in degrees) and the vertical location of type specified
by which_vert.

6.154. MODULE location_mod (channel) 517

DART, Release 9.10.3

set_location A location type
lon Longitude in degrees
lat Latitude in degrees
vert_loc Vertical location consistent with which_vert
which_vert The vertical location type

call write_location(locfile, loc [, fform, charstring])

integer, intent(in) :: locfile
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: fform
character(len=*), optional, intent(out) :: charstring

Given an integer IO channel of an open file and a location, writes the location to this file. The fform argument
controls whether write is “FORMATTED” or “UNFORMATTED” with default being formatted. If the final charstring
argument is specified, the formatted location information is written to the character string only, and the locfile
argument is ignored.

locfile the unit number of an open file.
loc location type to be written.
fform Format specifier (“FORMATTED” or “UNFORMATTED”). Default is “FORMATTED” if not spec-

ified.
charstring Character buffer where formatted location string is written if present, and no output is written to the

file unit.

var = read_location(locfile [, fform])

type(location_type) :: read_location
integer, intent(in) :: locfile
character(len=*), optional, intent(in) :: fform

Reads a location_type from a file open on channel locfile using format fform (default is formatted).

read_location Returned location type read from file
locfile Integer channel opened to a file to be read
fform Optional format specifier (“FORMATTED” or “UNFORMATTED”). Default “FORMAT-

TED”.

call interactive_location(location [, set_to_default])

518 Chapter 6. References

DART, Release 9.10.3

type(location_type), intent(out) :: location
logical, optional, intent(in) :: set_to_default

Use standard input to define a location type. With set_to_default true get one with all elements set to 0.

location Location created from standard input
set_to_default If true, sets all elements of location type to 0

var = query_location(loc [, attr])

real(r8) :: query_location
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: attr

Returns the value of which_vert, latitude, longitude, or vertical location from a location type as selected by the string
argument attr. If attr is not present or if it is ‘WHICH_VERT’, the value of which_vert is converted to real and returned.
Otherwise, attr=’LON’ returns longitude, attr=’LAT’ returns latitude and attr=’VLOC’ returns the vertical location.

query_location Returns longitude, latitude, vertical location, or which_vert (converted to real)
loc A location type
attr Selects ‘WHICH_VERT’, ‘LON’, ‘LAT’ or ‘VLOC’

var = set_location_missing()

type(location_type) :: set_location_missing

Returns a location with all elements set to missing values defined in types module.

set_location_missing A location with all elements set to missing values

call get_close_maxdist_init(gc,maxdist, [maxdist_list])

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist
real(r8), intent(in), optional :: maxdist_list(:)

Sets the threshhold distance. maxdist is in units of radians. Anything closer than this is deemed to be close.
This routine must be called first, before the other get_close routines. It allocates space so it is necessary to call
get_close_obs_destroy when completely done with getting distances between locations.

If the last optional argument is not specified, maxdist applies to all locations. If the last argument is specified, it must
be a list of exactly the length of the number of specific types in the obs_kind_mod.f90 file. This length can be queried

6.154. MODULE location_mod (channel) 519

DART, Release 9.10.3

with the get_num_types_of_obs() function to get count of obs types. It allows a different maximum distance to be set
per base type when get_close() is called.

gc Data for efficiently finding close locations.
maxdistAnything closer than this number of radians is a close location.
maxdistIf specified, must be a list of real values. The length of the list must be exactly the same length as the number

of observation types defined in the obs_def_kind.f90 file. (See get_num_types_of_obs() to get count of obs
types.) The values in this list are used for the obs types as the close distance instead of the maxdist argument.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), dimension(:) intent(in) :: obs

Initialize storage for efficient identification of locations close to a given location. Allocates storage for keeping track
of which ‘box’ each location in the list is in. Must be called after get_close_maxdist_init, and the list
of locations here must be the same as the list of locations passed into get_close_obs(). If the list changes,
get_close_obs_destroy() must be called, and both the initialization routines must be called again. It allocates
space so it is necessary to call get_close_obs_destroy when completely done with getting distances between
locations.

gc Structure that contains data to efficiently find locations close to a given location.
num The number of locations in the list.
obs The locations of each element in the list, not used in 1D implementation.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind, dist)

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), optional, dimension(:), intent(out) :: dist

Given a single location and a list of other locations, returns the indices of all the locations close to the single one along
with the number of these and the distances for the close ones. The list of locations passed in via the obs argument
must be identical to the list of obs passed into the most recent call to get_close_obs_init(). If the list of
locations of interest changes get_close_obs_destroy() must be called and then the two initialization routines
must be called before using get_close_obs() again.

If called without the optional dist argument, all locations that are potentially close are returned, which is likely a
superset of the locations that are within the threshold distance specified in the get_close_maxdist_init()
call. This can be useful to collect a list of potential locations, and then to convert all the vertical coordinates into one

520 Chapter 6. References

../../modules/observations/obs_kind_mod.html#get_num_types_of_obs
../../modules/observations/obs_kind_mod.html#get_num_types_of_obs

DART, Release 9.10.3

consistent unit (pressure, height in meters, etc), and then the list can be looped over, calling get_dist() directly to get
the exact distance, either including vertical or not depending on the setting of horiz_dist_only.

gc Structure to allow efficient identification of locations close to a given location.
base_obs_loc Single given location.
base_obs_kind Kind of the single location.
obs List of locations from which close ones are to be found.
obs_kind Kind associated with locations in obs list.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

call get_close_obs_destroy(gc)

type(get_close_type), intent(inout) :: gc

Releases memory associated with the gc derived type. Must be called whenever the list of locations changes, and then
get_close_maxdist_init and get_close_obs_init must be called again with the new locations list.

gc Data for efficiently finding close locations.

var = get_dist(loc1, loc2, [, kind1, kind2, no_vert])

real(r8) :: get_dist
type(location_type), intent(in) :: loc1
type(location_type), intent(in) :: loc2
integer, optional, intent(in) :: kind1
integer, optional, intent(in) :: kind2
logical, optional, intent(in) :: no_vert

Returns the distance between two locations in radians. If horiz_dist_only is set to .TRUE. in the locations
namelist, it computes great circle distance on sphere. If horiz_dist_only is false, then it computes an ellipsoidal
distance with the horizontal component as above and the vertical distance determined by the types of the locations and
the normalization constants set by the namelist for the different vertical coordinate types. The vertical normalization
gives the vertical distance that is equally weighted as a horizontal distance of 1 radian. If no_vert is present, it overrides
the value in the namelist and controls whether vertical distance is included or not.

The kind arguments are not used by the default location code, but are available to any user-supplied distance routines
which want to do specialized calculations based on the kinds associated with each of the two locations.

loc1 First of two locations to compute distance between.
loc2 Second of two locations to compute distance between.
kind1 DART kind associated with location 1.
kind2 DART kind associated with location 2.
no_vert If true, no vertical component to distance. If false, vertical component is included.
var distance between loc1 and loc2.

6.154. MODULE location_mod (channel) 521

DART, Release 9.10.3

var = vert_is_undef(loc)

logical :: vert_is_undef
type(location_type), intent(in) :: loc

Returns true if which_vert is set to undefined, else false. The meaning of ‘undefined’ is specific; it means there is no
particular vertical location associated with this type of measurement; for example a column-integrated value.

vert_is_undef Returns true if vertical coordinate is set to undefined.
loc A location type

var = vert_is_surface(loc)

logical :: vert_is_surface
type(location_type), intent(in) :: loc

Returns true if which_vert is for surface, else false.

vert_is_surface Returns true if vertical coordinate type is surface
loc A location type

var = vert_is_pressure(loc)

logical :: vert_is_pressure
type(location_type), intent(in) :: loc

Returns true if which_vert is for pressure, else false.

vert_is_pressure Returns true if vertical coordinate type is pressure
loc A location type

var = vert_is_scale_height(loc)

logical :: vert_is_scale_height
type(location_type), intent(in) :: loc

Returns true if which_vert is for scale_height, else false.

522 Chapter 6. References

DART, Release 9.10.3

vert_is_scale_height Returns true if vertical coordinate type is scale_height
loc A location type

var = vert_is_level(loc)

logical :: vert_is_level
type(location_type), intent(in) :: loc

Returns true if which_vert is for level, else false.

vert_is_level Returns true if vertical coordinate type is level
loc A location type

var = vert_is_height(loc)

logical :: vert_is_height
type(location_type), intent(in) :: loc

Returns true if which_vert is for height, else false.

vert_is_height Returns true if vertical coordinate type is height
loc A location type

var = has_vertical_localization()

logical :: has_vertical_localization

Returns .TRUE. if the namelist variable horiz_dist_only is .FALSE. meaning that vertical separation between
locations is going to be computed by get_dist() and by get_close_obs().

This routine should perhaps be renamed to something like ‘using_vertical_for_distance’ or something similar. The
current use for it is in the localization code inside filter, but that doesn’t make this a representative function name. And
at least in current usage, returning the opposite setting of the namelist item makes the code read more direct (fewer
double negatives).

loc1 == loc2

6.154. MODULE location_mod (channel) 523

DART, Release 9.10.3

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types have identical values, else false.

loc1 /= loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types do NOT have identical values, else false.

integer, parameter :: VERTISUNDEF = -2
integer, parameter :: VERTISSURFACE = -1
integer, parameter :: VERTISLEVEL = 1
integer, parameter :: VERTISPRESSURE = 2
integer, parameter :: VERTISHEIGHT = 3
integer, parameter :: VERTISSCALEHEIGHT = 4

Constant parameters used to differentiate vertical types.

integer, parameter :: LocationDims = 3

This is a constant. Contains the number of real values in a location type. Useful for output routines that must deal
transparently with many different location modules.

character(len=129), parameter :: LocationName = "loc3Dsphere"

This is a constant. A parameter to identify this location module in output metadata.

character(len=129), parameter :: LocationLName =

"threed sphere locations: lon, lat, vertical"

This is a constant. A parameter set to “threed sphere locations: lon, lat, vertical” used to identify this location module
in output long name metadata.

524 Chapter 6. References

DART, Release 9.10.3

6.154.5 Files

filename purpose
input.nml to read the location_mod namelist

6.154.6 References

1. none

6.154.7 Private components

N/A

6.155 MODULE location_mod

6.155.1 Overview

DART provides a selection of options for the coordinate system in which all observations and all model state vector
locations are described. All executables are built with a single choice from the available location modules. The names
of these modules are all location_mod.

6.155.2 Introduction

The core algorithms of DART work with many different models which have a variety of coordinate systems. This
directory provides code for creating, setting/getting, copying location information (coordinates) independently of the
actual specific coordinate information. It also contains distance routines needed by the DART algorithms.

Each of the different location_mod.f90 files provides the same set of interfaces and defines a ‘module location_mod’,
so by selecting the proper version in your path_names_xxx file you can compile your model code with the main DART
routines.

• MODULE location_mod (threed_sphere): The most frequently used version for real-world 3d models. It uses
latitude and longitude for horizontal coordinates, plus a vertical coordinate which can be meters, pressure, model
level, surface, or no specific vertical location.

• MODULE (1D) location_mod: The most frequently used for small models (e.g. the Lorenz family). It has a
cyclic domain from 0 to 1.

• others:

– MODULE location_mod (threed_cartesian): A full 3D X,Y,Z coordinate system.

– column: no x,y but 1d height, pressure, or model level for vertical.

– annulus: a hollow 3d cylinder with azimuth, radius, and depth.

– twod: a periodic 2d domain with x,y coordinates between 0 and 1.

– twod_sphere: a 2d shell with latitude, longitude pairs.

6.155. MODULE location_mod 525

DART, Release 9.10.3

– threed: a periodic 3d domain with x,y,z coordinates between 0 and 1.

– MODULE location_mod (channel): a 3d domain periodic in x, limited in y, and unlimited z.

Other schemes can be added, as needed by the models. Possible ideas are a non-periodic version of the 1d, 2d cartesian
versions. Email dart at ucar.edu if you have a different coordinate scheme which we might want to support.

6.155.3 Namelist

Each location module option has a different namelist. See the specific documentation for the location option of choice.

6.155.4 Files

• none

6.155.5 References

• none

6.155.6 Private components

N/A

6.156 MODULE (1D) location_mod

6.156.1 Overview

The DART framework needs to be able to compute distances between locations, to pass location information to and
from the model interface code (in model_mod.f90), and to be able to read and write location information to files.
DART isolates all this location information into separate modules so that the main algorithms can operate with the
same code independent of whether the model uses latitude/longitude/height, one-d unit sphere coordinates, cylindrical
coordinates, etc. DART provides about half a dozen possible coordinate systems, and others can be added.

This locations module provides a representation of a physical location on a periodic 1D domain with location values
between 0 and 1. A type that abstracts the location is provided along with operators to set, get, read, write, and
compute distances between locations. This is a member of a class of similar location modules that provide the same
abstraction for different represenations of physical space.

All possible location modules define the same module name location_mod. Therefore, the DART framework
and any user code should include a Fortran 90 ‘use’ statement of ‘location_mod’. The selection of exactly which
location module is compiled is specified by the source file name in the path_names_xxx file, which is read by the
mkmf_xxx scripts.

The model-specific model_mod.f90 files need to define four get_close routines, but in most cases they can
simply put a use statement at the top which uses the routines in the locations module, and they do not have to provide
any additional code.

However, if the model interface code wants to intercept and alter the default behavior of the get_close routines, they
are able to. The correct usage of the get_close routines is as follows:

526 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

call get_close_maxdist_init() ! must be called before get_close_obs_init()
call get_close_obs_init()
...
call get_close_obs() ! many, many times
...
call get_close_obs_destroy()

Regardless of the fact that the names include the string ‘obs’, they are intended for use with any group of locations in
the system, frequently state vector items or observations, but any location is acceptable.

6.156.2 Namelist

This version of the locations module does not have any namelist input.

6.156.3 Other modules used

types_mod
utilities_mod
random_seq_mod

6.156. MODULE (1D) location_mod 527

DART, Release 9.10.3

528 Chapter 6. References

DART, Release 9.10.3

6.156.4 Public interfaces

use location_mod, only : location_type
get_close_type

get_location

set_location

write_location

read_location

interactive_location

set_location_missing

query_location

get_close_maxdist_init

get_close_obs_init

get_close_obs

get_close_obs_destroy

get_dist

LocationDims

LocationName

LocationLName

horiz_dist_only

vert_is_undef

vert_is_surface

vert_is_pressure

vert_is_level

vert_is_height

VERTISUNDEF

VERTISSURFACE

VERTISLEVEL

VERTISPRESSURE

VERTISHEIGHT

operator(==)

operator(/=)

6.156. MODULE (1D) location_mod 529

DART, Release 9.10.3

There is currently no namelist interface for the 1D location module.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type location_type

private
real(r8) :: x

end type location_type

Provides an abstract representation of physical location on a one-dimensional periodic domain.

Component Description
x Location has range 0 to 1

type get_close_type

private
integer :: num
real(r8) :: maxdist

end type get_close_type

Provides a structure for doing efficient computation of close locations. Doesn’t do anything in the 1D implementation
except provide appropriate stubs.

Component Description
num Number of locations in list
maxdist Threshhold distance. Anything closer is close.

var = get_location(loc)

real(r8) :: get_location
type(location_type), intent(in) :: loc

Extracts the real location value, range 0 to 1, from a location type.

get_location The real value for a location
loc A location derived type

530 Chapter 6. References

DART, Release 9.10.3

var = set_location(x)

type(location_type) :: set_location
real(r8), intent(in) :: x

Returns a location type with the location x.

set_location A location derived type
x Location value in the range 0. to 1.

call write_location(locfile, loc [, fform, charstring])

integer, intent(in) :: locfile
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: fform
character(len=*), optional, intent(out) :: charstring

Given an integer IO channel of an open file and a location, writes the location to this file. The fform argument
controls whether write is “FORMATTED” or “UNFORMATTED” with default being formatted. If the final charstring
argument is specified, the formatted location information is written to the character string only, and the locfile
argument is ignored.

locfile the unit number of an open file.
loc location type to be written.
fform Format specifier (“FORMATTED” or “UNFORMATTED”). Default is “FORMATTED” if not spec-

ified.
charstring Character buffer where formatted location string is written if present, and no output is written to the

file unit.

var = read_location(locfile [, fform])

type(location_type) :: read_location
integer, intent(in) :: locfile
character(len=*), optional, intent(in) :: fform

Reads a location_type from a file open on channel locfile using format fform (default is formatted).

read_location Returned location type read from file
locfile Integer channel opened to a file to be read
fform Optional format specifier (“FORMATTED” or “UNFORMATTED”). Default “FORMAT-

TED”.

6.156. MODULE (1D) location_mod 531

DART, Release 9.10.3

call interactive_location(location [, set_to_default])

type(location_type), intent(out) :: location
logical, optional, intent(in) :: set_to_default

Use standard input to define a location type. With set_to_default true get one with all elements set to 0.

location Location created from standard input
set_to_default If true, sets all elements of location type to 0

var = query_location(loc [, attr])

real(r8) :: query_location
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: attr

Returns the location value if attr = ‘X’ or if attr is not passed.

query_location Returns value of x.
loc A location type
attr Selects ‘X’

var = set_location_missing()

type(location_type) :: set_location_missing

Returns a location with location set to missing value from types_mod.

set_location_missing A location set to missing value

call get_close_maxdist_init(gc,maxdist , [maxdist_list])

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist
real(r8), intent(in), optional :: maxdist_list(:)

Sets the threshhold distance. Anything closer than this is deemed to be close. This routine must be called first, before
the other get_close routines. It allocates space so it is necessary to call get_close_obs_destroy when
completely done with getting distances between locations.

532 Chapter 6. References

DART, Release 9.10.3

gc Data for efficiently finding close locations.
maxdist Anything closer than this distance is a close location.
maxdist_list Ignored for this location type.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), dimension(:) intent(in) :: obs

Initialize storage for efficient identification of locations close to a given location. The oned implementation is minimal
and just records the number of locations here. Must be called after get_close_maxdist_init, and the list
of locations here must be the same as the list of locations passed into get_close_obs(). If the list changes,
get_close_obs_destroy() must be called, and both the initialization routines must be called again. It allocates
space so it is necessary to call get_close_obs_destroy when completely done with getting distances between
locations.

gc Structure that contains data to efficiently find locations close to a given location.
num The number of locations in the list.
obs The locations of each element in the list, not used in 1D implementation.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind, dist)

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), dimension(:), intent(out) :: dist

Given a single location and a list of other locations, returns the indices of all the locations close to the single one along
with the number of these and the distances for the close ones. The list of locations passed in via the obs argument
must be identical to the list of obs passed into the most recent call to get_close_obs_init(). If the list of
locations of interest changes get_close_obs_destroy() must be called and then the two initialization routines
must be called before using get_close_obs() again.

6.156. MODULE (1D) location_mod 533

DART, Release 9.10.3

gc Structure to allow efficient identification of locations close to a given location.
base_obs_loc Single given location.
base_obs_kind Kind of the single location.
obs List of locations from which close ones are to be found.
obs_kind Kind associated with locations in obs list.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

call get_close_obs_destroy(gc)

type(get_close_type), intent(inout) :: gc

Releases memory associated with the gc derived type. Must be called whenever the list of locations changes, and then
get_close_maxdist_init and get_close_obs_init must be called again with the new locations list.

gc Data for efficiently finding close locations.

var = get_dist(loc1, loc2, [, kind1, kind2])

real(r8) :: get_dist
type(location_type), intent(in) :: loc1
type(location_type), intent(in) :: loc2
integer, optional, intent(in) :: kind1
integer, optional, intent(in) :: kind2

Return the distance between 2 locations. Since this is a periodic domain, the shortest distance may wrap around.

The kind arguments are not used by the default location code, but are available to any user-supplied distance routines
which want to do specialized calculations based on the kinds associated with each of the two locations.

loc1 First of two locations to compute distance between.
loc2 Second of two locations to compute distance between.
kind1 DART kind associated with location 1.
kind2 DART kind associated with location 2.
var distance between loc1 and loc2.

var = vert_is_undef(loc)

logical :: vert_is_undef
type(location_type), intent(in) :: loc

534 Chapter 6. References

DART, Release 9.10.3

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

vert_is_undef Always returns .FALSE.
loc A location type

var = vert_is_surface(loc)

logical :: vert_is_surface
type(location_type), intent(in) :: loc

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

vert_is_surface Always returns .FALSE.
loc A location type

var = vert_is_pressure(loc)

logical :: vert_is_pressure
type(location_type), intent(in) :: loc

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

vert_is_pressure Always returns .FALSE.
loc A location type

var = vert_is_level(loc)

logical :: vert_is_level
type(location_type), intent(in) :: loc

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

vert_is_level Always returns .FALSE.
loc A location type

6.156. MODULE (1D) location_mod 535

DART, Release 9.10.3

var = vert_is_height(loc)

logical :: vert_is_height
type(location_type), intent(in) :: loc

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

vert_is_height Always returns .FALSE.
loc A location type

var = has_vertical_localization()

logical :: has_vertical_localization

Always returns false; this locations module has no vertical coordinates. Provided only for compile-time compatibility
with other location modules.

See note in threed_sphere locations module about the function name.

loc1 == loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types have identical values, else false.

loc1 /= loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types do NOT have identical values, else false.

integer, parameter :: VERTISUNDEF = -2
integer, parameter :: VERTISSURFACE = -1
integer, parameter :: VERTISLEVEL = 1
integer, parameter :: VERTISPRESSURE = 2
integer, parameter :: VERTISHEIGHT = 3

This locations module has no vertical coordinate, but for compatibility with other location modules, these are defined.

536 Chapter 6. References

DART, Release 9.10.3

integer, parameter :: LocationDims = 1

This is a constant. Contains the number of real values in a location type. Useful for output routines that must deal
transparently with many different location modules.

character(len=129), parameter :: LocationName = "loc1d"

This is a constant. A parameter to identify this location module in output metadata.

character(len=129), parameter :: LocationLName = "location on unit circle"

This is a constant. A parameter to identify this location module in output long name metadata.

6.156.5 Files

None.

6.156.6 References

1. none

6.156.7 Private components

N/A

6.157 MODULE location_mod (threed_cartesian)

6.157.1 Overview

The DART framework needs to be able to compute distances between locations, to pass location information to and
from the model interface code (model_mod.f90), and to be able to read and write location information to files. DART
isolates all this location information into separate modules so that the main algorithms can operate with the same
code independent of whether the model uses latitude/longitude/height, 1D unit cartesian coordinates, cylindrical co-
ordinates, etc. DART provides about half a dozen possible coordinate systems, and others can be added. The most

6.157. MODULE location_mod (threed_cartesian) 537

DART, Release 9.10.3

common one for geophysical models is the MODULE location_mod (threed_sphere) version. This document describes
an alternative 3D cartesian coordinate system.

Note that only one location module can be compiled into any single DART executable, and most earth obser-
vational data is generated in [latitude, longitude, vertical pressure or height] coordinates - the threed_sphere
option. The cartesian and 3D sphere locations cannot be mixed or used together.

This location module provides a representation of a physical location in an [X, Y, Z] cartesian coordinate space. A
type that abstracts the location is provided along with operators to set, get, read, write, and compute distances between
locations. This is a member of a class of similar location modules that provide the same abstraction for different
represenations of physical space.

Location-independent code

All types of location modules define the same module name location_mod. Therefore, the DART framework and
any user code should include a Fortran 90 use statement of location_mod. The selection of which location module
will be compiled into the program is controlled by which source file name is specified in the path_names_xxx file,
which is used by the mkmf_xxx scripts.

All types of location modules define the same Fortran 90 derived type location_type. Programs that need to pass
location information to subroutines but do not need to interpret the contents can declare, receive, and pass this derived
type around in their code independent of which location module is specified at compile time. Model and location-
independent utilities should be written in this way. However, as soon as the contents of the location type needs to be
accessed by user code then it becomes dependent on the exact type of location module that it is compiled with.

Usage of distance routines

Regardless of the fact that the distance subroutine names include the string ‘obs’, there is nothing specific to observa-
tions in these routines. They work to compute distances between any set of locations. The most frequent use of these
routines in the filter code is to compute the distance between a single observation and items in the state vector, and
also between a single observation and other nearby observations. However, any source for locations is supported.

In simpler location modules (like the oned version) there is no need for anything other than a brute force search
between the base location and all available state vector locations. However in the case of large geophysical models
which typically use the threed_cartesian locations code, the brute-force search time is prohibitive. The location
code pre-processes all locations into a set of bins and then only needs to search the lists of locations in nearby bins
when looking for locations that are within a specified distance.

The expected calling sequence of the get_close routines is as follows:

call get_close_maxdist_init() ! is called before get_close_obs_init()
call get_close_obs_init()

call get_close_obs() ! called many, many times

call get_close_obs_destroy()

In the threed_cartesian implementation the first routine initializes some data structures, the second one bins
up the list of locations, and then the third one is called multiple times to find all locations within a given radius of
some reference location, and to optionally compute the exact separation distance from the reference location. The last
routine deallocates the space. See the documentation below for the specific details for each routine.

All 4 of these routines must be present in every location module but in most other versions all but
get_close_obs() are stubs. In this threed_cartesian version of the locations module all are fully im-
plemented.

538 Chapter 6. References

DART, Release 9.10.3

Interaction with model_mod.f90 code

The filter and other DART programs could call the get_close routines directly, but typically do not. They declare
them (in a use statement) to be in the model_mod module, and all model interface modules are required to supply
them. However in many cases the model_mod only needs to contain another use statement declaring them to come
from the location_mod module. Thus they ‘pass through’ the model_mod but the user does not need to provide a
subroutine or any code for them.

However, if the model interface code wants to intercept and alter the default behavior of the get_close routines, it is
able to. Typically the model_mod still calls the location_mod routines and then adjusts the results before passing them
back to the calling code. To do that, the model_mod must be able to call the routines in the location_mod which have
the same names as the subroutines it is providing. To allow the compiler to distinguish which routine is to be called
where, we use the Fortran 90 feature which allows a module routine to be renamed in the use statement. For example,
a common case is for the model_mod to want to supply additions to the get_close_obs() routine only. At the top of the
model_mod code it would declare:

use location_mod, only :: location_get_close_obs => get_close_obs, &
get_close_maxdist_init, get_close_obs_init, &
get_close_obs_destroy

That makes calls to the maxdist_init, init, and destroy routines simply pass through to the code in the location_mod,
but the model_mod must supply a get_close_obs() subroutine. When it wants to call the code in the location_mod it
calls location_get_close_obs().

One use pattern is for the model_mod to call the location get_close_obs() routine without the dist argument. This
returns a list of any potentially close locations without computing the exact distance from the base location. At this
point the list of locations is a copy and the model_mod routine is free to alter the list in any way it chooses: for
example, it can change the locations to make certain types of locations appear closer or further away from the base
location. Then typically the model_mod code loops over the list calling the get_dist() routine to get the actual
distances to be returned to the calling code.

Horizontal distance only

This option is not supported for the threed_cartesian option.

Precomputation for run-time search efficiency

For search efficiency all locations are pre-binned. For the non-octree option, the total list of locations is divided up
into nx by ny by nz boxes and the index numbers of all items (both state vector entries and observations) are stored
in the appropriate box. To locate all points close to a given location, only the locations listed in the boxes within the
search radius must be checked. This speeds up the computations, for example, when localization controls which state
vector items are impacted by any given observation. The search radius is the localization distance and only those state
vector items in boxes closer than the radius to the observation location are processed.

The default values have given good performance on many of our existing model runs, but for tuning purposes the box
counts have been added to the namelist to allow adjustment. By default the code prints some summary information
about how full the average box is, how many are empty, and how many items were in the box with the largest count.
The namelist value output_box_info can be set to .true. to get even more information about the box statistics. The best
performance will be obtained somewhere between two extremes; the worst extreme is all the points are located in just
a few boxes. This degenerates into a (slow) linear search through the index list. The other extreme is a large number
of empty or sparsely filled boxes. The overhead of creating, managing, and searching a long list of boxes will impact
performance. The best performance lies somewhere in the middle, where each box contains a reasonable number of
values, more or less evenly distributed across boxes. The absolute numbers for best performance will certainly vary
from case to case.

6.157. MODULE location_mod (threed_cartesian) 539

DART, Release 9.10.3

6.157.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&location_nml
nx = 10
ny = 10
nz = 10
x_is_periodic = .false.
min_x_for_periodic = -888888.0
max_x_for_periodic = -888888.0
y_is_periodic = .false.
min_y_for_periodic = -888888.0
max_y_for_periodic = -888888.0
z_is_periodic = .false.
min_z_for_periodic = -888888.0
max_z_for_periodic = -888888.0
compare_to_correct = .false.
output_box_info = .false.
print_box_level = 0
debug = 0
/

Items in this namelist either control the way in which distances are computed and/or influence the code performance.

Item Type Description
nx, ny, nz inte-

ger
The number of boxes in each dimension to use to speed the searches. This is
not the number of gridcells.

x_is_periodic,
y_is_periodic,
z_is_periodic

log-
ical

If .true., the domain wraps in the coordinate.

min_x_for_periodic,
max_x_for_periodic

real(r8)The minimum and maximum values that are considered to be identical loca-
tions if x_is_periodic = .true.

min_y_for_periodic,
max_y_for_periodic

real(r8)The minimum and maximum values that are considered to be identical loca-
tions if y_is_periodic = .true.

min_z_for_periodic,
max_z_for_periodic

real(r8)The minimum and maximum values that are considered to be identical loca-
tions if z_is_periodic = .true.

compare_to_correct log-
ical

If true, do an exhaustive search for the closest point. Only useful for debug-
ging because the performance cost is prohibitive.

output_box_info log-
ical

Print out debugging info.

print_box_level log-
ical

If output_box_info is true, how detailed should the output be.

debug inte-
ger

The higher the number, the more verbose the run-time output. 0 (zero) is the
minimum run-time output.

540 Chapter 6. References

DART, Release 9.10.3

6.157.3 Other modules used

types_mod
utilities_mod
random_seq_mod

6.157. MODULE location_mod (threed_cartesian) 541

DART, Release 9.10.3

542 Chapter 6. References

DART, Release 9.10.3

6.157.4 Public interfaces

use location_mod, only : location_type
get_close_type

get_location

set_location

write_location

read_location

interactive_location

set_location_missing

query_location

get_close_maxdist_init

get_close_obs_init

get_close_obs

get_close_obs_destroy

get_dist

LocationDims

LocationName

LocationLName

horiz_dist_only

vert_is_undef

vert_is_surface

vert_is_pressure

vert_is_scale_height

vert_is_level

vert_is_height

operator(==)

operator(/=)

6.157. MODULE location_mod (threed_cartesian) 543

DART, Release 9.10.3

Namelist interface &location_nml must be read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type location_type

private
real(r8) :: x, y, z

end type location_type

Provides an abstract representation of physical location in a 3D cartesian space.

Component Description
x, y, z location in each dimension

type get_close_type

private
integer, pointer :: loc_box(:) ! (nloc); List of loc indices in boxes
integer, pointer :: count(:, :, :) ! (nx, ny, nz); # of locs in each box
integer, pointer :: start(:, :, :) ! (nx, ny, nz); Start of list of locs in

→˓this box
real(r8) :: bot_x, top_x ! extents in x, y, z
real(r8) :: bot_y, top_y
real(r8) :: bot_z, top_z
real(r8) :: x_width, y_width, z_width ! widths of boxes in x,y,z
real(r8) :: nboxes_x, nboxes_y, nboxes_z ! based on maxdist how far to

→˓search
end type get_close_type

Provides a structure for doing efficient computation of close locations.

var = get_location(loc)

real(r8), dimension(3) :: get_location
type(location_type), intent(in) :: loc

Extracts the x, y, z locations from a location type and returns in a 3 element real array.

get_location The x,y,z values
loc A location type

544 Chapter 6. References

DART, Release 9.10.3

var = set_location(x, y, z) var = set_location(lon, lat, height, radius)

type(location_type) :: set_location
real(r8), intent(in) :: x
real(r8), intent(in) :: y
real(r8), intent(in) :: z

or

type(location_type) :: set_location
real(r8), intent(in) :: lon
real(r8), intent(in) :: lat
real(r8), intent(in) :: height
real(r8), intent(in) :: radius

Returns a location type with the input [x,y,z] or allows the input to be specified as locations on the surface of a sphere
with a specified radius and height above the surface.

set_location A location type
x, y, z Coordinates along each axis
lon, lat Longitude, Latitude in degrees
height Vertical location in same units as radius (e.g. meters)
radius The radius of the sphere in same units as height (e.g. meters)

call write_location(locfile, loc [, fform, charstring])

integer, intent(in) :: locfile
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: fform
character(len=*), optional, intent(out) :: charstring

Given an integer IO channel of an open file and a location, writes the location to this file. The fform argument
controls whether write is “FORMATTED” or “UNFORMATTED” with default being formatted. If the final charstring
argument is specified, the formatted location information is written to the character string only, and the locfile
argument is ignored.

locfile the unit number of an open file.
loc location type to be written.
fform Format specifier (“FORMATTED” or “UNFORMATTED”). Default is “FORMATTED” if not spec-

ified.
charstring Character buffer where formatted location string is written if present, and no output is written to the

file unit.

6.157. MODULE location_mod (threed_cartesian) 545

DART, Release 9.10.3

var = read_location(locfile [, fform])

type(location_type) :: read_location
integer, intent(in) :: locfile
character(len=*), optional, intent(in) :: fform

Reads a location_type from a file open on channel locfile using format fform (default is formatted).

read_location Returned location type read from file
locfile Integer channel opened to a file to be read
fform Optional format specifier (“FORMATTED” or “UNFORMATTED”). Default “FORMAT-

TED”.

call interactive_location(location [, set_to_default])

type(location_type), intent(out) :: location
logical, optional, intent(in) :: set_to_default

Use standard input to define a location type. With set_to_default true get one with all elements set to 0.

location Location created from standard input
set_to_default If true, sets all elements of location type to 0

var = query_location(loc [, attr])

real(r8) :: query_location
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: attr

Returns the value of x, y, z depending on the attribute specification. If attr is not present, returns ‘x’.

query_location Returns x, y, or z.
loc A location type
attr Selects ‘X’, ‘Y’, ‘Z’. If not specified, ‘X’ is returned.

var = set_location_missing()

type(location_type) :: set_location_missing

Returns a location with all elements set to missing values defined in types module.

set_location_missing A location with all elements set to missing values

546 Chapter 6. References

DART, Release 9.10.3

call get_close_maxdist_init(gc,maxdist, [maxdist_list])

type(get_close_type), intent(inout) :: gc
real(r8), intent(in) :: maxdist
real(r8), intent(in), optional :: maxdist_list(:)

Sets the threshhold distance. maxdist is in units of radians. Anything closer than this is deemed to be close.
This routine must be called first, before the other get_close routines. It allocates space so it is necessary to call
get_close_obs_destroy when completely done with getting distances between locations.

If the last optional argument is not specified, maxdist applies to all locations. If the last argument is specified, it must
be a list of exactly the length of the number of specific types in the obs_kind_mod.f90 file. This length can be queried
with the get_num_types_of_obs() function to get count of obs types. It allows a different maximum distance to be set
per base type when get_close() is called.

gc Data for efficiently finding close locations.
maxdistAnything closer than this number of radians is a close location.
maxdistIf specified, must be a list of real values. The length of the list must be exactly the same length as the number

of observation types defined in the obs_def_kind.f90 file. (See get_num_types_of_obs() to get count of obs
types.) The values in this list are used for the obs types as the close distance instead of the maxdist argument.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), dimension(:) intent(in) :: obs

Initialize storage for efficient identification of locations close to a given location. Allocates storage for keeping track
of which ‘box’ each location in the list is in. Must be called after get_close_maxdist_init, and the list
of locations here must be the same as the list of locations passed into get_close_obs(). If the list changes,
get_close_obs_destroy() must be called, and both the initialization routines must be called again. It allocates
space so it is necessary to call get_close_obs_destroy when completely done with getting distances between
locations.

gc Structure that contains data to efficiently find locations close to a given location.
num The number of locations in the list.
obs The locations of each element in the list, not used in 1D implementation.

call get_close_obs(gc, base_obs_loc, base_obs_type, obs, obs_kind, num_close, close_ind, dist)

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_type

(continues on next page)

6.157. MODULE location_mod (threed_cartesian) 547

../../modules/observations/obs_kind_mod.html#get_num_types_of_obs
../../modules/observations/obs_kind_mod.html#get_num_types_of_obs

DART, Release 9.10.3

(continued from previous page)

type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), optional, dimension(:), intent(out) :: dist

Given a single location and a list of other locations, returns the indices of all the locations close to the single one along
with the number of these and the distances for the close ones. The list of locations passed in via the obs argument
must be identical to the list of obs passed into the most recent call to get_close_obs_init(). If the list of
locations of interest changes get_close_obs_destroy() must be called and then the two initialization routines
must be called before using get_close_obs() again.

Note that the base location is passed with the specific type associated with that location. The list of potential close
locations is matched with a list of generic kinds. This is because in the current usage in the DART system the base
location is always associated with an actual observation, which has both a specific type and generic kind. The list of
potentially close locations is used both for other observation locations but also for state variable locations which only
have a generic kind.

If called without the optional dist argument, all locations that are potentially close are returned, which is likely a
superset of the locations that are within the threshold distance specified in the get_close_maxdist_init()
call.

gc Structure to allow efficient identification of locations close to a given location.
base_obs_loc Single given location.
base_obs_type Specific type of the single location.
obs List of locations from which close ones are to be found.
obs_kind Generic kind associated with locations in obs list.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

call get_close_obs_destroy(gc)

type(get_close_type), intent(inout) :: gc

Releases memory associated with the gc derived type. Must be called whenever the list of locations changes, and then
get_close_maxdist_init and get_close_obs_init must be called again with the new locations list.

gc Data for efficiently finding close locations.

var = get_dist(loc1, loc2, [, type1, kind2, no_vert])

real(r8) :: get_dist
type(location_type), intent(in) :: loc1
type(location_type), intent(in) :: loc2

(continues on next page)

548 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

integer, optional, intent(in) :: type1
integer, optional, intent(in) :: kind2

Returns the distance between two locations.

The type and kind arguments are not used by the default location code, but are available to any user-supplied distance
routines which want to do specialized calculations based on the types/kinds associated with each of the two locations.

loc1 First of two locations to compute distance between.
loc2 Second of two locations to compute distance between.
type1 DART specific type associated with location 1.
kind2 DART generic kind associated with location 2.
var distance between loc1 and loc2.

var = vert_is_undef(loc)

logical :: vert_is_undef
type(location_type), intent(in) :: loc

Always returns .false.

vert_is_undef Always returns .false.
loc A location type

var = vert_is_surface(loc)

logical :: vert_is_surface
type(location_type), intent(in) :: loc

Always returns .false.

vert_is_surface Always returns .false.
loc A location type

var = vert_is_pressure(loc)

logical :: vert_is_pressure
type(location_type), intent(in) :: loc

6.157. MODULE location_mod (threed_cartesian) 549

DART, Release 9.10.3

Always returns .false.

vert_is_pressure Always returns .false.
loc A location type

var = vert_is_scale_height(loc)

logical :: vert_is_scale_height
type(location_type), intent(in) :: loc

Always returns .false.

vert_is_scale_height Always returns .false.
loc A location type

var = vert_is_level(loc)

logical :: vert_is_level
type(location_type), intent(in) :: loc

Always returns .false.

vert_is_level Always returns .false.
loc A location type

var = vert_is_height(loc)

logical :: vert_is_height
type(location_type), intent(in) :: loc

Always returns .false.

vert_is_height Always returns .false.
loc A location type

var = has_vertical_localization()

550 Chapter 6. References

DART, Release 9.10.3

logical :: has_vertical_localization

Always returns .false.

This routine should perhaps be renamed to something like ‘using_vertical_for_distance’ or something similar. The
current use for it is in the localization code inside filter, but that doesn’t make this a representative function name. And
at least in current usage, returning the opposite setting of the namelist item makes the code read more direct (fewer
double negatives).

loc1 == loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types have identical values, else false.

loc1 /= loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types do NOT have identical values, else false.

integer, parameter :: LocationDims = 3

This is a constant. Contains the number of real values in a location type. Useful for output routines that must deal
transparently with many different location modules.

character(len=129), parameter :: LocationName = "loc3Dcartesian"

This is a constant. A parameter to identify this location module in output metadata.

character(len=129), parameter :: LocationLName =

"threed cartesian locations: x, y, z"

6.157. MODULE location_mod (threed_cartesian) 551

DART, Release 9.10.3

This is a constant. A parameter set to “threed cartesian locations: x, y, z” used to identify this location module in
output long name metadata.

6.157.5 Files

filename purpose
input.nml to read the location_mod namelist

6.157.6 References

1. none

6.157.7 Private components

N/A

6.158 MODULE location_mod (threed_sphere)

6.158.1 Overview

The DART framework needs to be able to compute distances between locations, to pass location information to and
from the model interface code (model_mod.f90), and to be able to read and write location information to files.
DART isolates all this location information into separate modules so that the main algorithms can operate with the
same code independent of whether the model uses latitude/longitude/height, 1D unit sphere coordinates, cylindrical
coordinates, etc. DART provides about half a dozen possible coordinate systems, and others can be added. The most
common one for geophysical models is this one: threed_sphere.

This location module provides a representation of a physical location on a 3-D spherical shell, using latitude and
longitude plus a vertical component with choices of vertical coordinate type such as pressure or height in meters.
A type that abstracts the location is provided along with operators to set, get, read, write, and compute great circle
distances between locations. This is a member of a class of similar location modules that provide the same abstraction
for different represenations of physical space.

6.158.2 Usage

The location routines are general purpose code that can be used for a variety of utilities. The following discussion is
specifically restricted to how the location namelist settings affect the execution of the filter assimilation program.

Issues related to changing the results of an assimilation based on the location module settings:

• Whether and how to treat the vertical separation when computing distances between two locations.

• Whether to use different distances in the vertical for different observation types.

552 Chapter 6. References

DART, Release 9.10.3

Issues related to changing the results of an assimilation based on code in the model-specific model_mod.f90
module:

• Whether the model-specific code needs to convert vertical coordinates.

• Whether the model-specific code alters the distances in some other way.

Issues related to the speed/efficiency of an assimilation based on the location module settings:

• Whether to use a faster but less precise distance computation.

• Whether to change the number of internal bins used to more quickly find nearby locations.

Vertical issues

The localization distance during an assimilation – the maximum separation between an observation and a state vector
item potentially affected by the assimilation – is set in the &assim_tools_nml namelist (the cutoff item).

Setting horiz_dist_only = .TRUE. in the namelist means the great circle distances will be computed using
only the latitude and longitudes of the two locations, ignoring the vertical components of the locations. The cutoff is
specified in radians to be independent of the radius of the sphere. For the Earth the radius is nominally 6,371 Km. To
compute the horizontal only localization distance, multiply 6,371 Km by the cutoff to get the distance in Km. The
cutoff is by definition 1/2 the distance to where the increments go to 0, so multiply that result by 2 to get the maximum
distance at which an observation can alter the state.

Setting horiz_dist_only = .FALSE. in the namelist means the code will compute a 3D distance, including
the vertical separation. In this case, the vert_normalization_xxx namelist values will be used to convert from
pressure, height, model level, or scale heights into radians so the distances are computed in a consistent unit system. In
practice, multiply the cutoff by the normalization factor (and then again by 2) to get the maximum vertical separation
in each of the given units.

When including vertical separation the potential area of influence of an assimilated observation is an ellipsoid with
the observation at the center. The horizontal radius is defined by the cutoff and the vertical radius is defined by the
normalization factors.

See examples below for specific examples that highlight some vertical localization issues.

Different vertical factors per observation type

Generally a single cutoff value and a single set of normalization factors are sufficient for most assimilations. The
localization distances define the maximum range of impact of an observation, but there still must be a positive or
negative correlation between the state ensemble and the forward operator/expected obs ensemble for the values to
change.

However, the &assim_tools_nml namelist includes the option to set a different cutoff on a per-observation-type basis.
There are corresponding items in the location module namelist to similiarly control the vertical distance contribution
on a per-observation, per-vertical-type basis.

6.158. MODULE location_mod (threed_sphere) 553

../../modules/assimilation/assim_tools_mod.html
../../modules/assimilation/assim_tools_mod.html

DART, Release 9.10.3

Model-dependent vertical conversion issues

If the model supports either a different vertical coordinate than the vertical coordinate of the observations, or if the
user wants to localize in a different vertical coordinate than the observations or state vector items, the model-specific
model_mod.f90 code will have to provide a conversion between different vertical coordinates. This cannot be
done by the location module since most vertical conversions require additional model-specific information such as
temperature, moisture, depth, surface elevation, model levels, etc.

Once the locations have the same vertical units the location module code can compute the distances between them.
It is an error to ask for the distance between two locations with different vertical coordinates unless you have set the
namelist to horizontal distances only.

There is a vertical type of VERTISUNDEF (Vertical is Undefined). This is used to describe observations where there
is no specific single vertical location, for example the position of a hurricane or a column integrated quantity. In this
case the location code computes only horizontal distances between any pair of observations in which one or both have
an undefined vertical location.

Model-dependent distance adjustments

The calls to routines that collect the distances between locations for the assimilation code pass through the model-
specific model_mod.f90 code. This allows the code to alter the actual distances to either increase or decrease the
effect of an observation on the state or on other observations.

For example, if the top of a model is externally constrained then modifications by the assimilation code may lead to
bad results. The model-specific code can compute the actual distances between two locations and then increase it
artificially as you reach the top of the model, so observations have smaller and smaller impacts. For ocean models, the
distances to points on land can be set to a very large value and those points will be unaffected by the assimilation.

Approximate distances

For regional models this should usually be .FALSE. in the namelist.

For global models this is usually set to .TRUE. which allows the code to run slightly faster by precomputing tables
of sines, cosines, and arc cosines used in the distance computations. Values are linearly interpolated between entries
in the table which leads to minor roundoff errors. These are negligible in a global model but may be significant in
models that over a small region of the globe.

Internal bin counts

The default settings for nlon and nlat are usually sufficient. However if this is a high resolution model with a large
state vector the assimilation may run faster by doubling these values or multiplying them by 4. (The nlon item must
be odd; compute the value and subtract 1.) These values set the number of internal bins used inside the code to pre-sort
locations and make it faster to retrieve all locations close to another location. A larger bin count uses more memory
but shortens the linear part of the location search.

554 Chapter 6. References

DART, Release 9.10.3

Examples and questions involving vertical issues

Example of specifying a cutoff based on a distance in kilometers

The Earth radius is nominally 6,371 Km. If you want the maximum horizontal distance that an observation can
possibly influence something in the model state to be X km, then set the cutoff to be (X / 6,371) / 2. Remember
the actual impact will depend on a combination of this distance and the regression coefficient computed from the
distribution of forward operator values and the ensemble of values in the model state.

Cutoff and half-widths

Q: Why is the cutoff specified as half the distance to where the impact goes to 0, and why is it called ‘cutoff’?
A: Because the original paper by Gaspari & Cohn used that definition in this paper which our localization function is
based on.
Gaspari, G. and Cohn, S. E. (1999), Construction of correlation functions in two and three dimensions. Q.J.R.
Meteorol. Soc., 125: 723-757. doi:10.1002/qj.49712555417

Computing vertical normalization values

Because distances are computed in radians, the vertical distances have to be translated to radians. To get a maxi-
mum vertical separation of X meters (if localizing in height), specify the vert_normalization_height of X / cutoff. If
localizing in pressure, specify vert_normalization_pressure as X pascals / cutoff, etc.

Single vertical coordinate type

Vertical distances can only be computed between two locations that have the same vertical type. In practice this means
if vertical localization is enabled all observations which have a vertical location need to be converted to a single vertical
coordinate type, which matches the desired localization unit. The model state must also be able to be converted to the
same vertical coordinate type.

For example, if some observations come with a vertical coordinate type of pressure and some with height, and you
want to localize in height, the pressure coordinates need to be converted to an equivalant height. This usually requires
information only available to the model interface code in the model_mod.f90 file, so a convert_vertical_obs() routine
is called to do the conversion.

The locations of the model state are returned by the get_state_meta_data() routine in the model_mod.f90 file. If the
vertical coordinate used in the state is not the same as the desired vertical localization type, they must also be converted
using a convert_vertical_state() routine.

6.158. MODULE location_mod (threed_sphere) 555

DART, Release 9.10.3

6.158.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand & and terminate with a slash
/. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&location_nml
horiz_dist_only = .true.
vert_normalization_pressure = 100000.0
vert_normalization_height = 10000.0
vert_normalization_level = 20.0
vert_normalization_scale_height = 5.0
approximate_distance = .false.
nlon = 71
nlat = 36
output_box_info = .false.
print_box_level = 0
special_vert_normalization_obs_types = 'null'
special_vert_normalization_pressures = -888888.0
special_vert_normalization_heights = -888888.0
special_vert_normalization_levels = -888888.0
special_vert_normalization_scale_heights = -888888.0

/

Items in this namelist either control the way in which distances are computed and/or influence the code performance.

556 Chapter 6. References

DART, Release 9.10.3

Item Type Description
horiz_dist_onlylog-

ical
If .TRUE. compute great-circle distance using the horizontal distance component only. If .FALSE.
compute distances by including the vertical and horizontal separation. All distances are computed in
radians; the corresponding vertical normalization factors are used to compute the vertical distance.
The vertical coordinate system must be the same for both locations in order to compute a distance.
However, if either location is VERTISUNDEF, or both are VERTISSURFACE, only a horizontal
distance is computed. For any other combination of vertical coordinate systems this routine will fail
because it cannot convert between vertical coordinate systems without model-specific information.
The model_mod interface code may supply a get_close_obs() routine to intercept and convert the
vertical coordinates before calling this get_close_obs() routine.

vert_normalization_pressurereal(r8)The number of pascals equivalent to a horizontal distance of one radian.
vert_normalization_heightreal(r8)The number of meters equivalent to a horizontal distance of one radian.
vert_normalization_levelreal(r8)The number of model levels equivalent to a horizontal distance of one radian.
vert_normalization_scale_heightreal(r8)The number of scale heights equivalent to a horizontal distance of one radian.
ap-
prox-
i-
mate_distance

log-
ical

If true, uses a table lookup for fast approximate computation of distances on sphere. Distance com-
putation can be a first order cost for some spherical problems so this can increase speed significantly
at a loss of some precision. WARNING: This should be set to .FALSE. if you need to compute small
distances accurately or you have a regional model.

nlon in-
te-
ger

Used internally by the search code to speed the search for nearby locations. Number of boxes
(bins) created in the longitude direction. Must be an odd number. (See discussion above for more
information about this item.)

nlat in-
te-
ger

Used internally by the search code to speed the search for nearby locations. Number of boxes (bins)
created in the latitude direction. (See discussion above for more information about this item.)

out-
put_box_info

log-
ical

If true, print details about the distribution of locations across the array of boxes.
print_box_level controls how much detail is printed.

print_box_levelin-
te-
ger

If output_box_info = .true., print_box_level controls how much detail is printed.
0 = no detail. 1,2,3 are progressively more and more detail.

spe-
cial_vert_normalization_obs_types

char-
ac-
ter(len=32),
di-
men-
sion(500)

If specified, must be a string array of observation specific types (e.g. RA-
DIOSONDE_TEMPERATURE, AIRCRAFT_TEMPERATURE, etc). For each type listed
here a vertical normalization value must be given which overrides the default vertical normalization
values. Even if only one is going to be used, all 4 normalization values must be specified for each
special type.

spe-
cial_vert_normalization_pressure

real(r8),
di-
men-
sion(500)

The number of pascals equivalent to a horizontal distance of one radian, one value for each special
observation type listed in the ‘ special_vert_normalization_obs_types’ list.

spe-
cial_vert_normalization_height

real(r8),
di-
men-
sion(500)

The number of geopotential meters equivalent to a horizontal distance of one radian, one value for
each special observation type listed in the ‘ special_vert_normalization_obs_types’ list.

sp
ecial_vert_normalization_scale_height

real(r8),
di-
men-
sion(500)

The number of scale heights equivalent to a horizontal distance of one radian, one value for each
special observation type listed in the ‘ special_vert_normalization_obs_types’ list.

spe-
cial_vert_normalization_level

real(r8),
di-
men-
sion(500)

The number of model levels equivalent to a horizontal distance of one radian, one value for each
special observation type listed in the ‘ special_vert_normalization_obs_types’ list.

6.158. MODULE location_mod (threed_sphere) 557

DART, Release 9.10.3

6.158.4 Discussion

Location-independent code

All types of location modules define the same module name location_mod. Therefore, the DART framework and
any user code should include a Fortran 90 use statement of location_mod. The selection of which location module
will be compiled into the program is controlled by which source file name is specified in the path_names_xxx file,
which is used by the mkmf_xxx scripts.

All types of location modules define the same Fortran 90 derived type location_type. Programs that need to pass
location information to subroutines but do not need to interpret the contents can declare, receive, and pass this derived
type around in their code independent of which location module is specified at compile time. Model and location-
independent utilities should be written in this way. However, as soon as the contents of the location type needs to be
accessed by user code then it becomes dependent on the exact type of location module that it is compiled with.

Usage of distance routines

Regardless of the fact that the distance subroutine names include the string ‘obs’, there is nothing specific to observa-
tions in these routines. They work to compute distances between any set of locations. The most frequent use of these
routines in the filter code is to compute the distance between a single observation and items in the state vector, and
also between a single observation and other nearby observations. However, any source for locations is supported.

In simpler location modules (like the oned version) there is no need for anything other than a brute force search
between the base location and all available state vector locations. However in the case of large geophysical models
which typically use the threed_sphere locations code, the brute-force search time is prohibitive. The location
code pre-processes all locations into a set of bins and then only needs to search the lists of locations in nearby bins
when looking for locations that are within a specified distance.

The expected calling sequence of the get_close routines is as follows:

call get_close_init()
...
call get_close_obs() ! called many, many times
...
call get_close_destroy()

get_close_init() initializes the data structures, get_close_obs() is called multiple times to find all loca-
tions within a given radius of some reference location, and to optionally compute the exact separation distance from the
reference location. get_close_destroy() deallocates the space. See the documentation below for the specific
details for each routine.

All 3 of these routines must be present in every location module but in most other versions all but
get_close_obs() are stubs. In this threed_sphere version of the locations module all are fully implemented.

Interaction with model_mod.f90 code

The filter and other DART programs could call the get_close routines directly, but typically do not. They declare
them (in a use statement) to be in the model_mod module, and all model interface modules are required to supply
them. However in many cases the model_mod only needs to contain another use statement declaring them to come
from the location_mod module. Thus they ‘pass through’ the model_mod but the user does not need to provide a
subroutine or any code for them.

However, if the model interface code wants to intercept and alter the default behavior of the get_close routines, it is
able to. Typically the model_mod still calls the location_mod routines and then adjusts the results before passing them
back to the calling code. To do that, the model_mod must be able to call the routines in the location_mod which have

558 Chapter 6. References

DART, Release 9.10.3

the same names as the subroutines it is providing. To allow the compiler to distinguish which routine is to be called
where, we use the Fortran 90 feature which allows a module routine to be renamed in the use statement. For example,
a common case is for the model_mod to want to supply additions to the get_close_obs() routine only. At the top of the
model_mod code it would declare:

use location_mod, only :: get_close_init, get_close_destroy, &
location_get_close_obs => get_close_obs

That makes calls to the maxdist_init, init, and destroy routines simply pass through to the code in the location_mod,
but the model_mod must supply a get_close_obs() subroutine. When it wants to call the code in the location_mod it
calls location_get_close_obs().

One use pattern is for the model_mod to call the location get_close_obs() routine without the dist argument. This
returns a list of any potentially close locations without computing the exact distance from the base location. At this
point the list of locations is a copy and the model_mod routine is free to alter the list in any way it chooses: it can
change the locations to make certain types of locations appear closer or further away from the base location; it can
convert the vertical coordinates into a common coordinate type so that calls to the get_dist() routine can do
full 3d distance computations and not just 2d (the vertical coordinates must match between the base location and the
locations in the list in order to compute a 3d distance). Then typically the model_mod code loops over the list calling
the get_dist() routine to get the actual distances to be returned to the calling code. To localize in the vertical in a
particular unit type, this is the place where the conversion to that vertical unit should be done.

Horizontal distance only

If horiz_distance_only is .true. in the namelist then the vertical coordinate is ignored and only the great-circle distance
between the two locations is computed, as if they were both on the surface of the sphere.

If horiz_distance_only is .false. in the namelist then the appropriate normalization constant determines the relative
impact of vertical and horizontal separation. Since only a single localization distance is specified, and the vertical
scales might have very different distance characteristics, the vert_normalization_xxx values can be used to scale the
vertical appropriately to control the desired influence of observations in the vertical.

Precomputation for run-time search efficiency

For search efficiency all locations are pre-binned. The surface of the sphere is divided up into nlon by nlat boxes and
the index numbers of all items (both state vector entries and observations) are stored in the appropriate box. To locate
all points close to a given location, only the locations listed in the boxes within the search radius must be checked.
This speeds up the computations, for example, when localization controls which state vector items are impacted by
any given observation. The search radius is the localization distance and only those state vector items in boxes closer
than the radius to the observation location are processed.

The default values have given good performance on many of our existing model runs, but for tuning purposes the box
counts have been added to the namelist to allow adjustment. By default the code prints some summary information
about how full the average box is, how many are empty, and how many items were in the box with the largest count.
The namelist value output_box_info can be set to .true. to get even more information about the box statistics. The best
performance will be obtained somewhere between two extremes; the worst extreme is all the points are located in just
a few boxes. This degenerates into a (slow) linear search through the index list. The other extreme is a large number
of empty or sparsely filled boxes. The overhead of creating, managing, and searching a long list of boxes will impact
performance. The best performance lies somewhere in the middle, where each box contains a reasonable number of
values, more or less evenly distributed across boxes. The absolute numbers for best performance will certainly vary
from case to case.

For latitude, the nlat boxes are distributed evenly across the actual extents of the data. (Locations are in radians, so
the maximum limits are the poles at −𝜋/2 and +𝜋/2. For longitude, the code automatically determines if the data is
spread around more than half the sphere, and if so, the boxes are distributed evenly across the entire sphere (longitude

6.158. MODULE location_mod (threed_sphere) 559

DART, Release 9.10.3

range 0 to 2𝜋). If the data spans less than half the sphere in longitude, the actual extent of the data is determined
(including correctly handling the cyclic boundary at 0) and the boxes are distributed only within the data extent.
This simplifies the actual distance calculations since the distance from the minimum longitude box to the maximum
latitude box cannot be shorter going the other way around the sphere. In practice, for a global model the boxes are
evenly distributed across the entire surface of the sphere. For local or regional models, the boxes are distributed only
across the the extent of the local grid.

For efficiency in the case where the boxes span less than half the globe, the 3D location module needs to be able to
determine the greatest longitude difference between a base point at latitude 𝜑𝑠 and all points that are separated from
that point by a central angle of 𝜃. We might also want to know the latitude, 𝜑𝑓 , at which the largest separation occurs.
Note also that an intermediate form below allows the computation of the maximum longitude difference at a particular
latitude.

The central angle between a point at latitude 𝜑𝑠 and a second point at latitude 𝜑𝑓 that are separated in longitude by
∆𝜆 is:

𝜃 = 𝑐𝑜𝑠−1(𝑠𝑖𝑛𝜑𝑠𝑠𝑖𝑛𝜑𝑓 + 𝑐𝑜𝑠𝜑𝑠𝑐𝑜𝑠𝜑𝑓𝑐𝑜𝑠∆𝜆)

Taking the 𝑐𝑜𝑠 of both sides gives:

𝑐𝑜𝑠𝜃 = (𝑠𝑖𝑛𝜑𝑠𝑠𝑖𝑛𝜑𝑓 + 𝑐𝑜𝑠𝜑𝑠𝑐𝑜𝑠𝜑𝑓𝑐𝑜𝑠∆𝜆)

Solving for 𝑐𝑜𝑠∆𝜆 gives:

𝑐𝑜𝑠∆𝜆 =
𝑎− 𝑏𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓

𝑐𝑜𝑠∆𝜆 =
𝑎

𝑐𝑠𝑒𝑐𝜑𝑓
− 𝑏

𝑐𝑡𝑎𝑛𝜑𝑓

where 𝑎 = 𝑐𝑜𝑠𝜃, 𝑏 = 𝑠𝑖𝑛𝜑𝑠, and 𝑐 = 𝑐𝑜𝑠𝜑𝑠. We want to maximize ∆𝜆 which implies minimizing 𝑐𝑜𝑠∆𝜆 subject to
constraints.

Taking the derivative with respect to 𝜑𝑓 gives:

𝑑𝑐𝑜𝑠∆𝜆

𝑑𝜑𝑓
=

𝑎

𝑐𝑠𝑒𝑐𝜑𝑓 𝑡𝑎𝑛𝜑𝑓
− 𝑏

𝑐𝑠𝑒𝑐2𝜑𝑓
= 0

Factoring out 𝑠𝑒𝑐𝜑𝑓 which can never be 0 and using the definitions of 𝑠𝑒𝑐 and 𝑡𝑎𝑛 gives:

𝑎𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓
− 𝑏

𝑐𝑐𝑜𝑠𝜑𝑓
= 0

Solving in the constrained range from 0 to 𝜋/2 gives:

𝑠𝑖𝑛𝜑𝑓 =
𝑏

𝑎
=

𝑠𝑖𝑛𝜑𝑠

𝑐𝑜𝑠𝜃

So knowing base point (𝜑𝑠, 𝜆𝑠), latitude 𝜑𝑓 , and distance 𝜃 we can use the great circle equation to find the longitude
difference at the greatest separation point:

∆𝜆 = 𝑐𝑜𝑠−1

(︂
𝑎− 𝑏𝑠𝑖𝑛𝜑𝑓

𝑐𝑐𝑜𝑠𝜑𝑓

)︂
Note that if the angle between the base point and a pole is less than or equal to the central angle, all longitude
differences will occur as the pole is approached.

560 Chapter 6. References

DART, Release 9.10.3

6.158.5 Other modules used

types_mod
utilities_mod
random_seq_mod
obs_kind_mod
ensemble_manager_mod

6.158.6 Public interfaces

use location_mod, only : location_type
get_close_type
get_location
set_location
write_location
read_location
interactive_location
set_location_missing
query_location
get_close_init
get_close_obs
get_close_destroy
get_dist
get_maxdist
LocationDims
LocationName
LocationLName
horiz_dist_only
vert_is_undef
vert_is_surface
vert_is_pressure
vert_is_scale_height
vert_is_level
vert_is_height
VERTISUNDEF
VERTISSURFACE
VERTISLEVEL
VERTISPRESSURE
VERTISHEIGHT
VERTISSCALEHEIGHT
operator(==)
operator(/=)

Namelist interface &location_nml must be read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

6.158. MODULE location_mod (threed_sphere) 561

DART, Release 9.10.3

type location_type

private
real(r8) :: lon, lat, vloc
integer :: which_vert

end type location_type

Provides an abstract representation of physical location on a three-d spherical shell.

Compo-
nent

Description

lon longitude in radians
lat latitude in radians
vloc vertical location, units as selected by which_vert
which_vert type of vertical location: -2=no specific vert location; -1=surface; 1=level; 2=pressure; 3=height,

4=scale height

The vertical types have parameters defined for them so they can be referenced by name instead of number.

type get_close_type

private
integer :: num
real(r8) :: maxdist
integer, pointer :: lon_offset(:, :)
integer, pointer :: obs_box(:)
integer, pointer :: count(:, :)
integer, pointer :: start(:, :)

end type get_close_type

Provides a structure for doing efficient computation of close locations.

Compo-
nent

Description

num Number of locations in list
maxdist Threshhold distance. Anything closer is close.
lon_offset Dimensioned nlon by nlat. For a given offset in longitude boxes and difference in latitudes, gives max

distance from base box to a point in offset box.
obs_box Dimensioned num. Gives index of what box each location is in.
count Dimensioned nlon by nlat. Number of obs in each box.
start Dimensioned nlon by nlat. Index in straight storage list where obs in each box start.

var = get_location(loc)

real(r8), dimension(3) :: get_location
type(location_type), intent(in) :: loc

562 Chapter 6. References

DART, Release 9.10.3

Extracts the longitude and latitude (converted to degrees) and the vertical location from a location type and returns in
a 3 element real array.

get_location The longitude and latitude (in degrees) and vertical location
loc A location type

var = set_location(lon, lat, vert_loc, which_vert)

type(location_type) :: set_location
real(r8), intent(in) :: lon
real(r8), intent(in) :: lat
real(r8), intent(in) :: vert_loc
integer, intent(in) :: which_vert

Returns a location type with the input longitude and latitude (input in degrees) and the vertical location of type specified
by which_vert.

set_location A location type
lon Longitude in degrees
lat Latitude in degrees
vert_loc Vertical location consistent with which_vert
which_vert The vertical location type

call write_location(locfile, loc [, fform, charstring])

integer, intent(in) :: locfile
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: fform
character(len=*), optional, intent(out) :: charstring

Given an integer IO channel of an open file and a location, writes the location to this file. The fform argument
controls whether write is “FORMATTED” or “UNFORMATTED” with default being formatted. If the final charstring
argument is specified, the formatted location information is written to the character string only, and the locfile
argument is ignored.

locfile the unit number of an open file.
loc location type to be written.
fform Format specifier (“FORMATTED” or “UNFORMATTED”). Default is “FORMATTED” if not spec-

ified.
charstring Character buffer where formatted location string is written if present, and no output is written to the

file unit.

6.158. MODULE location_mod (threed_sphere) 563

DART, Release 9.10.3

var = read_location(locfile [, fform])

type(location_type) :: read_location
integer, intent(in) :: locfile
character(len=*), optional, intent(in) :: fform

Reads a location_type from a file open on channel locfile using format fform (default is formatted).

read_location Returned location type read from file
locfile Integer channel opened to a file to be read
fform Optional format specifier (“FORMATTED” or “UNFORMATTED”). Default “FORMAT-

TED”.

call interactive_location(location [, set_to_default])

type(location_type), intent(out) :: location
logical, optional, intent(in) :: set_to_default

Use standard input to define a location type. With set_to_default true get one with all elements set to 0.

location Location created from standard input
set_to_default If true, sets all elements of location type to 0

var = query_location(loc [, attr])

real(r8) :: query_location
type(location_type), intent(in) :: loc
character(len=*), optional, intent(in) :: attr

Returns the value of which_vert, latitude, longitude, or vertical location from a location type as selected by the string
argument attr. If attr is not present or if it is ‘WHICH_VERT’, the value of which_vert is converted to real and returned.
Otherwise, attr=’LON’ returns longitude, attr=’LAT’ returns latitude and attr=’VLOC’ returns the vertical location.

query_location Returns longitude, latitude, vertical location, or which_vert (converted to real)
loc A location type
attr Selects ‘WHICH_VERT’, ‘LON’, ‘LAT’ or ‘VLOC’

var = set_location_missing()

type(location_type) :: set_location_missing

564 Chapter 6. References

DART, Release 9.10.3

Returns a location with all elements set to missing values defined in types module.

set_location_missing A location with all elements set to missing values

call get_close_init(gc, num, maxdist, locs [,maxdist_list])

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
real(r8), intent(in) :: maxdist
type(location_type), intent(in) :: locs(:)
real(r8), optional, intent(in) :: maxdist_list(:)

Initializes the get_close accelerator. maxdist is in units of radians. Anything closer than this is deemed to be close.
This routine must be called first, before the other get_close routines. It allocates space so it is necessary to call
get_close_destroy when completely done with getting distances between locations.

If the last optional argument is not specified, maxdist applies to all locations. If the last argument is specified, it
must be a list of exactly the length of the number of specific types in the obs_kind_mod.f90 file. This length
can be queried with the get_num_types_of_obs() function to get count of obs types. It allows a different maximum
distance to be set per base type when get_close() is called.

gc Data for efficiently finding close locations.
num The number of locations, i.e. the length of the locs array.
maxdistAnything closer than this number of radians is a close location.
locs The list of locations in question.
maxdistIf specified, must be a list of real values. The length of the list must be exactly the same length as the number

of observation types defined in the obs_def_kind.f90 file. (See get_num_types_of_obs() to get count of obs
types.) The values in this list are used for the obs types as the close distance instead of the maxdist argument.

call get_close_obs(gc, base_obs_loc, base_obs_type, obs, obs_kind, num_close, close_ind [, dist, ens_handle])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_type
type(location_type), dimension(:), intent(in) :: obs
integer, dimension(:), intent(in) :: obs_kind
integer, intent(out) :: num_close
integer, dimension(:), intent(out) :: close_ind
real(r8), optional, dimension(:), intent(out) :: dist
type(ensemble_type), optional, intent(in) :: ens_handle

Given a single location and a list of other locations, returns the indices of all the locations close to the single one along
with the number of these and the distances for the close ones. The list of locations passed in via the obs argument
must be identical to the list of obs passed into the most recent call to get_close_init(). If the list of locations
of interest changes get_close_destroy() must be called and then the two initialization routines must be called
before using get_close_obs() again.

6.158. MODULE location_mod (threed_sphere) 565

../../modules/observations/obs_kind_mod.html#get_num_types_of_obs
../../modules/observations/obs_kind_mod.html#get_num_types_of_obs

DART, Release 9.10.3

Note that the base location is passed with the specific type associated with that location. The list of potential close
locations is matched with a list of generic kinds. This is because in the current usage in the DART system the base
location is always associated with an actual observation, which has both a specific type and generic kind. The list of
potentially close locations is used both for other observation locations but also for state variable locations which only
have a generic kind.

If called without the optional dist argument, all locations that are potentially close are returned, which is likely a
superset of the locations that are within the threshold distance specified in the get_close_init() call. This can
be useful to collect a list of potential locations, and then to convert all the vertical coordinates into one consistent
unit (pressure, height in meters, etc), and then the list can be looped over, calling get_dist() directly to get the exact
distance, either including vertical or not depending on the setting of horiz_dist_only.

gc Structure to allow efficient identification of locations close to a given location.
base_obs_loc Single given location.
base_obs_type Specific type of the single location.
obs List of locations from which close ones are to be found.
obs_kind Generic kind associated with locations in obs list.
num_close Number of locations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.
ens_handle Handle to an ensemble of interest.

call get_close_destroy(gc)

type(get_close_type), intent(inout) :: gc

Releases memory associated with the gc derived type. Must be called whenever the list of locations changes, and then
get_close_init must be called again with the new locations list.

gc Data for efficiently finding close locations.

var = get_dist(loc1, loc2, [, type1, kind2, no_vert])

real(r8) :: get_dist
type(location_type), intent(in) :: loc1
type(location_type), intent(in) :: loc2
integer, optional, intent(in) :: type1
integer, optional, intent(in) :: kind2
logical, optional, intent(in) :: no_vert

Returns the distance between two locations in radians. If horiz_dist_only is set to .TRUE. in the locations
namelist, it computes great circle distance on sphere. If horiz_dist_only is false, then it computes an ellipsoidal
distance with the horizontal component as above and the vertical distance determined by the types of the locations and
the normalization constants set by the namelist for the different vertical coordinate types. The vertical normalization
gives the vertical distance that is equally weighted as a horizontal distance of 1 radian. If no_vert is present, it overrides
the value in the namelist and controls whether vertical distance is included or not.

566 Chapter 6. References

DART, Release 9.10.3

The type and kind arguments are not used by the default location code, but are available to any user-supplied distance
routines which want to do specialized calculations based on the types/kinds associated with each of the two locations.

loc1 First of two locations to compute distance between.
loc2 Second of two locations to compute distance between.
type1 DART specific type associated with location 1.
kind2 DART generic kind associated with location 2.
no_vert If true, no vertical component to distance. If false, vertical component is included.
var distance between loc1 and loc2.

var = get_maxdist(gc [, obs_type])

real(r8) :: var
type(get_close_type), intent(inout) :: gc
integer, optional, intent(in) :: obs_type

Since it is possible to have different cutoffs for different observation types, an optional argument obs_type may be used
to specify which maximum distance is of interest. The cutoff is specified as the half-width of the tapering function,
get_maxdist returns the full width of the tapering function.

gc Data for efficiently finding close locations.
obs_type The integer code specifying the type of observation.
var The distance at which the tapering function is zero. Put another way, anything closer than this number of

radians is a close location.

var = vert_is_undef(loc)

logical :: vert_is_undef
type(location_type), intent(in) :: loc

Returns true if which_vert is set to undefined, else false. The meaning of ‘undefined’ is specific; it means there is no
particular vertical location associated with this type of measurement; for example a column-integrated value.

vert_is_undef Returns true if vertical coordinate is set to undefined.
loc A location type

var = vert_is_surface(loc)

logical :: vert_is_surface
type(location_type), intent(in) :: loc

6.158. MODULE location_mod (threed_sphere) 567

DART, Release 9.10.3

Returns true if which_vert is for surface, else false.

vert_is_surface Returns true if vertical coordinate type is surface
loc A location type

var = vert_is_pressure(loc)

logical :: vert_is_pressure
type(location_type), intent(in) :: loc

Returns true if which_vert is for pressure, else false.

vert_is_pressure Returns true if vertical coordinate type is pressure
loc A location type

var = vert_is_scale_height(loc)

logical :: vert_is_scale_height
type(location_type), intent(in) :: loc

Returns true if which_vert is for scale_height, else false.

vert_is_scale_height Returns true if vertical coordinate type is scale_height
loc A location type

var = vert_is_level(loc)

logical :: vert_is_level
type(location_type), intent(in) :: loc

Returns true if which_vert is for level, else false.

vert_is_level Returns true if vertical coordinate type is level
loc A location type

var = vert_is_height(loc)

568 Chapter 6. References

DART, Release 9.10.3

logical :: vert_is_height
type(location_type), intent(in) :: loc

Returns true if which_vert is for height, else false.

vert_is_height Returns true if vertical coordinate type is height
loc A location type

var = has_vertical_localization()

logical :: has_vertical_localization

Returns .TRUE. if the namelist variable horiz_dist_only is .FALSE. meaning that vertical separation between
locations is going to be computed by get_dist() and by get_close_obs().

This routine should perhaps be renamed to something like ‘using_vertical_for_distance’ or something similar. The
current use for it is in the localization code inside filter, but that doesn’t make this a representative function name. And
at least in current usage, returning the opposite setting of the namelist item makes the code read more direct (fewer
double negatives).

loc1 == loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types have identical values, else false.

loc1 /= loc2

type(location_type), intent(in) :: loc1, loc2

Returns true if the two location types do NOT have identical values, else false.

integer, parameter :: VERTISUNDEF = -2
integer, parameter :: VERTISSURFACE = -1
integer, parameter :: VERTISLEVEL = 1
integer, parameter :: VERTISPRESSURE = 2
integer, parameter :: VERTISHEIGHT = 3
integer, parameter :: VERTISSCALEHEIGHT = 4

6.158. MODULE location_mod (threed_sphere) 569

DART, Release 9.10.3

Constant parameters used to differentiate vertical types.

integer, parameter :: LocationDims = 3

This is a constant. Contains the number of real values in a location type. Useful for output routines that must deal
transparently with many different location modules.

character(len=129), parameter :: LocationName = "loc3Dsphere"

This is a constant. A parameter to identify this location module in output metadata.

character(len=129), parameter :: LocationLName =

"threed sphere locations: lon, lat, vertical"

This is a constant. A parameter set to “threed sphere locations: lon, lat, vertical” used to identify this location module
in output long name metadata.

6.158.7 Files

filename purpose
input.nml to read the location_mod namelist

6.158.8 References

1. none

570 Chapter 6. References

DART, Release 9.10.3

6.158.9 Error codes and conditions

Rou-
tine

Message Comment

initial-
ize_module

nlon must be odd Tuning parameter for number of longitude boxes must be odd for
algorithm to function.

get_dist Dont know how to compute verti-
cal distance for unlike vertical co-
ordinates

Need same which_vert for distances.

set_locationlongitude (#) is not within range
[0,360]

Is it really a longitude?

set_locationlatitude (#) is not within range [-
90,90]

Is it really a latitude?

set_locationwhich_vert (#) must be one of -2,
-1, 1, 2, 3, or 4

Vertical coordinate type restricted to: -2 = no specific vertical lo-
cation -1 = surface value 1 = (model) level 2 = pressure 3 = height
4 = scale height

read_locationExpected location header “loc3d”
in input file, got ___

Probable mixing of other location modules in observation se-
quence processing.

nc_write_locationVarious NetCDF-f90 interface er-
ror messages

From one of the NetCDF calls in nc_write_location

6.158.10 Future plans

Need to provide more efficient algorithms for getting close locations and document the nlon and nlat choices and their
impact on cost.

The collection of ‘val = vert_is_xxx()’ routines should probably be replaced by a single call ‘val = vert_is(loc, VER-
TISxxx)’.

See the note in the ‘has_vertical_localization()’ about a better name for this routine.

The use of ‘obs’ in all these routine names should probably be changed to ‘loc’ since there is no particular dependence
that they be observations. They may need to have an associated DART kind, but these routines are used for DART
state vector entries so it’s misleading to always call them ‘obs’.

6.158.11 Private components

N/A

6.158. MODULE location_mod (threed_sphere) 571

DART, Release 9.10.3

6.159 program obs_seq_verify

6.159.1 Overview

obs_seq_verify reorders the observations from a forecast run of DART into a structure that is amenable for the
evaluation of the forecast. The big picture is that the verification locations and times identified in the
obsdef_mask.nc and the observations from the forecast run (whose files must have an extension as in the
following: obs_seq.forecast.YYYYMMDDHH) are put into a netCDF variable that looks like this:

obs_seq_verify can read in a series of observation sequence files - each of the files must contain the entire
forecast from a single analysis time. The extension of each filename is required to reflect the analysis time. Use
program obs_sequence_tool to concatenate multiple files into a single observation sequence file if necessary. Only
the individual ensemble members forecast values are used - the ensemble mean and spread (as individual copies) are
completely ignored. The individual “prior ensemble member NNNN” copies are used. As a special case, the “prior
ensemble mean” copy is used if and only if there are no individual ensemble members present (i.e. input.nml
&filter_nml:num_output_obs_members == 0).

572 Chapter 6. References

DART, Release 9.10.3

Di-
men-
sion

Explanation

anal-
y-
sisT

This is the netCDF UNLIMITED dimension, so it is easy to ‘grow’ this dimension. This corresponds to
the number of forecasts one would like to compare.

sta-
tions

The unique horizontal locations in the verification network.

lev-
els

The vertical level at each location. Observations with a pressure vertical coordinate are selected based on
their proximity to the mandatory levels as defined in program obs_seq_coverage. Surface observations or
observations with undefined vertical coordinates are simply put into level 1.

copy This dimension designates the quantity of interest; the observation, the forecast value, or the observation
error variance. These quantities are the ones required to calculate the evaluation statistics.

nmem-
bers

Each ensemble member contributes a forecast value.

fore-
cast_lead

This dimension relates to the amount of time between the start of the forecast and the verification.

The USAGE section has more on the actual use of obs_seq_verify.

6.159.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_seq_verify_nml
obs_sequences = ''
obs_sequence_list = ''
station_template = 'obsdef_mask.nc'
netcdf_out = 'forecast.nc'
obtype_string = 'RADIOSONDE_TEMPERATURE'
print_every = 10000
verbose = .true.
debug = .false.
/

You can specify either obs_sequences or obs_sequence_list – not both. One of them has to be an empty
string . . . i.e. ‘ ‘.

6.159. program obs_seq_verify 573

DART, Release 9.10.3

Item Type Description
obs_sequenceschar-

ac-
ter(len=256),
di-
men-
sion(500)

Names of the observation sequence files - each of which MUST have an extension that de-
fines the start of the forecast (the analysis time). The observation sequence filenames must
be something like obs_seq.forecast.YYYYMMDDHH . If obs_sequences is specified,
obs_sequence_list must be empty.

obs_sequence_listchar-
ac-
ter(len=256)

Name of an ascii text file which contains a list of one or more observation sequence files, one
per line. The observation sequence filenames MUST have an extension that defines the start
of the forecast (the analysis time). The observation sequence filenames must be something like
obs_seq.forecast.YYYYMMDDHH. obs_sequence_list can be created by any method,
including sending the output of the ‘ls’ command to a file, a text editor, or another program. If
obs_sequence_list is specified, obs_sequences must be empty.

sta-
tion_template

char-
ac-
ter(len=256)

The name of the netCDF file created by program obs_seq_coverage that contains the verification
network description.

netcdf_outchar-
ac-
ter(len=256)

The base portion of the filename of the file that will contain the forecast quantities. Since each ob-
servation type of interest is processed with a separate run of obs_seq_verify, the observation
type string is used to create a unique output filename.

cal-
en-
dar

char-
ac-
ter(len=129)

The type of the calendar used to interpret the dates.

ob-
type_string

char-
ac-
ter(len=32)

The observation type string that will be verified. The character string must match one of the
standard DART observation types. This will be the name of the variable in the netCDF file, and
will also be used to make a unique netCDF file name.

print_everyinte-
ger

Print run-time information for every "print_every" n-th observation.

ver-
bose

logi-
cal

Print extra run-time information.

de-
bug

logi-
cal

Print a frightening amount of run-time information.

6.159.3 Other modules used

assimilation_code/location/threed_sphere/location_mod.f90
assimilation_code/modules/assimilation/assim_model_mod.f90
models/your_model/model_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod.f90
assimilation_code/modules/utilities/null_mpi_utilities_mod.f90
assimilation_code/modules/utilities/types_mod.f90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/time_manager_mod.f90
assimilation_code/modules/utilities/utilities_mod.f90
observations/forward_operators/obs_def_mod.f90

574 Chapter 6. References

DART, Release 9.10.3

6.159.4 Files

• input.nml is used for obs_seq_verify_nml

• A netCDF file containing the metadata for the verification network. This file is created by program
obs_seq_coverage to define the desired times and locations for the verification. (obsdef_mask.nc is the
default name)

• One or more observation sequence files from filter run in forecast mode - meaning all the observations
were flagged as evaluate_only. It is required/presumed that all the ensemble members are output to the obser-
vation sequence file (see num_output_obs_members). Each observation sequence file contains all the forecasts
from a single analysis time and the filename extension must reflect the analysis time used to start the forecast.
(obs_seq.forecast.YYYYMMDDHH is the default name)

• Every execution of obs_seq_verify results in one netCDF file that contains the observation being verified.
If obtype_string = 'METAR_U_10_METER_WIND', and netcdf_out = 'forecast.nc'; the
resulting filename will be METAR_U_10_METER_WIND_forecast.nc.

6.159.5 Usage

obs_seq_verify is built in . . . /DART/models/your_model/work, in the same way as the other DART
components.
Once the forecast has completed, each observation type may be extracted from the observation sequence file and
stuffed into the appropriate verification structure. Each observation type must be processed serially at this time, and
each results in a separate output netCDF file. Essentially, obs_seq_verify sorts an unstructured, unordered set of
observations into a predetermined configuration.

Example: a single 48-hour forecast that is evaluated every 6 hours

In this example, the obsdef_mask.nc file was created by running program obs_seq_coverage with the namelist
specified in the single 48hour forecast evaluated every 6 hours example. The obsdef_mask.txt file was used to
mask the input observation sequence files by program obs_selection and the result was run through PROGRAM filter
with the observations marked as evaluate_only - resulting in a file called obs_seq.forecast.2008060818.
This filename could also be put in a file called verify_list.txt.
Just to reiterate the example, both namelists for obs_seq_coverage and obs_seq_verify are provided below.

&obs_seq_coverage_nml
obs_sequences = ''
obs_sequence_list = 'coverage_list.txt'
obs_of_interest = 'METAR_U_10_METER_WIND'

'METAR_V_10_METER_WIND'
textfile_out = 'obsdef_mask.txt'
netcdf_out = 'obsdef_mask.nc'
calendar = 'Gregorian'
first_analysis = 2008, 6, 8, 18, 0, 0

(continues on next page)

6.159. program obs_seq_verify 575

../../../assimilation_code/programs/filter/filter.html#Namelist
../../../assimilation_code/programs/obs_seq_coverage/obs_seq_coverage.html#example48x6

DART, Release 9.10.3

(continued from previous page)

last_analysis = 2008, 6, 8, 18, 0, 0
forecast_length_days = 2
forecast_length_seconds = 0
verification_interval_seconds = 21600
temporal_coverage_percent = 100.0
lonlim1 = 0.0
lonlim2 = 360.0
latlim1 = -90.0
latlim2 = 90.0
verbose = .true.
/

&obs_seq_verify_nml
obs_sequences = 'obs_seq.forecast.2008060818'
obs_sequence_list = ''
station_template = 'obsdef_mask.nc'
netcdf_out = 'forecast.nc'
obtype_string = 'METAR_U_10_METER_WIND'
print_every = 10000
verbose = .true.
debug = .false.
/

The pertinent information from the obsdef_mask.nc file is summarized (from ncdump -v experi-
ment_times,analysis,forecast_lead obsdef_mask.nc) as follows:

verification_times = 148812.75, 148813, 148813.25, 148813.5, 148813.75,
148814, 148814.25, 148814.5, 148814.75 ;

analysis = 148812.75 ;

forecast_lead = 0, 21600, 43200, 64800, 86400, 108000, 129600, 151200, 172800 ;

There is one analysis time, 9 forecast leads and 9 verification times. The analysis time is the same as the first verifica-
tion time. The run-time output of obs_seq_verify and a dump of the resulting netCDF file follows:

[thoar@mirage2 work]$./obs_seq_verify |& tee my.verify.log
Starting program obs_seq_verify
Initializing the utilities module.
Trying to log to unit 10
Trying to open file dart_log.out

Starting ... at YYYY MM DD HH MM SS =

2011 3 1 10 2 54
Program obs_seq_verify

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
--

-------------- ASSIMILATE_THESE_OBS_TYPES --------------
RADIOSONDE_TEMPERATURE
RADIOSONDE_U_WIND_COMPONENT

(continues on next page)

576 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

RADIOSONDE_V_WIND_COMPONENT
SAT_U_WIND_COMPONENT
SAT_V_WIND_COMPONENT
-------------- EVALUATE_THESE_OBS_TYPES --------------
RADIOSONDE_SPECIFIC_HUMIDITY
--

find_ensemble_size: opening obs_seq.forecast.2008060818
location_mod: Ignoring vertical when computing distances; horizontal only
find_ensemble_size: There are 50 ensemble members.

fill_stations: There are 221 stations of interest,
fill_stations: ... and 9 times of interest.
InitNetCDF: METAR_U_10_METER_WIND_forecast.nc is fortran unit 5

obs_seq_verify: opening obs_seq.forecast.2008060818
analysis 1 date is 2008 Jun 08 18:00:00

index 6 is prior ensemble member 1
index 8 is prior ensemble member 2
index 10 is prior ensemble member 3
...
index 100 is prior ensemble member 48
index 102 is prior ensemble member 49
index 104 is prior ensemble member 50

QC index 1 NCEP QC index
QC index 2 DART quality control

Processing obs 10000 of 84691
Processing obs 20000 of 84691
Processing obs 30000 of 84691
Processing obs 40000 of 84691
Processing obs 50000 of 84691
Processing obs 60000 of 84691
Processing obs 70000 of 84691
Processing obs 80000 of 84691

METAR_U_10_METER_WIND dimlen 1 is 9
METAR_U_10_METER_WIND dimlen 2 is 50
METAR_U_10_METER_WIND dimlen 3 is 3
METAR_U_10_METER_WIND dimlen 4 is 1
METAR_U_10_METER_WIND dimlen 5 is 221
METAR_U_10_METER_WIND dimlen 6 is 1
obs_seq_verify: Finished successfully.

Finished ... at YYYY MM DD HH MM SS =

2011 3 1 10 3 7

[thoar@mirage2 work]$ ncdump -h METAR_U_10_METER_WIND_forecast.nc
netcdf METAR_U_10_METER_WIND_forecast {
dimensions:

analysisT = UNLIMITED ; // (1 currently)
copy = 3 ;
station = 221 ;

(continues on next page)

6.159. program obs_seq_verify 577

DART, Release 9.10.3

(continued from previous page)

level = 14 ;
ensemble = 50 ;
forecast_lead = 9 ;
linelen = 129 ;
nlines = 446 ;
stringlength = 64 ;
location = 3 ;

variables:
char namelist(nlines, linelen) ;

namelist:long_name = "input.nml contents" ;
char CopyMetaData(copy, stringlength) ;

CopyMetaData:long_name = "copy quantity names" ;
double analysisT(analysisT) ;

analysisT:long_name = "time of analysis" ;
analysisT:units = "days since 1601-1-1" ;
analysisT:calendar = "Gregorian" ;
analysisT:missing_value = 0. ;
analysisT:_FillValue = 0. ;

int copy(copy) ;
copy:long_name = "observation copy" ;
copy:note1 = "1 == observation" ;
copy:note2 = "2 == prior" ;
copy:note3 = "3 == observation error variance" ;
copy:explanation = "see CopyMetaData variable" ;

int station(station) ;
station:long_name = "station index" ;

double level(level) ;
level:long_name = "vertical level of observation" ;

int ensemble(ensemble) ;
ensemble:long_name = "ensemble member" ;

int forecast_lead(forecast_lead) ;
forecast_lead:long_name = "forecast lead time" ;
forecast_lead:units = "seconds" ;

double location(station, location) ;
location:description = "location coordinates" ;
location:location_type = "loc3Dsphere" ;
location:long_name = "threed sphere locations: lon, lat, vertical" ;
location:storage_order = "Lon Lat Vertical" ;
location:units = "degrees degrees which_vert" ;

int which_vert(station) ;
which_vert:long_name = "vertical coordinate system code" ;
which_vert:VERTISUNDEF = -2 ;
which_vert:VERTISSURFACE = -1 ;
which_vert:VERTISLEVEL = 1 ;
which_vert:VERTISPRESSURE = 2 ;
which_vert:VERTISHEIGHT = 3 ;
which_vert:VERTISSCALEHEIGHT = 4 ;

double METAR_U_10_METER_WIND(analysisT, station, level, copy, ensemble,
→˓forecast_lead) ;

METAR_U_10_METER_WIND:long_name = "forecast variable quantities" ;
METAR_U_10_METER_WIND:missing_value = -888888. ;
METAR_U_10_METER_WIND:_FillValue = -888888. ;

int original_qc(analysisT, station, forecast_lead) ;
original_qc:long_name = "original QC value" ;
original_qc:missing_value = -888888 ;
original_qc:_FillValue = -888888 ;

int dart_qc(analysisT, station, forecast_lead) ;
(continues on next page)

578 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

dart_qc:long_name = "DART QC value" ;
dart_qc:explanation1 = "1 == prior evaluated only" ;
dart_qc:explanation2 = "4 == forward operator failed" ;
dart_qc:missing_value = -888888 ;
dart_qc:_FillValue = -888888 ;

// global attributes:
:creation_date = "YYYY MM DD HH MM SS = 2011 03 01 10 03 00" ;
:source = "URL" ;
:revision = "$Revision$" ;
:revdate = "$Date$" ;
:obs_seq_file_001 = "obs_seq.forecast.2008060818" ;

}
[thoar@mirage2 work]$

Discussion

• the values of ASSIMILATE_THESE_OBS_TYPES and EVALUATE_THESE_OBS_TYPES are completely irrel-
evant - again - since obs_seq_verify is not actually doing an assimilation.

• The analysis time from the filename is used to determine which analysis from obsdef_mask.nc is being
considered, and which set of verification times to look for. This is important.

• The individual prior ensemble member copies must be present! Since there are no observations being
assimilated, there is no reason to choose the posteriors over the priors.

• There are 221 locations reporting METAR_U_10_METER_WIND observations at all 9 requested verification
times.

• The METAR_U_10_METER_WIND_forecast.nc file has all the metadata to be able to interpret the
METAR_U_10_METER_WIND variable.

• The analysisT dimension is the netCDF record/unlimited dimension. Should you want to increase the strength
of the statistical results, you should be able to trivially ncrcat more (compatible) netCDF files together.

6.159.6 References

• none - but this seems like a good place to start: The Centre for Australian Weather and Climate Research -
Forecast Verification Issues, Methods and FAQ

6.160 PROGRAM wakeup_filter

Attention: wakeup_filter works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using wakeup_filter with more recent versions of DART, contact DAReS staff to
assess the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.160. PROGRAM wakeup_filter 579

http://www.cawcr.gov.au/projects/verification/
http://www.cawcr.gov.au/projects/verification/

DART, Release 9.10.3

6.160.1 Overview

Small auxiliary program for use in the “async=4” case where the main filter program is an MPI program and the
model being run with DART is also an MPI program. The main MPI job script runs each of the model advances for
the ensemble members, and then runs this program to restart the filter program.

6.160.2 Modules used

mpi_utilities_mod

6.160.3 Namelist

There are no namelist options for this program. It must be run as an MPI program with the same number of tasks as
filter was originally started with.

6.160.4 Files

Named pipes (fifo) files are used to synchronize with the main MPI job run script, to ensure that the filter program and
the script do not do a “busy-wait” in which they consume CPU cycles while they are waiting for each other. The fifo
names are:

• filter_to_model.lock

• model_to_filter.lock

• filter_lockNNNNN (where NNNNN is the task number with leading 0s)

6.160.5 References

• Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assim-
ilation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc., 90, 1283-1296. DOI:
10.1175/2009BAMS2618.1

6.161 PROGRAM compare_states

6.161.1 Overview

Utility program to compare fields in two NetCDF files and print out the min and max values from each file and the
min and max of the differences between the two fields. The default is to compare all numeric variables in the files, but
specific variables can be specified in the namelist or in a separate file. The two input NetCDF filenames are read from
the console or can be echo’d into the standard input of the program.

If you want to restrict the comparison to only specific variables in the files, specify the list of field names to compare
either in the namelist, or put a list of fields, one per line, in a text file and specify the name of the text file. Only data
arrays can be compared, not character arrays, strings, or attribute values.

Namelist interface &compare_states_nml must be read from file input.nml.

580 Chapter 6. References

http://dx.doi.org/10.1175%2F2009BAMS2618.1
http://dx.doi.org/10.1175%2F2009BAMS2618.1

DART, Release 9.10.3

6.161.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&compare_states_nml
do_all_numeric_fields = .true.
fieldnames = ''
fieldlist_file = ''
fail_on_missing_field = .true.
only_report_differences = .true.
debug = .false.
/

Item Type Description
do_all_numeric_fieldslog-

ical
If .true., all integer, float, and double variables in the NetCDF files will have their values compared.
If .false. the list of specific variables to be compared must be given either directly in the namelist
in the fieldnames item, or else the field names must be listed in an ASCII file, one name per
line, and the name of that file is specified in fieldlist_file.

field-
names

char-
ac-
ter
list

One or more names of arrays in the NetCDF files to be compared. Only read if
do_all_numeric_fields is .false.

field-
list_file

char-
ac-
ter

Name of a text file containing the fieldnames, one per line. It is an error to specify both the
fieldnames namelist item and this one. Only read if do_all_numeric_fields is .false.

fail_on_missing_fieldlog-
ical

If .true. and any one of the field names is not found in both files it is a fatal error. If .false. a
message is printed about the missing field but execution continues.

only_report_differenceslog-
ical

If .true. only print the name of the variable being tested; skip printing the variable value min and
max if the two files are identical. If .false. print more details about both variables which differ and
varibles with the same values.

debug log-
ical

If true print out debugging info.

6.161.3 Modules used

types_mod
utilities_mod
parse_args_mod

6.161. PROGRAM compare_states 581

DART, Release 9.10.3

6.161.4 Files

• two NetCDF input files

• compare_states.nml

• field names text file (optionally)

6.161.5 References

• none

6.162 PROGRAM gen_sampling_err_table

6.162.1 Overview

Utility program which computes a table of values needed to apply Sampling Error Correction (SEC) during assimila-
tion. These values are used to correct covariances based on small sample size statistics. See reference below.

To enable the sampling error correction algorithm in filter, set the namelist item
&assim_tools_nml : sampling_error_correction to .true., and copy the netCDF file
gen_sampling_err_table/work/sampling_error_correction_table.nc into the run directory.

The name of the SEC table is always sampling_error_correction_table.nc. This is a NetCDF format
file. If this file already exists in the current directory any tables for new ensemble sizes will be appended to the existing
file. If the file does not exist a new file will be created by this tool. The resulting file should be copied into the current
working directory when filter is run.

A file with almost 200 common ensemble sizes is distributed with the system. Any new ensemble sizes can be
generated on demand. Be aware that the computation can be time consuming. The job may need to be submitted to a
batch system if many new ensemble sizes are being generated, or start the job on a laptop and leave it to run overnight.

The file contains a “sparse array” of ensemble sizes. Only sizes which have an existing table are stored in the file so
large ensemble sizes do not require a large jump in the size of the output file.

The structure of sampling_error_correction_table.nc is shown in this example.

0[1095] desktop:system_simulation/work % ncdump -v ens_sizes *nc
netcdf sampling_error_correction_table {
dimensions:

bins = 200 ;
ens_sizes = UNLIMITED ; // (40 currently)

variables:
int count(ens_sizes, bins) ;

count:description = "number of samples in each bin" ;
double true_corr_mean(ens_sizes, bins) ;
double alpha(ens_sizes, bins) ;

alpha:description = "sampling error correction factors" ;
int ens_sizes(ens_sizes) ;

ens_sizes:description = "ensemble size used for calculation" ;

// global attributes:
:num_samples = 100000000 ;
:title = "Sampling Error Corrections for fixed ensemble sizes." ;
:reference = "Anderson, J., 2012: Localization and Sampling Error

→˓Correction
(continues on next page)

582 Chapter 6. References

../../modules/assimilation/assim_tools_mod.html#Namelist

DART, Release 9.10.3

(continued from previous page)

in Ensemble Kalman Filter Data Assimilation. Mon. Wea. Rev., 140, 2359-
→˓2371,

doi: 10.1175/MWR-D-11-00013.1." ;
:version = "$Id: gen_sampling_err_table.f90 13014 2019-03-14 21:59:07Z

→˓nancy@ucar.edu $" ;

data:

ens_sizes = 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 22, 24, 28, 30, 32, 36,
→˓40, 44,

48, 49, 50, 52, 56, 60, 64, 70, 72, 80, 84, 88, 90, 96, 100, 120, 140,
→˓160, 180, 200
}

This program uses the random number generator to compute the correction factors. The generator is seeded with the
ensemble size so repeated runs of the program will generate the same values for the tables.

6.162.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&gen_sampling_error_table_nml
ens_sizes = -1
debug = .false.
/

Description of each namelist entry

ens_sizes type: integer(200)

List of ensemble sizes to compute Sampling Error Correction tables for. These do not need to be in any particular
order. Duplicates will be removed and any sizes which already have tables computed in the output file will be
skipped. The file which comes with the system already has tables computed for these ensemble sizes:

ens_sizes = 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100,
101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
171, 172, 173, 174, 175, 176, 177, 178, 179, 180,

(continues on next page)

6.162. PROGRAM gen_sampling_err_table 583

DART, Release 9.10.3

(continued from previous page)

181, 182, 183, 184, 185, 186, 187, 188, 189, 190,
191, 192, 193, 194, 195, 196, 197, 198, 199, 200

debug type: logical

If true print out debugging info.

6.162.3 Examples

To add tables for ensemble sizes 220 and 256 run the program with this namelist:

&gen_sampling_error_table_nml
ens_sizes = 220, 256,
debug = .false.
/

6.162.4 Modules used

types_mod
utilities_mod
random_seq_mod
netcdf

6.162.5 Files

• output file is always sampling_error_correction_table.nc If one exists new ensemble sizes will
be appended. If it doesn’t exist a new file will be created. This is a NetCDF format file.

6.162.6 References

• Ref: Anderson, J., 2012: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimi-
lation. Mon. Wea. Rev., 140, 2359-2371, doi: 10.1175/MWR-D-11-00013.1.

6.163 PROGRAM perturb_single_instance

6.163.1 Overview

Utility program to generate an ensemble of perturbed ensemble member restart files. This program can be run in
parallel and used as a stand alone program.

584 Chapter 6. References

DART, Release 9.10.3

6.163.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&perturb_single_instance
ens_size = ''
input_files = ''
output_files = ''
output_file_list = ''
perturbation_amplitude = 0.0
single_restart_file_in = .false.
/

Item Type Description
ens_size integer Total number of ensemble members.
in-
put_files

charac-
ter(len=256),dimension(num_domains)

The restart file you would like to perturb from.

out-
put_file_list

charac-
ter(len=256)

A file containing a list of the desired output names.

out-
put_files

charac-
ter(len=256)

An array of filenames

perturba-
tion_amplitude

real(r8) The desired perturbation amplitude. If the model provides an interface then it
will use that subroutine, otherwise it will simply add gaussian noise to the entire
state, and this is the standard deviation.

sin-
gle_restart_file_in

logical A boolean, specifying if you have a single file restart, such as the case for lower
order models.

Below is an example of a typical namelist for the perturb_single_instance.

&perturb_single_instance_nml
ens_size = 3
input_files = 'caminput.nc'
output_files = 'cam_pert1.nc','cam_pert2.nc','cam_pert3.nc'

/

6.163.3 Files

• inputfile.nc (description file that will be perturbed)

• output_file_list.txt (a file containing a list of restart files) and,

• perturb_single_instance.nml

6.163. PROGRAM perturb_single_instance 585

DART, Release 9.10.3

6.163.4 References

• none

6.164 system simulation programs

6.164.1 Overview

A collection of standalone programs for simulating various properties of ensembles.

• full_error.f90

• obs_sampling_err.f90

• sampling_error.f90

• system_simulation.f90

• test_sampling_err_table.f90

• correl_error.f90

• sys_sim101.f90

• sys_sim101a.f90

• sys_sim102.f90

• sys_sim102b.f90

• sys_sim103.f90

• sys_sim104.f90

• sys_sim104b.f90

• sys_sim105.f90

• sys_sim2.f90

• sys_sim201.f90

• sys_sim202.f90

• sys_sim203.f90

• sys_sim3.f90

• sys_sim301.f90

• sys_sim302.f90

• sys_sim4.f90

• sys_sim401.f90

• sys_sim402.f90

• sys_sim5.f90

• sys_sim501.f90

• sys_sim502.f90

586 Chapter 6. References

DART, Release 9.10.3

Note: Talk to Jeff Anderson about the programs in this directory.

6.165 PROGRAM compute_error

6.165.1 Overview

Utility program to compute the time-mean ensemble error and spread in the same manner that the DART MATLAB
diagnostic routine ‘plot_total_err’ does. It runs from the command line, opens no windows, and outputs several types
of numerical results on standard output. Grep for ‘Total’ to get the 2 lines with total error and total spread. Intended for
scripts where only the numeric results are wanted instead of a time-series plot. This routine does not do any weighted
computations.

The default is to compare a True_State.nc file output from perfect_model_obs to a Prior_Diag.nc file output from filter.
Other filenames can be specified in the namelist. These files must have at least one overlapping value in the ‘time’
array. The statistics will be done on the overlapping time region only.

The output includes the min and max error and spread values, and the time index and time value where that occurs.
There is also an option to recompute the time mean ensemble error and spread after skipping the first N times. This
can be useful to skip an initial error spike while the model is spinning up which can result in a larger than expected
total error.

Namelist interface &compute_error_nml is read from file input.nml.

6.165.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&compute_error_nml
truth_file_name = 'true_state.nc'
diag_file_name = 'preassim.nc'
skip_first_ntimes = 0
/

Item Type Description
truth_file_namechar-

ac-
ter(len=256)

State-space diagnostic file from the ‘perfect_model_obs’ program.

diag_file_namechar-
ac-
ter(len=256)

State space diagnostic file output from the ‘filter’ program.

skip_first_ntimesinteger If set to a value greater than 0, the error values will be recomputed a second time, skipping the
first N times. This can be useful when running an experiment that has an initial error spike as
the model spins up and then decays down to a more steady state.

6.165. PROGRAM compute_error 587

DART, Release 9.10.3

6.165.3 Modules used

types_mod
utilities_mod

6.165.4 Files

• DART diagnosic files (True_State.nc, Prior_Diag.nc)

• compute_error.nml

6.165.5 References

• none

6.166 PROGRAM preprocess

6.166.1 Overview

Preprocess is a DART-supplied preprocessor program. Preprocess is used to insert observation specific code into
DART at compile time.

In DART, forward operators are not specific to any one model. To achieve this separation between models and forward
operators DART makes a distinction between an observation type and a physical quantity. For example, a radiosonde
used to measure windspeed would be a type of observation. Zonal wind and meridional wind are quantities used to
calculate windspeed. Specifying many observation types allows DART to be able to evaluate some observations and
assimilate others even if the instruments measure the same quantity.

Preprocess takes user supplied observation and quantity files and combines them with template files to produce code
for DART. Use the namelist option ‘obs_type_files’ to specify the input observation files and the namelist option
‘quantity_files’ to specify the input quantity files.

• If no quantity files are given, a default list of quantities is used.

• If no obs_type_files are given, only identity observations can be used in the filter (i.e. the state variable values
are directly observed; forward operator is an identity)

The template files DEFAULT_obs_def_mod.F90 and DEFAULT_obs_kind_mod.F90 contain specially for-
matted comment lines. These comment lines are used as markers to insert observation specific information. Prepreo-
cess relies these comment lines being used verbatim.

There is no need to to alter DEFAULT_obs_def_mod.F90 or DEFAULT_obs_kind_mod.F90. Detailed in-
structions for adding new observation types can be found in MODULE obs_def_mod. New quantities should be added
to a quantity file, for example a new atmosphere quantity should be added to atmosphere_quantities_mod.
f90.

Every line in a quantity file between the start and end markers must be a comment or a quantity definition
(QTY_string). Multiple name-value pairs can be specified for a quantity but are not required. For example, tem-
perature may be defined: ! QTY_TEMPERATURE units="K" minval=0.0. Comments are allowed between
quantity definitions or on the same line as the definition. The code snippet below shows acceptable formats for quantity
definitions

588 Chapter 6. References

DART, Release 9.10.3

! BEGIN DART PREPROCESS QUANTITY DEFINITIONS
!
! Formats accepted:
!
! QTY_string
! QTY_string name=value
! QTY_string name=value name2=value2
!
! QTY_string ! comments
!
! ! comment
!
! END DART PREPROCESS QUANTITY DEFINITIONS

The output files produced by preprocess are named
assimilation_code/modules/observations/obs_kind_mod.f90 and
observations/forward_operators/obs_def_mod.f90, but can be renamed by namelist control if
needed. Be aware that if you change the name of these output files, you will need to change the path_names files for
DART executables.

6.166.2 Namelist

When you run preprocess, the namelist is read from the file input.nml in the directory where preprocess is run.

Namelists start with an ampersand ‘&’ and terminate with a slash ‘/’. Character strings that contain a ‘/’ must be
enclosed in quotes to prevent them from prematurely terminating the namelist. These are the defaults:

&preprocess_nml
overwrite_output = .true.,
input_obs_def_mod_file = '../../../observations/forward_operators/DEFAULT_obs_def_

→˓mod.F90',
output_obs_def_mod_file = '../../../observations/forward_operators/obs_def_mod.f90',
input_obs_qty_mod_file = '../../../assimilation_code/modules/observations/DEFAULT_

→˓obs_kind_mod.F90',
output_obs_qty_mod_file = '../../../assimilation_code/modules/observations/obs_kind_

→˓mod.f90',
quantity_files = '../../../assimilation_code/modules/observations/

→˓atmosphere_quantities_mod.f90',
obs_type_files = '../../../observations/forward_operators/obs_def_

→˓reanalysis_bufr_mod.f90',
'../../../observations/forward_operators/obs_def_rel_

→˓humidity_mod.f90',
'../../../observations/forward_operators/obs_def_

→˓altimeter_mod.f90'
/

6.166. PROGRAM preprocess 589

DART, Release 9.10.3

Item Type Description
in-
put_obs_def_mod_file

char-
ac-
ter(len=256)

Path name of the template observation definition module to be preprocessed. The default is .
./../../observations/forward_operators/DEFAULT_obs_def_mod.F90.
This file must have the appropriate commented lines indicating where the different parts of the
input special obs definition modules are to be inserted.

out-
put_obs_def_mod_file

char-
ac-
ter(len=256)

Path name of output observation definition module to be created by preprocess. The default is
../../../observations/forward_operators/obs_def_mod.f90.

in-
put_obs_qty_mod_file

char-
ac-
ter(len=256)

Path name of input obs quantity file to be preprocessed. The default path name is ../../.
./assimilation_code/modules/observations/DEFAULT_obs_kind_mod.
F90. This file must have the appropriate commented lines indicating where the different
quantity modules are to be inserted.

out-
put_obs_qty_mod_file

char-
ac-
ter(len=256)

Path name of output obs quantity module to be created by preprocess. The default is ../../
../assimilation_code/modules/observations/obs_kind_mod.f90.

obs_type_fileschar-
ac-
ter(len=256)(:)

A list of files containing observation definitions for the type of observations you want to use
with DART. The maximum number of files is limited to MAX_OBS_TYPE_FILES = 1000.
The DART obs_def files are in observations/forward_operators/obs_def_*.
mod.f90.

over-
write_output

logi-
cal

By default, preprocess will overwrite the existing obs_kind_mod.f90 and obs_def_mod.f90
files. Set overwrite_output = .false. if you want to preprocess to not overwrite
existing files.

6.166.3 Modules used

parse_arges_mod
types_mod
utilities_mod

Namelist interface &preprocess_nml must be read from file input.nml.

6.166.4 Files

• input_obs_def_mod_file, specified by namelist; usually DEFAULT_obs_def_mod.F90.

• output_obs_def_mod_file, specified by namelist; usually obs_def_mod.f90.

• input_obs_qty_mod_file, specified by namelist; usually DEFAULT_obs_kind_mod.F90.

• output_obs_qty_mod_file, specified by namelist; usually obs_kind_mod.f90.

• obs_type_files, specified by namelist; usually files like obs_def_reanalysis_bufr_mod.f90.

• quantity_files, specified by namelist; usually files like atmosphere_quantities_mod.f90.

• namelistfile; input.nml

590 Chapter 6. References

DART, Release 9.10.3

6.166.5 References

• none

6.167 PROGRAM obs_impact_tool

6.167.1 Overview

The standard DART algorithms compute increments for an observation and then compute corresponding increments for
each model state variable due to that observation. To do this, DART computes a sample regression coefficient using the
prior ensemble distributions of a state variable and the observation. The increments for each member of the observation
are multiplied by this regression coefficient and then added to the corresponding prior ensemble member for the state
variable. However, in many cases, it is appropriate to reduce the impact of an observation on a state variable; this
is called localization. The standard DART algorithms allow users to specify a localization that is a function of the
horizontal (and optionally vertical) distance between the observation and the state variable. The localization is a value
between 0 and 1 and multiplies the regression coefficient when updating state ensemble members.

Sometimes, it may be desirable to do an additional localization that is a function of the type of observation and the
state vector quantity. This program allows users to construct a table that is read by filter at run-time to localize the
impact of sets of observation types on sets of state vector quantities. Users can create named sets of observation types
and sets of state vector quantities and specify a localization for the impact of the specified observation types on the
state vector quantities.

An example would be to create a subset of observations of tracer concentration for a variety of tracers, and a subset of
dynamic state variable quantities like temperatures and wind components. It has been common to set this localization
value to 0 so that tracer observations have no impact on dynamic state quantities, however, the tool allows values
between 0 and 1 to be specified.

This tool allows related collections of observation types and state vector quantities to be named and then express the
relationship of the named groups to each other in a concise way. It can also define relationships by exceptions.

All the listed observation types and state vector quantities must be known by the system. If they are not, look at
the &preprocess_nml :: input_items namelist which specifies which obs_def_xxx_mod.f90 files are included, which
is where observation types are defined. Quantities for different regimes (atmosphere, ocean, land, etc.) are de-
fined in assimilation_code/modules/observations/xxx_quantities_mod.f90 and explained in
MODULE obs_kind_mod

Format of the input file can be any combination of these types of sections:

hash mark starts a comment.

the GROUP keyword starts a group and must be followed
by a name. All types or quantities listed before the END
line becomes members of this group.

GROUPs cannot contain nested groups.

GROUP groupname1
QTY_xxx QTY_xxx QTY_xxx
QTY_xxx # comments can be here

END GROUP

GROUP groupname2
QTY_xxx
QTY_xxx

(continues on next page)

6.167. PROGRAM obs_impact_tool 591

DART, Release 9.10.3

(continued from previous page)

QTY_xxx
QTY_xxx

END GROUP

GROUPs can also be defined by specifying ALL, ALLQTYS,
or ALLTYPES and then EXCEPT and listing the types or
quantities which should be removed from this group.
ALL EXCEPT must be the first line in a group, and all
subsequent items are removed from the list.
The items listed after EXCEPT can include the names
of other groups.

GROUP groupnameM
ALL EXCEPT QTY_xxx QTY_xxx
QTY_xxx
END GROUP

GROUP groupnameN
ALL EXCEPT groupnameY
END GROUP

once any groups have been defined, a single instance
of the IMPACT table is specified by listing a TYPE,
QTY, or group in column 1, then a QTY or GROUP
in column 2 (the second name cannot be a specific type).
column 3 must be 0.0 or 1.0. subsequent entries
that overlap previous entries have precedence
(last entry wins).

IMPACT
QTY_xxx QTY_xxx 0.0
QTY_xxx groupname1 0.0
groupname1 QTY_xxx 0.0
groupname1 groupname1 0.0

END IMPACT

Namelist interface &obs_impact_tool_nml must be read from file input.nml.

6.167.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_impact_tool_nml
input_filename = 'cross_correlations.txt'
output_filename = 'control_impact_runtime.txt'
debug = .false.
/

592 Chapter 6. References

DART, Release 9.10.3

Item Type Description
in-
put_filename

char-
ac-
ter(len=512)

Name of an ascii text file which describes how the interaction of observations to state vector
values and observations to other observations should be controlled. See the Overview section for
details about the format of the input file entries.

out-
put_filename

char-
ac-
ter(len=512)

Name of an ascii text file which created by this tool. It can be read at filter run time to control
the impact of observations on state vector items and other observation values. The format of this
file is set by this tool and should not be modified by hand. Rerun this tool to recreate the file.

de-
bug

logi-
cal

If true print out debugging info.

6.167.3 Examples

To prevent chemistry species from impacting the meterological variables in the model state, and vice versa:

GROUP chem
QTY_CO QTY_NO QTY_C2H4

END GROUP

GROUP met
ALLQTYS EXCEPT chem

END GROUP

IMPACT
chem met 0.0
met chem 0.0

END IMPACT

6.167.4 Modules used

types_mod
utilities_mod
parse_args_mod

6.167.5 Files

• two text files, one input and one output.

• obs_impact_tool.nml

6.167. PROGRAM obs_impact_tool 593

DART, Release 9.10.3

6.167.6 References

• none

6.168 program create_fixed_network_seq

6.168.1 Overview

Reads in an observation sequence file and creates a second observation sequence file. Any time information in the
input file is ignored entirely. All of the observations in the input file define a set of observations. The output sequence
replicates this set multiple times, either with a fixed period in time or at arbitrarily selected times. The program is
driven by input from standard input, either the terminal or a text file.

First, one must select either a regularly repeating time sequence of observations (option 1) or an arbitrarily repeating
sequence (option 2). For the fixed period, the total number of observation times, the first observation time and the
period of the observations is input and an output observation sequence is generated. For the arbitrary period, the user
is queried for the number of observing times and then a set of monotonically increasing times. Finally, the user selects
a file name (traditionally obs_seq.in) to which the output file is written. The format of the output file is controlled by
the namelist options in obs_sequence_mod.

Any data values or quality control flags associated with the input set are replicated to the output, but this program is
typically used with perfect model experiments to create observations without data, which are then filled in by running
program perfect_model_obs.

6.168.2 Modules used

types_mod
utilities_mod
obs_def_mod
obs_sequence_mod
time_manager_mod
model_mod

6.168.3 Files

• Input observation sequence (set_def.out is standard).

• Output observation sequence (obs_seq.in is standard).

6.168.4 References

• none

594 Chapter 6. References

../../modules/observations/obs_sequence_mod.html#Namelist

DART, Release 9.10.3

6.169 program obs_loop

6.169.1 Overview

This program is a template that is intended to be modified by the user to do any desired operations on an observation
sequence file.

6.169.2 Usage

This program is intended to be used as a template to read in observations from one obs_seq file and write them,
optionally modified in some way, to another obs_seq file. It can be compiled and run as-is, but it simply makes an
exact copy of the input file.

There are comments in the code (search for MODIFY HERE) where you can test values, types, times, error values,
and either modify them or skip copying that observation to the output.

There are build files in observations/utilities/oned and observations/utilities/
threed_sphere to build the obs_loop program.

6.169.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_loop_nml
filename_in = ''
filename_out = ''
print_only = .false.
calendar = 'Gregorian'
/

Items in this namelist set the input and output files.

6.169. program obs_loop 595

DART, Release 9.10.3

Item Type Description
file-
name_in

char-
ac-
ter(len=256)

Observation sequence file to read

file-
name_out

char-
ac-
ter(len=256)

Observation sequence file to create and write. If this file exists it will be overwritten.

print_onlylogi-
cal

If .TRUE. then do the work but only print out information about what would be written as output
without actually creating the output file.

cal-
en-
dar

char-
ac-
ter(len=32)

The string name of a valid DART calendar type. (See the MODULE time_manager_mod doc-
umentation for a list of valid types.) The setting here does not change what is written to the
output file; it only changes how the date information is printed to the screen in the informational
messages.

6.169.4 Discussion

See the documentation in the obs_kind and obs_def modules for things you can query about an observation, and how
to set (overwrite) existing values.

6.169.5 Building

There are build files in observations/utilities/oned and observations/utilities/
threed_sphere to build the obs_loop program.

The preprocess program must be built and run first to define what set of observation types will be supported. See
the PROGRAM preprocess for more details on how to define the list and run it. The &preprocess_nml namelist
in the input.nml file must contain files with definitions for the combined set of all observation types which will be
encountered over all input obs_seq files.

If you have observation types which are not part of the default list in the &preprocess_nml namelist, add them to the
input.nml file and then either run quickbuild.csh or make and run preprocess and then make the obs_loop tool.

Usually the directories where executables are built will include a quickbuild.csh script which builds and runs
preprocess and then builds the rest of the executables by executing all files with names starting with mkmf_.

6.169.6 Files

filename purpose
input.nml to read the &obs_loop_nml namelist

596 Chapter 6. References

DART, Release 9.10.3

6.169.7 References

1. none

6.169.8 Error codes and conditions

Routine Message Comment
obs_loop
obs_loop

6.169.9 Future plans

none

6.170 program perfect_model_obs

6.170.1 Overview

Main program for creating synthetic observation sequences given a model for use in filter assimilations. Reads in
an observation sequence file which has only observation definitions and generates synthetic observation values for an
output observation sequence file. The execution of perfect_model_obs is controlled by the input observation sequence
file and the model time-stepping capabilities in a manner analogous to that used by the filter program.

6.170.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&perfect_model_obs_nml
single_file_in = .false.,
read_input_state_from_file = .false.,
input_state_files = "",
init_time_days = 0,
init_time_seconds = 0,

single_file_out = .false.,
output_state_files = "",
write_output_state_to_file = .false.,
output_interval = 1,

distributed_state = .false.,
async = 0,
adv_ens_command = "./advance_model.csh",
tasks_per_model_advance = 1,

obs_seq_in_file_name = "obs_seq.in",
obs_seq_out_file_name = "obs_seq.out",
first_obs_days = -1,

(continues on next page)

6.170. program perfect_model_obs 597

DART, Release 9.10.3

(continued from previous page)

first_obs_seconds = -1,
last_obs_days = -1,
last_obs_seconds = -1,
obs_window_days = -1,
obs_window_seconds = -1,

trace_execution = .false.,
output_timestamps = .false.,
print_every_nth_obs = 0,
output_forward_op_errors = .false.,
silence = .false.,

/

598 Chapter 6. References

DART, Release 9.10.3

Item Type Description
read_input_state_from_file logical If false, model_mod must provide

the input state.
single_file_in logical Get all states from a single file.
input_state_files character(len=256) dimen-

sion(MAX_NUM_DOMS)
A list of files, one per domain. Each
file must be a text file containing the
name of the NetCDF file to open.

write_output_state_to_file logical If false, state is not written out.
single_file_out logical Write all states to a single file.
output_state_files character(len=256) dimen-

sion(MAX_NUM_DOMS)
A list of files, one per domain. Each
file must be a text file containing the
names of the NetCDF file to open.

init_time_days integer If negative, don’t use. If non-
negative, override the initial data
time read from restart file.

init_time_seconds integer If negative don’t use. If non-
negative, override the initial data
time read from restart file.

output_interval integer Output state and observation diag-
nostics every nth assimilation time,
n is output_interval.

distributed_state logical True means the ensemble data is dis-
tributed across all tasks as it is read
in, so a single task never has to have
enough memory to store the data for
an ensemble member. Large mod-
els should always set this to .true.,
while for small models it may be
faster to set this to .false.

async integer Controls method for advancing
model:

• 0 = subroutine call
• 2 = shell command, single

task model
• 4 = shell command, parallel

model

adv_ens_command character(len=129) Command sent to shell if async ==
2 or 4.

tasks_per_model_advance integer Number of tasks to use while ad-
vancing the model.

obs_seq_in_file_name character(len=256) File name from which to read an ob-
servation sequence.

obs_seq_out_file_name character(len=256) File name to which to write output
observation sequence.

first_obs_days integer If negative, don’t use. If non-
negative, ignore any observations
before this time.

first_obs_seconds integer If negative, don’t use. If non-
negative, ignore any observations
before this time.

last_obs_days integer If negative, don’t use. If non-
negative, ignore any observations
after this time.

last_obs_seconds integer If negative, don’t use. If non-
negative, ignore any observations
after this time.

obs_window_days integer If negative, don’t use. If non-
negative, reserved for future use.

obs_window_seconds integer If negative, don’t use. If non-
negative, reserved for future use.

trace_execution logical True means output very detailed
messages about what routines are
being called in the main loop. Use-
ful if a job hangs or otherwise
doesn’t execute as expected.

output_timestamps logical True means output timestamps be-
fore and after the model advance
and the forward observation compu-
tation phases.

print_every_nth_obs integer If negative, don’t use. If non-
negative, print a message noting the
processing of every Nth observa-
tion.

output_forward_op_errors logical True means output errors from for-
ward observation operators. This is
the ‘istatus’ error return code from
the model interpolate routine. An
ascii text file ‘forward_op_errors’
will be created in the current direc-
tory. Each line will contain an ob-
servation key number, and the ista-
tus return code.

silence logical True means output almost no run-
time messages. Not recommended
for general use, but can speed test
programs if the execution time be-
comes dominated by the volume of
output.

6.170. program perfect_model_obs 599

DART, Release 9.10.3

6.170.3 Modules used

types_mod
utilities_mod
time_manager_mod
obs_sequence_mod
obs_def_mod
obs_model_mod
assim_model_mod
mpi_utilities_mod
random_seq_mod
ensemble_manager_mod

6.170.4 Files

• observation sequence input file; name comes from obs_seq_in_file_name

• observation sequence output file; name comes from obs_seq_out_file_name

• input state vector file; name comes from restart_in_file_name

• output state vector file; name comes from restart_out_file_name

• perfect_model_mod.nml in input.nml

6.170.5 References

• none

6.171 program obs_selection

6.171.1 Overview

This specialized tool selects a subset of input observations from an observation sequence file. For a more general pur-
pose observation sequence file tool, see the program obs_sequence_tool. This tool takes a selected list of observation
types, times, and locations, and extracts only the matching observations out of one or more obs_sequence files. The
tool which creates the input selection file is usually program obs_seq_coverage. Alternatively, the selection file can
be a full observation sequence file, in which case the types, times, and locations of those observations are used as the
selection criteria.

This tool processes each observation sequence file listed in the input namelist filename_seq or
filename_seq_list. If the observation type, time and location matches an entry in the selection file, it is copied
through to the output. Otherwise it is ignored.

The actions of the obs_selection program are controlled by a Fortran namelist, read from a file named input.
nml in the current directory. A detailed description of each namelist item is described in the namelist section of this
document. The names used in this discussion refer to these namelist items.

600 Chapter 6. References

DART, Release 9.10.3

6.171.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_selection_nml
filename_seq = ''
filename_seq_list = ''
filename_out = 'obs_seq.processed'
num_input_files = 0
selections_file = 'obsdef_mask.txt'
selections_is_obs_seq = .false.
latlon_tolerance = 0.000001
match_vertical = .false.
surface_tolerance = 0.0001
pressure_tolerance = 0.001
height_tolerance = 0.0001
scaleheight_tolerance = 0.001
level_tolerance = 0.00001
print_only = .false.
partial_write = .false.
print_timestamps = .false.
calendar = 'Gregorian'
/

6.171. program obs_selection 601

DART, Release 9.10.3

Item Type Description
file-
name_seq

char-
ac-
ter(len=256),
di-
men-
sion(500)

The array of names of the observation sequence files to process, up to a max count of 500 files.
(Specify only the actual number of input files. It is not necessary to specify 500 entries.)

file-
name_seq_list

char-
ac-
ter(len=256)

An alternative way to specify the list of input files. The name of a text file which contains, one
per line, the names of the observation sequence files to process. You can only specify one of
filename_seq OR filename_seq_list, not both.

num_input_filesinte-
ger

Optional. The number of observation sequence files to process. Maximum of 500. If 0, the length
is set by the number of input files given. If non-zero, must match the given input file list length.
(Can be used to verify the right number of input files were processed.)

file-
name_out

char-
ac-
ter(len=256)

The name of the resulting output observation sequence file. There is only a single output file from
this tool. If the input specifies multiple obs_seq input files, the results are concatinated into a
single output file.

se-
lec-
tions_file

char-
ac-
ter(len=256)

The name of the input file containing the mask of observation definitions (the textfile output of
program obs_seq_coverage). Alternatively, this can be the name of a full observation sequence
file. In this case, the types, times, and locations are extracted from this file and then used in the
same manner as a mask file from the coverage tool.

se-
lec-
tions_is_obs_seq

logi-
cal

If .TRUE. the filename given for the “selections_file” is a full obs_sequence file and not a text file
from the coverage tool.

lat-
lon_tolerance

real(r8) Specified in degrees. For observations to match in the horizontal the difference in degrees for each
of latitude and longitude must be less than this threshold. If less than or equal to 0, the values must
match exactly.

match_verticallogi-
cal

If .TRUE. the locations of the observations in the input files have to match the selection list not
only the horizontal but also in the vertical.

sur-
face_tolerance

real(r8) Specified in meters. If “match_vertical” is .FALSE. this value is ignored. If “match_vertical” is
.TRUE., this applies to observations with a vertical type of VERTISSURFACE. For observations
which match in the horizontal, the vertical surface elevation difference must be less than this to be
considered the same.

pres-
sure_tolerance

real(r8) Specified in pascals. If “match_vertical” is .FALSE. this value is ignored. If “match_vertical” is
.TRUE., this applies to observations with a vertical type of VERTISPRESSURE. For observations
which match in the horizontal, the vertical difference must be less than this to be considered the
same.

height_tolerancereal(r8) Specified in meters. If “match_vertical” is .FALSE. this value is ignored. If “match_vertical” is
.TRUE., this applies to observations with a vertical type of VERTISHEIGHT. For observations
which match in the horizontal, the vertical difference must be less than this to be considered the
same.

scale-
height_tolerance

real(r8) Specified in unitless values. If “match_vertical” is .FALSE. this value is ignored. If
“match_vertical” is .TRUE., this applies to observations with a vertical type of VERTISSCALE-
HEIGHT. For observations which match in the horizontal, the vertical difference must be less than
this to be considered the same.

level_tolerancereal(r8) Specified in fractional model levels. If “match_vertical” is .FALSE. this value is ignored. If
“match_vertical” is .TRUE., this applies to observations with a vertical type of VERTISLEVEL.
For observations which match in the horizontal, the vertical difference must be less than this to be
considered the same. Note that some models only support integer level values, but others support
fractional levels. The vertical value in an observation is a floating point/real value, so fractional
levels are possible to specify for an observation.

print_onlylogi-
cal

If .TRUE. do not create an output file, but print a summary of the number and types of each
observation in each input file, and then the number of observations and types which would have
been created in an output file.

par-
tial_write

logi-
cal

Generally only used for debugging problems. After each input obs_seq file is processed, this flag,
if .TRUE., causes the code to write out the partial results to the output file. The default is to
process all input files (if more than a single file is specified) and write the output file only at the
end of the processing.

print_timestampslogi-
cal

Generally only used for debugging very slow execution runs. This flag, if .TRUE., causes the code
to output timestamps (wall clock time) at various locations during the processing phases. It may
help isolate where particularly slow execution times are occurring. For very large input files, or
long lists of input files, it can also help to estimate what the eventual run time of the job will be.

cal-
en-
dar

char-
ac-
ter(len=32)

Set to the name of the calendar; only controls the printed output for the dates of the first and last
observations in the file. Set this to “no_calendar” if the observations are not using any calendar.

602 Chapter 6. References

DART, Release 9.10.3

6.171.3 Building

Most $DART/models/*/work directories contain files needed to build this tool along with the other executable
programs. It is also possible to build this tool in the $DART/observations/utilities directory. In either case
the preprocess program must be built and run first to define what set of observation types will be supported. See
the PROGRAM preprocess for more details on how to define the list and run it. The &preprocess_nml namelist
in the input.nml file must contain files with definitions for the combined set of all observation types which will be
encountered over all input obs_seq files. The other important choice when building the tool is to include a compatible
locations module in the path_names_obs_selection file. For the low-order models the oned module should
be used; for real-world observations the threed_sphere module should be used.

Usually the directories where executables are built will include a quickbuild.csh script which builds and runs
preprocess and then builds the rest of the executables by executing all files with names starting with mkmf_. If the
obs_selection tool is not built because there is no mkmf_obs_selection and path_names_obs_selection
file in the current directory they can be copied from another model. The path_names_obs_selection file will
need to be edited to be consistent with the model you are building.

6.171.4 Modules used

types_mod
utilities_mod
time_manager_mod
obs_def_mod
obs_sequence_mod

6.171.5 Files

• input.nml

• The input files specified in the filename_seq namelist variable.

• The output file specified in the filename_out namelist variable.

6.171.6 References

• none

6.172 program obs_sequence_tool

6.172.1 Overview

DART observation sequence files are stored in a proprietary format. This tool makes it easier to manipulate these files,
allowing the user to subset or combine one or more files into a single output file.

The tool has many options to select subsets of observations by time, type, data value, and location. The tool also
allows the contents of observations to be changed by subsetting and/or reordering the copies and qc entries. Files with
equivalent data but with different metadata labels (e.g. ‘NCEP QC’ vs. ‘QC’) can now be merged as well. The tool

6.172. program obs_sequence_tool 603

DART, Release 9.10.3

can be run without creating an output file, only printing a summary of the counts of each observation type in the input
files, and it can be used to convert from binary to ASCII and back.

The actions of the obs_sequence_tool program are controlled by a Fortran namelist, read from a file named
input.nml in the current directory. A detailed description of each namelist item is described in the namelist section
below.

The examples section of this document below has extensive examples of common usages for this tool. Below that are
more details about DART observation sequence files, the structure of individual observations, and general background
information.

6.172.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_sequence_tool_nml
filename_seq = ''
filename_seq_list = ''
filename_out = 'obs_seq.processed'
first_obs_days = -1
first_obs_seconds = -1
last_obs_days = -1
last_obs_seconds = -1
obs_types = ''
keep_types = .true.
min_box = -888888.0
max_box = -888888.0
min_lat = -90.0
max_lat = 90.0
min_lon = 0.0
max_lon = 360.0
copy_metadata = ''
min_copy = -888888.0
max_copy = -888888.0
copy_type = ''
edit_copy_metadata = .false.
new_copy_metadata = ''
edit_copies = .false.
new_copy_index = -1
new_copy_data = -888888.0
qc_metadata = ''
min_qc = -888888.0
max_qc = -888888.0
edit_qc_metadata = .false.
new_qc_metadata = ''
edit_qcs = .false.
new_qc_index = -1
new_qc_data = -888888.0
synonymous_copy_list = ''
synonymous_qc_list = ''
print_only = .false.
gregorian_cal = .true.
min_gps_height = -888888.0
/

604 Chapter 6. References

DART, Release 9.10.3

Item Type Description
filename_seq character(len=256), dimension(1000) The array of names of the observation sequence files to process. (With the F90 namelist mechanism it is only necessary to specify as many names as you have input files; unspecified list values are cleanly ignored.)
filename_seq_list character(len=256) The name of a text file which contains, one per line, the names of the observation sequence files to process. The names on each line in the file should not have any delimiters, e.g. no single or double quotes at the start or end of the filename. This file can be made with a text editor or with the output of the ‘ls’ command, e.g. ls obs_seq.* > flist. You can only specify one of filename_seq OR filename_seq_list, not both.
filename_out character(len=256) The name of the resulting output observation sequence file.
first_obs_days integer If non-negative, restrict the timestamps of the observations copied to the output file to be equal to or after this day number (specified in the Gregorian calendar; day number since 1601).
first_obs_seconds integer If non-negative, restrict the timestamps of the observations copied to the output file to be equal to or after this time.
last_obs_days integer If non-negative, restrict the timestamps of the observations copied to the output file to be equal to or before this date (specified in the Gregorian calendar; day number since 1601).
last_obs_seconds integer If non-negative, restrict the timestamps of the observations copied to the output file to be equal to or before this time.
obs_types character(len=32), dimension(500) The array of observation type names to process. If any names specified, then based on the setting of keep_types, these observation types will either be the only types kept in the output file, or they will be removed and all other types will be copied to the output file.
keep_types logical Ignored unless one or more observation types are specified in the obs_types namelist. If .TRUE., only the specified observation types will be copied to the output file; if .FALSE., all types except the listed ones will be copied to the output file.
min_box real(r8)(:) If the locations are 1D, set a min value here instead of using the lat/lon box values.
max_box real(r8)(:) If the locations are 1D, set a max value here instead of using the lat/lon box values.
min_lat real(r8) If specified, the minimum latitude, in degrees, of observations to be copied to the output file. This assumes compiling with the 3d-sphere locations module.
max_lat real(r8) If specified, the maximum latitude, in degrees, of observations to be copied to the output file. This assumes compiling with the 3d-sphere locations module.
min_lon real(r8) If specified, the minimum longitude, in degrees, of observations to be copied to the output file. This assumes compiling with the 3d-sphere locations module. If min_lon is larger than max_lon, wrap across 360 to 0 is assumed.
max_lon real(r8) If specified, the maximum longitude, in degrees, of observations to be copied to the output file. This assumes compiling with the 3d-sphere locations module. If min_lon is larger than max_lon, wrap across 360 to 0 is assumed.
copy_metadata character If specified, the metadata string describing one of the data copy fields in the input observation sequence files.
min_copy real If specified, the minimum value in the data copy field matching the copy_metadata name that will be copied to the output file.
max_copy real If specified, the maximum value in the data copy field matching the copy_metadata name that will be copied to the output file.
copy_type character(len=32) If specified, the string name of an observation type to be copied to the output file only if the min and max values specified are in range. All other observation types are discarded if this option is specified.
edit_copy_metadata logical If true, replace the output file metadata strings with the list specified in the new_copy_metadata list.
new_copy_metadata character(len=*)(:) List of new metadata strings. Use with care, there is no error checking to ensure you are doing a valid replacement.
edit_copies logical If true, subset or rearrange the actual data copies in the output. The new_copy_index list controls the output order of copies from the input files.
new_copy_index integer(:) An array of integers, which control how copies in the input are moved to the output sequence. The values must be between 0 and the number of copies in the input sequence. They can be repeated to replicate an existing copy; they can be specified in any order to reorder the entries; they can include the value 0 to insert a new copy. -1 ends the list. If -1 is specified as the first value all copies will be deleted.
new_copy_data real(:) An array of reals. The length should correspond to the number of 0s in the new_copy_index list, and will be the data value for the new copies. This value will be constant for all observations.
qc_metadata character If specified, the metadata string describing one of the quality control (QC) fields in the input observation sequence files.
min_qc real If specified, the minimum qc value in the QC field matching the qc_metadata name that will be copied to the output file.
max_qc real If specified, the maximum qc value in the QC field matching the qc_metadata name that will be copied to the output file.
edit_qc_metadata logical If true, replace the output file metadata strings with the list specified in the new_qc_metadata list.
new_qc_metadata character(len=*)(:) List of new metadata strings. Use with care, there is no error checking to ensure you are doing a valid replacement.
edit_qcs logical If true, subset or rearrange the actual data QCs in the output. The new_qc_index list controls the output order of QCs from the input files.
new_qc_index integer(:) An array of integers, which control how QCs in the input are moved to the output sequence. The values must be between 0 and the number of QCs in the input sequence. They can be repeated to replicate an existing QCs; they can be specified in any order to reorder the entries; they can include the value 0 to insert a new qc. -1 ends the list. If -1 is specified as the first value, all QCs will be deleted.
new_qc_data real(:) An array of reals. The length should correspond to the number of 0s in the new_qc_index list, and will be the data value for the new QCs. This value will be constant for all observations.
synonymous_copy_list character(len=*)(:) An array of strings which are to be considered synonyms in the copy metadata strings for all the input obs seq files. Any string in this list will match any other string. The first obs sequence file to copy observations to the output file will set the actual values used, unless they are explicitly overridden by edit_copy_metadata.
synonymous_qc_list character(len=*)(:) An array of strings which are to be considered synonyms in the qc metadata strings for all the input obs seq files. Any string in this list will match any other string. The first obs sequence file to qc observations to the output file will set the actual values used, unless they are explicitly overridden by edit_qc_metadata.
print_only logical If .TRUE., do not create an output file, but print a summary of the number and types of each observation in each input file, and then the number of observations and types which would have been created in an output file. If other namelist selections are specified (e.g. start and end times, select by observation type, qc value, etc) the summary message will include the results of that processing.
gregorian_cal logical If .true. the dates of the first and last observations in each file will be printed in both (day/seconds) format and in gregorian calendar year/month/day hour:min:sec format. Set this to .false. if the observations were not created with gregorian calendar times.
num_input_files integer DEPRECATED. The number of observation sequence files to process is now set by counting up the number of input filenames specified. This namelist item is ignored and will be removed in future versions of the code.

6.172. program obs_sequence_tool 605

DART, Release 9.10.3

6.172.3 Examples

Here are details on how to set up common cases using this tool:

• Merge multiple files

• Subset in Time

• Subset by Observation Type

• Subset by Location

• Binary to ASCII and back

• Merging files with incompatible Metadata

• Altering the number of Copies or QC values

• Printing only

• Subset by Observation or QC Value

Merge multiple files

Either specify a list of input files for filename_seq, like:

&obs_sequence_tool_nml
filename_seq = 'obs_seq20071101',

'qscatL2B_2007_11_01a.out',
'obs_seq.gpsro_2007110106',

filename_out = 'obs_seq20071101.all',
gregorian_cal = .true.

/

and all observations in each of the three input files will be merged in time order and output in a single observation
sequence file. Or from the command line create a file containing one filename per line, either with ‘ls’:

ls obs_seq_in* > tlist

or with a text editor, or any other tool of your choice. Then,

&obs_sequence_tool_nml
filename_seq_list = 'tlist',
filename_out = 'obs_seq20071101.all',
gregorian_cal = .true.

/

will open ‘tlist’ and read the filenames, one per line, and merge them together. The output file will be named
‘obs_seq20071101.all’. Note that the filenames inside the list file should not have delimiters (e.g. single or dou-
ble quotes) around the filenames.

606 Chapter 6. References

DART, Release 9.10.3

Subset in time

The observations copied to the output file can be restricted in time by setting the namelist items for the first and last
observation timestamps (in days and seconds). It is not an error for some of the input files to have no observations in
the requested time range, and multiple input files can have overlapping time ranges. For example:

&obs_sequence_tool_nml
filename_seq = 'obs_seq20071101',

'qscatL2B_2007_11_01a.out',
'obs_seq.gpsro_2007110106',

filename_out = 'obs_seq20071101.06hrs',
first_obs_days = 148592,
first_obs_seconds = 10801,
last_obs_days = 148592,
last_obs_seconds = 32400,
gregorian_cal = .true.

/

The time range is inclusive on both ends; observations with times equal to the boundary times will be copied to the
output. To split a single input file up into proper subsets (no replicated observations), the first time of the following
output sequence should be +1 second from the last time of the previous output sequence. If the goal is to match an
observation sequence file with an assimilation window during the execution of the filter program, the windows
should be centered around the assimilation time starting at minus 1/2 the window time plus 1 second, and ending at
exactly plus 1/2 the window time.

Subset by observation type

You specify a list of observation types, by string name, and then specify a logical value to say whether this is the list
of observations to keep, or if it’s the list of observations to discard. For example,

&obs_sequence_tool_nml
filename_seq = 'obs_seq20071101.06hrs',
filename_out = 'obs_seq20071101.wind',
obs_types = 'RADIOSONDE_U_WIND_COMPONENT',

'RADIOSONDE_V_WIND_COMPONENT',
keep_types = .true.,
gregorian_cal = .true.

/

will create an output file which contains only the U and V wind observations from the given input file.

&obs_sequence_tool_nml
filename_seq = 'obs_seq20071101.06hrs',
filename_out = 'obs_seq20071101.notemp',
obs_types = 'RADIOSONDE_TEMPERATURE',
keep_types = .false.,
gregorian_cal = .true.

/

will strip out all the radiosonde temperature observations and leave everything else.

6.172. program obs_sequence_tool 607

DART, Release 9.10.3

Subset by location

If the observations have locations specified in 3 dimensions, as latitude, longitude, and a vertical coordinate, then it
can be subset by specifying the corners of a lat, lon box. There is currently no vertical subsetting option. For example:

min_lat = 0.0,
max_lat = 20.0,
min_lon = 230.0,
max_lon = 260.0,

will only output observations between 0 and 20 latitude and 230 to 260 in longitude. Latitude ranges are 90 to 90,
longitude can either be specified from 180 to +180, or 0 to 360.

If the observations have 1 dimensional locations, between 0 and 1, then a bounding box can be specified like:

min_box = 0.2,
max_box = 0.4,

will keep only those observations between 0.2 and 0.4. In all these tests, points on the boundaries are considered inside
the box.

Binary to ASCII and back

To convert a (more compact) binary observation sequence file to a (human readable and portable) ASCII file, a single
input and single output file can be specified with no selection criteria. The output file format is specified by the
write_binary_obs_sequence item in the &obs_sequence_nml namelist in the input.nml file. It is a
Fortran logical; setting it to .TRUE. will write a binary file, setting it to .FALSE. will write an ASCII text file. If
you have a binary file, it must be converted on the same kind of platform as it was created on before being moved to
another architecture. At this point in time, there are only 2 remaining incompatible platforms: IBM systems based on
PowerPC chips, and everything else (which is Intel or AMD).

Any number of input files and selection options can be specified, as well, but for a simple conversion, leave all other
input namelist items unset.

Merging files with incompatible metadata

To merge files which have the same number of copies and qc but different labels for what is exactly the same data, you
can specify a list of synonym strings that will pass the matching test. For example:

&obs_sequence_tool_nml
filename_seq = 'qscatL2B_2007_11_01.out',

'obs_seq20071101',
'obs_seq.gpsro_2007110124',

filename_out = 'obs_seq20071101.all',
gregorian_cal = .true.
synonymous_copy_list = 'NCEP BUFR observation', 'AIRS observation', 'observation',
synonymous_qc_list = 'NCEP QC index', 'AIRS QC', 'QC flag - wvc quality flag',

→˓'QC',
/

will allow any copy listed to match any other copy on that list, and same with the QC values. If the output metadata
strings are not specified (see below), then the actual metadata strings from the first file which is used will set the output
metadata strings.

608 Chapter 6. References

DART, Release 9.10.3

To rename or override, with care, existing metadata strings in a file, set the appropriate edit strings to true, and set the
same number of copies and/or QC values as will be in the output file. Note that this will replace, without warning,
whatever is originally listed as metadata. You can really mangle things here, so use this with caution:

&obs_sequence_tool_nml
filename_seq = 'qscat_all_qc_305.out', 'qscat_all_qc_306.out',
filename_out = 'qscat_1_qc_2007_11.out',
edit_copy_metadata = .true.,
new_copy_metadata = 'observation',
edit_qc_metadata = .true.,
new_qc_metadata = 'QC', 'DART quality control',
gregorian_cal = .true.

/

The log file will print out what input strings are being replaced; check this carefully to be sure you are doing what you
expect.

If you use both a synonym list and the edit list, the output file will have the specified edit list strings for metadata.

Altering the number of copies or QC values

To delete some of the copies or QC values in each observation, specify the copy or QC index numbers which are to be
passed through, and list them in the exact order they should appear in the output:

edit_copies = .true.,
new_copy_index = 1, 2, 81, 82,

edit_qcs = .true.,
new_qc_index = 2,

This will create an output sequence file with only 4 copies; the original first and second copies, and copies 81 and 82.
The original metadata will be retained. It will have only the second QC value from the original file.

If you are editing the copies or QCs and also specifying new metadata strings, use the number and order appropriate
to the output file regardless of how many copies or QC values there were in the original input files.

You can use these index lists to reorder copies or QC values by specifying the same number of index values as currently
exist but list them in a different order. Index values can be repeated multiple times in a list. This will duplicate both
the metadata string as well as the data values for the copy or QC.

To delete all copies or QCs specify -1 as the first (only) entry in the new index list.

edit_qcs = .true.,
new_qc_index = -1,

To add copies or QCs, use 0 as the index value.

edit_copies = .true.,
new_copy_index = 1, 2, 0, 81, 82, 0
new_copy_data = 3.0, 8.0,

edit_qcs = .true.,
new_qc_index = 2, 1, 3, 0,
new_qc_data = 1.0,

This will insert 2 new copies in each observation and give them values of 3.0 and 8.0 in all observations. There is
no way to insert a different value on a per-obs basis. This example will also reorder the 3 existing QC values and

6.172. program obs_sequence_tool 609

DART, Release 9.10.3

then add 1 new QC value of 1 in all observations. The ‘edit_copy_metadata’ and ‘edit_qc_metadata’ flags with the
‘new_copy_metadata’ and ‘new_qc_metadata’ lists can be used to set the metadata names of the new copies and QCs.

edit_copies = .true.,
new_copy_index = 1, 0, 2, 0,
new_copy_data = 3.0, 8.0,
edit_copy_metadata = .true.,
new_copy_metadata = 'observation', 'new copy 1',

'truth', 'new copy 2',

edit_qcs = .true.,
new_qc_index = 0, 2,
new_qc_data = 0.0,
edit_qc_metadata = .true.,
new_qc_metadata = 'dummy QC', 'DART QC',

To remove an existing QC value and add a QC value of 0 for all observations, run with:

edit_qcs = .true.,
new_qc_index = 0,
new_qc_data = 0.0,
edit_qc_metadata = .true.,
new_qc_metadata = 'dummy QC',

to add a constant QC of 0 for all observations, with a metadata label of ‘dummy QC’.

It would be useful to allow copies or QCs from one file to be combined, obs by obs, with those from another file.
However, it isn’t easy to figure out how to ensure the observations in multiple files are in exactly the same order so
data from the same obs are being combined. Also how to specify what should be combined is a bit complicated. So
this functionality is NOT available in this tool.

Printing only

Note that you can set all the other options and then set print true, and it will do all the work and then just print out how
many of each obs type would have been created. It is an easy way to preview what your choices would do without
waiting to write an output file. It only prints the type breakdown for output file, but does print a running total of how
many obs are being kept from each input file. For example:

&obs_sequence_tool_nml
filename_seq = 'obs_seq20071101',
print_only = .true.,

/

Subset by observation or QC value

You can specify a min, max data value and/or min, max qc value, and only those within the range will be kept. There
is no exclude option. For the data value, you must also specify an observation type since different types have different
units and valid ranges. For example:

keep only observations with a DART QC of 0:
qc_metadata = 'Dart quality control',
min_qc = 0,
max_qc = 0,

keep only radiosonde temp obs between 250 and 300 K:

(continues on next page)

610 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

copy_metadata = 'NCEP BUFR observation',
copy_type = 'RADIOSONDE_TEMPERATURE',
min_copy = 250.0,
max_copy = 300.0,

6.172.4 Discussion

DART observation sequence files are lists of individual observations, each with a type, a time, one or more values
(called copies), zero or more quality control flags, a location, and an error estimate. Regardless of the physical order
of the observations in the file, they are always processed in increasing time order, using a simple linked list mechanism.
This tool reads in one or more input observation sequence files, and creates a single output observation sequence file
with all observations sorted into a single, monotonically increasing time ordered output file.

DART observation sequence files contain a header with the total observation count and a table of contents of obser-
vation types. The output file from this tool culls out unused observations, and only includes observation types in the
table of contents which actually occur in the output file. The table of contents does not need to be the same across
multiple files to merge them. Each file has a self-contained numbering system for observation types. However, the
obs_sequence_tool must be compiled with a list of observation types (defined in the obs_def files listed in
the preprocess namelist) which includes all defined types across all input files. See the building section below for
more details on compiling the tool.

The tool can handle observation sequence files at any stage along the processing pipeline: a template file with locations
but no data, input files for an assimilation which have observation values only, or output files from an assimilation
which then might include the prior and posterior mean and standard deviation, and optionally the output from the
forward operator from each ensemble member. In all of these cases, the format of each individual observation is the
same. It has zero or more copies, which is where the observation value and the means, forward operators, etc are
stored. Each observation also has zero or more quality control values, qc, which can be associated with the incoming
data quality, or can be added by the DART software to indicate how the assimilation processed this observation. Each
of the copies and qc entries has an single associated character label at the start of the observation sequence file which
describes what each entry is, called the metadata.

For multiple observation sequence files to be merged they must have the same number of copies and qc values, and
all associated metadata must be identical. To merge multiple files where the numbers do not match exactly, the tool
can be used on the individual files to rename, subset, and reorder the copies and/or qc first, and then the resulting files
are mergeable. To merge multiple files where the metadata strings do not match, but the data copy or qc values are
indeed the same things, there are options to rename the metadata strings. This option should be used with care. If
the copies or qc values in different files are not really the same, the tool will go ahead and merge them but the
resulting file will be very wrong.

The tool offers an additional option for specifying a list of input files. The user creates an ASCII file by any de-
sired method (e.g. ls > file, editor), with one filename per line. The names on each line in the file should not have
any delimiters, e.g. no single or double quotes at the start or end of the filename. They specify this file with the
filename_seq_list namelist item, and the tool opens the list file and processes each input file in turn. The
namelist item num_input_files is now DEPRECATED and is ignored. The number of input files is computed
from either the explicit list in filename_seq, or the contents of the filename_seq_list file.

Time is stored inside of DART as a day number and number of seconds, which is the same no matter which calendar
is being used. But many real-world observations use the Gregorian calendar for converting between number of days
and an actual date. If the gregorian_cal namelist item is set to .TRUE. then any times will be printed out to the
log file will be both in day/seconds and calendar date. If the observation times are not using the Gregorian calendar,
then set this value to .FALSE. and only days/seconds will be printed.

The most common use of this tool is to process a set of input files into a single output file, or to take one input file and
extract a subset of observations into a smaller file. The examples section below outlines several common scenerios.

6.172. program obs_sequence_tool 611

DART, Release 9.10.3

The tool now also allows the number of copies to be changed, but only to select subsets or reorder them. It is not yet
possible to merge copies or QCs from observations in different files into a single observation with more copies.

Observations can also be selected by a given range of quality control values or data values.

Observations can be restricted to a given bounding box, either in latitude and longitude (in the horizontal only), or
if the observations have 1D locations, then a single value for min_box and max_box can be specified to restrict the
observations to a subset of the space.

6.172.5 Faq

Can i merge files where the observation types are different?

Yes. The numbering in the table of contents at the top of each file is only local to that file. All processing of types is
done with the string name, not the numbers. Neither the set of obs types, nor the observation numbers need to match
across files.

I get an error about unknown observation types

Look at the &preprocess_nml namelist in the input.nml file in the directory where your tool was built. It must
have all the observation types you need to handle listed in the input_files item.

Can i list more files than necessary in my input file list?

Sure. It will take slightly longer to run, in that the tool must open the file and check the times and observation types.
But it is not an error to list files where no observations will be copied to the output file. It is a common task to list a
set of observation files and then set the first and last observation times, run the tool to select a shorter time period, then
change the first and last times and run again with the same list of files.

6.172.6 Building

Most $DART/models/*/work directories will build the tool along with other executable programs. It is also
possible to build the tool in the $DART/observations/utilities directory. The preprocess program must
be built and run first, to define what set of observation types will be supported. See the PROGRAM preprocess for
more details on how to define the list and run it. The combined list of all observation types which will be encountered
over all input files must be in the preprocess input list. The other important choice when building the tool is to
include a compatible locations module. For the low-order models, the oned module should be used; for real-world
observations, the threed_sphere module should be used.

6.172.7 Modules used

types_mod
utilities_mod
time_manager_mod
obs_def_mod
obs_sequence_mod

612 Chapter 6. References

DART, Release 9.10.3

6.172.8 Files

• input.nml

• The input files specified in the filename_seq namelist variable, or inside the file named in
filename_seq_list.

• The output file specified in the filename_out namelist variable.

6.172.9 References

• none

6.173 PROGRAM integrate_model

6.173.1 Overview

Generic main program which can be compiled with a model-specific model_mod.f90 file. The model must provide
an adv_1step() subroutine which advances one copy of the model forward in time.

The executable built by this program can be used by the serial program perfect_model_obs, or either the serial
or parallel version of the filter program. This program is called by the default script in the template directory
called advance_model.csh, and is selected by setting the corresponding "async = " namelist setting to 2.

This program only advances a single ensemble member per execution and is expected to be run as a serial program.
It can be compiled with the MPI wrappers and called with mpirun with more than 1 task, however, it will only call
the model advance subroutine from a single task (task 0). This can be useful in testing various scripting options using
simpler and smaller models in preparation for running a larger parallel model.

6.173.2 Namelist

There is no namelist for this program.

6.173.3 Modules used

types_mod
time_manager_mod
utilities_mod
assim_model_mod
obs_model_mod
ensemble_manager_mod
mpi_utilities_mod

6.173. PROGRAM integrate_model 613

DART, Release 9.10.3

6.173.4 Files

• inputfile (temp_ic)

• outputfile (temp_ud)

6.173.5 References

• none

6.174 PROGRAM obs_diag (for 1D observations)

6.174.1 Overview/usage

Main program for observation-space diagnostics for the models with 1D locations. 18 quantities are calculated for
each region for each temporal bin specified by user input. The result of the code is a netCDF file that contains the 18
quantities of the prior (aka ‘guess’) and posterior (aka ‘analysis’) estimates as a function of time and region as well as
all the metadata to create meaningful figures. The 1D version of obs_diag has defaults that automatically set the
first and last bin center based on the first and last observation time in the set of observations being processed.
This is different behavior than the 3D versions.

Each obs_seq.final file contains an observation sequence that has multiple ‘copies’ of the observation. One copy
is the actual observation, another copy is the prior ensemble mean estimate of the observation, one is the spread of
the prior ensemble estimate, one may be the prior estimate from ensemble member 1, . . . etc. The only observations
for the 1D models are generally the result of a ‘perfect model’ experiment, so there is an additional copy called the
‘truth’ - the noise-free expected observation given the true model state. Since this copy does not, in general, exist
for the high-order models, all comparisons are made with the copy labelled ‘observation’. There is also a namelist
variable (use_zero_error_obs) to compare against the ‘truth’ instead; the observation error variance is then
automatically set to zero.

Each ensemble member applies a forward observation operator to the state to compute the “expected” value of an
observation. Please note: the forward observation operator is applied AFTER any prior inflation has taken place!
Similarly, the forward observation operator is applied AFTER any posterior inflation. This has always been the case.
For a detailed look at the relationship between the observation operators and inflation, please look at the Detailed
Program Execution Flow section of PROGRAM filter.
Given multiple estimates of the observation, several quantities can be calculated. It is possible to compute the
expected observations from the state vector before assimilating (the “guess”, “forecast”, or “prior”) or after the
assimilation (the “analysis”, or “posterior”).

Even with input.nml:filter_nml:num_output_obs_members set to 0; the full [prior,posterior] en-
semble mean and [prior,posterior] ensemble spread are preserved in the obs_seq.final file. Con-
sequently, the ensemble means and spreads are used to calculate the diagnostics. If the input.
nml:filter_nml:num_output_obs_members is set to 80 (for example); the first 80 ensemble members prior
and posterior “expected” values of the observation are also included. In this case, the obs_seq.final file contains
enough information to calculate a rank histograms, verify forecasts, etc. The ensemble means are still used for many
other calculations.

614 Chapter 6. References

../../filter/filter.html#DetailedProgramFlow
../../filter/filter.html#DetailedProgramFlow

DART, Release 9.10.3

Since this program is fundamentally interested in the response as a function of region, there are three versions
of this program; one for each of the oned, threed_sphere, or threed_cartesian location modules
(location_mod.f90). It did not make sense to ask the lorenz_96 model what part of North America you’d like
to investigate or how you would like to bin in the vertical. The low-order models write out similar netCDF files and
the Matlab scripts have been updated accordingly. The oned observations have locations conceptualized as being on a
unit circle, so only the namelist input variables pertaining to longitude are used.

obs_diag is designed to explore the effect of the assimilation in two ways; 1) as a function of time for a particular
variable (this is the figure on the left), and sometimes 2) in terms of a rank histogram - “Where does the actual observa-
tion rank relative to the rest of the ensemble?” (figure on the right). The figures were created by Matlab® scripts that
query the obs_diag_output.nc file: DART/diagnostics/matlab/plot_evolution.m and plot_rank_histogram.m.
Both of these takes as input a file name and a ‘quantity’ to plot (‘rmse’,’spread’,’totalspread’, . . .) and exhaustively
plots the quantity (for every variable, every region) in a single matlab figure window - and creates a series of .ps files
with multiple pages for each of the figures. The directory gets cluttered with them.

The observation sequence files contain only the time of the observation, nothing of the assimilation interval, etc. - so
it requires user guidance to declare what sort of temporal binning for the temporal evolution plots. I do a ‘bunch’ of
arithmetic on the namelist times to convert them to a series of temporal bin edges that are used when traversing the
observation sequence. The actual algorithm is that the user input for the start date and bin width set up a sequence that
ends in one of two ways . . . the last time is reached or the number of bins has been reached. NOTE: for the purpose of
interpretability, the 1D obs_diag routines saves ‘dates’ as GREGORIAN dates despite the fact these systems have
no concept of a calendar.

obs_diag reads obs_seq.final files and calculates the following quantities (in no particular order) for an arbi-
trary number of regions and levels. obs_diag creates a netCDF file called obs_diag_output.nc. It is necessary
to query the CopyMetaData variable to determine the storage order (i.e. “which copy is what?”) if you want to use
your own plotting routines.

ncdump -f F -v CopyMetaData obs_diag_output.nc

6.174. PROGRAM obs_diag (for 1D observations) 615

../../../../diagnostics/matlab/plot_evolution.m
../../../../diagnostics/matlab/plot_rank_histogram.m

DART, Release 9.10.3

Nposs The number of observations available to be assimilated.
Nused The number of observations that were assimilated.
rmse The root-mean-squared error (the horizontal wind components are also used to calculate the vector wind

velocity and its RMS error).
bias The simple sum of forecast - observation. The bias of the horizontal wind speed (not velocity) is also

computed.
spread The standard deviation of the univariate obs. DART does not exploit the bivariate nature of U,V winds

and so the spread of the horizontal wind is defined as the sum of the spreads of the U and V components.
total-
spread

The total standard deviation of the estimate. We pool the ensemble variance of the observation plus the
observation error variance and take the square root.

Nbad-
DARTQC

the number of observations that had a DART QC value (> 1 for a prior, > 3 for a posterior)

obser-
vation

the mean of the observation values

ens_mean the ensemble mean of the model estimates of the observation values
N_trusted the number of implicitly trusted observations, regardless of DART QC
N_DARTqc_0the number of observations that had a DART QC value of 0
N_DARTqc_1the number of observations that had a DART QC value of 1
N_DARTqc_2the number of observations that had a DART QC value of 2
N_DARTqc_3the number of observations that had a DART QC value of 3
N_DARTqc_4the number of observations that had a DART QC value of 4
N_DARTqc_5the number of observations that had a DART QC value of 5
N_DARTqc_6the number of observations that had a DART QC value of 6
N_DARTqc_7the number of observations that had a DART QC value of 7
N_DARTqc_8the number of observations that had a DART QC value of 8

The DART QC flag is intended to provide information about whether the observation was assimilated, evaluated only,
whether the assimilation resulted in a ‘good’ observation, etc. DART QC values <2 indicate the prior and posteriors
are OK. DART QC values >3 were not assimilated or evaluated. Here is the table that should explain things more
fully:

DART QC flag value meaning
0 observation assimilated
1 observation evaluated only (because of namelist settings)
2 assimilated, but the posterior forward operator failed
3 evaluated only, but the posterior forward operator failed
4 prior forward operator failed
5 not used because observation type not listed in namelist
6 rejected because incoming observation QC too large
7 rejected because of a failed outlier threshold test
8 vertical conversion failed
9+ reserved for future use

616 Chapter 6. References

DART, Release 9.10.3

6.174.2 What is new in the Manhattan release

1. Support for DART QC = 8 (failed vertical conversion). This is provided simply to make the netCDF files as
consistent as needed for plotting purposes.

2. Simplified input file specification.

3. Some of the internal variable names have been changed to make it easier to distinguish between variances and
standard deviations.

6.174.3 What is new in the Lanai release

obs_diag has several improvements:

1. Support for ‘trusted’ observations. Trusted observation types may be specified in the namelist and all observa-
tions of that type will be counted in the statistics despite the DART QC code (as long as the forward observation
operator succeeds). See namelist variable trusted_obs.

2. Support for ‘true’ observations (i.e. from an OSSE). If the ‘truth’ copy of an observation is desired for com-
parison (instead of the default copy) the observation error variance is set to 0.0 and the statistics are calculated
relative to the ‘truth’ copy (as opposed to the normal ‘noisy’ or ‘observation’ copy). See namelist variable
use_zero_error_obs.

3. discontinued the use of rat_cri and input_qc_threshold namelist variables. Their functionality was
replaced by the DART QC mechanism long ago.

4. The creation of the rank histogram (if possible) is now namelist-controlled by namelist variable
create_rank_histogram.

6.174.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_diag_nml
obs_sequence_name = ''
obs_sequence_list = ''
bin_width_days = -1
bin_width_seconds = -1
init_skip_days = 0
init_skip_seconds = 0
max_num_bins = 9999
Nregions = 3
lonlim1 = 0.0, 0.0, 0.5
lonlim2 = 1.0, 0.5, 1.0
reg_names = 'whole', 'yin', 'yang'
trusted_obs = 'null'
use_zero_error_obs = .false.
create_rank_histogram = .true.
outliers_in_histogram = .true.
verbose = .false.
/

6.174. PROGRAM obs_diag (for 1D observations) 617

DART, Release 9.10.3

The allowable ranges for the region boundaries are: lon [0.0, 1.0). The 1D locations are conceived as the distance
around a unit sphere. An observation with a location exactly ON a region boundary cannot ‘count’ for both regions.
The logic used to resolve this is:

if((lon lon1) .and. (lon < lon2)) keeper = .true.

Consequently, if you want to include an observation precisely AT 1.0, (for example), you need to specify something a
little larger than 1.0.
You can only specify either obs_sequence_name or obs_sequence_list – not both. One of them has to be
an empty string . . . i.e. ''.

618 Chapter 6. References

DART, Release 9.10.3

Item Type Description
obs_sequence_namecharac-

ter(len=256),
dimen-
sion(100)

An array of names of observation sequence files. These may be relative or absolute file-
names. If this is set, obs_sequence_list must be set to ‘ ‘ (empty string).

obs_sequence_listcharac-
ter(len=256)

Name of an ascii text file which contains a list of one or more observation sequence files,
one per line. If this is specified, obs_sequence_namemust be set to ‘ ‘. Can be created
by any method, including sending the output of the ‘ls’ command to a file, a text editor, or
another program. If this is set, obs_sequence_name must be set to ‘ ‘ (empty string).

bin_width_days,
bin_width_seconds

integer Specifies the width of the analysis window. All observations within a window centered at
the observation time +/- bin_width_[days,seconds] is used. If both values are 0, half the
separation between observation times as defined in the observation sequence file is used
for the bin width (i.e. all observations used).

init_skip_days,
init_skip_seconds

integer Ignore all observations before this time. This allows one to skip the ‘spinup’ or stabiliza-
tion period of an assimilation.

max_num_binsinteger This provides a way to restrict the number of temporal bins. If max_num_bins is set to
‘10’, only 10 timesteps will be output, provided there are that many.

Nre-
gions

integer The number of regions for the unit circle for which you’d like observation-space diagnos-
tics. If 3 is not enough increase MaxRegions in obs_diag.f90 and recompile.

lonlim1 real(r8)
array of
length(Nregions)

starting value of coordinates defining ‘regions’. A value of -1 indicates the start of ‘no
region’.

lonlim2 real(r8)
array of
length(Nregions)

ending value of coordinates defining ‘regions’. A value of -1 indicates the end of ‘no
region’.

reg_names charac-
ter(len=6),
dimen-
sion(Nregions)

Array of names for each of the regions. The default example has the unit circle as a whole
and divided into two equal parts, so there are only three regions.

trusted_obs charac-
ter(len=32),
dimen-
sion(5)

Array of names for observation TYPES that will be included in the statistics if at
all possible (i.e. the forward observation operator succeeds). For 1D observations
the only choices in the code as distributed are ‘RAW_STATE_VARIABLE’ and/or
‘RAW_STATE_1D_INTEGRAL’. (Additional 1D observation types can be added by the
user.)

use_zero_error_obslogical if .true., the observation copy used for the statistics calculations will be ‘truth’. Only
‘perfect’ observations (from perfect_model_obs) have this copy. The observation
error variance will be set to zero.

cre-
ate_rank_histogram

logical if .true. and there are actual ensemble estimates of the observations in the obs_seq.
final (i.e. filter_nml:num_output_obs_members is larger than zero), a rank
histogram will be created.

out-
liers_in_histogram

logical if .true. the observations that have been rejected by the outlier threshhold mechanism
will be included in the calculation of the rank histogram.

verbose logical switch controlling amount of run-time output.

6.174. PROGRAM obs_diag (for 1D observations) 619

DART, Release 9.10.3

6.174.5 Modules directly used

types_mod
obs_sequence_mod
obs_def_mod
obs_kind_mod
location_mod
time_manager_mod
utilities_mod
sort_mod
random_seq_mod

6.174.6 Modules indirectly used

assim_model_mod
cov_cutoff_mod
model_mod
null_mpi_utilities_mod

6.174.7 Files

• input.nml is used for obs_diag_nml

• obs_diag_output.nc is the netCDF output file

• dart_log.out list directed output from the obs_diag.

• LargeInnov.txt contains the distance ratio histogram – useful for estimating the distribution of the magni-
tudes of the innovations.

Discussion of obs_diag_output.nc

Every observation type encountered in the observation sequence file is tracked separately, and aggregated into temporal
and spatial bins. There are two main efforts to this program. One is to track the temporal evolution of any of the
quantities available in the netCDF file for any possible observation type:

ncdump -v CopyMetaData,ObservationTypes obs_diag_output.nc

The other is to explore the vertical profile of a particular observation kind. By default, each observation kind has a
‘guess/prior’ value and an ‘analysis/posterior’ value - which shed some insight into the innovations.

Temporal evolution

The obs_diag_output.nc output file has all the metadata I could think of, as well as separate variables for every
observation type in the observation sequence file. Furthermore, there is a separate variable for the ‘guess/prior’ and
‘analysis/posterior’ estimate of the observation. To distinguish between the two, a suffix is appended to the variable
name. An example seems appropriate:

...
char CopyMetaData(copy, stringlength) ;

CopyMetaData:long_name = "quantity names" ;
...

(continues on next page)

620 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

int rank_bins(rank_bins) ;
rank_bins:long_name = "rank histogram bins" ;
rank_bins:comment = "position of the observation among the sorted noisy

→˓ensemble members" ;
float RAW_STATE_VARIABLE_guess(time, copy, region) ;

RAW_STATE_VARIABLE_guess:_FillValue = -888888.f ;
RAW_STATE_VARIABLE_guess:missing_value = -888888.f ;

float RAW_STATE_VARIABLE_analy(time, copy, region) ;
RAW_STATE_VARIABLE_analy:_FillValue = -888888.f ;
RAW_STATE_VARIABLE_analy:missing_value = -888888.f ;

...

Rank histograms

If it is possible to calculate a rank histogram, there will also be :

...
int RAW_STATE_VARIABLE_guess_RankHist(time, rank_bins, region) ;
...

as well as some global attributes. The attributes reflect the namelist settings and can be used by plotting routines to
provide additional annotation for the histogram.

:DART_QCs_in_histogram = 0, 1, 2, 3, 7 ;
:outliers_in_histogram = "TRUE" ;

Please note:
netCDF restricts variable names to 40 characters, so ‘_Rank_Hist’ may be truncated.

6.174.8 References

1. none

6.174.9 Private components

N/A

6.175 PROGRAM obs_diag (for observations that use the
threed_cartesian location module)

6.175.1 Overview

Main program for evaluating filter performance in observation space. Primarily, the prior or posterior ensemble mean
(and spread) are compared to the observation and several quantities are calculated. These quantities are then saved in
a netCDF file that has all the metadata to create meaningful figures.

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 621

DART, Release 9.10.3

Each obs_seq.final file contains an observation sequence that has multiple ‘copies’ of the observation. One
copy is the actual observation, another copy is the prior ensemble mean estimate of the observation, one is the spread
of the prior ensemble estimate, one may be the prior estimate from ensemble member 1, . . . etc. If the original
observation sequence is the result of a ‘perfect model’ experiment, there is an additional copy called the ‘truth’ -
the noise-free expected observation given the true model state. Since this copy does not, in general, exist for the
high-order models, all comparisons are made with the copy labelled ‘observation’. There is also a namelist variable
(use_zero_error_obs) to compare against the ‘truth’ instead; the observation error variance is then automatically
set to zero.

Each ensemble member applies a forward observation operator to the state to compute the “expected” value of an
observation. Please note: the forward observation operator is applied AFTER any prior inflation has taken place!
Similarly, the forward observation operator is applied AFTER any posterior inflation. This has always been the case.
For a detailed look at the relationship between the observation operators and inflation, please look at the Detailed
Program Execution Flow section of PROGRAM filter.
Given multiple estimates of the observation, several quantities can be calculated. It is possible to compute the
expected observations from the state vector before assimilating (the “guess”, “forecast”, or “prior”) or after the
assimilation (the “analysis”, or “posterior”).

Even with input.nml:filter_nml:num_output_obs_members set to 0; the full [prior,posterior] en-
semble mean and [prior,posterior] ensemble spread are preserved in the obs_seq.final file. Con-
sequently, the ensemble means and spreads are used to calculate the diagnostics. If the input.
nml:filter_nml:num_output_obs_members is set to 80 (for example); the first 80 ensemble members prior
and posterior “expected” values of the observation are also included. In this case, the obs_seq.final file contains
enough information to calculate a rank histograms, verify forecasts, etc. The ensemble means are still used for many
other calculations.

Since this program is fundamentally interested in the response as a function of region, there are three versions
of this program; one for each of the oned, threed_sphere, or threed_cartesian location modules
(location_mod.f90). It did not make sense to ask the lorenz_96 model what part of North America you’d like
to investigate or how you would like to bin in the vertical. The low-order models write out similar netCDF files and
the Matlab scripts have been updated accordingly. The oned observations have locations conceptualized as being on a
unit circle, so only the namelist input variables pertaining to longitude are used.

Identity observations (only possible from “perfect model experiments”) are already explored with state-space diagnos-
tics, so obs_diag simply skips them.

6.175.2 obs_diag is designed to explore the effect of the assimilation in three
ways:

622 Chapter 6. References

../../filter/filter.html#DetailedProgramFlow
../../filter/filter.html#DetailedProgramFlow

DART, Release 9.10.3

1) as a function of time for a particular variable and level

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 623

DART, Release 9.10.3

2) as a time-averaged vertical profile

624 Chapter 6. References

DART, Release 9.10.3

3) and in terms of a rank histogram -

“Where does the actual observation rank relative to the rest of the ensemble?”

The figures in sections 1 and 2 were created by Matlab® scripts that query the obs_diag_output.nc file: DART/
diagnostics/matlab/plot_evolution.m and plot_profile.m. Both of these takes as input a file name
and a ‘quantity’ to plot (‘rmse’,’spread’,’totalspread’, . . .) and exhaustively plots the quantity (for every variable, every
level, every region) in a single matlab figure window - and creates a series of .ps files with multiple pages for each of
the figures. The directory gets cluttered with them. The rank histogram information in obs_diag_output.nc can
easily be plotted with ncview (left), a free third-party piece of software or with plot_rank_histogram.m (right).
See the Rank histograms section for more information and links to instructions.

obs_diag can be configured to compare the ensemble estimates against the ‘observation’ copy or the ‘truth’ copy
based on the setting of the use_zero_error_obs namelist variable.

The observation sequence files contain only the time of the observation, nothing of the assimilation interval, etc. - so
it requires user guidance to declare what sort of temporal binning for the temporal evolution plots. I do a ‘bunch’ of
arithmetic on the namelist times to convert them to a series of temporal bin edges that are used when traversing the
observation sequence. The actual algorithm is that the user input for the start date and bin width set up a sequence that
ends in one of two ways . . . the last time is reached or the number of bins has been reached.

obs_diag reads obs_seq.final files and calculates the following quantities (in no particular order) for an arbi-
trary number of regions and levels. obs_diag creates a netCDF file called obs_diag_output.nc. It is necessary
to query the CopyMetaData variable to determine the storage order (i.e. “which copy is what?”) if you want to use
your own plotting routines.

ncdump -f F -v CopyMetaData obs_diag_output.nc

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 625

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.10.3

Nposs The number of observations available to be assimilated.
Nused The number of observations that were assimilated.
NbadUV the number of velocity observations that had a matching component that was not assimilated;
NbadLV the number of observations that were above or below the highest or lowest model level, respectively;
rmse The root-mean-squared error (the horizontal wind components are also used to calculate the vector wind

velocity and its RMS error).
bias The simple sum of forecast - observation. The bias of the horizontal wind speed (not velocity) is also

computed.
spread The standard deviation of the univariate obs. DART does not exploit the bivariate nature of U,V winds

and so the spread of the horizontal wind is defined as the sum of the spreads of the U and V components.
total-
spread

The total standard deviation of the estimate. We pool the ensemble variance of the observation plus the
observation error variance and take the square root.

Nbad-
DARTQC

the number of observations that had a DART QC value (> 1 for a prior, > 3 for a posterior)

obser-
vation

the mean of the observation values

ens_mean the ensemble mean of the model estimates of the observation values
N_trusted the number of implicitly trusted observations, regardless of DART QC
N_DARTqc_0the number of observations that had a DART QC value of 0
N_DARTqc_1the number of observations that had a DART QC value of 1
N_DARTqc_2the number of observations that had a DART QC value of 2
N_DARTqc_3the number of observations that had a DART QC value of 3
N_DARTqc_4the number of observations that had a DART QC value of 4
N_DARTqc_5the number of observations that had a DART QC value of 5
N_DARTqc_6the number of observations that had a DART QC value of 6
N_DARTqc_7the number of observations that had a DART QC value of 7
N_DARTqc_8the number of observations that had a DART QC value of 8

The temporal evolution of the above quantities for every observation type (RA-
DIOSONDE_U_WIND_COMPONENT, AIRCRAFT_SPECIFIC_HUMIDITY, . . .) is recorded in the output
netCDF file - obs_diag_output.nc. This netCDF file can then be loaded and displayed using the Matlab®
scripts in/DART/diagnostics/matlab. (which may depend on functions in/DART/matlab).
The temporal, geographic, and vertical binning are under namelist control. Temporal averages of the above quantities
are also stored in the netCDF file. Normally, it is useful to skip the ‘burn-in’ period - the amount of time to skip is
under namelist control.

The DART QC flag is intended to provide information about whether the observation was assimilated, evaluated only,
whether the assimilation resulted in a ‘good’ observation, etc. DART QC values <2 indicate the prior and posteriors
are OK. DART QC values >3 were not assimilated or evaluated. Here is the table that should explain things more
fully:

DART QC flag value meaning
0 observation assimilated
1 observation evaluated only (because of namelist settings)
2 assimilated, but the posterior forward operator failed
3 evaluated only, but the posterior forward operator failed
4 prior forward operator failed
5 not used because observation type not listed in namelist
6 rejected because incoming observation QC too large
7 rejected because of a failed outlier threshold test
8 vertical conversion failed
9+ reserved for future use

626 Chapter 6. References

DART, Release 9.10.3

6.175.3 What is new in the Manhattan release

1. Support for DART QC = 8 (failed vertical conversion).

2. Simplified input file specification.

3. Replace namelist integer variable debug with logical variable verbose to control amount of run-time output.

4. Removed rat_cri and input_qc_threshold from the namelists. They had been deprecated for quite
some time.

5. Some of the internal variable names have been changed to make it easier to distinguish between variances and
standard deviations.

6.175.4 What is new in the Lanai release

obs_diag has several improvements:

1. Improved vertical specification. Namelist variables [h,p,m]level_edges allow fine-grained control over
the vertical binning. It is not allowed to specify both the edges and midpoints for the vertical bins.

2. Improved error-checking for input specification, particularly the vertical bins. Repeated values are squeezed
out.

3. Support for ‘trusted’ observations. Trusted observation types may be specified in the namelist and all observa-
tions of that type will be counted in the statistics despite the DART QC code (as long as the forward observation
operator succeeds). See namelist variable trusted_obs. For more details, see the section on Trusted obser-
vations.

4. Support for ‘true’ observations (i.e. from an OSSE). If the ‘truth’ copy of an observation is desired for com-
parison (instead of the default copy) the observation error variance is set to 0.0 and the statistics are calculated
relative to the ‘truth’ copy (as opposed to the normal ‘noisy’ or ‘observation’ copy). See namelist variable
use_zero_error_obs.

5. discontinued the use of rat_cri and input_qc_threshold namelist variables. Their functionality was
replaced by the DART QC mechanism long ago.

6. The creation of the rank histogram (if possible) is now namelist-controlled by namelist variable
create_rank_histogram.

6.175.5 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_diag_nml
obs_sequence_name = ''
obs_sequence_list = ''
first_bin_center = 2003, 1, 1, 0, 0, 0
last_bin_center = 2003, 1, 2, 0, 0, 0
bin_separation = 0, 0, 0, 6, 0, 0
bin_width = 0, 0, 0, 6, 0, 0
time_to_skip = 0, 0, 0, 6, 0, 0
max_num_bins = 1000
hlevel = -888888.0
hlevel_edges = -888888.0

(continues on next page)

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 627

DART, Release 9.10.3

(continued from previous page)

Nregions = 0
xlim1 = -888888.0
xlim2 = -888888.0
ylim1 = -888888.0
ylim2 = -888888.0
reg_names = 'null'
trusted_obs = 'null'
create_rank_histogram = .true.
outliers_in_histogram = .false.
use_zero_error_obs = .false.
verbose = .false.
/

The date-time integer arrays in this namelist have the form (YYYY, MM, DY, HR, MIN, SEC).
The allowable ranges for the region boundaries are: latitude [-90.,90], longitude [0.,Inf.]

You can only specify either obs_sequence_name or obs_sequence_list – not both. One of them has to be
an empty string . . . i.e. ''.

628 Chapter 6. References

DART, Release 9.10.3

Item Type Description
obs_sequence_namecharac-

ter(len=256),
dimen-
sion(100)

An array of names of observation sequence files. These may be relative or absolute filenames.
If this is set, obs_sequence_list must be set to ‘ ‘ (empty string).

obs_sequence_listcharac-
ter(len=256)

Name of an ascii text file which contains a list of one or more observation sequence files, one
per line. If this is specified, obs_sequence_name must be set to ‘ ‘. Can be created by any
method, including sending the output of the ‘ls’ command to a file, a text editor, or another
program. If this is set, obs_sequence_name must be set to ‘ ‘ (empty string).

first_bin_centerinteger,
dimen-
sion(6)

first timeslot of the first obs_seq.final file to process. The six integers are: year, month, day,
hour, hour, minute, second, in that order. obs_diag has improved run-time output that re-
ports the time and date of the first and last observations in every observation sequence file.
Look for the string ‘First observation date’ in the logfile. If the verbose is ‘true’, it is also
written to the screen.

last_bin_centerinteger,
dimen-
sion(6)

last timeslot of interest. (reminder: the last timeslot of day 1 is hour 0 of day 2) The six integers
are: year, month, day, hour, hour, minute, second, in that order. This does not need to be
exact, the values from first_bin_center and bin_separation are used to populate
the time array and stop on or before the time defined by last_bin_center. See also
max_num_bins.

bin_separationinteger,
dimen-
sion(6)

Time between bin centers. The year and month values must be zero.

bin_widthinteger,
dimen-
sion(6)

Time span around bin centers in which obs will be compared. The year and month values must
be zero. Frequently, but not required to be, the same as the values for bin_separation. 0

time_to_skipinteger,
dimen-
sion(6)

Time span at the beginning to skip when calculating vertical profiles of rms error and bias. The
year and month values must be zero. Useful because it takes some time for the assimilation to
settle down from the climatological spread at the start. time_to_skip is an amount of time
AFTER the first edge of the first bin.

max_num_binsinteger This provides an alternative way to declare the last_bin_center. If max_num_bins is
set to ‘10’, only 10 timesteps will be output - provided last_bin_center is set to some
later date.

hlevel real,
dimen-
sion(50)

Same, but for observations that have height(m) or depth(m) as the vertical coordinate. An ex-
ample of defining the midpoints is: hlev el = 1000, 2000, 3000, 4000, 5000,
60 00, 7000, 8000, 9000, 10000, 11000,

hlevel_edgesreal,
dimen-
sion(51)

The edges defining the height (or depth) levels for the vertical binning. You may specify
either hlevel or hlevel_edges, but not both. An example of defining the edges is:
hlevel_edges = 0, 1500, 2500, 3500, 4500, 5500, 6500,

Nre-
gions

integer Number of regions of the globe for which obs space diagnostics are computed separately.
Must be between [1,50]. If 50 is not enough, increase obs_diag.f90MaxRegions and
recompile.

xlim1 real,
dimen-
sion(50)

western extent of each of the regions.

xlim2 real,
dimen-
sion(50)

eastern extent of each of the regions.

ylim1 real,
dimen-
sion(50)

southern extent of the regions.

ylim2 real,
dimen-
sion(50)

northern extent of the regions.

reg_namescharac-
ter(len=129),
dimen-
sion(50)

Array of names for the regions to be analyzed. Will be used for plot titles.

trusted_obscharac-
ter(len=32),
dimen-
sion(50)

list of observation types that must participate in the calculation of the statistics, regardless
of the DART QC (provided that the forward observation operator can still be applied without
failure). e.g. ‘RADIOSONDE_TEMPERATURE’, . . . For more details, see the section on
Trusted observations.

use_zero_error_obslogical if .true., the observation copy used for the statistics calculations will be ‘truth’. Only
‘perfect’ observations (from perfect_model_obs) have this copy. The observation error
variance will be set to zero.

cre-
ate_rank_histogram

logical if .true. and there are actual ensemble estimates of the observations in the obs_seq.
final (i.e. filter_nml:num_output_obs_members is larger than zero), a rank his-
togram will be created.

out-
liers_in_histogram

logical if .true. the observations that have been rejected by the outlier threshhold mechanism will
be included in the calculation of the rank histogram.

ver-
bose

logical switch controlling amount of run-time output.

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 629

DART, Release 9.10.3

6.175.6 Other modules used

obs_sequence_mod
obs_kind_mod
obs_def_mod (and possibly other obs_def_xxx mods)
assim_model_mod
random_seq_mod
model_mod
location_mod
types_mod
time_manager_mod
utilities_mod
sort_mod

6.175.7 Files

• input.nml is used for obs_diag_nml

• obs_diag_output.nc is the netCDF output file

• dart_log.out list directed output from the obs_diag.

• LargeInnov.txt contains the distance ratio histogram – useful for estimating the distribution of the magni-
tudes of the innovations.

Obs_diag may require a model input file from which to get grid information, metadata, and links to modules providing
the models expected observations. It all depends on what’s needed by the model_mod.f90

Discussion of obs_diag_output.nc

Every observation type encountered in the observation sequence file is tracked separately, and aggregated into temporal
and 3D spatial bins. There are two main efforts to this program. One is to track the temporal evolution of any of the
quantities available in the netCDF file for any possible observation type:

ncdump -v CopyMetaData,ObservationTypes obs_diag_output.nc

The other is to explore the vertical profile of a particular observation kind. By default, each observation kind has a
‘guess/prior’ value and an ‘analysis/posterior’ value - which shed some insight into the innovations.

Temporal evolution

The obs_diag_output.nc output file has all the metadata I could think of, as well as separate variables for every
observation type in the observation sequence file. Furthermore, there is a separate variable for the ‘guess/prior’ and
‘analysis/posterior’ estimate of the observation. To distinguish between the two, a suffix is appended to the variable
name. An example seems appropriate:

...
char CopyMetaData(copy, stringlength) ;

CopyMetaData:long_name = "quantity names" ;
char ObservationTypes(obstypes, stringlength) ;

ObservationTypes:long_name = "DART observation types" ;
ObservationTypes:comment = "table relating integer to observation type string

→˓" ;
float RADIOSONDE_U_WIND_COMPONENT_guess(time, copy, hlevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;

(continues on next page)

630 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

RADIOSONDE_U_WIND_COMPONENT_guess:missing_value = -888888.f ;
float RADIOSONDE_V_WIND_COMPONENT_guess(time, copy, hlevel, region) ;

RADIOSONDE_V_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_guess:missing_value = -888888.f ;

...
float MARINE_SFC_ALTIMETER_guess(time, copy, surface, region) ;

MARINE_SFC_ALTIMETER_guess:_FillValue = -888888.f ;
MARINE_SFC_ALTIMETER_guess:missing_value = -888888.f ;

...
float RADIOSONDE_WIND_VELOCITY_guess(time, copy, hlevel, region) ;

RADIOSONDE_WIND_VELOCITY_guess:_FillValue = -888888.f ;
RADIOSONDE_WIND_VELOCITY_guess:missing_value = -888888.f ;

...
float RADIOSONDE_U_WIND_COMPONENT_analy(time, copy, hlevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_analy:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_analy:missing_value = -888888.f ;

float RADIOSONDE_V_WIND_COMPONENT_analy(time, copy, hlevel, region) ;
RADIOSONDE_V_WIND_COMPONENT_analy:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_analy:missing_value = -888888.f ;

...

There are several things to note:

1. the ‘WIND_VELOCITY’ component is nowhere ‘near’ the corresponding U,V components.

2. all of the ‘guess’ variables come before the matching ‘analy’ variables.

3. surface variables (i.e. MARINE_SFC_ALTIMETER have a coordinate called ‘surface’ as opposed to ‘hlevel’
for the others in this example).

Vertical profiles

Believe it or not, there are another set of netCDF variables specifically for the vertical profiles, essentially dupli-
cating the previous variables but without the ‘time’ dimension. These are distinguished by the suffix added to the
observation kind - ‘VPguess’ and ‘VPanaly’ - ‘VP’ for Vertical Profile.

...
float SAT_WIND_VELOCITY_VPguess(copy, hlevel, region) ;

SAT_WIND_VELOCITY_VPguess:_FillValue = -888888.f ;
SAT_WIND_VELOCITY_VPguess:missing_value = -888888.f ;

...
float RADIOSONDE_U_WIND_COMPONENT_VPanaly(copy, hlevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_VPanaly:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_VPanaly:missing_value = -888888.f ;

...

Observations flagged as ‘surface’ do not participate in the vertical profiles (Because surface variables cannot exist on
any other level, there’s not much to plot!). Observations on the lowest level DO participate. There’s a difference!

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 631

DART, Release 9.10.3

Rank histograms

If it is possible to calculate a rank histogram, there will also be :

...
int RADIOSONDE_U_WIND_COMPONENT_guess_RankHi(time, rank_bins, hlevel, region) ;
...
int RADIOSONDE_V_WIND_COMPONENT_guess_RankHi(time, rank_bins, hlevel, region) ;
...
int MARINE_SFC_ALTIMETER_guess_RankHist(time, rank_bins, surface, region) ;
...

as well as some global attributes. The attributes reflect the namelist settings and can be used by plotting routines to
provide additional annotation for the histogram.

:DART_QCs_in_histogram = 0, 1, 2, 3, 7 ;
:outliers_in_histogram = "TRUE" ;

Please note:

1. netCDF restricts variable names to 40 characters, so ‘_Rank_Hist’ may be truncated.

2. It is sufficiently vague to try to calculate a rank histogram for a velocity derived from the assimilation of U,V
components such that NO rank histogram is created for velocity. A run-time log message will inform as to
which variables are NOT having a rank histogram variable preserved in the obs_diag_output.nc file - IFF
it is possible to calculate a rank histogram in the first place.

632 Chapter 6. References

DART, Release 9.10.3

Instructions for viewing the rank his-
togram with ncview.

Instructions for viewing the rank his-
togram with Matlab.

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 633

http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#ncview_histogram
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#ncview_histogram
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#mat_obs
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#mat_obs

DART, Release 9.10.3

“trusted” observation types

This needs to be stated up front: obs_diag is a post-processor; it cannot influence the assimilation. One interpre-
tation of a TRUSTED observation is that the assimilation should always use the observation, even if it is far from
the ensemble. At present (23 Feb 2015), the filter in DART does not forcibly assimilate any one observation and
selectively assimilate the others. Still, it is useful to explore the results using a set of ‘trusted type’ observations,
whether they were assimilated, evaluated, or rejected by the outlier threshhold. This is the important distinction. The
diagnostics can be calculated differently for each observation type.

The normal diagnostics calculate the metrics (rmse, bias, etc.) only for the ‘good’ observations - those that were assim-
ilated or evaluated. The outlier_threshold essentially defines what observations are considered too far from
the ensemble prior to be useful. These observations get a DART QC of 7 and are not assimilated. The observations
with a DART QC of 7 do not contribute the the metrics being calculated. Similarly, if the forward observation operator
fails, these observations cannot contribute. When the operator fails, the ‘expected’ observation value is ‘MISSING’,
and there is no ensemble mean or spread.

‘Trusted type’ observation metrics are calculated using all the observations that were assimilated or evaluated AND
the observations that were rejected by the outlier threshhold. obs_diag can post-process the DART QC and cal-
culate the metrics appropriately for observation types listed in the trusted_obs namelist variable. If there
are trusted observation types specified for obs_diag, the obs_diag_output.nc has global metadata to indi-
cate that a different set of criteria were used to calculate the metrics. The individual variables also have an extra
attribute. In the following output, input.nml:obs_diag_nml:trusted_obs was set: trusted_obs =
'RADIOSONDE_TEMPERATURE', 'RADIOSONDE_U_WIND_COMPONENT'

...
float RADIOSONDE_U_WIND_COMPONENT_guess(time, copy, hlevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_guess:missing_value = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_guess:TRUSTED = "TRUE" ;

float RADIOSONDE_V_WIND_COMPONENT_guess(time, copy, hlevel, region) ;
RADIOSONDE_V_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_guess:missing_value = -888888.f ;

...
// global attributes:

...
:trusted_obs_01 = "RADIOSONDE_TEMPERATURE" ;
:trusted_obs_02 = "RADIOSONDE_U_WIND_COMPONENT" ;
:obs_seq_file_001 = "cam_obs_seq.1978-01-01-00000.final" ;
:obs_seq_file_002 = "cam_obs_seq.1978-01-02-00000.final" ;
:obs_seq_file_003 = "cam_obs_seq.1978-01-03-00000.final" ;

...
:MARINE_SFC_ALTIMETER = 7 ;
:LAND_SFC_ALTIMETER = 8 ;
:RADIOSONDE_U_WIND_COMPONENT--TRUSTED = 10 ;
:RADIOSONDE_V_WIND_COMPONENT = 11 ;
:RADIOSONDE_TEMPERATURE--TRUSTED = 14 ;
:RADIOSONDE_SPECIFIC_HUMIDITY = 15 ;
:AIRCRAFT_U_WIND_COMPONENT = 21 ;

...

634 Chapter 6. References

DART, Release 9.10.3

The Matlab scripts try to ensure that the trusted observation graphics clarify that the metrics plotted
are somehow ‘different’ than the normal processing stream. Some text is added to indicate that the
values include the outlying observations. IMPORTANT: The interpretation of the number of ob-
servations ‘possible’ and ‘used’ still reflects what was used in the assimilation! The number of ob-
servations rejected by the outlier threshhold is not explicilty plotted. To reinforce this, the text for
the observation axis on all graphics has been changed to "o=possible, *=assimilated".
In short, the distance between the number of observations possible and the number assimilated
still reflects the number of observations rejected by the outlier threshhold and the number of failed
forward observation operators.

There is ONE ambiguous case for trusted observations. There may be instances in which the observation fails the
outlier threshhold test (which is based on the prior) and the posterior forward operator fails. DART does not have a
QC that explicilty covers this case. The current logic in obs_diag correctly handles these cases except when trying
to use ‘trusted’ observations. There is a section of code in obs_diag that may be enabled if you are encountering this
ambiguous case. As obs_diag runs, a warning message is issued and a summary count is printed if the ambiguous
case is encountered. What normally happens is that if that specific observation type is trusted, the posterior values
include a MISSING value in the calculation which makes them inaccurate. If the block of code is enabled, the DART
QC is recast as the PRIOR forward observation operator fails. This is technically incorrect, but for the case of trusted
observations, it results in only calculating statistics for trusted observations that have a useful prior and posterior. This
should not be used unless you are willing to intentionally disregard ‘trusted’ observations that were rejected by
the outlier threshhold. Since the whole point of a trusted observation is to include observations potentially rejected
by the outlier threshhold, you see the problem. Some people like to compare the posteriors. THAT can be the problem.

if ((qc_integer == 7) .and. (abs(posterior_mean(1) - MISSING_R8) < 1.0_r8)) then
write(string1,*)'WARNING ambiguous case for obs index ',obsindex
string2 = 'obs failed outlier threshhold AND posterior operator failed.'
string3 = 'Counting as a Prior QC == 7, Posterior QC == 4.'
if (trusted) then

! COMMENT string3 = 'WARNING changing DART QC from 7 to 4'
! COMMENT qc_integer = 4

endif
call error_handler(E_MSG,'obs_diag',string1,text2=string2,text3=string3)
num_ambiguous = num_ambiguous + 1

endif

6.175.8 Usage

obs_diag is built in . . . /DART/models/your_model/work, in the same way as the other DART components.

Multiple observation sequence files

There are two ways to specify input files for obs_diag. You can either specify the name of a file containing a list of
files (in obs_sequence_list), or you may specify a list of files via obs_sequence_name.

6.175. PROGRAM obs_diag (for observations that use the threed_cartesian location module) 635

DART, Release 9.10.3

Example: observation sequence files spanning 30 days

In this example, we will be accumulating metrics for 30 days. The obs_diag_output.
nc file will have exactly ONE timestep in it (so it won’t be much use for
the plot_evolution functions) - but the plot_profile functions and the
plot_rank_histogram function will be used to explore the assimilation. By way of
an example, we will NOT be using outlier observations in the rank histogram. Lets presume
that all your obs_seq.final files are in alphabetically-nice directories:

/Exp1/Dir01/obs_seq.final
/Exp1/Dir02/obs_seq.final
/Exp1/Dir03/obs_seq.final
...
/Exp1/Dir99/obs_seq.final

The first step is to create a file containing the list of observation sequence files you want to use. This can be done with
the unix command ‘ls’ with the -1 option (that’s a number one) to put one file per line.

ls -1 /Exp1/Dir*/obs_seq.final > obs_file_list.txt

It is necessary to turn on the verbose option to check the first/last times that will be used for the histogram. Then, the
namelist settings for 2008 07 31 12Z through 2008 08 30 12Z are:

&obs_diag_nml
obs_sequence_name = ''
obs_sequence_list = 'obs_file_list.txt'
first_bin_center = 2008, 8,15,12, 0, 0
last_bin_center = 2008, 8,15,12, 0, 0
bin_separation = 0, 0,30, 0, 0, 0
bin_width = 0, 0,30, 0, 0, 0
time_to_skip = 0, 0, 0, 0, 0, 0
max_num_bins = 1000
Nregions = 1
xlim1 = -1.0
xlim2 = 1000000.0
ylim1 = -1.0
ylim2 = 1000000.0
reg_names = 'Entire Domain'
create_rank_histogram = .true.
outliers_in_histogram = .false.
verbose = .true.
/

then, simply run obs_diag in the usual manner - you may want to save the run-time output to a file. Here is a portion
of the run-time output:

...
Region 1 Entire Domain (WESN): 0.0000 360.0000 -90.0000
→˓ 90.0000
Requesting 1 assimilation periods.

(continues on next page)

636 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

epoch 1 start day=148865, sec=43201
epoch 1 center day=148880, sec=43200
epoch 1 end day=148895, sec=43200
epoch 1 start 2008 Jul 31 12:00:01
epoch 1 center 2008 Aug 15 12:00:00
epoch 1 end 2008 Aug 30 12:00:00
...
MARINE_SFC_HORIZONTAL_WIND_guess_RankHis has 0 "rank"able observations.
SAT_HORIZONTAL_WIND_guess_RankHist has 0 "rank"able observations.
...

Discussion: It should be pretty clear that there is exactly 1 assimilation period, it may surprise you that the start is 1
second past 12Z. This is deliberate and reflects the DART convention of starting intervals 1 second after the end of
the previous interval. The times in the netCDF variables reflect the defined start/stop of the period, regardless of the
time of the first/last observation.
Please note that none of the ‘horizontal_wind’ variables will have a rank histogram, so they are not written to the
netCDF file. ANY variable that does not have a rank histogram with some observations will NOT have a rank
histogram variable in the netCDF file.
Now that you have the obs_diag_output.nc, you can explore it with plot_profile.m,
plot_bias_xxx_profile.m, or plot_rmse_xxx_profile.m, rank histograms with ncview or
plot_rank_histogram.m.

6.175.9 References

1. none

6.175.10 Private components

N/A

6.176 PROGRAM obs_diag (for observations that use the
threed_sphere location module)

6.176.1 Overview

Main program for evaluating filter performance in observation space. Primarily, the prior or posterior ensemble mean
(and spread) are compared to the observation and several quantities are calculated. These quantities are then saved in
a netCDF file that has all the metadata to create meaningful figures.

Each obs_seq.final file contains an observation sequence that has multiple ‘copies’ of the observation. One
copy is the actual observation, another copy is the prior ensemble mean estimate of the observation, one is the spread
of the prior ensemble estimate, one may be the prior estimate from ensemble member 1, . . . etc. If the original
observation sequence is the result of a ‘perfect model’ experiment, there is an additional copy called the ‘truth’ -
the noise-free expected observation given the true model state. Since this copy does not, in general, exist for the
high-order models, all comparisons are made with the copy labelled ‘observation’. There is also a namelist variable
(use_zero_error_obs) to compare against the ‘truth’ instead; the observation error variance is then automatically
set to zero.

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 637

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.10.3

Each ensemble member applies a forward observation operator to the state to compute the “expected” value of an
observation. Please note: the forward observation operator is applied AFTER any prior inflation has taken place!
Similarly, the forward observation operator is applied AFTER any posterior inflation. This has always been the case.
For a detailed look at the relationship between the observation operators and inflation, please look at the Detailed
Program Execution Flow section of PROGRAM filter.
Given multiple estimates of the observation, several quantities can be calculated. It is possible to compute the
expected observations from the state vector before assimilating (the “guess”, “forecast”, or “prior”) or after the
assimilation (the “analysis”, or “posterior”).

Even with input.nml:filter_nml:num_output_obs_members set to 0; the full [prior,posterior] en-
semble mean and [prior,posterior] ensemble spread are preserved in the obs_seq.final file. Con-
sequently, the ensemble means and spreads are used to calculate the diagnostics. If the input.
nml:filter_nml:num_output_obs_members is set to 80 (for example); the first 80 ensemble members prior
and posterior “expected” values of the observation are also included. In this case, the obs_seq.final file contains
enough information to calculate a rank histograms, verify forecasts, etc. The ensemble means are still used for many
other calculations.

Since this program is fundamentally interested in the response as a function of region, there are three versions
of this program; one for each of the oned, threed_sphere, or threed_cartesian location modules
(location_mod.f90). It did not make sense to ask the lorenz_96 model what part of North America you’d like
to investigate or how you would like to bin in the vertical. The low-order models write out similar netCDF files and
the Matlab scripts have been updated accordingly. The oned observations have locations conceptualized as being on a
unit circle, so only the namelist input variables pertaining to longitude are used.

Identity observations (only possible from “perfect model experiments”) are already explored with state-space diagnos-
tics, so obs_diag simply skips them. The notable exception to this is a program specifically written for streamflow
observations taken at gauge locations as represented by the ‘channel-only’ configuration of WRF-Hydro. There is
a separage program DART/assimilation_code/programs/obs_diag/threed_sphere/streamflow_obs_diag.f90 specifically
for those observations, since the model is designed to run at the USGS gauge locations.

6.176.2 obs_diag is designed to explore the effect of the assimilation in three
ways:

638 Chapter 6. References

../../filter/filter.html#DetailedProgramFlow
../../filter/filter.html#DetailedProgramFlow

DART, Release 9.10.3

1) as a function of time for a particular variable and level

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 639

DART, Release 9.10.3

2) as a time-averaged vertical profile

640 Chapter 6. References

DART, Release 9.10.3

3) and in terms of a rank histogram -

“Where does the actual observation rank relative to the rest of the ensemble?”

The figures in sections 1 and 2 were created by Matlab® scripts that query the obs_diag_output.nc file: DART/
diagnostics/matlab/plot_evolution.m and plot_profile.m. Both of these takes as input a file name
and a ‘quantity’ to plot (‘rmse’,’spread’,’totalspread’, . . .) and exhaustively plots the quantity (for every variable, every
level, every region) in a single matlab figure window - and creates a series of .ps files with multiple pages for each of
the figures. The directory gets cluttered with them. The rank histogram information in obs_diag_output.nc can
easily be plotted with ncview (left), a free third-party piece of software or with plot_rank_histogram.m (right).
See the Rank histograms section for more information and links to instructions.

obs_diag can be configured to compare the ensemble estimates against the ‘observation’ copy or the ‘truth’ copy
based on the setting of the use_zero_error_obs namelist variable.

The observation sequence files contain only the time of the observation, nothing of the assimilation interval, etc. - so
it requires user guidance to declare what sort of temporal binning for the temporal evolution plots. I do a ‘bunch’ of
arithmetic on the namelist times to convert them to a series of temporal bin edges that are used when traversing the
observation sequence. The actual algorithm is that the user input for the start date and bin width set up a sequence that
ends in one of two ways . . . the last time is reached or the number of bins has been reached.

obs_diag reads obs_seq.final files and calculates the following quantities (in no particular order) for an arbi-
trary number of regions and levels. obs_diag creates a netCDF file called obs_diag_output.nc. It is necessary
to query the CopyMetaData variable to determine the storage order (i.e. “which copy is what?”) if you want to use
your own plotting routines.

ncdump -f F -v CopyMetaData obs_diag_output.nc

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 641

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.10.3

Nposs The number of observations available to be assimilated.
Nused The number of observations that were assimilated.
NbadUV the number of velocity observations that had a matching component that was not assimilated;
NbadLV the number of observations that were above or below the highest or lowest model level, respectively;
rmse The root-mean-squared error (the horizontal wind components are also used to calculate the vector wind

velocity and its RMS error).
bias The simple sum of forecast - observation. The bias of the horizontal wind speed (not velocity) is also

computed.
spread The standard deviation of the univariate obs. DART does not exploit the bivariate nature of U,V winds

and so the spread of the horizontal wind is defined as the sum of the spreads of the U and V components.
total-
spread

The total standard deviation of the estimate. We pool the ensemble variance of the observation plus the
observation error variance and take the square root.

Nbad-
DARTQC

the number of observations that had a DART QC value (> 1 for a prior, > 3 for a posterior)

obser-
vation

the mean of the observation values

ens_mean the ensemble mean of the model estimates of the observation values
N_trusted the number of implicitly trusted observations, regardless of DART QC
N_DARTqc_0the number of observations that had a DART QC value of 0
N_DARTqc_1the number of observations that had a DART QC value of 1
N_DARTqc_2the number of observations that had a DART QC value of 2
N_DARTqc_3the number of observations that had a DART QC value of 3
N_DARTqc_4the number of observations that had a DART QC value of 4
N_DARTqc_5the number of observations that had a DART QC value of 5
N_DARTqc_6the number of observations that had a DART QC value of 6
N_DARTqc_7the number of observations that had a DART QC value of 7
N_DARTqc_8the number of observations that had a DART QC value of 8

The temporal evolution of the above quantities for every observation type (RA-
DIOSONDE_U_WIND_COMPONENT, AIRCRAFT_SPECIFIC_HUMIDITY, . . .) is recorded in the output
netCDF file - obs_diag_output.nc. This netCDF file can then be loaded and displayed using the Matlab®
scripts in/DART/diagnostics/matlab. (which may depend on functions in/DART/matlab).
The temporal, geographic, and vertical binning are under namelist control. Temporal averages of the above quantities
are also stored in the netCDF file. Normally, it is useful to skip the ‘burn-in’ period - the amount of time to skip is
under namelist control.

The DART QC flag is intended to provide information about whether the observation was assimilated, evaluated only,
whether the assimilation resulted in a ‘good’ observation, etc. DART QC values <2 indicate the prior and posteriors
are OK. DART QC values >3 were not assimilated or evaluated. Here is the table that should explain things more
fully:

DART QC flag value meaning
0 observation assimilated
1 observation evaluated only (because of namelist settings)
2 assimilated, but the posterior forward operator failed
3 evaluated only, but the posterior forward operator failed
4 prior forward operator failed
5 not used because observation type not listed in namelist
6 rejected because incoming observation QC too large
7 rejected because of a failed outlier threshold test
8 vertical conversion failed
9+ reserved for future use

642 Chapter 6. References

DART, Release 9.10.3

6.176.3 What is new in the Manhattan release

1. Support for DART QC = 8 (failed vertical conversion).

2. Simplified input file specification.

3. Removed rat_cri and input_qc_threshold from the namelists. They had been deprecated for quite
some time.

4. Some of the internal variable names have been changed to make it easier to distinguish between variances and
standard deviations.

6.176.4 What is new in the Lanai release

obs_diag has several improvements:

1. Improved vertical specification. Namelist variables [h,p,m]level_edges allow fine-grained control over
the vertical binning. It is not allowed to specify both the edges and midpoints for the vertical bins.

2. Improved error-checking for input specification, particularly the vertical bins. Repeated values are squeezed
out.

3. Support for ‘trusted’ observations. Trusted observation types may be specified in the namelist and all observa-
tions of that type will be counted in the statistics despite the DART QC code (as long as the forward observation
operator succeeds). See namelist variable trusted_obs. For more details, see the section on Trusted obser-
vations.

4. Support for ‘true’ observations (i.e. from an OSSE). If the ‘truth’ copy of an observation is desired for com-
parison (instead of the default copy) the observation error variance is set to 0.0 and the statistics are calculated
relative to the ‘truth’ copy (as opposed to the normal ‘noisy’ or ‘observation’ copy). See namelist variable
use_zero_error_obs.

5. discontinued the use of rat_cri and input_qc_threshold namelist variables. Their functionality was
replaced by the DART QC mechanism long ago.

6. The creation of the rank histogram (if possible) is now namelist-controlled by namelist variable
create_rank_histogram.

6.176.5 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_diag_nml
obs_sequence_name = ''
obs_sequence_list = ''
first_bin_center = 2003, 1, 1, 0, 0, 0
last_bin_center = 2003, 1, 2, 0, 0, 0
bin_separation = 0, 0, 0, 6, 0, 0
bin_width = 0, 0, 0, 6, 0, 0
time_to_skip = 0, 0, 1, 0, 0, 0
max_num_bins = 1000
plevel = -888888.0
hlevel = -888888.0
mlevel = -888888
plevel_edges = -888888.0

(continues on next page)

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 643

DART, Release 9.10.3

(continued from previous page)

hlevel_edges = -888888.0
mlevel_edges = -888888
Nregions = 0
lonlim1 = -888888.0
lonlim2 = -888888.0
latlim1 = -888888.0
latlim2 = -888888.0
reg_names = 'null'
trusted_obs = 'null'
create_rank_histogram = .true.
outliers_in_histogram = .false.
use_zero_error_obs = .false.
verbose = .false.
/

The date-time integer arrays in this namelist have the form (YYYY, MM, DY, HR, MIN, SEC).
The allowable ranges for the region boundaries are: latitude [-90.,90], longitude [0.,Inf.]

You can only specify either obs_sequence_name or obs_sequence_list – not both. One of them has to be
an empty string . . . i.e. ''.

644 Chapter 6. References

DART, Release 9.10.3

Item Type Description
obs_sequence_namecharac-

ter(len=256),
dimen-
sion(100)

An array of names of observation sequence files. These may be relative or absolute filenames.
If this is set, obs_sequence_list must be set to ‘ ‘ (empty string).

obs_sequence_listcharac-
ter(len=256)

Name of an ascii text file which contains a list of one or more observation sequence files, one
per line. If this is specified, obs_sequence_name must be set to ‘ ‘. Can be created by any
method, including sending the output of the ‘ls’ command to a file, a text editor, or another
program. If this is set, obs_sequence_name must be set to ‘ ‘ (empty string).

first_bin_centerinteger,
dimen-
sion(6)

first timeslot of the first obs_seq.final file to process. The six integers are: year, month, day,
hour, hour, minute, second, in that order. obs_diag has improved run-time output that re-
ports the time and date of the first and last observations in every observation sequence file.
Look for the string ‘First observation date’ in the logfile. If the verbose is ‘true’, it is also
written to the screen.

last_bin_centerinteger,
dimen-
sion(6)

last timeslot of interest. (reminder: the last timeslot of day 1 is hour 0 of day 2) The six integers
are: year, month, day, hour, hour, minute, second, in that order. This does not need to be
exact, the values from first_bin_center and bin_separation are used to populate
the time array and stop on or before the time defined by last_bin_center. See also
max_num_bins.

bin_separationinteger,
dimen-
sion(6)

Time between bin centers. The year and month values must be zero.

bin_widthinteger,
dimen-
sion(6)

Time span around bin centers in which obs will be compared. The year and month values must
be zero. Frequently, but not required to be, the same as the values for bin_separation. 0

time_to_skipinteger,
dimen-
sion(6)

Time span at the beginning to skip when calculating vertical profiles of rms error and bias. The
year and month values must be zero. Useful because it takes some time for the assimilation to
settle down from the climatological spread at the start. time_to_skip is an amount of time
AFTER the first edge of the first bin.

max_num_binsinteger This provides an alternative way to declare the last_bin_center. If max_num_bins is
set to ‘10’, only 10 timesteps will be output - provided last_bin_center is set to some
later date.

plevel real,
dimen-
sion(50)

The midpoints defining the pressure levels for the vertical binning. There is no specification
of bin width - a continuum is used. If a single midpoint value is entered, the bin edges are +/-
10% of the midpoint value. If you’d like to change that see the routine Rmidpoints2edges().
You may specify either plevel or plevel_edges, but not both.

plevel_edgesreal,
dimen-
sion(51)

The edges defining the pressure levels for the vertical binning. You may specify either
plevel or plevel_edges, but not both.

hlevel real,
dimen-
sion(50)

Same, but for observations that have height(m) or depth(m) as the vertical coordinate.

hlevel_edgesreal,
dimen-
sion(51)

The edges defining the height (or depth) levels for the vertical binning. You may specify either
hlevel or hlevel_edges, but not both.

mlevel real,
dimen-
sion(50)

Same, but for observations that have model level as the vertical coordinate.

mlevel_edgesreal,
dimen-
sion(51)

The edges defining the model levels for the vertical binning. You may specify either mlevel
or mlevel_edges, but not both.

Nre-
gions

integer Number of regions of the globe for which obs space diagnostics are computed separately.
Must be between [1,50]. If 50 is not enough, increase obs_diag.f90MaxRegions and
recompile.

lon-
lim1

real,
dimen-
sion(50)

Westernmost longitudes of each of the regions.

lon-
lim2

real,
dimen-
sion(50)

Easternmost longitudes of each of the regions. If any of these values isless thanthe western-
most values, it defines a region that spans the prime meridian. e.g. a specification of lonlim1
= 330 , lonlim2 = 50 could identify a region like “Africa”.

latlim1 real,
dimen-
sion(50)

Southernmost latitudes of the regions.

latlim2 real,
dimen-
sion(50)

Northernmost latitudes of the regions.

reg_namescharac-
ter(len=129),
dimen-
sion(50)

Array of names for the regions to be analyzed. Will be used for plot titles.

trusted_obscharac-
ter(len=32),
dimen-
sion(50)

list of observation types that must participate in the calculation of the statistics, regardless
of the DART QC (provided that the forward observation operator can still be applied without
failure). e.g. ‘RADIOSONDE_TEMPERATURE’, . . . For more details, see the section on
Trusted observations.

use_zero_error_obslogical if .true., the observation copy used for the statistics calculations will be ‘truth’. Only
‘perfect’ observations (from perfect_model_obs) have this copy. The observation error
variance will be set to zero.

cre-
ate_rank_histogram

logical if .true. and there are actual ensemble estimates of the observations in the obs_seq.
final (i.e. filter_nml:num_output_obs_members is larger than zero), a rank his-
togram will be created.

out-
liers_in_histogram

logical if .true. the observations that have been rejected by the outlier threshhold mechanism will
be included in the calculation of the rank histogram.

ver-
bose

logical switch controlling amount of run-time output.

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 645

DART, Release 9.10.3

6.176.6 Other modules used

obs_sequence_mod
obs_kind_mod
obs_def_mod (and possibly other obs_def_xxx mods)
assim_model_mod
random_seq_mod
model_mod
location_mod
types_mod
time_manager_mod
utilities_mod
sort_mod

6.176.7 Files

• input.nml is used for obs_diag_nml

• obs_diag_output.nc is the netCDF output file

• dart_log.out list directed output from the obs_diag.

• LargeInnov.txt contains the distance ratio histogram – useful for estimating the distribution of the magni-
tudes of the innovations.

Obs_diag may require a model input file from which to get grid information, metadata, and links to modules providing
the models expected observations. It all depends on what’s needed by the model_mod.f90

Discussion of obs_diag_output.nc

Every observation type encountered in the observation sequence file is tracked separately, and aggregated into temporal
and 3D spatial bins. There are two main efforts to this program. One is to track the temporal evolution of any of the
quantities available in the netCDF file for any possible observation type:

ncdump -v CopyMetaData,ObservationTypes obs_diag_output.nc

The other is to explore the vertical profile of a particular observation kind. By default, each observation kind has a
‘guess/prior’ value and an ‘analysis/posterior’ value - which shed some insight into the innovations.

Temporal evolution

The obs_diag_output.nc output file has all the metadata I could think of, as well as separate variables for every
observation type in the observation sequence file. Furthermore, there is a separate variable for the ‘guess/prior’ and
‘analysis/posterior’ estimate of the observation. To distinguish between the two, a suffix is appended to the variable
name. An example seems appropriate:

...
char CopyMetaData(copy, stringlength) ;

CopyMetaData:long_name = "quantity names" ;
char ObservationTypes(obstypes, stringlength) ;

ObservationTypes:long_name = "DART observation types" ;
ObservationTypes:comment = "table relating integer to observation type string

→˓" ;
float RADIOSONDE_U_WIND_COMPONENT_guess(time, copy, plevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;

(continues on next page)

646 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

RADIOSONDE_U_WIND_COMPONENT_guess:missing_value = -888888.f ;
float RADIOSONDE_V_WIND_COMPONENT_guess(time, copy, plevel, region) ;

RADIOSONDE_V_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_guess:missing_value = -888888.f ;

...
float MARINE_SFC_ALTIMETER_guess(time, copy, surface, region) ;

MARINE_SFC_ALTIMETER_guess:_FillValue = -888888.f ;
MARINE_SFC_ALTIMETER_guess:missing_value = -888888.f ;

...
float RADIOSONDE_WIND_VELOCITY_guess(time, copy, plevel, region) ;

RADIOSONDE_WIND_VELOCITY_guess:_FillValue = -888888.f ;
RADIOSONDE_WIND_VELOCITY_guess:missing_value = -888888.f ;

...
float RADIOSONDE_U_WIND_COMPONENT_analy(time, copy, plevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_analy:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_analy:missing_value = -888888.f ;

float RADIOSONDE_V_WIND_COMPONENT_analy(time, copy, plevel, region) ;
RADIOSONDE_V_WIND_COMPONENT_analy:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_analy:missing_value = -888888.f ;

...

There are several things to note:

1. the ‘WIND_VELOCITY’ component is nowhere ‘near’ the corresponding U,V components.

2. all of the ‘guess’ variables come before the matching ‘analy’ variables.

3. surface variables (i.e. MARINE_SFC_ALTIMETER have a coordinate called ‘surface’ as opposed to ‘plevel’
for the others in this example).

Vertical profiles

Believe it or not, there are another set of netCDF variables specifically for the vertical profiles, essentially dupli-
cating the previous variables but without the ‘time’ dimension. These are distinguished by the suffix added to the
observation kind - ‘VPguess’ and ‘VPanaly’ - ‘VP’ for Vertical Profile.

...
float SAT_WIND_VELOCITY_VPguess(copy, plevel, region) ;

SAT_WIND_VELOCITY_VPguess:_FillValue = -888888.f ;
SAT_WIND_VELOCITY_VPguess:missing_value = -888888.f ;

...
float RADIOSONDE_U_WIND_COMPONENT_VPanaly(copy, plevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_VPanaly:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_VPanaly:missing_value = -888888.f ;

...

Observations flagged as ‘surface’ do not participate in the vertical profiles (Because surface variables cannot exist on
any other level, there’s not much to plot!). Observations on the lowest level DO participate. There’s a difference!

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 647

DART, Release 9.10.3

Rank histograms

If it is possible to calculate a rank histogram, there will also be :

...
int RADIOSONDE_U_WIND_COMPONENT_guess_RankHi(time, rank_bins, plevel, region) ;
...
int RADIOSONDE_V_WIND_COMPONENT_guess_RankHi(time, rank_bins, plevel, region) ;
...
int MARINE_SFC_ALTIMETER_guess_RankHist(time, rank_bins, surface, region) ;
...

as well as some global attributes. The attributes reflect the namelist settings and can be used by plotting routines to
provide additional annotation for the histogram.

:DART_QCs_in_histogram = 0, 1, 2, 3, 7 ;
:outliers_in_histogram = "TRUE" ;

Please note:

1. netCDF restricts variable names to 40 characters, so ‘_Rank_Hist’ may be truncated.

2. It is sufficiently vague to try to calculate a rank histogram for a velocity derived from the assimilation of U,V
components such that NO rank histogram is created for velocity. A run-time log message will inform as to
which variables are NOT having a rank histogram variable preserved in the obs_diag_output.nc file - IFF
it is possible to calculate a rank histogram in the first place.

648 Chapter 6. References

DART, Release 9.10.3

Instructions for viewing the rank his-
togram with ncview.

Instructions for viewing the rank his-
togram with Matlab.

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 649

http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#ncview_histogram
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#ncview_histogram
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#mat_obs
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#mat_obs

DART, Release 9.10.3

“trusted” observation types

This needs to be stated up front: obs_diag is a post-processor; it cannot influence the assimilation. One interpre-
tation of a TRUSTED observation is that the assimilation should always use the observation, even if it is far from
the ensemble. At present (23 Feb 2015), the filter in DART does not forcibly assimilate any one observation and
selectively assimilate the others. Still, it is useful to explore the results using a set of ‘trusted type’ observations,
whether they were assimilated, evaluated, or rejected by the outlier threshhold. This is the important distinction. The
diagnostics can be calculated differently for each observation type.

The normal diagnostics calculate the metrics (rmse, bias, etc.) only for the ‘good’ observations - those that were assim-
ilated or evaluated. The outlier_threshold essentially defines what observations are considered too far from
the ensemble prior to be useful. These observations get a DART QC of 7 and are not assimilated. The observations
with a DART QC of 7 do not contribute the the metrics being calculated. Similarly, if the forward observation operator
fails, these observations cannot contribute. When the operator fails, the ‘expected’ observation value is ‘MISSING’,
and there is no ensemble mean or spread.

‘Trusted type’ observation metrics are calculated using all the observations that were assimilated or evaluated AND
the observations that were rejected by the outlier threshhold. obs_diag can post-process the DART QC and cal-
culate the metrics appropriately for observation types listed in the trusted_obs namelist variable. If there
are trusted observation types specified for obs_diag, the obs_diag_output.nc has global metadata to indi-
cate that a different set of criteria were used to calculate the metrics. The individual variables also have an extra
attribute. In the following output, input.nml:obs_diag_nml:trusted_obs was set: trusted_obs =
'RADIOSONDE_TEMPERATURE', 'RADIOSONDE_U_WIND_COMPONENT'

...
float RADIOSONDE_U_WIND_COMPONENT_guess(time, copy, plevel, region) ;

RADIOSONDE_U_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_guess:missing_value = -888888.f ;
RADIOSONDE_U_WIND_COMPONENT_guess:TRUSTED = "TRUE" ;

float RADIOSONDE_V_WIND_COMPONENT_guess(time, copy, plevel, region) ;
RADIOSONDE_V_WIND_COMPONENT_guess:_FillValue = -888888.f ;
RADIOSONDE_V_WIND_COMPONENT_guess:missing_value = -888888.f ;

...
// global attributes:

...
:trusted_obs_01 = "RADIOSONDE_TEMPERATURE" ;
:trusted_obs_02 = "RADIOSONDE_U_WIND_COMPONENT" ;
:obs_seq_file_001 = "cam_obs_seq.1978-01-01-00000.final" ;
:obs_seq_file_002 = "cam_obs_seq.1978-01-02-00000.final" ;
:obs_seq_file_003 = "cam_obs_seq.1978-01-03-00000.final" ;

...
:MARINE_SFC_ALTIMETER = 7 ;
:LAND_SFC_ALTIMETER = 8 ;
:RADIOSONDE_U_WIND_COMPONENT--TRUSTED = 10 ;
:RADIOSONDE_V_WIND_COMPONENT = 11 ;
:RADIOSONDE_TEMPERATURE--TRUSTED = 14 ;
:RADIOSONDE_SPECIFIC_HUMIDITY = 15 ;
:AIRCRAFT_U_WIND_COMPONENT = 21 ;

...

650 Chapter 6. References

DART, Release 9.10.3

The Matlab scripts try to ensure that the trusted observation graphics clarify that the metrics plotted
are somehow ‘different’ than the normal processing stream. Some text is added to indicate that the
values include the outlying observations. IMPORTANT: The interpretation of the number of ob-
servations ‘possible’ and ‘used’ still reflects what was used in the assimilation! The number of ob-
servations rejected by the outlier threshhold is not explicilty plotted. To reinforce this, the text for
the observation axis on all graphics has been changed to "o=possible, *=assimilated".
In short, the distance between the number of observations possible and the number assimilated
still reflects the number of observations rejected by the outlier threshhold and the number of failed
forward observation operators.

There is ONE ambiguous case for trusted observations. There may be instances in which the observation fails the
outlier threshhold test (which is based on the prior) and the posterior forward operator fails. DART does not have a
QC that explicilty covers this case. The current logic in obs_diag correctly handles these cases except when trying
to use ‘trusted’ observations. There is a section of code in obs_diag that may be enabled if you are encountering this
ambiguous case. As obs_diag runs, a warning message is issued and a summary count is printed if the ambiguous
case is encountered. What normally happens is that if that specific observation type is trusted, the posterior values
include a MISSING value in the calculation which makes them inaccurate. If the block of code is enabled, the DART
QC is recast as the PRIOR forward observation operator fails. This is technically incorrect, but for the case of trusted
observations, it results in only calculating statistics for trusted observations that have a useful prior and posterior. This
should not be used unless you are willing to intentionally disregard ‘trusted’ observations that were rejected by
the outlier threshhold. Since the whole point of a trusted observation is to include observations potentially rejected
by the outlier threshhold, you see the problem. Some people like to compare the posteriors. THAT can be the problem.

if ((qc_integer == 7) .and. (abs(posterior_mean(1) - MISSING_R8) < 1.0_r8)) then
write(string1,*)'WARNING ambiguous case for obs index ',obsindex
string2 = 'obs failed outlier threshhold AND posterior operator failed.'
string3 = 'Counting as a Prior QC == 7, Posterior QC == 4.'
if (trusted) then

! COMMENT string3 = 'WARNING changing DART QC from 7 to 4'
! COMMENT qc_integer = 4

endif
call error_handler(E_MSG,'obs_diag',string1,text2=string2,text3=string3)
num_ambiguous = num_ambiguous + 1

endif

6.176.8 Usage

obs_diag is built in . . . /DART/models/your_model/work, in the same way as the other DART components.

Multiple observation sequence files

There are two ways to specify input files for obs_diag. You can either specify the name of a file containing a list of
files (in obs_sequence_list), or you may specify a list of files via obs_sequence_name.

6.176. PROGRAM obs_diag (for observations that use the threed_sphere location module) 651

DART, Release 9.10.3

Example: observation sequence files spanning 30 days

In this example, we will be accumulating metrics for 30 days. The obs_diag_output.
nc file will have exactly ONE timestep in it (so it won’t be much use for
the plot_evolution functions) - but the plot_profile functions and the
plot_rank_histogram function will be used to explore the assimilation. By way of
an example, we will NOT be using outlier observations in the rank histogram. Lets presume
that all your obs_seq.final files are in alphabetically-nice directories:

/Exp1/Dir01/obs_seq.final
/Exp1/Dir02/obs_seq.final
/Exp1/Dir03/obs_seq.final
...
/Exp1/Dir99/obs_seq.final

The first step is to create a file containing the list of observation sequence files you want to use. This can be done with
the unix command ‘ls’ with the -1 option (that’s a number one) to put one file per line.

ls -1 /Exp1/Dir*/obs_seq.final > obs_file_list.txt

It is necessary to turn on the verbose option to check the first/last times that will be used for the histogram. Then, the
namelist settings for 2008 07 31 12Z through 2008 08 30 12Z are:

&obs_diag_nml
obs_sequence_name = ''
obs_sequence_list = 'obs_file_list.txt'
first_bin_center = 2008, 8,15,12, 0, 0
last_bin_center = 2008, 8,15,12, 0, 0
bin_separation = 0, 0,30, 0, 0, 0
bin_width = 0, 0,30, 0, 0, 0
time_to_skip = 0, 0, 0, 0, 0, 0
max_num_bins = 1000
Nregions = 1
lonlim1 = 0.0
lonlim2 = 360.0
latlim1 = -90.0
latlim2 = 90.0
reg_names = 'Entire Domain'
create_rank_histogram = .true.
outliers_in_histogram = .false.
verbose = .true.
/

then, simply run obs_diag in the usual manner - you may want to save the run-time output to a file. Here is a portion
of the run-time output:

...
Region 1 Entire Domain (WESN): 0.0000 360.0000 -90.0000
→˓ 90.0000
Requesting 1 assimilation periods.

(continues on next page)

652 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

epoch 1 start day=148865, sec=43201
epoch 1 center day=148880, sec=43200
epoch 1 end day=148895, sec=43200
epoch 1 start 2008 Jul 31 12:00:01
epoch 1 center 2008 Aug 15 12:00:00
epoch 1 end 2008 Aug 30 12:00:00
...
MARINE_SFC_HORIZONTAL_WIND_guess_RankHis has 0 "rank"able observations.
SAT_HORIZONTAL_WIND_guess_RankHist has 0 "rank"able observations.
...

Discussion: It should be pretty clear that there is exactly 1 assimilation period, it may surprise you that the start is 1
second past 12Z. This is deliberate and reflects the DART convention of starting intervals 1 second after the end of
the previous interval. The times in the netCDF variables reflect the defined start/stop of the period, regardless of the
time of the first/last observation.
Please note that none of the ‘horizontal_wind’ variables will have a rank histogram, so they are not written to the
netCDF file. ANY variable that does not have a rank histogram with some observations will NOT have a rank
histogram variable in the netCDF file.
Now that you have the obs_diag_output.nc, you can explore it with plot_profile.m,
plot_bias_xxx_profile.m, or plot_rmse_xxx_profile.m, rank histograms with ncview or
plot_rank_histogram.m.

6.176.9 References

1. none

6.176.10 Private components

N/A

6.177 PROGRAM fill_inflation_restart

6.177.1 Overview

Utility program to create inflation restart files with constant values.

These files can be used as input for the first step of a multi-step assimilation when adaptive inflation is being used.
This allows the namelist items inf_initial_from_restart and inf_sd_initial_from_restart in
the &filter_nml namelist to be .TRUE. for all steps of the assimilation including the very first one. (These items
control whether inflation values are read from an input file or read from constants in the namelist.)

Adaptive inflation restart files are written at the end of a filter run and are needed as input for the next timestep.
This program creates files that can be used for the initial run of filter when no inflation restart files have been created
by filter but are required to be read as input.

This program reads the inflation values to use from the &fill_inflation_restart_nml namelist for setting
the prior inflation mean and standard deviation, and/or the posterior inflation mean and standard deviation. It does not
use the inflation values in the &filter namelist.

6.177. PROGRAM fill_inflation_restart 653

http://meteora.ucsd.edu/~pierce/ncview_home_page.html

DART, Release 9.10.3

This program uses the information from the model_mod code to determine the number of items in the state vector. It
must be compiled with the right model’s model_mod, and if the items in the state vector are selectable by namelist
options, the namelist when running this program must match exactly the namelist used during the assimilation run.

It creates files with names consistent with the input names expected by filter:

input_priorinf_mean.nc
input_priorinf_sd.nc
input_postinf_mean.nc
input_postinf_sd.nc

An older (and deprecated) alternative to running fill_inflation_restart is to create inflation netcdf files
by using one of the NCO utilities like “ncap2” on a copy of another restart file to set the initial inflation mean,
and another for the initial inflation standard deviation. Inflation mean and sd values look exactly like restart values,
arranged by variable type like T, U, V, etc.

Depending on your version of the NCO utilities, you can use ncap2 to set the T,U and V inf values using one of two
syntaxes:

ncap2 -s 'T=1.0;U=1.0;V=1.0' wrfinput_d01 input_priorinf_mean.nc
ncap2 -s 'T=0.6;U=0.6;V=0.6' wrfinput_d01 input_priorinf_sd.nc
-or-
ncap2 -s 'T(:,:,:)=1.0;U(:,:,:)=1.0;V(:,:,:)=1.0' wrfinput_d01 input_priorinf_mean.nc
ncap2 -s 'T(:,:,:)=0.6;U(:,:,:)=0.6;V(:,:,:)=0.6' wrfinput_d01 input_priorinf_sd.nc

Some versions of the NCO utilities change the full 3D arrays into a single scalar. If that’s your result (check your
output with ncdump -h) use the alternate syntax or a more recent version of the NCO tools.

6.177.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&fill_inflation_restart_nml

write_prior_inf = .FALSE.
prior_inf_mean = -88888.8888
prior_inf_sd = -88888.8888

write_post_inf = .FALSE.
post_inf_mean = -88888.8888
post_inf_sd = -88888.8888

single_file = .FALSE.
input_state_files = ''
verbose = .FALSE.

/

The namelist controls which files are created and what values are written to the restart files.

654 Chapter 6. References

DART, Release 9.10.3

Item Type Description
write_prior_inflogical Setting this to .TRUE. writes both the prior inflation mean and standard deviation files:

input_priorinf_mean.nc, input_priorinf_sd.nc.
prior_inf_meanreal(r8) Prior inflation mean value.
prior_inf_sd real(r8) Prior inflation standard deviation value.
write_post_inflogical Setting this to .TRUE. writes both the posterior inflation mean and standard deviation files

input_postinf_mean.nc, input_postinf_sd.nc.
post_inf_meanreal(r8) Posterior inflation mean value.
post_inf_sd real(r8) Posterior inflation standard deviation value.
sin-
gle_file

logical Currently not supported, but would be used in the case where you have a single restart file
that contains all of the ensemble members. Must be .false.

in-
put_state_files

char-
ac-
ter(:)

List one per domain, to be used as a template for the output inflation files.

verbose logical Setting this to .TRUE. gives more output, and is generally used for debugging

Here is an example of a typical namelist for fill_inflation_restart :

&fill_inflation_restart_nml

write_prior_inf = .TRUE.
prior_inf_mean = 1.01
prior_inf_sd = 0.6

write_post_inf = .FALSE.
post_inf_mean = 1.0
post_inf_sd = 0.6

single_file = .FALSE.
input_state_files = ''
verbose = .FALSE.

/

6.177.3 Files

Creates:

input_priorinf_mean.nc
input_priorinf_sd.nc
input_postinf_mean.nc
input_postinf_sd.nc

based on the template file from the specific model this code is compiled for.

6.177. PROGRAM fill_inflation_restart 655

DART, Release 9.10.3

6.177.4 References

• none

6.178 program obs_seq_coverage

6.178.1 Overview

obs_seq_coverage queries a set of observation sequence files to determine which observation locations report
frequently enough to be useful for a verification study. The big picture is to be able to pare down a large set of obser-
vations into a compact observation sequence file to run through PROGRAM filter with all of the intended observation
types flagged as evaluate_only. DART’s forward operators then get applied and all the forecasts are preserved in a
standard obs_seq.final file - perhaps more appropriately called obs_seq.forecast! Paring down the in-
put observation sequence file cuts down on the unnecessary application of the forward operator to create observation
copies that will not be used anyway . . .

obs_seq_coverage results in two output files:

• obsdef_mask.txt contains the list of observation definitions (but not the observations themselves) that are
desired. The observation definitions include the locations and times for each of the desired observation types.
This file is read by program obs_selection and combined with the raw observation sequence files to create the
observation sequence file appropriate for use in a forecast.

• obsdef_mask.nc contains information needed to be able to plot the times and locations of the observations
in a manner to help explore the design of the verification locations/network. obsdef_mask.nc is required
by program obs_seq_verify, the program that reorders the observations into a structure that makes it easy to
calculate statistics like ROC, etc.

The following section explains the strategy and requirements for determining what observations will be used to verify
a forecast. Since it is ‘standard practice’ to make several forecasts to build statistical strength, it is important to use

656 Chapter 6. References

DART, Release 9.10.3

the SAME set of observation locations for all the forecasts that will be verified together. To make the discussion
easier, let’s define the verification network as the set of locations and times for a particular observation type.
The entire discussion about finding locations that are repeatedly observed through time boils down to the simple
statement that if the observation is within about 500cm of a previous observation, they are treated as co-located
observations. For some very high resolution applications, this may be insufficient, but there it is. For observations at
pressure levels, see the Word about vertical levels.
The only complicated part of determining the verification network is the temporal component. The initial time
(usually an analysis time from a previous assimilation), the verification interval, and the forecast length completely
specify the temporal aspect of a forecast. The following example has a verification interval of 6 hours and a forecast
length of 24 hours. We adopt the convention of also including the initial conditions (a “nowcast”) in the “forecast”, so

there are 5 times of interest - which we will call verification times and are represented by . The candidate
observation sequence files are scanned to select all the observations that are closest to the verification times. The
difference in time between the “nowcast” and the “forecast” is the forecast lead.

So - that is simple enough if there is only one forecast, but this is rarely the case. Let’s say we have a second forecast.
Ideally, we’d like to verify at exactly the same locations and forecast leads - otherwise we’re not really comparing the
same things. If the second verification network happens to be at locations that are easy to predict, we’re comparing
apples and oranges. The fair way to proceed is to determine the verification network that is the same for all forecasts.
This generally results in a pretty small set of observations - a problem we will deal with later.
The diagram below illustrates the logic behind determining the list of verification times for a pretty common
scenario: a 24-hour forecast with a forecast lead of 6 hours, repeated the next day. The first_analysis is at VT1 - let’s
call it 00Z day 1. We need to have observations available at:
VT1 (00Z day1), VT2 (06Z day1), VT3 (12Z day1), VT4 (18Z day1), and VT5 (24Z day1 / 00Z day2). The
last_analysis starts at VT5 00Z day 2 and must verify at
VT5 (00Z day2), VT6 (06Z day2), VT7 (12Z day2), VT8 (18Z day2), and VT9 (24Z day2 / 00Z day3).

6.178. program obs_seq_coverage 657

DART, Release 9.10.3

Note that, if you wanted to, you could launch forecasts at VT2, VT3, and VT4 without adding extra constraints on the
verification network. obs_seq_coverage simply provides these possible forecasts “for free”, there is no
assumption about needing them. We will use the variable verification_times to describe the complete set of times for
all possible forecasts. In our example above, there are 5 possible forecasts, each forecast consisting of 5 verification
times (the analysis time and the 4 forecast lead times). As such, there are 9 unique verification times.
Note that no attempt is made at checking the QC value of the candidate observations. One of the common problems
is that the region definition does not mesh particularly well with the model domain and the DART forward operator
fails because it would have to extrapolate (which is not allowed). Without checking the QC value, this can mean there
are a lot of ‘false positives’; observations that seemingly could be used to validate, but are actually just outside the
model domain. I’m working on that
The USAGE section has more on the actual use of obs_seq_coverage.

6.178.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_seq_coverage_nml
obs_sequences = ''
obs_sequence_list = ''
obs_of_interest = ''
textfile_out = 'obsdef_mask.txt'
netcdf_out = 'obsdef_mask.nc'
calendar = 'Gregorian'
first_analysis = 2003, 1, 1, 0, 0, 0

(continues on next page)

658 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

last_analysis = 2003, 1, 2, 0, 0, 0
forecast_length_days = 1
forecast_length_seconds = 0
verification_interval_seconds = 21600
temporal_coverage_percent = 100.0
lonlim1 = -888888.0
lonlim2 = -888888.0
latlim1 = -888888.0
latlim2 = -888888.0
verbose = .false.
debug = .false.
/

Note that -888888.0 is not a useful number. To use the defaults delete these lines from the namelist, or set them to 0.0,
360.0 and -90.0, 90.0.

The date-time integer arrays in this namelist have the form (YYYY, MM, DD, HR, MIN, SEC).

The allowable ranges for the region boundaries are: latitude [-90.,90], longitude [0.,Inf.]

You can specify either obs_sequences or obs_sequence_list – not both. One of them has to be an empty string . . . i.e.
‘’.

6.178. program obs_seq_coverage 659

DART, Release 9.10.3

Item Type Description
obs_sequences character(len=256) Name of the observation sequence

file(s). This may be a relative or ab-
solute filename. If the filename con-
tains a ‘/’, the filename is consid-
ered to be comprised of everything
to the right, and a directory struc-
ture to the left. The directory struc-
ture is then queried to see if it can
be incremented to handle a sequence
of observation files. The default be-
havior of obs_seq_coverage is
to look for additional files to in-
clude until the files are exhausted or
an obs_seq.final file is found
that contains observations beyond
the timeframe of interest. e.g. ‘ob-
sdir_001/obs_seq.final’ will cause
obs_seq_coverage to look for
‘obsdir_002/obs_seq.final’, and so
on. If this is set, obs_sequence_list
must be set to ‘ ‘.

obs_sequence_list character(len=256) Name of an ascii text file which con-
tains a list of one or more obser-
vation sequence files, one per line.
If this is specified, obs_sequences
must be set to ‘ ‘. Can be created by
any method, including sending the
output of the ‘ls’ command to a file,
a text editor, or another program.

obs_of_interest character(len=32), dimension(:) These are the observation types
that will be verified. It is an
array of character strings that
must match the standard DART
observation types. Simply add
as many or as few observation
types as you need. Could be
‘METAR_U_10_METER_WIND’,
‘METAR_V_10_METER_WIND’,. . . ,
for example.

textfile_out character(len=256) The name of the file that will con-
tain the observation definitions of
the verfication observations. Only
the metadata from the observations
(location, time, obs_type) are pre-
served in this file. They are
in no particular order. program
obs_selection will use this file as a
‘mask’ to extract the real observa-
tions from the candidate observation
sequence files.

netcdf_out character(len=256) The name of the file that will con-
tain the observation definitions of
the unique locations that match any
of the verification times. This
file is used in conjunction with
program obs_seq_verify to reorder
the obs_seq.forecast into a
structure that will facilitate calculat-
ing the statistics and scores of the
forecasts.

calendar character(len=129) The type of the calendar used to in-
terpret the dates.

first_analysis integer, dimension(6) The start time of the first forecast.
Also known as the analysis time of
the first forecast. The six integers
are: year, month, day, hour, hour,
minute, second – in that order.

last_analysis integer, dimension(6) The start time of the last forecast.
The six integers are: year, month,
day, hour, hour, minute, second –
in that order. This needs to be
a perfect multiple of the verifica-
tion_interval_seconds from the start
of first_analysis.

forecast_length_days fore-
cast_length_seconds

integer both values are used to determine
the total length of any single fore-
cast.

verification_interval_seconds integer The number of seconds between
each verification.

• 1 h == 3600s
• 2 h == 7120s
• 3 h == 10800s
• 6 h == 21600s
• 12 h == 43200s

temporal_coverage_percent real While it is possible to specify that
you do not need an observation at
every time, it makes the most sense.
This is not actually required to be
100% but 100% results in the most
robust comparison.

lonlim1 real Westernmost longitude of desired
region.

lonlim2 real Easternmost longitude of desired re-
gion. If this value is less than the
westernmost value, it defines a re-
gion that spans the prime meridian.
It is perfectly acceptable to specify
lonlim1 = 330 , lonlim2 = 50 to
identify a region like “Africa”.

latlim1 real Southernmost latitude of desired re-
gion.

latlim2 real Northernmost latitude of desired re-
gion.

verbose logical Print extra run-time information.
debug logical Enable debugging messages. May

generate a lot of output.

660 Chapter 6. References

DART, Release 9.10.3

For example:

&obs_seq_coverage_nml
obs_sequences = ''
obs_sequence_list = 'obs_coverage_list.txt'
obs_of_interest = 'METAR_U_10_METER_WIND',

'METAR_V_10_METER_WIND'
textfile_out = 'obsdef_mask.txt'
netcdf_out = 'obsdef_mask.nc'
calendar = 'Gregorian'
first_analysis = 2003, 1, 1, 0, 0, 0
last_analysis = 2003, 1, 2, 0, 0, 0
forecast_length_days = 1
forecast_length_seconds = 0
verification_interval_seconds = 21600
temporal_coverage_percent = 100.0
lonlim1 = 0.0
lonlim2 = 360.0
latlim1 = -90.0
latlim2 = 90.0
verbose = .false.
/

6.178.3 Other modules used

assim_model_mod
types_mod
location_mod
model_mod
null_mpi_utilities_mod
obs_def_mod
obs_kind_mod
obs_sequence_mod
random_seq_mod
time_manager_mod
utilities_mod

6.178.4 Files

• input.nml is used for obs_seq_coverage_nml

• A text file containing the metadata for the observations to be used for forecast evaluation is created. This file
is subsequently required by program obs_selection to subset the set of input observation sequence files into a
single observation sequence file (obs_seq.evaluate) for the forecast step. (obsdef_mask.txt is the
default name)

• A netCDF file containing the metadata for a much larger set of observations that may be used is created. This
file is subsequently required by program obs_seq_coverage to define the desired times and locations for the
verification. (obsdef_mask.nc is the default name)

6.178. program obs_seq_coverage 661

DART, Release 9.10.3

6.178.5 Usage

obs_seq_coverage is built in . . . /DART/models/your_model/work, in the same way as the other DART
components.
There is no requirement on the reporting time/frequence of the candidate voxels. Once the verification times have
been defined, the observation closest in time to the verification time is selected, the others are ignored. Only
observations within half the verification interval are eligible to be considered “close”.
A word about vertical levels. If the desired observation type has UNDEFINED or SURFACE for the vertical
coordinate system, there is no concern about trying to match the vertical. If the desired observation types use
PRESSURE; the following 14 levels are used as the standard levels: 1000, 925, 850, 700, 500, 400, 300, 250, 200,
150, 100, 70, 50, 10 (all hPa). No other vertical coordinate system is supported.

Example: a single 48-hour forecast that is evaluated every 6 hours

In this example, we are generating an obsdef_mask.txt file for a single forecast. All the required input
observation sequence filenames will be contained in a file referenced by the obs_sequence_list variable. We’ll also
restrict the observations to a specific rectangular (in Lat/Lon) region at a particular level. It is convenient to turn on
the verbose option the first time to get a feel for the logic. Here are the namelist settings if you want to verify the
METAR_U_10_METER_WIND and METAR_V_10_METER_WIND observations over the entire globe every 6
hours for 2 days starting 18Z 8 Jun 2008:

&obs_seq_coverage_nml
obs_sequences = ''
obs_sequence_list = 'obs_file_list.txt'
obs_of_interest = 'METAR_U_10_METER_WIND',

'METAR_V_10_METER_WIND'
textfile_out = 'obsdef_mask.txt'
netcdf_out = 'obsdef_mask.nc'
calendar = 'Gregorian'
first_analysis = 2008, 6, 8, 18, 0, 0
last_analysis = 2008, 6, 8, 18, 0, 0
forecast_length_days = 2
forecast_length_seconds = 0
verification_interval_seconds = 21600
temporal_coverage_percent = 100.0
lonlim1 = 0.0
lonlim2 = 360.0
latlim1 = -90.0
latlim2 = 90.0
verbose = .true.
/

The first step is to create a file containing the list of observation sequence files you want to use. This can be done
with the unix command ‘ls’ with the -1 option (that’s a number one) to put one file per line, particularly if the files are
organized in a nice fashion. If your observation sequence are organized like this:

662 Chapter 6. References

DART, Release 9.10.3

/Exp1/Dir20080101/obs_seq.final
/Exp1/Dir20080102/obs_seq.final
/Exp1/Dir20080103/obs_seq.final
...
/Exp1/Dir20081231/obs_seq.final

then

ls -1 /Exp1/Dir*/obs_seq.final > obs_file_list.txt

creates the desired file. Then, simply run obs_seq_coverage - you may want to save the run-time output to a file.
It is convenient to turn on the verbose option the first time. Here is a portion of the run-time output:

[thoar@mirage2 work]$./obs_seq_coverage | & tee my.log
Starting program obs_seq_coverage
Initializing the utilities module.
Trying to log to unit 10
Trying to open file dart_log.out

Starting ... at YYYY MM DD HH MM SS =

2011 2 22 13 15 2
Program obs_seq_coverage

set_nml_output Echo NML values to log file only
Trying to open namelist log dart_log.nml
location_mod: Ignoring vertical when computing distances; horizontal only
--

-------------- ASSIMILATE_THESE_OBS_TYPES --------------
RADIOSONDE_TEMPERATURE
RADIOSONDE_U_WIND_COMPONENT
RADIOSONDE_V_WIND_COMPONENT
SAT_U_WIND_COMPONENT
SAT_V_WIND_COMPONENT
-------------- EVALUATE_THESE_OBS_TYPES --------------
RADIOSONDE_SPECIFIC_HUMIDITY
--

METAR_U_10_METER_WIND is type 36
METAR_V_10_METER_WIND is type 37

There are 9 verification times per forecast.
There are 1 supported forecasts.
There are 9 total times we need observations.

At least 9 observations times are required at:
verification # 1 at 2008 Jun 08 18:00:00
verification # 2 at 2008 Jun 09 00:00:00
verification # 3 at 2008 Jun 09 06:00:00
verification # 4 at 2008 Jun 09 12:00:00
verification # 5 at 2008 Jun 09 18:00:00
verification # 6 at 2008 Jun 10 00:00:00
verification # 7 at 2008 Jun 10 06:00:00
verification # 8 at 2008 Jun 10 12:00:00
verification # 9 at 2008 Jun 10 18:00:00

(continues on next page)

6.178. program obs_seq_coverage 663

DART, Release 9.10.3

(continued from previous page)

obs_seq_coverage opening obs_seq.final.2008060818
QC index 1 NCEP QC index
QC index 2 DART quality control

First observation time day=148812, sec=64380
First observation date 2008 Jun 08 17:53:00
Processing obs 10000 of 84691
Processing obs 20000 of 84691
Processing obs 30000 of 84691
Processing obs 40000 of 84691
Processing obs 50000 of 84691
Processing obs 60000 of 84691
Processing obs 70000 of 84691
Processing obs 80000 of 84691
obs_seq_coverage doneDONEdoneDONE does not exist. Finishing up.

There were 442 voxels matching the input criterion.
...

Discussion

Note that the values of ASSIMILATE_THESE_OBS_TYPES and EVALUATE_THESE_OBS_TYPES are
completely irrelevant - since we’re not actually doing an assimilation. The BIG difference between the two output
files is that obsdef_mask.txt contains the metadata for just the matching observations while
obsdef_mask.nc contains the metadata for all candidate locations as well as a lot of information about the
desired verification times. It is possible to explore obsdef_mask.nc to review the selection criteria to include
observations/”voxels” that do not perfectly match the original selection criteria.
Now that you have the obsdef_mask.nc, you can explore it with ncdump.

netcdf obsdef_mask {
dimensions:

voxel = UNLIMITED ; // (512 currently)
time = 9 ;
analysisT = 1 ;
forecast_lead = 9 ;
nlevels = 14 ;
linelen = 256 ;
nlines = 446 ;
stringlength = 32 ;
location = 3 ;

variables:
int voxel(voxel) ;

voxel:long_name = "desired voxel flag" ;
voxel:description = "1 == good voxel" ;

double time(time) ;
time:long_name = "verification time" ;
time:units = "days since 1601-1-1" ;
time:calendar = "GREGORIAN" ;

double analysisT(analysisT) ;
analysisT:long_name = "analysis (start) time of each forecast" ;
analysisT:units = "days since 1601-1-1" ;

(continues on next page)

664 Chapter 6. References

http://www.unidata.ucar.edu/software/netcdf/old_docs/docs_4_1/netcdf/ncdump.html

DART, Release 9.10.3

(continued from previous page)

analysisT:calendar = "GREGORIAN" ;
int forecast_lead(forecast_lead) ;

forecast_lead:long_name = "current forecast length" ;
forecast_lead:units = "seconds" ;

double verification_times(analysisT, forecast_lead) ;
verification_times:long_name = "verification times during each

→˓forecast run" ;
verification_times:units = "days since 1601-1-1" ;
verification_times:calendar = "GREGORIAN" ;
verification_times:rows = "each forecast" ;
verification_times:cols = "each verification time" ;

float mandatory_level(nlevels) ;
mandatory_level:long_name = "mandatory pressure levels" ;
mandatory_level:units = "Pa" ;

char namelist(nlines, linelen) ;
namelist:long_name = "input.nml contents" ;

char obs_type(voxel, stringlength) ;
obs_type:long_name = "observation type string at this voxel" ;

double location(voxel, location) ;
location:description = "location coordinates" ;
location:location_type = "loc3Dsphere" ;
location:long_name = "threed sphere locations: lon, lat, vertical" ;
location:storage_order = "Lon Lat Vertical" ;
location:units = "degrees degrees which_vert" ;

int which_vert(voxel) ;
which_vert:long_name = "vertical coordinate system code" ;
which_vert:VERTISUNDEF = -2 ;
which_vert:VERTISSURFACE = -1 ;
which_vert:VERTISLEVEL = 1 ;
which_vert:VERTISPRESSURE = 2 ;
which_vert:VERTISHEIGHT = 3 ;
which_vert:VERTISSCALEHEIGHT = 4 ;

int ntimes(voxel) ;
ntimes:long_name = "number of observation times at this voxel" ;

double first_time(voxel) ;
first_time:long_name = "first valid observation time at this voxel" ;
first_time:units = "days since 1601-1-1" ;
first_time:calendar = "GREGORIAN" ;

double last_time(voxel) ;
last_time:long_name = "last valid observation time at this voxel" ;
last_time:units = "days since 1601-1-1" ;
last_time:calendar = "GREGORIAN" ;

double ReportTime(voxel, time) ;
ReportTime:long_name = "time of observation" ;
ReportTime:units = "days since 1601-1-1" ;
ReportTime:calendar = "GREGORIAN" ;
ReportTime:missing_value = 0. ;
ReportTime:_FillValue = 0. ;

// global attributes:
:creation_date = "YYYY MM DD HH MM SS = 2011 03 01 09 28 40" ;
:obs_seq_coverage_source = "URL" ;
:obs_seq_coverage_revision = "$Revision$" ;
:obs_seq_coverage_revdate = "$Date$" ;
:min_steps_required = 9 ;
:forecast_length_days = 2 ;
:forecast_length_seconds = 0 ;

(continues on next page)

6.178. program obs_seq_coverage 665

DART, Release 9.10.3

(continued from previous page)

:verification_interval_seconds = 21600 ;
:obs_of_interest_001 = "METAR_U_10_METER_WIND" ;
:obs_of_interest_002 = "METAR_V_10_METER_WIND" ;
:obs_seq_file_001 = "obs_seq.final.2008060818" ;

data:

time = 148812.75, 148813, 148813.25, 148813.5, 148813.75, 148814, 148814.25,
148814.5, 148814.75 ;

forecast_lead = 0, 21600, 43200, 64800, 86400, 108000, 129600, 151200, 172800 ;
}

The first thing to note is that there are more voxels (512) than reported during the run-time output (442). Typically,
there will be many more voxels in the netCDF file than will meet the selection criteria - but this is just an example.
Some of the voxels in the netCDF file do not meet the selection criteria - meaning they do not have observations at all
9 required times. Furthermore, there are 512 locations for ALL of the desired observation types. In keeping with the
DART philosophy of scalar observations, each observation type gets a separate voxel. There are not 512
METAR_U_10_METER_WIND observations and 512 METAR_V_10_METER_WIND observations. There are N
METAR_U_10_METER_WIND observations and M METAR_V_10_METER_WIND observations where N+M =
512. And only 442 of them have observations at all the times required for the verification. Dump the obs_type
variable to see what voxel has what observation type.
The voxel variable is fundamentally a flag that indicates if the station has all of the desired verification times.
Combine that information with the obs_type and location to determine where your verifications of any particular
observation type will take place.
Now that you have the obsdef_mask.txt, you can run program obs_selection to subset the observation sequence
files into one compact file to use in your ensemble forecast.

6.178.6 References

• none - but this seems like a good place to start: The Centre for Australian Weather and Climate Research -
Forecast Verification Issues, Methods and FAQ

6.179 PROGRAM advance_time

6.179.1 Overview

Provides a shell-scripting-friendly way to increment and decrement calendar dates and times. The code uses the
standard DART time manager for all time calculations.
A date, an increment or decrement, and an optional output formatting flag are read from standard input. Increments
can be days, hours, minutes, or seconds. The accuracy is to the second. The resulting output time string is echoed to
standard output. For example:

echo 2007073012 12 | advance_time

will output the string 2007073100. It uses the Gregorian calendar and will roll over month and year boundaries, both
going forward and backwards in time. See the Usage section below for more examples of use.

666 Chapter 6. References

http://www.cawcr.gov.au/projects/verification/
http://www.cawcr.gov.au/projects/verification/

DART, Release 9.10.3

The program is general purpose, but based on a time program distributed with the WRF model. This is the reason
there are a few WRF specific options, for example the ‘-w’ flag outputs a date string in a WRF-specific format, useful
for creating WRF filenames.
The program does require that an ‘input.nml’ namelist file exist in the current directory, and at least a &utilities_nml
namelist (which can be empty) exists.

6.179.2 Usage

Interface identical to the wrf/WRF_DART_utilities/advance_cymdh, except for reading the arg line from
standard input, to be more portable since iargc() is nonstandard across different fortran implementations.

• default numeric increment is hours

• has accuracy down to second

• can use day/hour/minute/second (with/without +/- sign) to advance time

• can digest various input date format if it still has the right order (ie. cc yy mm dd hh nn ss)

• can digest flexible time increment

• can output in wrf date format (ccyy-mm-dd_hh:nn:ss)

• can specify output date format

• can output Julian day

• can output Gregorian days and seconds (since year 1601)

Some examples:

advance 12 h:
echo 20070730 12 | advance_time

back 1 day 2 hours 30 minutes and 30 seconds:
echo 2007073012 -1d2h30m30s | advance_time

back 3 hours 30 minutes less 1 second:
echo 2007073012 1s-3h30m | advance_time

advance 2 days and 1 second, output in wrf date format :
echo 200707301200 2d1s -w | advance_time
echo 2007-07-30_12:00:00 2d1s -w | advance_time
echo 200707301200 2d1s -f ccyy-mm-dd_hh:nn:ss | advance_time

advance 120 h, and print year and Julian day:
echo 2007073006 120 -j | advance_time

advance 120 h, print year, Julian day, hour, minute and second:
echo 2007073006 120 -J | advance_time

print Gregorian day and second (since year 1601):
echo 2007073006 0 -g | advance_time

6.179. PROGRAM advance_time 667

DART, Release 9.10.3

6.179.3 Modules used

utilities_mod
time_manager_mod
parse_args_mod

6.179.4 Namelist

No namelist is currently defined for advance_time.

6.179.5 Files

• input.nml

6.180 program model_mod_check

6.180.1 Overview

model_mod_check tests some of the more fundamental routines in any model_mod. This is intended to be used
when adding a new model to DART - test the pieces as they are written. As such, this program is meant to be hacked
up and customized to your own purpose. Right now, it reads in model netCDF file(s) - one per domain/nest/whatever
- and writes out files, queries the metdata, etc. It also exercises static_init_model(), which is the first routine
to get right . . .

6.180.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_mod_check_nml
num_ens = 1
single_file = .FALSE.
input_state_files = 'null'
output_state_files = 'null'
all_metadata_file = 'metadata.txt'

test1thru = 7
run_tests = -1

x_ind = -1
loc_of_interest = -1.0, -1.0, -1.0
quantity_of_interest = 'NONE'

interp_test_dlon = 10.0
interp_test_dlat = 10.0
interp_test_dvert = 10.0

interp_test_lonrange = 0.0, 120.0
interp_test_latrange = 0.0, 120.0

(continues on next page)

668 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

interp_test_vertrange = 0.0, 100.0

interp_test_dx = -888888.0
interp_test_dy = -888888.0
interp_test_dz = -888888.0

interp_test_xrange = -888888.0, -888888.0
interp_test_yrange = -888888.0, -888888.0
interp_test_zrange = -888888.0, -888888.0

interp_test_vertcoord = 'VERTISHEIGHT'
verbose = .FALSE.
/

6.180. program model_mod_check 669

DART, Release 9.10.3

Item Type Description
num_ens integer Provided for future use. Must be 1.

Ultimately, The number of ensem-
ble members you would like to read
in for testing.

single_file logical If .TRUE. all members are stored in
a single restart file.

input_state_files(:) character(len=256) The name(s) of the NetCDF file(s)
containing the model states, one per
domain. If num_ens > 1 and not
single_file, specify a filename for
each ensemble member (num_ens).
If you have both multiple ensemble
members in separate files AND mul-
tiple domains, specify all the ensem-
ble member filenames for domain 1,
then all the ensemble member file-
names for domain 2, etc.

output_state_files(:) character(len=256) The name(s) of the output NetCDF
file(s) for testing IO, one per do-
main. If num_ens > 1 and not sin-
gle_file, specify a filename for each
ensemble member (num_ens). If
you have both multiple ensemble
members in separate files AND mul-
tiple domains, specify all the ensem-
ble member filenames for domain 1,
then all the ensemble member file-
names for domain 2, etc.

all_metadata_file character(len=256) Test 6 produces an exhaustive list of
metadata for EVERY element in the
DART state vector. The metadata
get written to this file name.

x_ind integer(i8) An integer index into the DART
state vector. This will be used to
test the metadata routines. Answers
questions about location, what vari-
able type is stored there, etc.

loc_of_interest real(r8), dimension(3) The lat/lon/level for a particular lo-
cation. Used in Test 4, the single-
point interpolation test. Indirectly
tests the routine to find the closest
gridpoint.

quantity_of_interest character(len=32) Specifies the QUANTITY of the
model state to use in Tests 4, 5, and
7.

interp_test_dlon real(r8) The distance (measured in degrees)
on the longitude interpolation grid.
Ignored if interpolating with carte-
sian coordinates. Used in Test 5.

interp_test_dlat real(r8) The distance (measured in degrees)
on the latitude interpolation grid.
Ignored if interpolating with carte-
sian coordinates. Used in Test 5.

interp_test_dvert real(r8) The distance (measured in in-
terp_vertcoord) on the vertical inter-
polation grid. Ignored if interpolat-
ing with cartesian coordinates. Used
in Test 5.

interp_test_lonrange real(r8) The range of y to be tested
with model_interpolate, with spac-
ing interp_test_dlon. Ig-
nored if interpolating with cartesian
coordinates. Used in Test 5.

interp_test_latrange real(r8) The range of y to be tested
with model_interpolate, with spac-
ing interp_test_dlat. Ig-
nored if interpolating with cartesian
coordinates. Used in Test 5.

interp_test_vertrange real(r8) The range in the vertical di-
rection to be tested with
model_interpolate, with spac-
ing interp_test_dvert.
Ignored if interpolating with carte-
sian coordinates. Used in Test
5.

interp_test_dx real(r8) The interval on the x axis of the in-
terpolation grid. This is used in Test
5 for models with threed_cartesian
coordinates.

interp_test_dy real(r8) The interval on the y axis of the in-
terpolation grid. This is used in Test
5 for models with threed_cartesian
coordinates.

interp_test_dz real(r8) The interval on the z axis of the in-
terpolation grid. This is used in Test
5 for models with threed_cartesian
coordinates.

interp_test_xrange real(r8) The range of x to be tested with
model_interpolate in Test 5, with
spacing interp_test_dx.

interp_test_yrange real(r8) The range of y to be tested with
model_interpolate in Test 5, with
spacing interp_test_dy.

interp_test_zrange real(r8) The range in the vertical di-
rection to be tested with
model_interpolate in Test 5,
with spacing interp_test_dz.

interp_test_vertcoord character(len=32) Specifies the vertical coordinate
system to use during the interpola-
tion tests. Valid values are: ‘VER-
TISHEIGHT’, ‘VERTISPRES-
SURE’, ‘VERTISLEVEL’, and
‘VERTISSCALEHEIGHT’.

test1thru integer If test1thru > 0, specifies the
last test to be performed. All
tests get performed sequentially. If
test1thru < 0, run_tests
is used to specify the tests to per-
form.

test summary
0 Mandatory. Tests

static_init_model()
by calling
static_init_assim_model().
Reads input.nml
&model_nml

1 Tests
get_model_size()
and reports on the makeup
of the DART state vector.

2 Reads and writes a restart
file.

3 Tests
get_state_meta_data()
for a single index into
the DART state. Helps
determine if the state
vector is constructed
correctly.

4 Tests
model_interpolate()
for a single point.

5 Tests
model_interpolate()
for a range of interpola-
tion points.

6 Long, expensive test to re-
turn the metadata for ev-
ery element of the state
vector. May be useful
to decide on known loca-
tions for subsequent test-
ing.

7 Find the closest gridpoint
to a known location.

run_tests(:) integer Specifies a list of tests to be per-
formed. Same test numbers as de-
scribed in test1thru. There are some
dependencies. Tests 4 and 5 re-
quire a valid model state - which is
read by Test 2. If a required test is
not specified, the required test is en-
abled and run. A value of -1 means
that test1thru will be used.

verbose logical Print extra info about the
model_mod_check run. This is
only used for more reporting during
Test 5. Be warned - it will generate
several lines of output for each
point in the test!

670 Chapter 6. References

DART, Release 9.10.3

A more typical namelist for a single ensemble member for a model with an outer grid and a single nested grid is shown
below.

&model_mod_check_nml
input_state_files = 'dart_vector1.nc','dart_vector2.nc'
output_state_files = 'check_me1.nc', 'check_me2.nc'
all_metadata_file = 'metadata.txt'
verbose = .TRUE.
test1thru = 5
run_tests = -1
loc_of_interest = 243.72386169, 52.78578186, 10.0
x_ind = 12666739
quantity_of_interest = 'QTY_POTENTIAL_TEMPERATURE'
interp_test_lonrange = 144.0, 326.0
interp_test_dlon = 1.0
interp_test_latrange = -5.0, 80.0
interp_test_dlat = 1.0
interp_test_vertrange = 100.0, 11000.0
interp_test_dvert = 200.0
interp_test_vertcoord = 'VERTISHEIGHT'
/

6.180.3 Other modules used

assimilation_code/location/threed_sphere/location_mod.f90
assimilation_code/location/utilities/default_location_mod.f90
assimilation_code/location/utilities/location_io_mod.f90
assimilation_code/modules/assimilation/adaptive_inflate_mod.f90
assimilation_code/modules/assimilation/assim_model_mod.f90
assimilation_code/modules/assimilation/assim_tools_mod.f90
assimilation_code/modules/assimilation/cov_cutoff_mod.f90
assimilation_code/modules/assimilation/filter_mod.f90
assimilation_code/modules/assimilation/obs_model_mod.f90
assimilation_code/modules/assimilation/quality_control_mod.f90
assimilation_code/modules/assimilation/reg_factor_mod.f90
assimilation_code/modules/assimilation/sampling_error_correction_mod.f90
assimilation_code/modules/assimilation/smoother_mod.f90
assimilation_code/modules/io/dart_time_io_mod.f90
assimilation_code/modules/io/direct_netcdf_mod.f90
assimilation_code/modules/io/io_filenames_mod.f90
assimilation_code/modules/io/state_structure_mod.f90
assimilation_code/modules/io/state_vector_io_mod.f90
assimilation_code/modules/observations/forward_operator_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod.f90
assimilation_code/modules/utilities/distributed_state_mod.f90
assimilation_code/modules/utilities/ensemble_manager_mod.f90
assimilation_code/modules/utilities/netcdf_utilities_mod.f90
assimilation_code/modules/utilities/null_mpi_utilities_mod.f90
assimilation_code/modules/utilities/null_win_mod.f90
assimilation_code/modules/utilities/obs_impact_mod.f90
assimilation_code/modules/utilities/options_mod.f90
assimilation_code/modules/utilities/parse_args_mod.f90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/sort_mod.f90
assimilation_code/modules/utilities/time_manager_mod.f90

(continues on next page)

6.180. program model_mod_check 671

DART, Release 9.10.3

(continued from previous page)

assimilation_code/modules/utilities/types_mod.f90
assimilation_code/modules/utilities/utilities_mod.f90
assimilation_code/programs/model_mod_check/model_mod_check.f90
models/your_model_here/model_mod.f90
models/model_mod_tools/test_interpolate_threed_sphere.f90
models/model_mod_tools/model_check_utilities_mod.f90
models/utilities/default_model_mod.f90
observations/forward_operators/obs_def_mod.f90
observations/forward_operators/obs_def_utilities_mod.f90

Items highlighted may change based on which model is being tested.

6.180.4 Files

• input.nml is used for model_mod_check_nml

• The "input_state_files" can either be a single file containing multiple restart files, or a single NetCDF
restart file. One file per domain.

• The "output_state_files" is the output netCDF files from Test 2. Check the attributes, values, etc.

• check_me_interptest.nc and check_me_interptest.m are the result of Test 5.

• "all_metadata_file" is the run-time output of Test 6.

6.180.5 Usage

Normal circumstances indicate that you are trying to put a new model into DART, so to be able to build and run
model_mod_check, you will need to create a path_names_model_mod_check file with the following con-
tents:

assimilation_code/location/threed_sphere/location_mod.f90
assimilation_code/location/utilities/default_location_mod.f90
assimilation_code/location/utilities/location_io_mod.f90
assimilation_code/modules/assimilation/adaptive_inflate_mod.f90
assimilation_code/modules/assimilation/assim_model_mod.f90
assimilation_code/modules/assimilation/assim_tools_mod.f90
assimilation_code/modules/assimilation/cov_cutoff_mod.f90
assimilation_code/modules/assimilation/filter_mod.f90
assimilation_code/modules/assimilation/obs_model_mod.f90
assimilation_code/modules/assimilation/quality_control_mod.f90
assimilation_code/modules/assimilation/reg_factor_mod.f90
assimilation_code/modules/assimilation/sampling_error_correction_mod.f90
assimilation_code/modules/assimilation/smoother_mod.f90
assimilation_code/modules/io/dart_time_io_mod.f90
assimilation_code/modules/io/direct_netcdf_mod.f90
assimilation_code/modules/io/io_filenames_mod.f90
assimilation_code/modules/io/state_structure_mod.f90
assimilation_code/modules/io/state_vector_io_mod.f90
assimilation_code/modules/observations/forward_operator_mod.f90
assimilation_code/modules/observations/obs_kind_mod.f90
assimilation_code/modules/observations/obs_sequence_mod.f90
assimilation_code/modules/utilities/distributed_state_mod.f90
assimilation_code/modules/utilities/ensemble_manager_mod.f90
assimilation_code/modules/utilities/netcdf_utilities_mod.f90

(continues on next page)

672 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

assimilation_code/modules/utilities/null_mpi_utilities_mod.f90
assimilation_code/modules/utilities/null_win_mod.f90
assimilation_code/modules/utilities/obs_impact_mod.f90
assimilation_code/modules/utilities/options_mod.f90
assimilation_code/modules/utilities/parse_args_mod.f90
assimilation_code/modules/utilities/random_seq_mod.f90
assimilation_code/modules/utilities/sort_mod.f90
assimilation_code/modules/utilities/time_manager_mod.f90
assimilation_code/modules/utilities/types_mod.f90
assimilation_code/modules/utilities/utilities_mod.f90
assimilation_code/programs/model_mod_check/model_mod_check.f90
models/your_model_here/model_mod.f90
models/model_mod_tools/test_interpolate_threed_sphere.f90
models/utilities/default_model_mod.f90
observations/forward_operators/obs_def_mod.f90
observations/forward_operators/obs_def_utilities_mod.f90

as well as a mkmf_model_mod_check script. You should be able to look at any other mkmf_xxxx script and
figure out what to change. Once they exist:

[~/DART/models/yourmodel/work] % csh mkmf_model_mod_check
[~/DART/models/yourmodel/work] % make
[~/DART/models/yourmodel/work] % ./model_mod_check

Unlike other DART components, you are expected to modify model_mod_check.f90 to suit your needs as you
develop your model_mod. The code is roughly divided into the following categories:

1. Check the geometry information,

2. Read/write a restart file,

3. Check the construction of the state vector . . . i.e. the metadata,

4. Interpolate at a single point,

5. Interpolate for a range of points.

6.180. program model_mod_check 673

DART, Release 9.10.3

Test 0. mandatory

The first test in model_mod_check reads the namelist and runs static_init_model - which generally sets the
geometry of the grid, the number of state variables and their shape, etc. Virtually everything requires knowledge of
the grid and state vector, so this block cannot be skipped.

Test 1. checking the geometry information

The first test in model_mod_check exercises a basic required interface get_model_size(). This also generates
a report on the geometry of the grid, the number of state variables and their shape, etc. as well as the total number of
elements in the DART state vector.

Test 2. read/writing a restart file

This directly reads and write state variables from the model netCDF file. This is a nice sanity check to make sure that
the DART state vector is being read in properly.

Test 3. check the construction of the state vector

It is critical to return the correct metadata for any given index into the DART state vector. This code block tests the two
most common features of the metadata. As a bonus, this routine is also quite useful to determine EXACTLY where to
place your first test observation. If you test precisely at a grid location, you should be able to really get a handle on
debugging your model_interpolate() routine.

Test 4. test interpolation on a single point

This tests your model’s interpolation routine on a single point and returns the interpolated value. This requires that
Test 2 works - it needs a valid model state with data. Test 2 is automatically run if this test is selected.

Test 5. test interpolation on a range of values

This tests your model’s interpolation routine on a range of values returns the interpolated grid in
check_me_interptest.nc and check_me_interptest.m which can be read in Matlab and used to vi-
sualize the result. This requires that Test 2 works - it needs a valid model state with data. Test 2 is automatically run
if this test is selected.

Test 6. exhaustively test the construction of the state vector

This can be a long test, depending on the size of your state vector. This returns the same data as in Test 3 - but
for every element in the state vector. The metadata are written to a file specified by all_metadata_file and
check_me_interptest.m which can be read in Matlab and used to visualize the result.

674 Chapter 6. References

DART, Release 9.10.3

Test 7. find the closest gridpoint to a test location

This is a good test to verify that get_state_meta_data() and the grid information are correct. Typically, one would put
in a location that is actually on the grid and see if the correct gridpoint index is returned. Repeat the test with slightly
different locations until the next gridpoint is closer. Repeat . . .

6.180.6 References

• none

6.181 PROGRAM closest_member_tool

6.181.1 Overview

Utility program to compare the ensemble mean to an ensemble of restart files, which can now be run in parallel. The
program prints out a sorted order of which members are ‘closest’ to the mean, where the method used to determine
‘close’ is selectable by namelist option. It also creates a file with a single number or character string in it, for ease in
scripting, which identifies the closest member.

The ensemble mean is computed from the input ensemble. The difference is computed point by point across the
ensemble members. There is an option to restrict the computation to just a subset of the entire state vector by listing
one or more generic quantities. In this case, only state vector items matching one of these quantities will contribute to
the total difference value.

Available methods are:

1 - simple absolute difference: The absolute value of the difference between each item in the mean vector and the
corresponding item in each ensemble member, accumulated over the entire state vector.

2 - normalized absolute difference: The absolute value of the difference between each item in the mean vector and
the corresponding item in each ensemble member normalized by the mean value, accumulated over the entire
state vector.

3 - simple RMS difference: The square root of the accumulated sum of the square of the difference between each
item in the mean vector and the corresponding item in each ensemble member.

4 - normalized RMS difference: The square root of the accumulated sum of the square of the normalized difference
between each item in the mean vector and the corresponding item in each ensemble member.

This program could be used to select one or more ensemble members to run a free model forecast forward in time after
the assimilation is finished. Each member is an equally likely representation of the model state. Using the ensemble
mean may not be the best choice since the mean may not have self-consistent fine-scale structures in the data.

In addition to printing out data about all members to both the console and to the dart log file, this program creates
a single output file containing information about the closest member. If the input restart data is in a single file, the
output file ‘closest_restart’ contains a single number which is the ensemble member number. If the input restart data
is in separate files, the output file contains the full filename of the closest member, e.g. ‘filter_restart.0004’ if member
4 is closest. For scripting the contents of this file can be used to copy the corresponding member data and convert it to
the model input format for a free forecast, for example.

6.181. PROGRAM closest_member_tool 675

DART, Release 9.10.3

6.181.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&closest_member_tool_nml
input_restart_files = ''
input_restart_file_list = ''
output_file_name = 'closest_restart'
ens_size = 1
difference_method = 4
use_only_qtys = ''
single_restart_file_in = .false.
/

676 Chapter 6. References

DART, Release 9.10.3

Item Type Description
input_restart_files character(len=256), dimen-

sion(ens_size x num_domains)
An array of filenames each contain-
ing a list DART restart data.

input_restart_file_list character(len=256), dimen-
sion(num_domains)

A file containing a list of filenames
for DART restart data, one for each
domain.

output_file_name character(len=256) This is a file containing the member
number that is closest to the ensem-
ble mean.

ens_size integer Total number of ensemble members.
difference_method integer Select which method is used to com-

pute ‘distance’ from mean:
• 1 = simple absolute difference
• 2 = absolute difference nor-

malized by the mean
• 3 = simple RMS difference
• 4 = RMS of the normalized

difference

use_only_quantities character(len=32) If unspecified, all items in the
state vector contribute to the total
difference. If one or more quantities
are listed here, only items in the
state vector of these quantities
contribute to the total difference.
These are the generic quantities,
such as QTY_TEMPERATURE,
QTY_U_WIND_COMPONENT,
QTY_DENSITY, etc. and
not specific types like RA-
DIOSONDE_TEMPERATURE.
Consult the model interface code to
determine which possible quantities
are returned by the get_state_me
ta_data() routine.

single_restart_file_in logical Not supported yet. Contact
dart@ucar.edu if you are interested
in using this tool with files that con-
tain all ensemble members in a sin-
gle file.

Below is an example of a typical namelist for the closest_member_tool.

&closest_member_tool_nml
input_restart_files = ''
input_restart_file_list = 'restart_list.txt'
output_file_name = 'closest_restart.txt'
ens_size = 3
single_restart_file_in = .false.
difference_method = 4
use_only_qtys = ''
/

where restart_list.txt contains

6.181. PROGRAM closest_member_tool 677

../../../models/template/model_mod.html#get_state_meta_data
../../../models/template/model_mod.html#get_state_meta_data
mailto:dart@ucar.edu

DART, Release 9.10.3

cam_restart_0001.nc
cam_restart_0002.nc
cam_restart_0003.nc

Currently single_restart_file_in is not supported. This is typically used for simpler models that have built
in model advances such as lorenz_96.

6.181.3 Files

• inputfile.####.nc (list of restarts to find closest member) -or-

• restart_list.txt (a file containing a list of restart files) and,

• input.nml

6.181.4 References

• none

6.182 PROGRAM restart_file_tool

Attention: restart_file_tool works with versions of DART before Manhattan (9.x.x) but is no longer
needed. DART initial condition and restart files are now in NetCDF format and any standard NetCDF tool can be
used to manipulate them.

6.183 PROGRAM filter

6.183.1 Overview

Main program for driving ensemble filter assimilations.

filter is a Fortran 90 program, and provides a large number of options for controlling execution behavior and
parameter configuration that are driven from its namelist. See the namelist section below for more details. The number
of assimilation steps to be done is controlled by the input observation sequence and by the time-stepping capabilities
of the model being used in the assimilation.

This overview includes these subsections:

• Program Flow

• Filter Types

• Getting Started

• Free Model Run after Assimilation

• Evaluate a Model State against Observations

• Compare Results with and without Assimilation

678 Chapter 6. References

DART, Release 9.10.3

• DART Quality Control Values on Output

• Description of Inflation Options

• Detailed Program Flow

See Welcome to the Data Assimilation Research Testbed for more documentation, including a discussion of the capa-
bilities of the assimilation system, a diagram of the entire execution cycle, the options and features.

Program flow

The basic execution loop is:

• Read in model initial conditions, observations, set up and initialize

• Until out of observations:

– Run multiple copies of the model to get forecasts of model state

– Assimilate all observations in the current time window

– Repeat

• Write out diagnostic files, restart files, final observation sequence file

The time of the observations in the input observation sequence file controls the length of execution of filter.

For large, parallel models, the execution loop is usually wrapped in an external script which does these additional
steps:

• Link to an observation sequence file which contains only observation times within the next assimilation window

• Link any output inflation files from the previous step to be the input files for this step

• Run filter, which will exit after doing the assimilation without trying to advance the model

• Save the output diagnostic files for later

• Advance the N copies of the model using the model scripts or whatever method is appropriate

• Repeat until all data is assimilated

For large models filter is almost always compiled to be a parallel MPI program, and most large models are themselves a
parallel program using OpenMP, MPI, or both. MPI programs usually cannot start other MPI programs, so the external
script submits both the filter job and the N model advances to a batch system so all run as independent parallel jobs.

The same source code is used for all applications of filter. The code specific to the types of observations and the
interface code for the computational model is configured at compile time. The top level directory has been simplified
from previous versions to look like :

• README

• COPYRIGHT

• assimilation_code

• build_templates

• diagnostics

• documentation

• models

• observations

6.183. PROGRAM filter 679

DART, Release 9.10.3

the assimilation_code contains all module and program source code for all of the main programs including filter.
Specifically in the modules directory there is a filter_mod.f90 which contains the source for the filter main
program. Each model has a separate directory under DART/models, and under each model is a work directory where
the code is compiled and can be run for testing. Generally when a full-size experiment is done the executables are
copied to a different location - e.g. scratch space on a large filesystem - since the data files for 10s to 100s of copies of
a model can get very large.

Directories expected to be modified

DART is distributed as a toolkit/library/facility that can be used as-is with the existing models and observations, but is
also designed so that users can add new models, new observation types and forward operators, and new assimilation
algorithms.

The locations in the DART code tree which are intended to be modified by users are:

New Models Add a new directory in the models subdirectory. Copy (recursively, e.g. cp -r) the contents of the
template directory and modify from there. Note that the model_mod.f90 file in the template dir is appro-
priate for small models; for large geophysical models see the full_model_mod.f90 file and also examine
other model directories for ideas. See additional documentation in the MODULE model_mod documentation,
and the DART web pages on adding new models.

New Observation Platforms To convert observations from other formats to DART format, add a new directory in the
observations/obs_converters subdirectory and populate it with converter code.

New Observation Types and Forward Operators Define a new type (a measurement from an observing platform)
via a file in the observations/forward_operators subdirectory. If the forward operator is more com-
plicated than directly interpolating a field in the model state, this is where the code for that goes. See addi-
tional documentation in the MODULE obs_def_mod documentation, and the DART web pages on adding new
types. Adding a new type may require adding a new generic kind, which is documented in MODULE
obs_kind_mod.

New Assimilation Algorithms If you want to try out a different filter type modify the filter code in the
assim_tools_mod.f90 file. See the MODULE assim_tools_mod documentation.

Detailed program execution flow

The Manhattan release of DART includes state space output expanded from the previous two stages (Prior and Pos-
terior) to up to six (input, forecast, preassim, postassim, analysis, and output). This makes it possible to examine the
states with and without either kind of inflation, as described below. In addition, the state space vectors are each writ-
ten to a separate NetCDF file: ${stage}_mean.nc, ${stage}_sd.nc, ${stage}_member_####.nc .
The detailed execution flow inside the filter program is:

• Read in observations.

• Read in state vectors from model netcdf restart files.

• Initialize inflation fields, possibly reading netcdf restart files.

• If requested, initialize and write to “input” netcdf diagnostic files.

• Trim off any observations if start/stop times specified.

• Begin main assimilation loop:

– Check model time vs observation times:

* If current assimilation window is earlier than model time, error.

* If current assimilation window includes model time, begin assimilating.

680 Chapter 6. References

../../../docs/index.html#Directories
http://www.image.ucar.edu/DAReS/DART/DART2_Documentation.php#adding_a_model
http://www.image.ucar.edu/DAReS/DART/DART2_Observations.php#adding_types

DART, Release 9.10.3

* If current assimilation window is later than model time, advance model:

· Write out current state vectors for all ensemble members.

· Advance the model by subroutine call or by shell script:

· Tell the model to run up to the requested time.

· Read in new state vectors from netcdf files for all ensemble members.

– Apply prior inflation if requested.

– Compute ensemble of prior observation values with forward operators.

– If requested, compute and write the “preassim” netcdf diagnostic files. This is AFTER any prior inflation
has been applied.

– Compute prior observation space diagnostics.

– Assimilate all observations in this window:

* Get all obs locations and kinds.

* Get all state vector locations and kinds.

* For each observation:

· Compute the observation increments.

· Find all other obs and states within localization radius.

· Compute the covariance between obs and state variables.

· Apply increments to state variables weighted by correlation values.

· Apply increments to any remaining unassimilated observations.

· Loop until all observations in window processed.

– If requested, compute and write the “postassim” netcdf diagnostic files (members, mean, spread). This is
BEFORE any posterior inflation has been applied.

– Apply posterior inflation if requested.

– Compute ensemble of posterior observation values with forward operators.

– Compute posterior observation space diagnostics.

– If requested, compute and write out the “output” netcdf diagnostic files (members, mean, spread). This is
AFTER any posterior inflation has been applied.

– Loop until all observations in input file processed.

• Close diagnostic files.

• Write out final observation sequence file.

• Write out inflation restart files if requested.

• Write out final state vectors to model restart files if requested.

• Release memory for state vector and observation ensemble members.

6.183. PROGRAM filter 681

DART, Release 9.10.3

6.183.2 Namelist

See the filter namelist page for a detailed description of all &filter_nml variables. This namelist is read from the
file input.nml.

6.183.3 Modules used

mpi_utilities_mod
filter_mod

Note that filter_mod.f90 uses many more modules.

6.183.4 Files

See Detailed Program Flow for a short description of DART’s new ‘stages’. In addition, the Manhattan release simpli-
fies some namelists by replacing many user-settable file names with hardwired filenames. Files can then be renamed
in the run scripts to suit the user’s needs.

• input ensemble member states; from &filter_nml :: input_state_files or input_state_file_list

• output ensemble member states; to &filter_nml :: output_state_files or output_state_file_list

• input observation sequence file; from &filter_nml :: obs_sequence_in_name

• output observation sequence file; from &filter_nml :: obs_sequence_out_name

• output state space diagnostics files; ${stage}_mean.nc, ${stage}_sd.nc, where stage = {in-
put,forecast,preassim,postassim,analysis,output}

• input state space inflation data (if enabled); from input_{prior,post}inf_{mean,sd}.nc.

• output state space inflation data (if enabled); to ${stage}_{prior,post}inf_{mean,sd}.nc., where
stage “input”

• input.nml, to read &filter_nml

6.183.5 References

• Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129,
2884-2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

• Anderson, J. L., 2003: A Local Least Squares Framework for Ensemble Filtering. Mon. Wea. Rev., 131,
634-642. doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2

• Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus
A, 59, 210-224. doi: 10.1111/j.1600-0870.2006.00216.x

• Anderson, J. L., 2007: Exploring the need for localization in ensemble data assimilation using a hierarchical
ensemble filter. Physica D, 230, 99-111. doi:10.1016/j.physd.2006.02.011

• Anderson, J., Collins, N., 2007: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation.
Journal of Atmospheric and Oceanic Technology, 24, 1452-1463. doi: 10.1175/JTECH2049.1

• Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus
A, 61, 72-83. doi: 10.1111/j.1600-0870.2008.00361.x

682 Chapter 6. References

../../modules/assimilation/filter_mod.html#Namelist
../../modules/assimilation/filter_mod.html#Modules
http://dx.doi.org/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://dx.doi.org/10.1016/j.physd.2006.02.011
http://dx.doi.org/10.1175/JTECH2049.1
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x

DART, Release 9.10.3

• Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data As-
similation Research Testbed: A Community Facility. Bull. Amer. Meteor. Soc., 90, 1283-1296. doi:
10.1175/2009BAMS2618.1

• Anderson, J. L., 2010: A Non-Gaussian Ensemble Filter Update for Data Assimilation. Mon. Wea. Rev., 139,
4186-4198. doi: 10.1175/2010MWR3253.1

• Anderson, J. L., 2011: Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimila-
tion. Submitted for publication, Jan 2011. Contact author.

6.184 program obs_keep_a_few

6.184.1 Overview

This program creates an output observation sequence (obs_seq) file that is shorter than the input obs_seq file. There
are two ways to restrict the number of observations copied to the output: the total number of observations regardless
of observation type, or up to N observations of each type. Observations in an obs_seq file are processed in time order
so the observations with the earliest timestamps will be copied.

Set either limit to -1 to disable it. If both the maximum count per type and maximum total count are given the copying
stops when the first limit is reached.

If you want to subset an obs_seq file starting at a later time see the program obs_sequence_tool for subsetting by time
and then use this tool on the output. That tool also allows you to subset by obs type, location, data value, and a variety
of other options.

The obs_keep_a_few program only subsets by numbers of observations. It is expected to be useful when proto-
typing experiments so the run time is short, or for debugging or testing. Setting a limit per type ensures you have up
to N of each type of observation present in the output file.

Identity observations are all considered to be the same identity “observation type” by this tool.

6.184.2 Other modules used

types_mod
utilities_mod
location_mod
obs_def_mod
obs_kind_mod
time_manager_mod
obs_sequence_mod

6.184.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_keep_a_few_nml
filename_in = ''
filename_out = ''
max_count_per_type = 10
max_total_count = -1

(continues on next page)

6.184. program obs_keep_a_few 683

http://dx.doi.org/10.1175/2009BAMS2618.1
http://dx.doi.org/10.1175/2009BAMS2618.1
http://dx.doi.org/10.1175/2010MWR3253.1

DART, Release 9.10.3

(continued from previous page)

print_only = .false.
calendar = 'Gregorian'
/

Item Type Description
file-
name_in

char-
ac-
ter(len=256)

Name of the observation sequence file to read.

file-
name_out

char-
ac-
ter(len=256)

Name of the observation sequence file to create. An existing file will be overwritten.

max_count_per_typeinte-
ger

The first N observations of each different type will be copied to the output file. Observation
sequence files are processed in time order so these will be the ones with the earliest time stamps
relative to other observations of this same type. Set to -1 to disable this limit.

max_total_countinte-
ger

If greater than 0, sets the upper limit on the total number of observations to be copied to the
output file regardless of type. The program quits when either this limit is reached or when
there are N of each different obs type in the output. Set to -1 to disable.

print_onlylogi-
cal

If true, does all the work and prints out what the output file would have in it (timestamps and
counts of each obs type) but doesn’t create the output file.

calen-
dar

char-
ac-
ter(len=256)

Name of the DART calendar type to use. Generally ‘Gregorian’ or ‘No calendar’. See the
DART time manager for more options. Only controls the formatting of how the times in the
output summary messages are displayed.

6.184.4 Files

• filename_in is read.

• filename_out is written.

684 Chapter 6. References

DART, Release 9.10.3

6.184.5 References

• none

6.185 program create_obs_sequence

6.185.1 Overview

This program creates an observation sequence file using values read from standard input. It is typically used to create
synthetic observations, or shorter sequences of observations (although there is no limit on the number of observations).
For creating observation sequence files directly from large, real-world observation datasets, see the observations di-
rectory.

This program can be run interactively (input from a terminal), or input files can be created with a text editor, perl or
matlab script, or any other convenient method, and then run with standard input redirected from this file. The latter
method is most commonly used to create larger observation sequence files for perfect model applications.

The program can create complete observation sequences ready to be assimilated, or it can create observations with
only partial data which is later filled in by another program. Each observation needs to have a type, location, time,
expected error, and optionally a data value and/or a quality control indicator. For perfect model applications, it is
usually convenient to define 0 quality control fields and 0 copies of the data for each observation. The output of
create_obs_sequence can be read by program perfect_model_obs which will then create a synthetic (perfect_model)
observation sequence complete with two copies of the data for each observation: the observed value and the ‘true’
value.

Another common approach for perfect model applications is to use create_obs_sequence to define a set of observation
locations and types, and where observations will be repeatedly sampled in time. When running create_obs_sequence,
specify a single observation for each different location and type, with 0 copies of data and giving all the observations
the same time. Then the program program create_fixed_network_seq can read the output of create_obs_sequence and
create an observation sequence file that will contain the set of input observations at a number of different times. This
models a fixed observation station, observing the system at some frequency in time.

This program can also create what are called “identity observations”. These are observations located directly at one
of the state variables, so that computing the value requires no model interpolation but simply returns the actual state
variable value. To specify these types of observations, the convention is to put in the negative index number for the
offset of that state variable in the state vector. By specifying the index both the observation kind and location are
defined by the kind and location of that state variable.

The types of observations which can be created by this program is controlled by the observation types built into the
source files created by the PROGRAM preprocess program. The preprocess namelist sets the available observation
types, and must be run each time it is changed, and then the create_obs_sequence program must be recompiled to
incorporate the updated source files.

6.185.2 Other modules used

utilities_mod
obs_sequence_mod
assim_model_mod

6.185. program create_obs_sequence 685

../../../observations/obs_converters/README.rst

DART, Release 9.10.3

6.185.3 Namelist

This program does not use a namelist. All user input is prompted for at the command line.

6.185.4 Files

• A file containing the output sequence is created. (set_def.out is the recommended name)

6.185.5 References

• none

6.186 PROGRAM obs_seq_to_netcdf

6.186.1 Overview

obs_seq_to_netcdf is a routine to extract the observation components from observation sequence files and write
out netCDF files that can be easily digested by other applications. This routine will allow you to plot the spatial
distribution of the observations and be able to discern which observations were assimilated or rejected, for example.
Here are some graphics from DART/diagnostics/matlab/plot_obs_netcdf.m.

The intent is that user input is queried and a series of output files - one per assimilation cycle - will contain the
observations for that cycle. It is hoped this will be useful for experiment design or, perhaps, debugging. This routine
is also the first to use the new schedule_mod module which will ultimately control the temporal aspects of the
assimilations (i.e. the assimilation schedule).

There is also a facility for exploring the spatial distributions of quantities like bias between the ensemble mean
and the observations: DART/diagnostics/matlab/plot_obs_netcdf_diffs.m. Required namelist in-
terfaces &obs_seq_to_netcdf and &schedule_nml are read from file input.nml.

686 Chapter 6. References

DART, Release 9.10.3

What’s on the horizon ..

obs_seq_to_netcdf is a step toward encoding our observations in netCDF files. The dependence on the
threed_sphere/location_mod.f90 has been removed. This program will work with any location_mod.
f90. Also, this program no longer tries to construct ‘wind’ observations from horizontal components since the pro-
gram really should be faithful to preserving exactly what is in the input file. i.e. We’re not making stuff up.

There are several Matlab scripts that understand how to read and plot observation data in netcdf format. See the
link_obs.m script that creates several linked figures with the ability to ‘brush’ data in one view and have those
selected data (and attributes) get highlighted in the other views.

6.186.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_seq_to_netcdf_nml
obs_sequence_name = 'obs_seq.final',
obs_sequence_list = '',
append_to_netcdf = .false.,
lonlim1 = 0.0,
lonlim2 = 360.0,
latlim1 = -90.0,
latlim2 = 90.0,
verbose = .false.

/

The allowable ranges for the region boundaries are: latitude [-90.,90], longitude [0.,360.] . . . but it is possible to
specify a region that spans the dateline by specifying the lonlim2 to be less than lonlim1.

You can only specify either obs_sequence_name or obs_sequence_list – not both.

6.186. PROGRAM obs_seq_to_netcdf 687

DART, Release 9.10.3

Item Type Description
obs_sequence_namechar-

ac-
ter(len=256)

Name of an observation sequence file(s). This may be a relative or absolute filename. If the file-
name contains a ‘/’, the filename is considered to be comprised of everything to the right, and a
directory structure to the left. The directory structure is then queried to see if it can be incremented
to handle a sequence of observation files. The default behavior of obs_seq_to_netcdf is to
look for additional files to include until the files are exhausted or an obs_seq.final file is found
that contains observations beyond the timeframe of interest. e.g. ‘obsdir_001/obs_seq.final’ will
cause obs_seq_to_netcdf to look for ‘obsdir_002/obs_seq.final’, and so on. If this is specified,
‘obs_sequence_list’ must be set to ‘ ‘.

obs_sequence_listchar-
ac-
ter(len=256)

Name of an ascii text file which contains a list of one or more observation sequence files, one per line.
If this is specified, ‘obs_sequence_name’ must be set to ‘ ‘. Can be created by any method, including
sending the output of the ‘ls’ command to a file, a text editor, or another program.

ap-
pend_to_netcdf

log-
ical

This gives control over whether to overwrite or append to an existing netcdf output file. It is envi-
sioned that you may want to combine multiple observation sequence files into one netcdf file (i.e.
append_to_netcdf=.true.) to explore the effects on data coverage, etc. The default behavior
is to create a new obs_epoch_xxx.nc file with every execution.

lon-
lim1

real Westernmost longitude of the region in degrees.

lon-
lim2

real Easternmost longitude of the region in degrees. If lonlim2 < lonlim1 , it defines a region that
spans the prime meridian. It is perfectly acceptable to specify lonlim1 = 330 , lonlim2 =
50 to identify a region like “Africa”.

latlim1real Southernmost latitude of the region in degrees.
latlim2real Northernmost latitude of the region in degrees.
ver-
bose

log-
ical

Print extra info about the obs_seq_to_netcdf run.

The schedule namelist

The default values specify one giant ‘bin’.

If the print_table variable is ‘true’ a summary of the assimilation schedule will be written to the screen.

&schedule_nml
calendar = 'Gregorian',
first_bin_start = 1601, 1, 1, 0, 0, 0,
first_bin_end = 2999, 1, 1, 0, 0, 0,
last_bin_end = 2999, 1, 1, 0, 0, 0,
bin_interval_days = 1000000,
bin_interval_seconds = 0,

(continues on next page)

688 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

max_num_bins = 1000,
print_table = .true.
/

Item Type Description
calendar char-

ac-
ter(len=32)

Type of calendar to use to interpret dates. May be any type supported by the
time_manager_mod. The string is case-insensitive.

first_bin_startinte-
ger,
di-
men-
sion(6)

the first time of the first assimilation period. The six integers are: year, month, day, hour, hour,
minute, second – in that order.

first_bin_endinte-
ger,
di-
men-
sion(6)

the end of the first assimilation period. The six integers are: year, month, day, hour, hour,
minute, second – in that order.

last_bin_endinte-
ger,
di-
men-
sion(6)

the approximate end of the last assimilation period. The six integers are: year, month, day,
hour, hour, minute, second – in that order. This does not need to be exact, the values from
last_bin_end, bin_interval_days, and bin_interval_seconds are used to de-
rive the assimilation schedule. The assimilation periods are repeated and will stop on or before
the time defined by last_bin_end. See also max_num_bins.

bin_interval_days,
bin_interval_seconds

inte-
ger

Collectively, bin_interval_days and bin_interval_seconds define the time be-
tween the start of successive assimilation windows. It is not possible to define a bin_interval
such that there are overlapping bins (i.e. you can’t use the same observations more than once).

max_num_binsinte-
ger

An alternate way to specify the maximum number of assimilation periods. The assimilation bin
is repeated by the bin_interval until one of two things happens: either the last time of interest
is encountered (defined by last_bin_end) or the maximum number of assimilation periods
has been reached (defined by max_num_bins).

print_table log-
ical

Prints the assimilation schedule.

Example

The following example illustrates the fact the last_bin_end does not have to be a ‘perfect’ bin end - and it gives
you an idea of an assimilation schedule table. Note that the user input defines the last bin to end at 09 Z, but the last
bin in the table ends at 06 Z.

&schedule_nml
calendar = 'Gregorian',
first_bin_start = 2006, 8, 1, 0, 0, 0 ,
first_bin_end = 2006, 8, 1, 6, 0, 0 ,

(continues on next page)

6.186. PROGRAM obs_seq_to_netcdf 689

DART, Release 9.10.3

(continued from previous page)

last_bin_end = 2006, 8, 2, 9, 0, 0 ,
bin_interval_days = 0,
bin_interval_seconds = 21600,
max_num_bins = 1000,
print_table = .true.
/

This is the ‘table’ part of the run-time output:

Requesting 5 assimilation periods.

epoch 1 start day=148135, sec=1
epoch 1 end day=148135, sec=21600
epoch 1 start 2006 Aug 01 00:00:01
epoch 1 end 2006 Aug 01 06:00:00

epoch 2 start day=148135, sec=21601
epoch 2 end day=148135, sec=43200
epoch 2 start 2006 Aug 01 06:00:01
epoch 2 end 2006 Aug 01 12:00:00

epoch 3 start day=148135, sec=43201
epoch 3 end day=148135, sec=64800
epoch 3 start 2006 Aug 01 12:00:01
epoch 3 end 2006 Aug 01 18:00:00

epoch 4 start day=148135, sec=64801
epoch 4 end day=148136, sec=0
epoch 4 start 2006 Aug 01 18:00:01
epoch 4 end 2006 Aug 02 00:00:00

epoch 5 start day=148136, sec=1
epoch 5 end day=148136, sec=21600
epoch 5 start 2006 Aug 02 00:00:01
epoch 5 end 2006 Aug 02 06:00:00

Notice that the leading edge of an assimilation window/bin/epoch/period is actually 1 second after the specified start
time. This is consistent with the way DART has always worked. If you specify assimilation windows that fully occupy
the temporal continuum, there has to be some decision at the edges. An observation precisely ON the edge should
only participate in one assimilation window. Historically, DART has always taken observations precisely on an edge
to be part of the subsequent assimilation cycle. The smallest amount of time representable to DART is 1 second, so
the smallest possible delta is added to one of the assimilation edges.

6.186.3 Other modules used

location_mod
netcdf
obs_def_mod
obs_kind_mod
obs_sequence_mod
schedule_mod
time_manager_mod
typeSizes
types_mod
utilities_mod

690 Chapter 6. References

DART, Release 9.10.3

Naturally, the program must be compiled with support for the observation types contained in the observation sequence
files, so preprocess must be run to build appropriate obs_def_mod and obs_kind_mod modules - which may
need specific obs_def_?????.f90 files.

6.186.4 Files

Run-time

• input.nml is used for obs_seq_to_netcdf_nml and schedule_nml.

• obs_epoch_xxx.nc is a netCDF output file for assimilation period ‘xxx’. Each observation copy is pre-
served - as are any/all QC values/copies.

• dart_log.out list directed output from the obs_seq_to_netcdf.

Related Matlab functions

• diagnostics/matlab/read_obs_netcdf.m reads the netcdf files and returns a structure with easy-to-
plot components. More on that in the ‘Usage’ section below.

• diagnostics/matlab/plot_obs_netcdf.m may be used to explore the spatial distribution of obser-
vations and their values. More on that in the ‘Usage’ section below.

• diagnostics/matlab/plot_obs_netcdf_diffs.m will take the difference between any two obser-
vation copies and plot the spatial distribution and value of the difference. Useful for exploring the bias between
‘observation’ and ‘prior ensemble mean’, for example. Again, more on that in the ‘Usage’ section below.

Discussion of obs_epoch_xxx.nc structure

This might be a good time to review the basic observation sequence file structure. The only thing missing in the
netcdf files is the ‘shared’ metadata for observations (e.g. GPS occultations). The observation locations, values, qc
flags, error variances, etc., are all preserved in the netCDF files. The intent is to provide everything you need to make
sensible plots of the observations. Some important aspects are highlighted.

[shad] % ncdump -v QCMetaData,CopyMetaData,ObsTypesMetaData obs_epoch_001.nc
netcdf obs_epoch_001 {
dimensions:

linelen = 129 ;
nlines = 104 ;
stringlength = 32 ;
copy = 7 ;
qc_copy = 2 ;
location = 3 ;
ObsTypes = 58 ;
ObsIndex = UNLIMITED ; // (4752 currently)

variables:
int copy(copy) ;

copy:explanation = "see CopyMetaData" ;
int qc_copy(qc_copy) ;

qc_copy:explanation = "see QCMetaData" ;
int ObsTypes(ObsTypes) ;

ObsTypes:explanation = "see ObsTypesMetaData" ;
char ObsTypesMetaData(ObsTypes, stringlength) ;

ObsTypesMetaData:long_name = "DART observation types" ;
ObsTypesMetaData:comment = "table relating integer to observation

→˓type string" ; (continues on next page)

6.186. PROGRAM obs_seq_to_netcdf 691

DART, Release 9.10.3

(continued from previous page)

char QCMetaData(qc_copy, stringlength) ;
QCMetaData:long_name = "quantity names" ;

char CopyMetaData(copy, stringlength) ;
CopyMetaData:long_name = "quantity names" ;

char namelist(nlines, linelen) ;
namelist:long_name = "input.nml contents" ;

int ObsIndex(ObsIndex) ;
ObsIndex:long_name = "observation index" ;
ObsIndex:units = "dimensionless" ;

double time(ObsIndex) ;
time:long_name = "time of observation" ;
time:units = "days since 1601-1-1" ;
time:calendar = "GREGORIAN" ;
time:valid_range = 1.15740740740741e-05, 0.25 ;

int obs_type(ObsIndex) ;
obs_type:long_name = "DART observation type" ;
obs_type:explanation = "see ObsTypesMetaData" ;
location:units = "deg_Lon deg_Lat vertical" ;

double observations(ObsIndex, copy) ;
observations:long_name = "org observation, estimates, etc." ;
observations:explanation = "see CopyMetaData" ;
observations:missing_value = 9.96920996838687e+36 ;

int qc(ObsIndex, qc_copy) ;
qc:long_name = "QC values" ;
qc:explanation = "see QCMetaData" ;

double location(ObsIndex, location) ;
location:long_name = "location of observation" ;
location:storage_order = "Lon Lat Vertical" ;
location:units = "degrees degrees which_vert" ;

int which_vert(ObsIndex) ;
which_vert:long_name = "vertical coordinate system code" ;
which_vert:VERTISUNDEF = -2 ;
which_vert:VERTISSURFACE = -1 ;
which_vert:VERTISLEVEL = 1 ;
which_vert:VERTISPRESSURE = 2 ;
which_vert:VERTISHEIGHT = 3 ;

// global attributes:
:creation_date = "YYYY MM DD HH MM SS = 2009 05 01 16 51 18" ;
:obs_seq_to_netcdf_source = "$url: http://subversion.ucar.edu/DAReS/

→˓DART/trunk/obs_sequence/obs_seq_to_netcdf.f90 $" ;
:obs_seq_to_netcdf_revision = "$revision: 4272 $" ;
:obs_seq_to_netcdf_revdate = "$date: 2010-02-12 14:26:40 -0700 (Fri,

→˓12 Feb 2010) $" ;
:obs_seq_file_001 = "bgrid_solo/work/01_01/obs_seq.final" ;

data:

ObsTypesMetaData =
"RADIOSONDE_U_WIND_COMPONENT ",
"RADIOSONDE_V_WIND_COMPONENT ",
"RADIOSONDE_SURFACE_PRESSURE ",
"RADIOSONDE_TEMPERATURE ",
"RADIOSONDE_SPECIFIC_HUMIDITY ",
...
yeah, yeah, yeah ... we're very impressed ...
...
"VORTEX_PMIN ",

(continues on next page)

692 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

"VORTEX_WMAX " ;

QCMetaData =
"Quality Control ",
"DART quality control " ;

CopyMetaData =
"observations ",
"truth ",
"prior ensemble mean ",
"posterior ensemble mean ",
"prior ensemble spread ",
"posterior ensemble spread ",
"observation error variance " ;

}

So, first off, the UNLIMITED dimension is not ‘time’. It’s simply the number of observations - a coordinate variable
called ObsIndex. The observations variable is a 2D array - each column is a ‘copy’ of the observation. The
interpretation of the column is found in the CopyMetaData variable. Same thing goes for the qc variable - each
column is defined by the QCMetaData variable.
The Obs_Type variable is crucial. Each observation has an integer code to define the specific . . . DART observation
type. In our example - lets assume that observation number 10 (i.e. ObsIndex == 10) has an obs_type of 3 [i.e.
obs_type(10) = 3]. Since ObsTypesMetaData(3) == "RADIOSONDE_SURFACE_PRESSURE", we know
that any/all quantities where ObsIndex == 10 pertain to a radiosonde surface pressure observation.

6.186.5 Usage

Obs_seq_to_netcdf

obs_seq_to_netcdf is built and run in /DART/observations/utilities/threed_sphere or
/DART/observations/utilities/oned or in the same way as the other DART components. That directory
is intentionally designed to hold components that are model-insensitive. Essentially, we avoid having to populate
every model directory with identical mkmf_obs_seq_to_netcdf and
path_names_obs_seq_to_netcdf files. After the program has been run,
/DART/observations/utilities/threed_sphere/plot_obs_netcdf.m can be run to plot the
observations. Be aware that the ObsTypesMetaData list is all known observation types and not only the
observation types in the netCDF file.

Example

&schedule_nml
calendar = 'Gregorian',
first_bin_start = 2006, 8, 1, 3, 0, 0 ,
first_bin_end = 2006, 8, 1, 9, 0, 0 ,
last_bin_end = 2006, 8, 3, 3, 0, 0 ,
bin_interval_days = 0,
bin_interval_seconds = 21600,
max_num_bins = 1000,
print_table = .true.

(continues on next page)

6.186. PROGRAM obs_seq_to_netcdf 693

DART, Release 9.10.3

(continued from previous page)

/

&obs_seq_to_netcdf_nml
obs_sequence_name = '',
obs_sequence_list = 'olist',
append_to_netcdf = .false.,
lonlim1 = 0.0,
lonlim2 = 360.0,
latlim1 = -80.0,
latlim2 = 80.0,
verbose = .false.
/

> cat olist /users/thoar/temp/obs_0001/obs_seq.final /users/thoar/temp/obs_0002/obs_seq.final
/users/thoar/temp/obs_0003/obs_seq.final

Here is the pruned run-time output. Note that multiple input observation sequence files are queried and the routine
ends (in this case) when the first observation time in a file is beyond the last time of interest.

Starting ... at YYYY MM DD HH MM SS =

2009 5 15 9 0 23
Program obs_seq_to_netcdf

Requesting 8 assimilation periods.

epoch 1 start day=148135, sec=10801
epoch 1 end day=148135, sec=32400
epoch 1 start 2006 Aug 01 03:00:01
epoch 1 end 2006 Aug 01 09:00:00

epoch 2 start day=148135, sec=32401
epoch 2 end day=148135, sec=54000
epoch 2 start 2006 Aug 01 09:00:01
epoch 2 end 2006 Aug 01 15:00:00

epoch 3 start day=148135, sec=54001
epoch 3 end day=148135, sec=75600
epoch 3 start 2006 Aug 01 15:00:01
epoch 3 end 2006 Aug 01 21:00:00

epoch 4 start day=148135, sec=75601
epoch 4 end day=148136, sec=10800
epoch 4 start 2006 Aug 01 21:00:01
epoch 4 end 2006 Aug 02 03:00:00

epoch 5 start day=148136, sec=10801
epoch 5 end day=148136, sec=32400
epoch 5 start 2006 Aug 02 03:00:01
epoch 5 end 2006 Aug 02 09:00:00

epoch 6 start day=148136, sec=32401
epoch 6 end day=148136, sec=54000
epoch 6 start 2006 Aug 02 09:00:01
epoch 6 end 2006 Aug 02 15:00:00

(continues on next page)

694 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

epoch 7 start day=148136, sec=54001
epoch 7 end day=148136, sec=75600
epoch 7 start 2006 Aug 02 15:00:01
epoch 7 end 2006 Aug 02 21:00:00

epoch 8 start day=148136, sec=75601
epoch 8 end day=148137, sec=10800
epoch 8 start 2006 Aug 02 21:00:01
epoch 8 end 2006 Aug 03 03:00:00

obs_seq_to_netcdf opening /users/thoar/temp/obs_0001/obs_seq.final

num_obs_in_epoch (1) = 103223
InitNetCDF obs_epoch_001.nc is fortran unit 5
num_obs_in_epoch (2) = 186523
InitNetCDF obs_epoch_002.nc is fortran unit 5
num_obs_in_epoch (3) = 110395
InitNetCDF obs_epoch_003.nc is fortran unit 5
num_obs_in_epoch (4) = 191957
InitNetCDF obs_epoch_004.nc is fortran unit 5

obs_seq_to_netcdf opening /users/thoar/temp/obs_0002/obs_seq.final

num_obs_in_epoch (5) = 90683
InitNetCDF obs_epoch_005.nc is fortran unit 5
num_obs_in_epoch (6) = 186316
InitNetCDF obs_epoch_006.nc is fortran unit 5
num_obs_in_epoch (7) = 109465
InitNetCDF obs_epoch_007.nc is fortran unit 5
num_obs_in_epoch (8) = 197441
InitNetCDF obs_epoch_008.nc is fortran unit 5

obs_seq_to_netcdf opening /users/thoar/temp/obs_0003/obs_seq.final

Finished ... at YYYY MM DD HH MM SS =

2009 5 15 9 2 56

Matlab setup

You will need the ‘normal’ DART/diagnostics/matlab functions available to Matlab, so be sure your
MATLABPATH is set such that you have access to plot_obs_netcdf
You can do this with the following Matlab command :

>> addpath('replace_this_with_the_real_path_to/DART/diagnostics/matlab')

As is standard practice, the instructions for using the Matlab scripts plot_obs_netcdf and
plot_obs_netcdf_diffs are available by using the Matlab ‘help’ facility (i.e. help plot_obs_netcdf). A quick
discussion of them here still seems appropriate. If you run the following Matlab commands with an
obs_sequence_001.nc file you cannot possibly have:

6.186. PROGRAM obs_seq_to_netcdf 695

DART, Release 9.10.3

>> help plot_obs_netcdf
fname = 'obs_sequence_001.nc';
ObsTypeString = 'RADIOSONDE_U_WIND_COMPONENT';
region = [0 360 -90 90 -Inf Inf];
CopyString = 'NCEP BUFR observation';
QCString = 'DART quality control';
maxQC = 2;
verbose = 1;

obs = plot_obs_netcdf(fname, ObsTypeString, region, CopyString, QCString, maxQC,
→˓verbose);

>> fname = 'obs_sequence_001.nc';
>> ObsTypeString = 'RADIOSONDE_U_WIND_COMPONENT';
>> region = [0 360 -90 90 -Inf Inf];
>> CopyString = 'NCEP BUFR observation';
>> QCString = 'DART quality control';
>> maxQC = 2;
>> verbose = 1;
>> obs = plot_obs_netcdf(fname, ObsTypeString, region, CopyString, QCString, maxQC,
→˓verbose);

N = 3336 RADIOSONDE_U_WIND_COMPONENT obs (type 1) between levels 550.00 and
→˓101400.00
N = 3336 RADIOSONDE_V_WIND_COMPONENT obs (type 2) between levels 550.00 and
→˓101400.00
N = 31 RADIOSONDE_SURFACE_PRESSURE obs (type 3) between levels 0.00 and 1378.00
N = 1276 RADIOSONDE_TEMPERATURE obs (type 4) between levels 550.00 and
→˓101400.00
N = 691 RADIOSONDE_SPECIFIC_HUMIDITY obs (type 5) between levels 30000.00 and
→˓101400.00
N = 11634 AIRCRAFT_U_WIND_COMPONENT obs (type 6) between levels 17870.00 and
→˓99510.00
N = 11634 AIRCRAFT_V_WIND_COMPONENT obs (type 7) between levels 17870.00 and
→˓99510.00
N = 8433 AIRCRAFT_TEMPERATURE obs (type 8) between levels 17870.00 and
→˓76710.00
N = 6993 ACARS_U_WIND_COMPONENT obs (type 10) between levels 17870.00 and
→˓76680.00
N = 6993 ACARS_V_WIND_COMPONENT obs (type 11) between levels 17870.00 and
→˓76680.00
N = 6717 ACARS_TEMPERATURE obs (type 12) between levels 17870.00 and
→˓76680.00
N = 20713 SAT_U_WIND_COMPONENT obs (type 22) between levels 10050.00 and
→˓99440.00
N = 20713 SAT_V_WIND_COMPONENT obs (type 23) between levels 10050.00 and
→˓99440.00
N = 723 GPSRO_REFRACTIVITY obs (type 46) between levels 220.00 and 12000.
→˓00
NCEP BUFR observation is copy 1
DART quality control is copy 2
Removing 993 obs with a DART quality control value greater than 2.000000

you get the plots at the top of this document. If you have a relatively new version of Matlab, you can dynamically
rotate the 3D view . . . coooool. Even spiffier, if you click on the observations (try the BAD observations), Matlab
reports the lat/lon/level of these observations. At least R2008b does, I haven’t tried it with all the other variants.

696 Chapter 6. References

DART, Release 9.10.3

The vertical levels are reported so you can restrict the area of interest with the ‘region’ variable [minlon maxlon
minlat maxlat minlevel maxlevel]. Only the observations with a QC value less than or equal to ‘maxQC’ are plotted
in ‘Figure 1’. Note the values of ‘QCString’ and ‘CopyString’ must match some value of QCMetaData and
CopyMetaData, respectively. If you’re not so keen on a 3D plot, simply change the view to be directly ‘overhead’:

>> view(0,90)

And if you act today, we’ll throw in a structure containing the selected data AT NO EXTRA CHARGE.

>> obs
obs =

fname: 'obs_sequence_001.nc'
ObsTypeString: 'RADIOSONDE_U_WIND_COMPONENT'

region: [0 360 -90 90 -Inf Inf]
CopyString: 'NCEP BUFR observation'
QCString: 'DART quality control'

maxQC: 2
verbose: 1

lons: [2343x1 double]
lats: [2343x1 double]

z: [2343x1 double]
obs: [2343x1 double]
Ztyp: [2343x1 double]
qc: [2343x1 double]

numbadqc: 993
badobs: [1x1 struct]

If there are observations with QC values above that defined by maxQC there will be a badobs structure as a compo-
nent in the obs structure.

6.186.6 References

1. none

6.186.7 Private components

N/A

6.187 program obs_common_subset

6.187.1 Overview

This specialized tool allows you to select subsets of observations from two or more observation sequence files output
from filter. It creates a new set of output observation sequence files containing only the observations which were
successfully assimilated in all experiments.

Experiments using the same input observation sequence file but with different configurations (e.g. different inflation
values, different localization radii, etc) can assimilate different numbers of the available observations. In that case
there will be differences in the diagnostic plots which are not directly relatable to the differences in the quality of
the assimilation. If this tool is run on the obs_seq.final files from all the experiments and then the diagnostics

6.187. program obs_common_subset 697

DART, Release 9.10.3

are generated, only the observations which were assimilated in all experiments will contribute to the summary statis-
tics. A more direct comparison can be made and improvements can be correctly attributed to the differences in the
experimental parameters.

This tool is intended to be used when comparing the results from a group of related experiments in which
the exact same input observation sequence file is used for all runs. The tool cannot process observation se-
quence files which differ in anything other than whether an observation was successfully assimilated/evaluated or
not. Note that it is fine to add or remove observation types from the assimilate_these_obs_types or
evaluate_these_obs_types namelist items for different experiments. The output observation sequence files
will still contain an identical list of observations, with some marked with a DART QC indicating ‘not assimilated
because of namelist control’.

See the “two_experiment” diagnostic plots in documentation for Matlab scripts supplied with DART to directly com-
pare the observation diagnostic output from multiple experiments (it does more than two, the script has a poor name).

This is one of a set of tools which operate on observation sequence files. For a more general purpose tool see the
program obs_sequence_tool, and for a more flexible selection tool see the obs_selection_tool.

Creating an input filelist

One of the inputs to this tool is a list of filenames to compare. The filenames can be directly in the namelist file, or
they can be in a set of separate text files. The latter may be easier when there are more than just a few files to compare.

For experiments where there are multiple job steps, and so multiple output observation sequence files per experiment,
the input to this tool would then be a list of lists of filenames. Each set of names must be put into a text file with each
filename on a separate line.

If each experiment was run in a different set of directories, and if a list of observation sequence filenames was made
with the ls command:

> ls exp1/*/obs_seq.final > exp1list
> cat exp1list
exp1/step1/obs_seq.final
exp1/step2/obs_seq.final
exp1/step3/obs_seq.final
exp1/step4/obs_seq.final
> ls exp2/*/obs_seq.final > exp2list
> cat exp2list
exp2/step1/obs_seq.final
exp2/step2/obs_seq.final
exp2/step3/obs_seq.final
exp2/step4/obs_seq.final
> ls exp3/*/obs_seq.final > exp3list
> cat exp2list
exp3/step1/obs_seq.final
exp3/step2/obs_seq.final
exp3/step3/obs_seq.final
exp3/step4/obs_seq.final

Then the namelist entries would be:

filename_seq = ''
filename_seq_list = 'exp1list', 'exp2list', exp3list'
num_to_compare_at_once = 3

698 Chapter 6. References

DART, Release 9.10.3

6.187.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_common_subset_nml
num_to_compare_at_once = 2,
filename_seq = '',
filename_seq_list = '',
filename_out_suffix = '.common' ,
print_every = 10000,
dart_qc_threshold = 3,
calendar = 'Gregorian',
print_only = .false.,
eval_and_assim_can_match = .false.,

/

6.187. program obs_common_subset 699

DART, Release 9.10.3

Item Type Description
num_to_compare_at_onceinte-

ger
Number of observation sequence files to compare together at a time. Most commonly the value is
2, but can be any number. If more than this number of files are listed as inputs, the tool will loop
over the list N files at a time.

file-
name_seq

char-
ac-
ter(len=256),
di-
men-
sion(5000)

The array of names of the observation sequence files to process. If more than N files (where N
is num_to_compare_at_once) are listed, they should be ordered so the first N files are compared
together, followed by the next set of N files, etc. You can only specify one of filename_seq OR
filename_seq_list, not both.

file-
name_seq_list

char-
ac-
ter(len=256),
di-
men-
sion(100)

An alternative way to specify the list of input observation sequence files. Give a list of N filenames
which contain, one per line, the names of the observation sequence files to process. There should
be N files specified (where N is num_to_compare_at_once), and the first observation sequence
filename listed in each file will be compared together, then the second, until the lists are exhausted.
You can only specify one of filename_seq OR filename_seq_list, not both.

file-
name_out_suffix

char-
ac-
ter(len=32)

A string to be appended to each of the input observation sequence file names to create the output
filenames.

print_everyinte-
ger

To indicate progress, a count of the successfully processed observations is printed every Nth set of
obs. To decrease the output volume set this to a larger number. To disable this output completely
set this to -1.

dart_qc_thresholdinte-
ger

Observations with a DART QC value larger than this threshold will be discarded. Note that this is
the QC value set by filter to indicate the outcome of trying to assimilate an observation. This
is not related to the incoming data QC. For an observation which was successfully assimilated or
evaluated in both the Prior and Posterior this should be set to 1. To also include observations which
were successfully processed in the Prior but not the Posterior, set to 3. To ignore the magnitude
of the DART QC values and keep observations only if the DART QCs match, set this to any value
higher than 7.

cal-
en-
dar

char-
ac-
ter(len=32)

Set to the name of the calendar; only controls the printed output for the dates of the first and last
observations in the file. Set this to “no_calendar” if the observations are not using any calendar.

print_onlylogi-
cal

If .TRUE. do not create the output files, but print a summary of the number and types of each
observation in each of the input and output files.

eval_and_assim_can_matchlogi-
cal

Normally .FALSE. . If .TRUE. then observations which were either successfully evaluated OR
assimilated will match and are kept.

6.187.3 Building

Most $DART/models/*/work directories will build the tool along with other executable programs. It is also
possible to build the tool in the $DART/observations/utilities directory. The preprocess program must
be built and run first, to define what set of observation types will be supported. See the PROGRAM preprocess for
more details on how to define the list and run it. The combined list of all observation types which will be encountered
over all input files must be in the preprocess input list. The other important choice when building the tool is to
include a compatible locations module. For the low-order models, the oned module should be used; for real-world
observations, the threed_sphere module should be used.

Generally the directories where executables are built will include a “quickbuild.csh” script which will build and run
preprocess and then build the rest of the executables. The “input.nml” namelists will need to be edited to include all

700 Chapter 6. References

DART, Release 9.10.3

the required observation types first.

6.187.4 Modules used

types_mod
utilities_mod
time_manager_mod
obs_def_mod
obs_sequence_mod

6.187.5 Files

• input.nml

• The input files specified in the filename_seq or filename_seq_list namelist variable.

• The output files are specified by appending the string from the filename_out_suffix namelist item to the
input filenames.

6.187.6 References

• none

6.188 MODULE ensemble_manager_mod

6.188.1 Overview

Manages storage and a number of operations for multiple copies of a vector. The most obvious use is to manage
ensembles of model state vectors. In this case, the number of copies stored for each state vector element is the ensemble
size plus one or more additional copies like the mean, variance, associated inflation values, etc. The ensemble_manager
provides routines to compute the mean and variance of a subset of the copies, to track the time associated with the
copies, and to write and read restart files. Most importantly, it provides a capability to do transposes between two
storage representations of an ensemble. In one representation, each process stores all copies of a subset of the state
variables while in the other, each process stores all of the state variables for a subset of copies. The ensemble manager
is also used to manage ensembles of observation priors and quality control and ensembles of forward observation
operator error status.

The ensemble manager interacts strongly with the multiple process capability of the Message Passing Interface (MPI)
libraries. It is used to partition the data so each MPI process stores only a subset of the copies and variables, dividing
the data as evenly as possible across the processes. At no time during the execution does any one process have to store
the entire dataset for all ensemble members (unless running in serial mode without MPI, or if running with 1 MPI
task).

The ensemble manager is set of general purpose data management routines. For run-time efficiency, the derived type
information is not marked private which means other modules can directly manipulate the data arrays. However it
means much care must be taken to access the most recently updated representation of the data, either the copies or
variables arrays.

A set of sanity check routines have been added to track the last modified version of the data: the copies array or the
vars array. Before directly reading or writing these arrays call one of the ‘prepare’ routines to indicate what kind of
data access you are about to make. If the most recently updated data is not as expected an error message will occur.

6.188. MODULE ensemble_manager_mod 701

DART, Release 9.10.3

After the direct access if the following operations detect that the data they are operating on is not the most recently
updated they will print an error message. Routines inside the ensemble manager that alter the copies or vars will set
the state automatically so these routines are only necessary to call if you are directly accessing the copies or vars arrays
from outside the ensemble manager.

6.188.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&ensemble_manager_nml
layout = 1
tasks_per_node = 1
communication_configuration = 1
debug = .false.
/

Item Type Description
lay-
out

in-
te-
ger

Determines the logical process (PE) layout across MPI tasks. 1 is PE = MPI task. 2 is a round-robin
layout around the nodes. Layout 2 results in a more even usage of memory across nodes. This may
allow you to run with a larger state vector without hitting the memory limit of the node. It may give
a slight (5%) increase in performance, but this is machine dependent. It has no effect on serial runs.

tasks_per_nodein-
te-
ger

The number of MPI tasks per hardware node is generally fixed when a batch job is submitted. This
namelist item tells the ensemble manager what the user selected at that time. Once a program is
running the code has no control to change how MPI tasks are assigned to physical CPUs. This
number is used only if layout = 2, and it allows the code spread high-memory-use PEs to different
hardware nodes by assigning them in a round-robin order. The job will still run if this number does
not match the real “tasks_per_node” at the hardware level, but it may run out of memory if the
mismatch causes multiple high-memory-use tasks to be run on the same node.

com-
mu-
ni-
ca-
tion_configuration

in-
te-
ger

For most users, the default value of 1 is the best choice. However there are multiple strategies for the
internal MPI communication patterns (see *Note below). Values from 1 to 4 select different options;
try the various options to see if one might be faster than the others.

de-
bug

log-
ical

If true print debugging information.

*Note about MPI communication flags:
The communication_configuration flags select various combinations of the internal settings for
use_copy2var_send_loop and use_var2copy_rec_loop. These flags change the order of the MPI send and MPI
receives in the the routines all_copies_to_all_vars and all_vars_to_all_copies. The figures below show the data
transferred between tasks for an 80 member ensemble. The left figure is using 96 tasks, the right figure is using 512
tasks. As the number of tasks increases, the ‘all to all’ data transfer becomes a ‘some to all, all to some’ transfer and

702 Chapter 6. References

DART, Release 9.10.3

the order of MPI send and MPI receives becomes increasingly important. The default values give a performance
advantage as the number of tasks becomes much greater than the the ensemble size. However, for small numbers of
tasks, i.e. less than the ensemble size, changing the default values may improve performance.

6.188.3 Other modules used

types_mod
utilities_mod
assim_model_mod
time_manager_mod
random_seq_mod
mpi_utilities_mod
sort_mod

6.188. MODULE ensemble_manager_mod 703

DART, Release 9.10.3

704 Chapter 6. References

DART, Release 9.10.3

6.188.4 Public interfaces

use ensemble_manager_mod, only : init_ensemble_manager
read_ensemble_restart

write_ensemble_restart

get_copy

put_copy

broadcast_copy

set_ensemble_time

get_ensemble_time

end_ensemble_manager

duplicate_ens

get_my_num_copies

get_my_copies

get_my_num_vars

get_my_vars

get_copy_owner_index

get_var_owner_index

all_vars_to_all_copies

all_copies_to_all_vars

compute_copy_mean

compute_copy_mean_sd

compute_copy_mean_var

prepare_to_write_to_vars

prepare_to_write_to_copies

prepare_to_read_from_vars

prepare_to_read_from_copies

prepare_to_update_vars

prepare_to_update_copies

print_ens_handle

map_pe_to_task

map_task_to_pe

6.188. MODULE ensemble_manager_mod 705

DART, Release 9.10.3

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type ensemble_type
!DIRECT ACCESS INTO STORAGE IS ALLOWED; BE CAREFUL
integer :: num_copies
integer :: num_vars
integer :: my_num_copies
integer :: my_num_vars
integer, pointer :: my_copies(:)
integer, pointer :: my_vars(:)
! Storage in next line is to be used when each PE has all copies of subset of vars
real(r8), pointer :: copies(:, :) ! Dimensioned (num_copies, my_num_vars)
! Storage on next line is used when each PE has subset of copies of all vars
real(r8), pointer :: vars(:, :) ! Dimensioned (num_vars, my_num_copies)
! Time is only related to var complete
type(time_type), pointer :: time(:)
integer :: distribution_type
integer :: valid ! copies modified last, vars modified last, both same
integer :: id_num
integer, allocatable :: task_to_pe_list(:) ! List of tasks
integer, allocatable :: pe_to_task_list(:) ! List of tasks
! Flexible my_pe, layout_type which allows different task layouts for different

→˓ensemble handles
integer :: my_pe
integer :: layout_type

end type ensemble_type

Provides a handle for an ensemble that manages copies of a vector. For efficiency, the type internals are not private
and direct access to the storage arrays is used throughout DART.

706 Chapter 6. References

DART, Release 9.10.3

Com-
po-
nent

Description

num_copiesGlobal number of copies of the vector.
num_varsGlobal number of elements (variables) in the vector.
my_num_copiesNumber of copies stored by this process.
my_num_varsNumber of variables stored by this process.
my_copiesDimensioned to size my_num_copies. Contains a list of the global indices of copies stored by this process.
my_varsDimensioned to size my_num_vars. Contains a list of the global indices of variables stored by this process.
copies Dimensioned (num_copies, my_num_vars). Storage for all copies of variables stored by this process.
vars Dimensioned (num_vars, my_num_copies). Storage for all variables of copies stored by this process.
time Dimensioned my_num_copies. A time_type that stores time associated with a given copy of the vector.
dis-
tri-
bu-
tion_type

Does nothing at present. Can be used for future releases to control the layout of different copies and variables
in storage.

valid Flag to track whether the copies array has the most recently updated data, the vars array is most recently
modified, or if both the arrays have identical data, like after a transpose.

id_numInternal number unique to each ensemble handle, used for debugging purposes.
task_to_pe_listMapping from MPI task number to logical Processing Element (PE) number. Enables different assignment

of MPI tasks to PEs. If the number of MPI tasks is larger than the number of copies of the vector, when
the ensemble is var complete then the first N MPI tasks have allocated ‘vars’ arrays and the remaining ones
do not. Assigning the MPI tasks round-robin to multi-processor nodes can make the memory usage more
uniform across nodes, which may allow more MPI tasks per node than the standard layout.

pe_to_task_listLogical PE to MPI task mapping. See above for more description.
my_peThe logical PE number for the MPI task.
lay-
out_type

Controls the mapping type between MPI tasks and PEs. Currently type 1 is the standard layout (one-to-one
mapping) and type 2 is a round-robin mapping where each node gets a task in turn before assigning a second
task to each node, until all tasks are assigned.

call init_ensemble_manager(ens_handle, num_copies, num_vars [, distribution_type_in] [, layout_type])

type(ensemble_type), intent(out) :: ens_handle
integer, intent(in) :: num_copies
integer, intent(in) :: num_vars
integer, optional, intent(in) :: distribution_type_in
integer, optional, intent(in) :: layout_type

Initializes an instance of an ensemble. Storage is allocated and the size descriptions in the ensemble_type are initial-
ized.

6.188. MODULE ensemble_manager_mod 707

DART, Release 9.10.3

ens_handleHandle for the ensemble being initialized
num_copiesNumber of copies of vector.
num_varsNumber of variables in the vector.
dis-
tribu-
tion_type_in

Controls layout of storage on PEs. Currently only option 1 is supported.

lay-
out_type

Controls layout of MPI tasks on PEs. Type 1 is the default, where MPI tasks are assigned to PEs on a
one-to-one basis. Type 2 is a round-robin assignment where each node gets one task before the nodes are
assigned a second task. If running with more MPI tasks than num_copies, this can result in a more
uniform usage of memory across the nodes.

call read_ensemble_restart(ens_handle, start_copy, end_copy, start_from_restart, file_name [, init_time] [,
force_single_file])

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: start_copy
integer, intent(in) :: end_copy
logical, intent(in) :: start_from_restart
character(len=*), intent(in) :: file_name
type(time_type), optional, intent(in) :: init_time
logical, optional, intent(in) :: force_single_file

Read in a set of copies of a vector from file file_name. The copies read are place into global copies
start_copy:end_copy in the ens_handle. If start_from_restart is false, then only a single copy of the vector is read
from the file and then it is perturbed using routines in assim_model_mod to generate the required number of copies.
The read can be from a single file that contains all needed copies or from a different file for each copy. This choice
is controlled by the namelist entry single_restart_file_in. However, the optional argument force_single_file forces the
read to be from a single file if it is present and true. This is used for ensembles that contain the inflation values for
state space inflation. If multiple files are to be read, the file names are generated by appending integers to the input
file_name. If the input is a single file all reads are done sequentially by process 0 and then shipped to the PE that stores
that copy. If the input is multiple files each MPI task reads the copies it stores directly and independently.

ens_handle Handle of ensemble.
start_copy Global index of first of continguous set of copies to be read.
end_copy Global index of last of contiguous set of copies to be read,

copies(start_copy:end_copy).
start_from_restart If true, read all copies from file. If false, read one copy and perturb to get required

number.
file_name Name of file from which to read.
init_time If present, set time of all copies read to this value.
force_single_file If present and true, force the read to be from a single file which contains all copies.

call write_ensemble_restart(ens_handle, file_name, start_copy, end_copy [, force_single_file])

708 Chapter 6. References

DART, Release 9.10.3

type(ensemble_type), intent(inout) :: ens_handle
character(len=*), intent(in) :: file_name
integer, intent(in) :: start_copy
integer, intent(in) :: end_copy
logical, optional, intent(in) :: force_single_file

Writes a set of copies of a vector to file file_name. The copies written are from global copies start_copy:end_copy
in the ens_handle. The write can be to a single file or to a different file for each copy. This choice is controlled by
the namelist entry single_restart_file_out. However, the optional argument force_single_file forces the write to be to a
single file if it is present and true. This is used for ensembles that contain the inflation values for state space inflation. If
multiple files are to be written, the file names are generated by appending integers to the input file_name. If the output
is a single file all copies are shipped from the PE that stores that copy to process 0, and then written out sequentially.
If the output is to multiple files each MPI task writes the copies it stores directly and independently.

ens_handle Handle of ensemble.
file_name Name of file from which to read.
start_copy Global index of first of continguous set of copies to be written.
end_copy Global index of last of contiguous set of copies to be written, copies(start_copy:end_copy).
force_single_file If present and true, force the write to be to a single file which contains all copies.

call get_copy(receiving_pe, ens_handle, copy, vars [, mtime])

integer, intent(in) :: receiving_pe
type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: copy
real(r8), dimension(:), intent(out) :: vars
type(time_type), optional, intent(out) :: mtime

Retrieves a copy of the state vector, indexed by the global index copy. The process that is to receive the copy is
receiving_pe and the copy is returned in the one dimensional array vars. The time of the copy is also returned if mtime
is present. This is generally used for operations, like IO, that require a single processor to do things with the entire
state vector. Data is only returned in vars on the receiving PE; vars on all other PEs is unset.

receiving_peThis process ends up with the requested copy of the state vector.
ens_handleHandle for ensemble.
copy The global index of the copy of the state vector that is to be retrieved.
vars One dimensional array in which the requested copy of the state vector is returned. Data is only

returned in vars on the receiving PE; vars on all other PEs is unset.
mtime If present returns the time of the requested copy.

call put_copy(sending_pe, ens_handle, copy, vars [, mtime])

integer, intent(in) :: sending_pe
type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: copy

(continues on next page)

6.188. MODULE ensemble_manager_mod 709

DART, Release 9.10.3

(continued from previous page)

real(r8), dimension(:), intent(in) :: vars
type(time_type), optional, intent(in) :: mtime

Sends a state vector, in vars, from the given process to the process storing the global index copy. The time of the
copy is also sent if mtime is present. This is generally used for operations, like IO, that require a single processor
to do things with the entire state vector. For instance, if a single process reads in a state vector, it can be shipped to
the storing process by this subroutine. Only the data in vars on the sending PE is processed; vars on all other PEs is
ignored.

sending_peThis process sends the copy of the state vector.
ens_handleHandle for ensemble.
copy The global index of the copy of the state vector that is to be sent.
vars One dimensional array in which the requested copy of the state vector is located. Only the data in vars

on the sending PE is processed; vars on all other PEs is ignored.
mtime If present send the time of the copy.

call broadcast_copy(ens_handle, copy, arraydata)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: copy
real(r8), dimension(:), intent(out) :: arraydata

Finds which PE has the global index copy and broadcasts that copy to all PEs. arraydata is an output on all PEs,
even on the PE which is the owner if it is separate storage from the vars array in the ensemble handle. This is a
collective routine, which means it must be called by all processes in the job.

ens_handleHandle for ensemble.
copy The global index of the copy of the state vector that is to be sent.
arraydata One dimensional array into which the requested copy of the state vector will be copied on all PEs,

including the sending PE.

call set_ensemble_time(ens_handle, indx, mtime)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: indx
type(time_type), intent(in) :: mtime

Set the time of a copy to the given value. indx in this case is the local copy number for a specific task.
get_copy_owner_index() can be called to see if you are the owning task for a given global copy number, and to
get the local index number for that copy.

ens_handle Handle for ensemble.
indx The local index of the copy of the state vector that is to be set.
mtime The time to set for this copy.

710 Chapter 6. References

DART, Release 9.10.3

call get_ensemble_time(ens_handle, indx, mtime)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: indx
type(time_type), intent(out) :: mtime

Get the time associated with a copy. indx in this case is the local copy number for a specific task.
get_copy_owner_index() can be called to see if you are the owning task for a given global copy number, and to
get the local index number for that copy.

ens_handle Handle for ensemble.
indx The local index of the copy to retrieve the time from.
mtime The returned time value.

call end_ensemble_manager(ens_handle)

type(ensemble_type), intent(in) :: ens_handle

Frees up storage associated with an ensemble.

ens_handle Handle for an ensemble.

call duplicate_ens(ens1, ens2, duplicate_time)

type(ensemble_type), intent(in) :: ens1
type(ensemble_type), intent(inout) :: ens2
logical, intent(in) :: duplicate_time

Copies the contents of the vars array from ens1 into ens2. If the num_copies and num_vars are not consistent or if
the distribution_type is not consistent, fails with an error. If duplicate_time is true, the times from ens1 are copied
over the times of ens2. Only the vars array data is copied from the source to the destination. Transpose the data after
duplication if you want to access the copies.

ens1 Ensemble handle of ensemble to be copies into ens2. Data from the vars array will be
replicated.

ens2 Ensemble handle of ensemble into which ens1 vars data will be copied.
duplicate_time If true, copy the times from ens1 into ens2, else leave ens2 times unchanged.

6.188. MODULE ensemble_manager_mod 711

DART, Release 9.10.3

var = get_my_num_copies(ens_handle)

integer :: get_my_num_copies
type(ensemble_type), intent(in) :: ens_handle

Returns number of copies stored by this process when storing all variables for a subset of copies. Same as num_copies
if running with only a single process.

var Returns the number of copies stored by this process when storing all variables for a subset of
copies.

ens_handle Handle for an ensemble.

var = get_my_num_vars(ens_handle)

integer :: get_my_num_vars
type(ensemble_type), intent(in) :: ens_handle

Returns number of variables stored by this process when storing all copies of a subset of variables. Same as num_vars
if running with only a single process.

var Returns the number of vars stored by this process when storing all copies of a subset of variables.
ens_handle Handle for an ensemble.

call get_my_copies(ens_handle, copies)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(out) :: copies(:)

Returns a list of the global copy numbers stored on this process when storing subset of copies of all variables.

ens_handle Handle for an ensemble.
copies List of all copies stored by this process when storing subset of copies of all variables.

call get_my_vars(ens_handle, vars)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(out) :: vars(:)

Returns a list of the global variable numbers stored on this process when storing all copies of a subset of variables.

ens_handle Handle for an ensemble.
vars List of all variables stored on this process when storing all copies of a subset of variables.

712 Chapter 6. References

DART, Release 9.10.3

call get_copy_owner_index(copy_number, owner, owners_index)

integer, intent(in) :: copy_number
integer, intent(out) :: owner
integer, intent(out) :: owners_index

Given the global index of a copy number, returns the PE that stores this copy when all variables of a subset of copies
are stored and the local storage index for this copy on that process.

copy_number Global index of a copy from an ensemble.
owner Process Element (PE) that stores this copy when each has all variables of a subset of copies.
owners_index Local storage index for this copy on the owning process.

call get_var_owner_index(var_number, owner, owners_index)

integer, intent(in) :: var_number
integer, intent(out) :: owner
integer, intent(out) :: owners_index

Given the global index of a variable in the vector, returns the PE that stores this variable when all copies of a subset of
variables are stored and the local storage index for this variable on that process.

var_number Global index of a variable in the vector from an ensemble.
owner Process Element (PE) that stores this variable when each has all copies of subset of variables.
owners_index Local storage index for this variable on the owning process.

call all_vars_to_all_copies(ens_handle, label)

type(ensemble_type), intent(inout) :: ens_handle
character(len=*), intent(in), optional :: label

Transposes data from a representation in which each PE has a subset of copies of all variables to one in which each
has all copies of a subset of variables. In the current implementation, storage is not released so both representations
are always available. However, one representation may be current while the other is out of date.

Different different numbers of copies, different lengths of the vectors, different numbers of PEs and different im-
plementations of the MPI parallel libraries can have very different performance characteristics. The namelist item
communication_configuration controls one of four possible combinations of the operation order during the
transposes. If performance is an issue the various settings on this namelist item can be explored. See the namelist
section for more details.

The transpose routines make both representations of the data equivalent until the next update to either the copies or
the vars arrays, so either can be used as a data source.

6.188. MODULE ensemble_manager_mod 713

DART, Release 9.10.3

ens_handle The handle of the ensemble being transposed.
label A character string label. If present, a timestamp with this label is printed at the start and end of the

transpose.

call all_copies_to_all_vars(ens_handle, label)

type(ensemble_type), intent(inout) :: ens_handle
character(len=*), intent(in), optional :: label

Transposes data from a representation in which each processor has all copies of a subset of variables to one in which
each has a subset of copies of all variables. In the current implementation, storage is not released so both representa-
tions are always available. However, one representation may be current while the other is out of date.

Different different numbers of copies, different lengths of the vectors, different numbers of PEs and different im-
plementations of the MPI parallel libraries can have very different performance characteristics. The namelist item
communication_configuration controls one of four possible combinations of the operation order during the
transposes. If performance is an issue the various settings on this namelist item can be explored. See the namelist
section for more details.

The transpose routines make both representations of the data equivalent until the next update to either the copies or
the vars arrays, so either can be used as a data source.

ens_handle The handle of the ensemble being transposed.
label A character string label. If present, a timestamp with this label is printed at the start and end of the

transpose.

call compute_copy_mean(ens_handle, start_copy, end_copy, mean_copy)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: start_copy
integer, intent(in) :: end_copy
integer, intent(in) :: mean_copy

Computes the mean of a contiguous subset of copies starting with global index start_copy and ending with global
index ens_copy. Mean is written to global index mean_copy.

When this routine is called the ensemble must have all copies of a subset of the vars. It updates the copies array with
the mean, so after this call the copies array data is more current and the vars data is stale.

ens_handle Handle for an ensemble.
start_copy Global index of first copy in mean and sd computation.
end_copy Global index of last copy in mean and sd computation.
mean_copy Global index of copy into which mean is written.

714 Chapter 6. References

DART, Release 9.10.3

call compute_copy_mean_sd(ens_handle, start_copy, end_copy, mean_copy, sd_copy)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: start_copy
integer, intent(in) :: end_copy
integer, intent(in) :: mean_copy
integer, intent(in) :: sd_copy

Computes the mean and standard deviation of a contiguous subset of copies starting with global index start_copy and
ending with global index ens_copy. Mean is written to index mean_copy and standard deviation to index sd_copy.

When this routine is called the ensemble must have all copies of a subset of the vars. It updates the copies arrays with
the mean and sd, so after this call the copies array data is more current and the vars data is stale.

ens_handle Handle for an ensemble.
start_copy Global index of first copy in mean and sd computation.
end_copy Global index of last copy in mean and sd computation.
mean_copy Global index of copy into which mean is written.
sd_copy Global index of copy into which standard deviation is written.

call compute_copy_mean_var(ens_handle, start_copy, end_copy, mean_copy, var_copy)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: start_copy
integer, intent(in) :: end_copy
integer, intent(in) :: mean_copy
integer, intent(in) :: var_copy

Computes the mean and variance of a contiguous subset of copies starting with global index start_copy and ending
with global index ens_copy. Mean is written to index mean_copy and variance to index var_copy.

When this routine is called the ensemble must have all copies of a subset of the vars. It updates the copies arrays with
the mean and variance, so after this call the copies array data is more current and the vars data is stale.

ens_handle Handle for an ensemble.
start_copy Global index of first copy in mean and sd computation.
end_copy Global index of last copy in mean and sd computation.
mean_copy Global index of copy into which mean is written.
var_copy Global index of copy into which variance is written.

call prepare_to_update_vars(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%vars array when the data is going to be updated, and
the incoming vars array should have the most current data representation.

6.188. MODULE ensemble_manager_mod 715

DART, Release 9.10.3

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently
updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

call prepare_to_update_copies(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%copies array when the data is going to be updated,
and the incoming copies array should have the most current data representation.

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently
updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

call prepare_to_read_from_vars(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%vars array for reading only, when the incoming vars
array should have the most current data representation.

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently

716 Chapter 6. References

DART, Release 9.10.3

updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

call prepare_to_read_from_copies(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%copies array for reading only, when the incoming
copies array should have the most current data representation.

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently
updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

call prepare_to_write_to_vars(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%vars array for writing. This routine differs from the
‘update’ version in that it doesn’t care what the original data state is. This routine might be used in the case where an
array is being filled for the first time and consistency with the data in the copies array is not an issue.

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently
updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

6.188. MODULE ensemble_manager_mod 717

DART, Release 9.10.3

call prepare_to_write_to_copies(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Call this routine before directly accessing the ens_handle%copies array for writing. This routine differs from the
‘update’ version in that it doesn’t care what the original data state is. This routine might be used in the case where an
array is being filled for the first time and consistency with the data in the vars array is not an issue.

Internally the ensemble manager tracks which of the copies or vars arrays, or both, have the most recently
updated representation of the data. For example, before a transpose (all_vars_to_all_copies() or
all_copies_to_all_vars()) the code checks to be sure the source array has the most recently updated repre-
sentation before it does the operation. After a transpose both representations have the same update time and are both
valid.

For efficiency reasons we allow the copies and vars arrays to be accessed directly from other code without going
through a routine in the ensemble manager. The “prepare” routines verify that the desired array has the most recently
updated representation of the data, and if needed marks which one has been updated so the internal consistency checks
have an accurate accounting of the representations.

ens_handle Handle for the ensemble being accessed directly.

718 Chapter 6. References

DART, Release 9.10.3

6.188.5 Private interfaces

assign_tasks_to_pes

calc_tasks_on_each_node

create_pe_to_task_list

get_copy_list

get_max_num_copies

get_max_num_vars

get_var_list

round_robin

set_up_ens_distribution

simple_layout

sort_task_list

timestamp_message

var = get_max_num_copies(num_copies)

integer :: get_max_num_copies
integer, intent(in) :: num_copies

Returns the largest number of copies that are on any pe when var complete. Depends on distribution_type with only
option 1 currently implemented. Used to get size for creating storage to receive a list of the copies on a PE.

var Returns the largest number of copies any an individual PE when var complete.
num_copies Total number of copies in the ensemble.

var = get_max_num_vars(num_vars)

integer :: get_max_num_vars
integer, intent(in) :: num_vars

Returns the largest number of vars that are on any pe when copy complete. Depends on distribution_type with only
option 1 currently implemented. Used to get size for creating storage to receive a list of the vars on a PE.

6.188. MODULE ensemble_manager_mod 719

DART, Release 9.10.3

var Returns the largest number of vars any an individual PE when copy complete.
num_copies Total number of vars in an ensemble vector.

call set_up_ens_distribution(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Figures out how to lay out the copy complete and vars complete distributions. The distribution_type identifies different
options. Only distribution_type 1 is implemented. This puts every Nth var or copy on a given processor where N is
the total number of processes.

ens_handle Handle for an ensemble.

call get_var_list(num_vars, pe, var_list, pes_num_vars)

integer, intent(in) :: num_vars
integer, intent(in) :: pe
integer, intent(out) :: var_list(:)
integer, intent(out) :: pes_num_vars

Returns a list of the vars stored by process pe when copy complete and the number of these vars. var_list must be
dimensioned large enough to hold all vars. Depends on distribution_type with only option 1 currently implemented.

call get_copy_list(num_copies, pe, copy_list, pes_num_copies)

integer, intent(in) :: num_copies
integer, intent(in) :: pe
integer, intent(out) :: copy_list(:)
integer, intent(out) :: pes_num_copies

Returns a list of the copies stored by process pe when var complete and the number of these copies. copy_list must be
dimensioned large enough to hold all copies. Depends on distribution_type with only option 1 currently implemented.

call timestamp_message(msg [, sync] [, alltasks])

character(len=*), intent(in) :: msg
logical, intent(in), optional :: sync
logical, intent(in), optional :: alltasks

720 Chapter 6. References

DART, Release 9.10.3

Write current time and message to stdout and log file. If sync is present and true, sync mpi jobs before printing time.
If alltasks is present and true, all tasks print the time. The default is only task 0 prints a timestamp.

msg character string to prepend to the time info
sync if present and true, execute an MPI_Barrier() to sync all MPI tasks before printing the time. this means the

time will be the value of the slowest of the tasks to reach this point.
all-
tasks

if present and true, have all tasks print out a timestamp. the default is for just task 0 to print. the usual
combination is either sync=true and alltasks=false, or sync=false and alltasks=true.

call print_ens_handle(ens_handle, force, label)

type(ensemble_type), intent(in) :: ens_handle
logical, optional, intent(in) :: force
character(len=*), optional, intent(in) :: label

For debugging use, dump the contents of an ensemble handle derived type. If the debug namelist item is true, this
will print in any case. If debug is false, set force to true to force printing. The optional string label can help provide
context for the output.

ens_handle The derived type to print information about.
force If the debug namelist item is false, set this to true to enable printing.
label Optional string label to print to provide context for the output.

call assign_tasks_to_pes(ens_handle, nEns_members, layout_type)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: nEns_members
integer, intent(inout) :: layout_type

Calulate the task layout based on the tasks per node and the total number of tasks. Allows the user to spread out the
ensemble members as much as possible to balance memory usage between nodes. Possible options: 1. Standard task
layout - first n tasks have the ensemble members my_pe = my_task_id() 2. Round-robin on the nodes

ens_handle Handle for an ensemble.

call round_robin(ens_handle)

6.188. MODULE ensemble_manager_mod 721

DART, Release 9.10.3

type(ensemble_type), intent(inout) :: ens_handle

Round-robin MPI task layout starting at the first node. Starting on the first node forces pe 0 = task 0. The smoother
code assumes task 0 has an ensemble member. If you want to break the assumption that pe 0 = task 0, this routine is a
good place to start. Test with the smoother.

ens_handle Handle for an ensemble.

call create_pe_to_task_list(ens_handle)

type(ensemble_type), intent(inout) :: ens_handle

Creates the ens_handle%pe_to_task_list. ens_handle%task_to_pe_list must have been assigned
first, otherwise this routine will just return nonsense.

ens_handle Handle for an ensemble.

call calc_tasks_on_each_node(nodes, last_node_task_number)

integer, intent(out) :: last_node_task_number
integer, intent(out) :: nodes

Finds the of number nodes and how many tasks are on the last node, given the number of tasks and the tasks_per_node
(ptile). The total number of tasks is num_pes = task_count() The last node may have fewer tasks, for example, if ptile
= 16 and the number of mpi tasks = 17

call simple_layout(ens_handle, n)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: n

assigns the arrays task_to_pe_list and pe_to_task list for the simple layout where my_pe = my_task_id()

ens_handle Handle for an ensemble.

n size

call sort_task_list(i, idx, n)

integer, intent(in) :: n
integer, intent(inout) :: x(n) ! array to be sorted
integer, intent(out) :: idx(n) ! index of sorted array

722 Chapter 6. References

DART, Release 9.10.3

sorts an array and returns the sorted array, and the index of the original array

n size

x(n) array to be sorted

idx(n) index of sorted array

call map_pe_to_task(ens_handle, p)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: p

Return the physical task for my_pe

ens_handle Handle for an ensemble.
p The MPI task corresponding to the given PE number

call map_task_to_pe(ens_handle, t)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: t

Return my_pe corresponding to the physical task

ens_handle Handle for an ensemble.
t Return the PE corresponding to the given MPI task number.

Files

• input.nml

• State vector restart files, either one for all copies or one per copy.

• State vector output files, either one for all copies or one per copy.

References

1. none

Private components

N/A

6.189 MODULE random_seq_mod

6.189.1 Overview

Provides access to any number of reproducible random sequences. Can sample from uniform, gaussian, two-
dimensional gaussian, gamma, inverse gamma, and exponential distributions.

The current random sequence generator is a Fortran version of the GNU Library implementation of the Mersenne
Twister algorithm. The original code is in the C language and the conversion to Fortran was done by the DART team.

6.189. MODULE random_seq_mod 723

http://www.gnu.org/software/gsl/
http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Mersenne_twister

DART, Release 9.10.3

There are test programs in the developer_tests/random_seq directory which show examples of calling these
routines. Build and run these tests in the test subdirectory.

6.189.2 Other modules used

types_mod
utilities_mod

6.189.3 Public interfaces

use random_seq_mod, only : random_seq_type
init_random_seq

random_uniform

random_gaussian

several_random_gaussians

twod_gaussians

random_gamma

random_inverse_gamma

random_exponential

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type random_seq_type
private

integer :: mti
integer(i8) :: mt(624)
real(r8) :: lastg
logical :: gset

end type random_seq_type

This type is used to uniquely identify a sequence. Keeps the state history of the linear congruential number generator.
In this implementation it is based on the Mersenne Twister from the GNU Scientific Library.

724 Chapter 6. References

DART, Release 9.10.3

call init_random_seq(r, [, seed])

type(random_seq_type), intent(inout) :: r
integer, optional, intent(in) :: seed

Initializes a random sequence for use. This must be called before any random numbers can be generated from this
sequence. Any number of independent, reproducible random sequences can be generated by having multiple instances
of a random_seq_type. A specified integer seed, optional, can produce a specific ‘random’ sequence.

r A random sequence type to be initialized.
seed A seed for a random sequence.

var = random_uniform(r)

real(r8) :: random_uniform
type(random_seq_type), intent(inout) :: r

Returns a random draw from a uniform distribution on interval [0,1].

random_uniform A random draw from a Uniform[0,1] distribution.
r An initialized random sequence type.

var = random_gaussian(r, mean, standard_deviation)

real(r8) :: random_gaussian
type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: mean
real(r8), intent(in) :: standard_deviation

Returns a random draw from a Gaussian distribution with the specified mean and standard deviation.

See this Wikipedia page for more explanation about this function.

random_gaussian A random draw from a gaussian distribution.
r An initialized random sequence type.
mean Mean of the gaussian.
standard_deviation Standard deviation of the gaussian.

call several_random_gaussians(r, mean, standard_deviation, n, rnum)

6.189. MODULE random_seq_mod 725

https://en.wikipedia.org/wiki/Normal_distribution

DART, Release 9.10.3

type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: mean
real(r8), intent(in) :: standard_deviation
integer, intent(in) :: n
real(r8), dimension(:), intent(out) :: rnum

Returns n random samples from a gaussian distribution with the specified mean and standard deviation. Array rnum
must be at least size n.

r An initialized random sequence type.
mean Mean of the Gaussian to be sampled.
standard_deviation Standard deviation of the Gaussian.
n Number of samples to return
rnum The random samples of the Gaussian.

call twod_gaussians(r, mean, cov, rnum)

type(random_seq_type), intent(inout) :: r
real(r8), dimension(2), intent(in) :: mean
real(r8), dimension(2,2), intent(in) :: cov
real(r8), dimension(2), intent(out) :: rnum

Returns a random draw from a 2D gaussian distribution with the specified mean and covariance.

The algorithm used is from Knuth, exercise 13, section 3.4.1. See this Wikipedia page for more explanation about this
function.

r An initialized random sequence type.
mean Mean of 2D gaussian distribution.
cov Covariance of 2D gaussian.
rnum Returned random draw from gaussian.

var = random_gamma(r, rshape, rscale)

real(r8) :: random_gamma
type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: rshape
real(r8), intent(in) :: rscale

Returns a random draw from a Gamma distribution with specified rshape and rscale. Both must be positive.

Note that there are three different parameterizations in common use:

1. With shape parameter (kappa) and scale parameter (theta).

2. With shape parameter (alpha) and rate parameter (beta). Alpha is the same as kappa, and beta is an inverse
scale parameter so = 1/.

726 Chapter 6. References

https://en.wikipedia.org/wiki/Multivariate_normal_distribution

DART, Release 9.10.3

3. With shape parameter (kappa) and mean parameter (mu). = /, so = /.

This form uses the first parameterization, shape () and scale (). The distribution mean is and the variance is (2). This
routine is based on the Gamma(a,b) generator from the GNU Scientific library. See this Wikipedia page for more
explanation of the various parameterizations of this function.

random_gamma A random draw from a gamma distribution.
r An initialized random sequence type.
rshape Shape parameter. Often written as either alpha or kappa.
rscale Scale parameter. Often written as theta. If you have a rate parameter (often beta) pass in (1/rate)

for scale.

var = random_inverse_gamma(r, rshape, rscale)

real(r8) :: random_inverse_gamma
type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: rshape
real(r8), intent(in) :: rscale

Returns a random draw from an inverse Gamma distribution with the specified shape and scale. Both must be
positive. If you have ‘rate’ instead of ‘scale’ pass in (1/rate) for scale.

See this Wikipedia page for more explanation about this function.

random_inverse_gammaA random draw from an inverse gamma distribution.
r An initialized random sequence type.
rshape Shape parameter. Often written as either alpha or kappa.
rscale Scale parameter. Often written as theta. If you have a rate parameter (often beta) pass

in (1/rate) for scale.

var = random_exponential(r, rate)

real(r8) :: random_exponential
type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: rate

Returns a random draw from an exponential distribution with the specified rate. If you have a scale parameter (which
is the same as the mean, the standard deviation, and the survival parameter), specify (1/scale) for rate.

See this Wikipedia page for more explanation about this function.

random_exponentialA random draw from an exponential distribution.
r An initialized random sequence type.
rate Rate parameter. Often written as lambda. If you have a scale parameter pass in (1/scale)

for rate.

6.189. MODULE random_seq_mod 727

https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Inverse-gamma_distribution
https://en.wikipedia.org/wiki/Exponential_distribution

DART, Release 9.10.3

6.189.4 Namelist

This module has no namelist input.

6.189.5 Files

• NONE

6.189.6 References

1. Knuth, Vol 2.

2. GNU Scientific Library Reference Manual

6.189.7 Private components

init_ran

ran_unif

ran_gauss

ran_gamma

call init_ran(s, seed)

type(random_seq_type), intent(out) :: s
integer, intent(in) :: seed

Initializes a random sequence with an integer. Any sequence initialized with the same integer will produce the same
sequence of pseudo-random numbers.

s A random sequence to be initialized
seed An integer seed to start the sequence.

var = ran_unif(s)

728 Chapter 6. References

http://www.gnu.org/software/gsl/manual/html_node/Random-Number-Generation.html

DART, Release 9.10.3

real(r8) :: ran_unif
type(random_seq_type), intent(inout) :: s

Generate the next uniform [0, 1] random number in the sequence.

ran_unif Next uniformly distributed [0, 1] number in sequence.
s A random sequence.

var = ran_gauss(s)

real(r8) :: ran_gauss
type(random_seq_type), intent(inout) :: s

Generates a random draw from a standard gaussian.

ran_gauss A random draw from a standard gaussian.
s A random sequence.

var = ran_gamma(r, rshape, rscale)

real(r8) :: ran_gamma
type(random_seq_type), intent(inout) :: r
real(r8), intent(in) :: rshape
real(r8), intent(in) :: rscale

Generates a random draw from a Gamma distribution. See notes in the random_gamma() section about (alpha,beta)
vs (kappa,theta) vs (kappa,mu) parameterizations. This is transcribed from C code in the GNU Scientific library and
keeps the (shape,scale) interface.

ran_gamma A random draw from a Gamma distribution.
r A random sequence.
rshape Shape parameter.
rscale Scale parameter. (This is the inverse of a rate parameter.)

6.189. MODULE random_seq_mod 729

DART, Release 9.10.3

6.190 MODULE mpi_utilities_mod

6.190.1 Overview

This module provides subroutines which utilize the MPI (Message Passing Interface) parallel communications library.
DART does not require MPI; to compile without using MPI substitute the null_mpi_utilities_mod.f90 file
for this one. That file contains the same module name and public entry points as this one but implements a serial
version of all the routines. However, to be able to run most larger models with a reasonable number of ensemble
members (e.g. 30-100) MPI will be needed.

The main DART executable filter can be compiled and run as either a serial program or a parallel program. Most
work directories in the DART distribution source tree have a quickbuild.csh script which can take a -mpi or a
-nompi flag. This flag changes the list of files to be compiled to use either the module which uses the MPI library or
the one which makes no MPI calls. No source code changes are required to switch between the two options.

A parallel program generally runs faster and requires less memory per CPU than the serial code. It requires an
implementation of the MPI library and run-time system to pass data between different nodes on a parallel cluster
or supercomputer. There is a lot of information about MPI on the web. See here for an intro to MPI and parallel
programming, and here for downloads and technical help.

Most of the larger models need to be compiled and run with MPI because of limitations on total memory accessible
by a single executable. The smaller models (e.g. any of the Lorenz models) can generally be run as a serial program
without needing MPI.

The MPI distributions usually include a module named mpi which defines the public entry points and the types
and names of the routine arguments. However there are build-time options and older distributions which only sup-
ply an mpi.h include file. If you get a compile-time error about the mpi module being missing, edit the source
code in mpi_utilities/mpi_utilities_mod.f90 and comment out the use mpi line and comment in the
include 'mpi.h' line. The ‘use’ line must be before the ‘contains’ line, while the ‘include’ line must be after, so
do not move the existing lines. Just comment them in or out depending on which one you need to use.

To preserve backwards compatibility this code does not require a namelist. However there is a namelist defined in
the source file which contains some useful run-time options. To enable it edit the source file in mpi_utilities/
mpi_utilities_mod.f90 and set use_namelist to .TRUE. and recompile. The code will then read the
namelist described below. Messages printed to the nml output log file will confirm whether the defaults are being used
or if the namelist is being read in.

6.190.2 Namelist

The source code defines a namelist, but for backwards compatibility it is not read in unless the source code
in mpi_utilities/mpi_utilities_mod.f90 is edited, the module global variable use_namelist is
changed from .FALSE. to .TRUE., and then all executables are recompiled.

If enabled, this namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with
a slash ‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating
the namelist.

&mpi_utilities_nml
reverse_task_layout = .false.
all_tasks_print = .false.
verbose = .false.
async2_verbose = .false.
async4_verbose = .false.
shell_name = ''
separate_node_sync = .false.

(continues on next page)

730 Chapter 6. References

https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://www.open-mpi.org

DART, Release 9.10.3

(continued from previous page)

create_local_comm = .true.
make_copy_before_sendrecv = .false.

/

Item Type Description
re-
verse_task_layout

log-
ical

The synchronizing mechanism between the job script and the parallel filter in async=4 mode relies
on the script and task 0 running on the same node (in the same memory space if the nodes have
multiple processors). Some MPI implementations (OpenMPI being the most commonly used one)
lay the tasks out so that the last task is on the same node as the script. If the async 4 model advance
never starts but there are no error messages, try setting this to .TRUE. before running. See also the
‘async4_verbose’ flag below.

all_tasks_printlog-
ical

In the parallel filter, informational messages only print from task 0 to avoid N copies of the same
messages. Error messages and warnings print no matter which task they occur in. If this variable is
set to true, even messages will print from all tasks.

ver-
bose

log-
ical

USE WITH CAUTION! This flag enables debugging print messages for every MPI call - sends,
receives, barriers - and is very, very verbose. In most cases the size of the output file will exceed the
filesystem limits or will cause the executable to run so slowly that it will not be useful. However in
small testcases this can be useful to trace problems.

async2_verboselog-
ical

Print out messages about the handshaking between filter and the advance model scripts when run-
ning in async=2 mode. Not anywhere as verbose as the flag above; in most cases the output volume
is reasonable.

async4_verboselog-
ical

Print out messages about the handshaking between filter and the run script when running in async=4
mode. Not anywhere as verbose as the flag above; in most cases the output volume is reasonable.

shell_namechar-
ac-
ter(len=129)

If running on compute nodes which do not have the expected default shell for async=2 or async=4
mode, specify the full pathname of the shell to execute the script. Not normally needed on most
systems we run on. (However, at least one type of Cray system has this need.)

sepa-
rate_node_sync

log-
ical

Not supported yet. Will use files to handshake between the filter executable and the run script in
async=4 mode when the launch script is not running on any of the same nodes as the filter tasks.

cre-
ate_local_comm

log-
ical

The DART MPI routines normally create a separate local MPI communicator instead of using
MPI_COMM_WORLD. This keeps DART communications separate from any other user code.
To use the default world communicator set this to .FALSE. . Normal use should leave this true.

make_copy_before_sendrecvlog-
ical

Workaround for old MPI bug. Should be .false.

6.190. MODULE mpi_utilities_mod 731

DART, Release 9.10.3

6.190.3 Other modules used

types_mod
utilities_mod
time_manager_mod
mpi (or mpif.h if mpi module not available)

6.190.4 Public interfaces

use mpi_utilities_mod, only : initialize_mpi_utilities
finalize_mpi_utilities

task_count

my_task_id

task_sync

block_task

restart_task

array_broadcast

send_to

receive_from

iam_task0

broadcast_send

broadcast_recv

shell_execute

sleep_seconds

sum_across_tasks

get_dart_mpi_comm

exit_all

call initialize_mpi_utilities([progname] [, alternatename])

732 Chapter 6. References

DART, Release 9.10.3

character(len=*), intent(in), optional :: progname
character(len=*), intent(in), optional :: alternatename

Initializes the MPI library, creates a private communicator, stores the total number of tasks and the local task number
for later use, and registers this module. This routine calls initialize_utilities() internally before returning,
so the calling program need only call this one routine to initialize the DART internals.

On some implementations of MPI (in particular some variants of MPICH) it is best to initialize MPI before any I/O is
done from any of the parallel tasks, so this routine should be called as close to the process startup as possible.

It is not an error to try to initialize the MPI library more than once. It is still necessary to call this routine even if
the application itself has already initialized the MPI library. Thise routine creates a private communicator so internal
communications are shielded from any other communication called outside the DART libraries.

It is an error to call any of the other routines in this file before calling this routine.

progname If given, written to the log file to document which program is being started.
alternatename If given, use this name as the log file instead of the default dart_log.out.

call finalize_mpi_utilities([callfinalize] [, async])

logical, intent(in), optional :: callfinalize
integer, intent(in), optional :: async

Frees the local communicator, and shuts down the MPI library unless callfinalize is specified and is .FALSE..
On some hardware platforms it is problematic to try to call print or write from the parallel tasks after finalize has
been executed, so this should only be called immediately before the process is ready to exit. This routine does an
MPI_Barrier() call before calling MPI_Finalize() to ensure all tasks are finished writing.

If the application itself is using MPI the callfinalize argument can be used to defer closing the MPI library until
the application does it itself. This routine does close the DART log file and releases the local communicator even if not
calling MPI_Finalize, so no other DART routines which might generate output can be used after calling this routine.

It is an error to call any of the other routines in this file after calling this routine.

callfinalizeIf false, do not call the MPI_Finalize() routine.
async If the model advance mode (selected by the async namelist value in the filter_nml section) requires any

synchronization or actions at shutdown, this is done. Currently async=4 requires an additional set of
actions at shutdown time.

var = task_count()

integer :: task_count

Returns the total number of MPI tasks this job was started with. Note that MPI task numbers start at 0, but this is a
count. So a 4-task job will return 4 here, but the actual task numbers will be from 0 to 3.

6.190. MODULE mpi_utilities_mod 733

DART, Release 9.10.3

var Total number of MPI tasks in this job.

var = my_task_id()

integer :: my_task_id

Returns the local MPI task number. This is one of the routines in which all tasks can make the same function call
but each returns a different value. The return can be useful in creating unique filenames or otherwise distinguishing
resources which are not shared amongst tasks. MPI task numbers start at 0, so valid task id numbers for a 4-task job
will be 0 to 3.

var My unique MPI task id number.

call task_sync()

Synchronize tasks. This call does not return until all tasks have called this routine. This ensures all tasks have reached
the same place in the code before proceeding. All tasks must make this call or the program will hang.

call send_to(dest_id, srcarray [, time])

integer, intent(in) :: dest_id
real(r8), dimension(:), intent(in) :: srcarray
type(time_type), optional, intent(in) :: time

Use the MPI library to send a copy of an array of data from one task to another task. The sending task makes this call;
the receiving task must make a corresponding call to receive_from().

If time is specified, it is also sent to the receiving task. The receiving call must match this sending call regarding this
argument; if time is specified here it must also be specified in the receive; if not given here it cannot be given in the
receive.

The current implementation uses MPI_Ssend() which does a synchronous send. That means this routine will not
return until the receiving task has called the receive routine to accept the data. This may be subject to change; MPI
has several other non-blocking options for send and receive.

dest_id The MPI task id of the receiver.
srcarray The data to be copied to the receiver.
time If specified, send the time as well.

The send and receive subroutines must be used with care. These calls must be used in pairs; the sending task and the
receiving task must make corresponding calls or the tasks will hang. Calling them with different array sizes will result

734 Chapter 6. References

DART, Release 9.10.3

in either a run-time error or a core dump. The optional time argument must either be given in both calls or in neither
or one of the tasks will hang. (Executive summary: There are lots of ways to go wrong here.)

call receive_from(src_id, destarray [, time])

integer, intent(in) :: src_id
real(r8), dimension(:), intent(out) :: destarray
type(time_type), intent(out), optional :: time

Use the MPI library to receive a copy of an array of data from another task. The receiving task makes this call; the
sending task must make a corresponding call to send_to(). Unpaired calls to these routines will result in the tasks
hanging.

If time is specified, it is also received from the sending task. The sending call must match this receiving call regarding
this argument; if time is specified here it must also be specified in the send; if not given here it cannot be given in the
send.

The current implementation uses MPI_Recv() which does a synchronous receive. That means this routine will not
return until the data has arrived in this task. This may be subject to change; MPI has several other non-blocking options
for send and receive.

src_id The MPI task id of the sender.
destarray The location where the data from the sender is to be placed.
time If specified, receive the time as well.

See the notes section of send_to().

call exit_all(exit_code)

integer, intent(in) :: exit_code

A replacement for calling the Fortran intrinsic exit. This routine calls MPI_Abort() to kill all MPI tasks associated
with this job. This ensures one task does not exit silently and leave the rest hanging. This is not the same as calling
finalize_mpi_utilities() which waits for the other tasks to finish, flushes all messages, closes log files
cleanly, etc. This call immediately and abruptly halts all tasks associated with this job.

Depending on the MPI implementation and job control system, the exit code may or may not be passed back to the
calling job script.

exit_code A numeric exit code.

This routine is now called from the standard error handler. To avoid circular references this is NOT a module routine.
Programs which are compiled without the mpi code must now compile with the null_mpi_utilities_mod.f90
file to satisfy the call to this routine in the error handler.

6.190. MODULE mpi_utilities_mod 735

DART, Release 9.10.3

call array_broadcast(array, root)

real(r8), dimension(:), intent(inout) :: array
integer, intent(in) :: root

All tasks must make this call together, but the behavior in each task differs depending on whether it is the root or
not. On the task which has a task id equal to root the contents of the array will be sent to all other tasks. On any task
which has a task id not equal to root the array is the location where the data is to be received into. Thus array is
intent(in) on root, and intent(out) on all other tasks.

When this routine returns, all tasks will have the contents of the root array in their own arrays.

array Array containing data to send to all other tasks, or the location in which to receive data.
root Task ID which will be the data source. All others are destinations.

This is another of the routines which must be called by all tasks. The MPI call used here is synchronous, so all tasks
block here until everyone has called this routine.

var = iam_task0()

logical :: iam_task0

Returns .TRUE. if called from the task with MPI task id 0. Returns .FALSE. in all other tasks. It is frequently the
case that some code should execute only on a single task. This allows one to easily write a block surrounded by if
(iam_task0()) then

var Convenience function to easily test and execute code blocks on task 0 only.

call broadcast_send(from, array1 [, array2] [, array3] [, array4] [, array5] [, scalar1] [, scalar2] [, scalar3] [,
scalar4] [, scalar5])

integer, intent(in) :: from
real(r8), dimension(:), intent(inout) :: array1
real(r8), dimension(:), intent(inout), optional :: array2
real(r8), dimension(:), intent(inout), optional :: array3
real(r8), dimension(:), intent(inout), optional :: array4
real(r8), dimension(:), intent(inout), optional :: array5
real(r8), intent(inout), optional :: scalar1
real(r8), intent(inout), optional :: scalar2
real(r8), intent(inout), optional :: scalar3
real(r8), intent(inout), optional :: scalar4
real(r8), intent(inout), optional :: scalar5

Cover routine for array_broadcast(). This call must be matched with the companion call
broadcast_recv(). This routine should only be called on the task which is the root of the broadcast; it will
be the data source. All other tasks must call broadcast_recv(). This routine sends up to 5 data arrays and 5
scalars in a single call. A common pattern in the DART filter code is sending 2 arrays, but other combinations exist.

736 Chapter 6. References

DART, Release 9.10.3

This routine ensures that from is the same as the current task ID. The arguments to this call must be matched exactly
in number and type with the companion call to broadcast_recv() or an error (or hang) will occur.

In reality the data here are intent(in) only but this routine will be calling array_broadcast() internally and
so must be intent(inout) to match.

from Current task ID; the root task for the data broadcast.
array1 First data array to be broadcast.
array2 If given, second data array to be broadcast.
array3 If given, third data array to be broadcast.
array4 If given, fourth data array to be broadcast.
array5 If given, fifth data array to be broadcast.
scalar1 If given, first data scalar to be broadcast.
scalar2 If given, second data scalar to be broadcast.
scalar3 If given, third data scalar to be broadcast.
scalar4 If given, fourth data scalar to be broadcast.
scalar5 If given, fifth data scalar to be broadcast.

This is another of the routines which must be called consistently; only one task makes this call and all other tasks call
the companion broadcast_recv routine. The MPI call used here is synchronous, so all tasks block until everyone
has called one of these two routines.

call broadcast_recv(from, array1 [, array2] [, array3] [, array4] [, array5] [, scalar1] [, scalar2] [, scalar3] [,
scalar4] [, scalar5])

integer, intent(in) :: from
real(r8), dimension(:), intent(inout) :: array1
real(r8), dimension(:), intent(inout), optional :: array2
real(r8), dimension(:), intent(inout), optional :: array3
real(r8), dimension(:), intent(inout), optional :: array4
real(r8), dimension(:), intent(inout), optional :: array5
real(r8), intent(inout), optional :: scalar1
real(r8), intent(inout), optional :: scalar2
real(r8), intent(inout), optional :: scalar3
real(r8), intent(inout), optional :: scalar4
real(r8), intent(inout), optional :: scalar5

Cover routine for array_broadcast(). This call must be matched with the companion call
broadcast_send(). This routine must be called on all tasks which are not the root of the broadcast; the arguments
specify the location in which to receive data from the root. (The root task should call broadcast_send().) This
routine receives up to 5 data arrays and 5 scalars in a single call. A common pattern in the DART filter code is receiv-
ing 2 arrays, but other combinations exist. This routine ensures that from is not the same as the current task ID. The
arguments to this call must be matched exactly in number and type with the companion call to broadcast_send()
or an error (or hang) will occur.

In reality the data arrays here are intent(out) only but this routine will be calling array_broadcast()
internally and so must be intent(inout) to match.

6.190. MODULE mpi_utilities_mod 737

DART, Release 9.10.3

from The task ID for the data broadcast source.
array1 First array location to receive data into.
array2 If given, second data array to receive data into.
array3 If given, third data array to receive data into.
array4 If given, fourth data array to receive data into.
array5 If given, fifth data array to receive data into.
scalar1 If given, first data scalar to receive data into.
scalar2 If given, second data scalar to receive data into.
scalar3 If given, third data scalar to receive data into.
scalar4 If given, fourth data scalar to receive data into.
scalar5 If given, fifth data scalar to receive data into.

This is another of the routines which must be called consistently; all tasks but one make this call and exactly one other
task calls the companion broadcast_send routine. The MPI call used here is synchronous, so all tasks block until
everyone has called one of these two routines.

call sum_across_tasks(addend, sum)

integer, intent(in) :: addend
integer, intent(out) :: sum

All tasks call this routine, each with their own different addend. The returned value in sum is the total of the values
summed across all tasks, and is the same for each task.

addend Single input value per task to be summed up.
sum The sum.

This is another of those calls which must be made from each task, and the calls block until this is so.

call block_task()

Create a named pipe (fifo) and read from it to block the process in such a way that it consumes no CPU time. Beware
that once you put yourself to sleep you cannot wake yourself up. Some other MPI program must call restart_task() on
the same set of processors the original program was distributed over.

Even though fifos appear to be files, in reality they are implemented in the kernel. The write into the fifo must be
executed on the same node as the read is pending on. See the man pages for the mkfifo(1) command for more details.

call restart_task()

738 Chapter 6. References

DART, Release 9.10.3

Write into the pipe to restart the reading task. Note that this must be an entirely separate executable from the one which
called block_task(), because it is asleep like Sleeping Beauty and cannot wake itself. See filter and wakeup_filter for
examples of a program pair which uses these calls in async=4 mode.

Even though fifos appear to be files, in reality they are implemented in the kernel. The write into the fifo must be
executed on the same node as the read is pending on. See the man pages for the mkfifo(1) command for more details.

call finished_task(async)

integer, intent(in) :: async

For async=4 and task id = 0, write into the main filter-to-script fifo to tell the run script that filter is exiting. Does
nothing else otherwise.

Even though fifos appear to be files, in reality they are implemented in the kernel. The write into the fifo must be
executed on the same node as the read is pending on. See the man pages for the mkfifo(1) command for more details.

rc = shell_execute()

integer :: shell_execute
character(len=*), intent(in) :: execute_string
logical, intent(in), optional :: serialize

Wrapper routine around the system() library function to execute shell level commands from inside the Fortran program.
Will wait for the command to execute and will return the error code. 0 means ok, any other number indicates error.

rc Return code from the shell exit after the command has been executed.
execute_stringCommand to be executed by the shell.
serializeIf specified and if .TRUE. run the command from each PE in turn, waiting for each to complete before

beginning the next. The default is .FALSE. and does not require that all tasks call this routine. If given
and .TRUE. then all tasks must make this call.

call sleep_seconds(naplength)

real(r8), intent(in) :: naplength

Wrapper routine for the sleep command. Argument is a real in seconds. Some systems have different lower resolutions
for the minimum time it will sleep. This routine can round up to even seconds if a smaller than 1.0 time is given.

naplength Number of seconds to sleep as a real value.

The amount of time this routine will sleep is not precise and might be in units of whole seconds on some platforms.

6.190. MODULE mpi_utilities_mod 739

DART, Release 9.10.3

comm = get_dart_mpi_comm()

integer :: get_dart_mpi_comm

This code creates a private communicator for DART MPI calls, in case other code in the executable is using the world
communicator. This routine returns the private communicator. If it is called before the internal setup work is completed
it returns MPI_COMM_WORLD. If it is called before MPI is initialized, it returns 0.

comm The private DART communicator.

6.190.5 Files

• mpi module or

• mpif.h

Depending on the implementation of MPI, the library routines are either defined in an include file (mpif.h) or in a
proper Fortran 90 module (use mpi). If it is available the module is preferred; it allows for better argument checking
and optional arguments support in the MPI library calls.

6.190.6 References

• MPI: The Complete Reference; Snir, Otto, Huss-Lederman, Walker, Dongarra; MIT Press, 1996, ISBN 0-262-
69184-1

• http://www-unix.mcs.anl.gov/mpi/

6.190.7 Private components

N/A

6.191 MODULE time_manager_mod

6.191.1 Overview

Provides a set of routines to manipulate both time and calendars of various types.
Time intervals are stored and defined in terms of integer number of days and integer seconds. The minimum time
resolution is 1 second. Mathematical operations (e.g. addition, subtraction, multiplication) are defined on these
intervals. Seconds which roll over 86400 (the number of seconds in a day) are converted into days.
Calendars interpret time intervals in terms of years, months, days. Various calendars commonly in use in the
scientific community are supported.

740 Chapter 6. References

http://www-unix.mcs.anl.gov/mpi/

DART, Release 9.10.3

6.191.2 Other modules used

types_mod
utilities_mod

6.191.3 Public interfaces

use time_manager_mod, only : time_type
operator(+)
operator(-)
operator(*)
operator(/)
operator(>)
operator(>=)
operator(==)
operator(/=)
operator(<)
operator(<=)
operator(//)
set_time
set_time_missing
increment_time
decrement_time
get_time
interval_alarm
repeat_alarm
THIRTY_DAY_MONTHS
JULIAN
GREGORIAN
NOLEAP
NO_CALENDAR
GREGORIAN_MARS
set_calendar_type
get_calendar_type
get_calendar_string
set_date
get_date
increment_date
decrement_date
days_in_month
leap_year
length_of_year
days_in_year
month_name
julian_day
time_manager_init
print_time
print_date
write_time

continues on next page

6.191. MODULE time_manager_mod 741

DART, Release 9.10.3

Table 7 – continued from previous page
read_time
interactive_time

var = set_time(seconds [, days])

type(time_type) :: set_time
integer, intent(in) :: seconds
integer, optional, intent(in) :: days

Fills a time type. If seconds are > 86400, they are converted into the appropriate number of days. Note that seconds
are specified first.

seconds Number of seconds. If larger than 86400, they are converted into the appropriate number of days.
days Number of days. Default is 0.

var = set_time_missing()

type(time_type) :: set_time_missing

Set a time type to a missing value. The resulting time value will cause an error if used for an arithmetic operation or
if get_time() is called.

var = increment_time(time, seconds [, days])

type(time_type) :: increment_time
type(time_type), intent(in) :: time
integer, intent(in) :: seconds
integer, optional, intent(in) :: days

Adds the specified number of seconds and optionally, days, to the given time and returns the new time. Increments
cannot be negative (see decrement_time below).

time time value to be incremented.
seconds number of seconds to add to given time.
days optionally a number of days to add to the given time.

var = decrement_time(time, seconds [, days])

742 Chapter 6. References

DART, Release 9.10.3

type(time_type) :: decrement_time
type(time_type), intent(in) :: time
integer, intent(in) :: seconds
integer, intent(in), optional :: days

Subtract the specified number of seconds and optionally, days, to the given time and returns the new time. Decrements
cannot be negative (see increment_time above).

time time value to be decremented.
seconds number of seconds to subtract from the given time.
days optionally a number of days to subtract from the given time.

var = interval_alarm(time, time_interval, alarm, alarm_interval)

logical :: interval_alarm
type(time_type), intent(in) :: time
type(time_type), intent(in) :: time_interval
type(time_type), intent(inout) :: alarm
type(time_type), intent(in) :: alarm_interval

Supports a commonly used type of test on times for models. Given the current time, and a time for an alarm, determines
if this is the closest time to the alarm time given a time step of time_interval. If this is the closest time (alarm - time
<= time_interval/2), the function returns true and the alarm is incremented by the alarm_interval. Watch for problems
if the new alarm time is less than time + time_interval.

time Current time.
time_interval Bin size for determining if alarm time is close enough to now.
alarm When alarm next goes off next. Updated by this routine.
alarm_interval How often alarm goes off.

var = repeat_alarm(time, alarm_frequency, alarm_length)

type(time_type) :: repeat_alarm
type(time_type), intent(in) :: time
type(time_type), intent(in) :: alarm_frequency
type(time_type), intent(in) :: alarm_length

Repeat_alarm supports an alarm that goes off with alarm_frequency and lasts for alarm_length. If the nearest oc-
curence of an alarm time is less than half an alarm_length from the input time, repeat_alarm is true. For instance, if
the alarm_frequency is 1 day, and the alarm_length is 2 hours, then repeat_alarm is true from time 2300 on day n to
time 0100 on day n + 1 for all n.

time Current time.
alarm_frequency How often the alarm goes off.
alarm_length How long the alarm is true.

6.191. MODULE time_manager_mod 743

DART, Release 9.10.3

var = get_calendar_type()

integer :: get_calendar_type

Returns default calendar type for mapping from time to date. Calendar types are public integer parameters that define
various calendars. See elsewhere in this file for the list.

var = set_date(year, month, day [, hours, minutes, seconds])

type(time_type) :: set_date
integer, intent(in) :: year
integer, intent(in) :: month
integer, intent(in) :: day
integer, intent(in), optional :: hours
integer, intent(in), optional :: minutes
integer, intent(in), optional :: seconds

Given a date interpreted using the current calendar type, compute the corresponding time.

year Integer year.
month Integer month number.
day Integer day number.
hours Integer hour. Default is 0.
minutes Integer minutes. Default is 0.
seconds Integer seconds. Default is 0.

var = increment_date(time [, years, months, days, hours, minutes, seconds])

type(time_type) :: increment_date
type(time_type), intent(in) :: time
integer, intent(in), optional :: years
integer, intent(in), optional :: months
integer, intent(in), optional :: days
integer, intent(in), optional :: hours
integer, intent(in), optional :: minutes
integer, intent(in), optional :: seconds

Given a time and some date increment, compute a new time. The interpretation of the date depends on the currently
selected calendar type.

744 Chapter 6. References

DART, Release 9.10.3

time Current time.
year Integer years to add. Default is 0.
month Integer months to add. Default is 0.
day Integer days to add. Default is 0.
hours Integer hours to add. Default is 0.
minutes Integer minutes to add. Default is 0.
seconds Integer seconds to add. Default is 0.

var = decrement_date(time [, years, months, days, hours, minutes, seconds])

type(time_type) :: decrement_date
type(time_type), intent(in) :: time
integer, intent(in), optional :: years
integer, intent(in), optional :: months
integer, intent(in), optional :: days
integer, intent(in), optional :: hours
integer, intent(in), optional :: minutes
integer, intent(in), optional :: seconds

Given a time and some date decrement, compute a new time. The interpretation of the date depends on the currently
selected calendar type.

time Current time.
year Integer years to subtract. Default is 0.
month Integer months to subtract. Default is 0.
day Integer days to subtract. Default is 0.
hours Integer hours to subtract. Default is 0.
minutes Integer minutes to subtract. Default is 0.
seconds Integer seconds to subtract. Default is 0.

var = days_in_month(time)

integer :: days_in_month
type(time_type), intent(in) :: time

Given a time, determine the month based on the currently selected calendar type and return the numbers of days in
that month.

time Current time.

var = leap_year(time)

6.191. MODULE time_manager_mod 745

DART, Release 9.10.3

logical :: leap_year
type(time_type),intent(in) :: time

Given a time, determine if the current year is a leap year in the currently selected calendar type.

time Current time.

var = length_of_year()

integer :: length_of_year

For the currently selected calendar type, return the number of days in a year if that value is fixed (e.g. there are not
leap years). For other calendar types, see days_in_year() which takes a time argument to determine the current year.

var = days_in_year(time)

integer :: days_in_year
type(time_type), intent(in) :: time

Given a time, determine the year based on the currently selected calendar type and return the numbers of days in that
year.

time Current time.

var = month_name(n)

character(len=9) :: month_name
integer, intent(in) :: n

Return a character string containing the month name corresponding to the given month number.

n Month number. Must be between 1 and 12, inclusive.

var = julian_day(year, month, day)

746 Chapter 6. References

DART, Release 9.10.3

integer :: julian_day
integer, intent(in) :: year
integer, intent(in) :: month
integer, intent(in) :: day

Given a date in year/month/day format, compute the day number from the beginning of the year. The currently selected
calendar type must be GREGORIAN.

year Year number in the Gregorian calendar.
month Month number in the Gregorian calendar.
day Day of month in the Gregorian calendar.

var = read_time(file_unit [, form, ios_out])

type(time_type) :: read_time
integer, intent(in) :: file_unit
character(len=*), intent(in), optional :: form
integer, intent(out), optional :: ios_out

Read a time from the given file unit number. The unit must already be open. The default format is ascii/formatted. If
an error is encountered and ios_out is specified, the error status will be returned to the caller; otherwise the error is
fatal.

file_unit Integer file unit number of an already open file.
form Format to read the time. Options are ‘formatted’ or ‘unformatted’. Default is ‘formatted’.
ios_out On error, if specified, the error status code is returned here. If not specified, an error calls the standard

error_handler and exits.

call get_time(time, seconds [, days])

type(time_type), intent(in) :: time
integer, intent(out) :: seconds
integer, intent(out), optional :: days

Returns days and seconds (< 86400) corresponding to a time. If the optional ‘days’ argument is not given, the days
are converted to seconds and the total time is returned as seconds. Note that seconds preceeds days in the argument
list.

time Time to convert into seconds and days.
seconds If days is specified, number of seconds in the current day. Otherwise, total number of seconds in time.
days If specified, number of days in time.

6.191. MODULE time_manager_mod 747

DART, Release 9.10.3

call set_calendar_type(mytype) or call set_calendar_type(calstring)

integer, intent(in) :: mytype
or

character(len=*), intent(in) :: calstring

Selects the current calendar type, for converting between time and year/month/day. The argument can either be one
of the predefined calendar integer parameter types (see elsewhere in this file for the list of types), or a string which
matches the name of the integer parameters. The string interface is especially suitable for namelist use.

mytype Integer parameter to select the calendar type.

or

calstring Character string to select the calendar type. Valid strings match the names of the integer parame-
ters.

call get_calendar_string(mystring)

character(len=*), intent(out) :: mystring

Return the character string corresponding to the currently selected calendar type.

mystring Character string corresponding to the current calendar type.

call get_date(time, year, month, day, hour, minute, second)

type(time_type), intent(in) :: time
integer, intent(out) :: year
integer, intent(out) :: month
integer, intent(out) :: day
integer, intent(out) :: hour
integer, intent(out) :: minute
integer, intent(out) :: second

Given a time, compute the corresponding date given the currently selected calendar type.

time Input time.
year Corresponding calendar year.
month Corresponding calendar month.
day Corresponding calendar day.
hour Corresponding hour.
minute Corresponding minute.
second Corresponding second.

748 Chapter 6. References

DART, Release 9.10.3

call time_manager_init()

Initializes any internal data needed by the time manager code. Does not need to be called before using any of the time
manager routines; it will be called internally before executing any of the other routines.

call print_time(time [, str, iunit])

type(time_type), intent(in) :: time
character(len=*), intent(in), optional :: str
integer, intent(in), optional :: iunit

Print the time as days and seconds. If the optional str argument is specified, print that string as a label. If iunit is
specified, write output to that unit; otherwise write to standard output/terminal.

time Time to be printed as days/seconds.
str String label to print before days/seconds. Default: ‘TIME: ‘.
iunit Unit number to write output on. Default is standard output/terminal (unit 6).

call print_date(time [, str, iunit])

type(time_type), intent(in) :: time
character(len=*), intent(in), optional :: str
integer, intent(in), optional :: iunit

Print the time as year/month/day/hour/minute/second, as computed from the currently selected calendar type. If the
optional str argument is specified, print that string as a label. If iunit is specified, write output to that unit; otherwise
write to standard output/terminal.

time Time to be printed as a calendar date/time.
str String label to print before date. Default: ‘DATE: ‘.
iunit Unit number to write output on. Default is standard output/terminal (unit 6).

call write_time(file_unit, time [, form, ios_out])

integer, intent(in) :: file_unit
type(time_type), intent(in) :: time
character(len=*), intent(in), optional :: form
integer, intent(out), optional :: ios_out

6.191. MODULE time_manager_mod 749

DART, Release 9.10.3

Write a time to an already open file unit. The optional ‘form’ argument controls whether it is formatted or unformatted.
On error, the optional ‘ios_out’ argument returns the error code; otherwise a fatal error is triggered.

file_unitInteger unit number for an already open file.
time Time to write to the file.
form String format specifier; either ‘unformatted’ or ‘formatted’. Defaults to ‘formatted’.
ios_out If specified, on error the i/o status error code is returned here. Otherwise, the standard error handler

is called and the program exits.

call interactive_time(time)

type(time_type), intent(inout) :: time

Prompt the user for a time as a calendar date, based on the currently selected calendar type. Writes prompt to standard
output and reads from standard input.

time Time type to be returned.

type time_type
private
integer :: seconds
integer :: days

end type time_type

This type is used to define a time interval.

integer :: NO_CALENDAR
integer :: GREGORIAN
integer :: GREGORIAN_MARS
integer :: JULIAN
integer :: THIRTY_DAY_MONTHS
integer :: NOLEAP

The public integer parameters which define different calendar types. The same names defined as strings can be used
to set the calendar type.

750 Chapter 6. References

DART, Release 9.10.3

operator(+)
operator(-)
operator(*)
operator(/)
operator(>)
operator(>=)
operator(==)
operator(/=)
operator(<)
operator(<=)
operator(//)

Arithmetic operations are defined for time types, so expressions like

t3 = t1 + t2

can be constructed. To use these operators, they must be listed on the module use statement in the form specified
above.
Multiplication is one time and one scalar.
Division with a single slash is integer, and returns the largest integer for which time1 >= time2 * n. Division with a
double slash returns a double precision quotient of the two times.

6.191.4 Namelist

No namelist is currently defined for the time manager code.

6.191.5 Files

• none

6.191.6 References

1. none

6.191.7 Private components

N/A

6.191. MODULE time_manager_mod 751

DART, Release 9.10.3

6.192 MODULE utilities_mod

6.192.1 Overview

Provides a number of tools used by most DART modules including tools for file IO, diagnostic tools for registering
modules and recording namelist arguments, and an error handler.

6.192.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&utilities_nml
TERMLEVEL = 2,
logfilename = 'dart_log.out',
nmlfilename = 'dart_log.nml',
module_details = .true.,
print_debug = .false.,
write_nml = 'file'

/

The namelist controls how the logging, namelist, messages, and general utility routines behave.

Item Type Description
TERMLEVELin-

te-
ger

Level at which calls to error manager terminate program. The default setting is warnings and errors
terminate the program. Setting this to 2 (E_ERR) means only errors terminate. Setting this to 3
means even errors do not cause an exit (which is not a good idea).

log-
file-
name

char-
ac-
ter(len=256)

File to which the log messages are written.

nml-
file-
name

char-
ac-
ter(len=256)

File to which the namelist output is written. Can be the same name as the logfile.

mod-
ule_details

log-
ical

Each source code module can write out the repository version number and filename to the logfile.
Verbose, but useful for knowing what version of the code was used during the run.

print_debuglog-
ical

Setting this to .true. causes additional debug messages to print. These can be very verbose and by
default are turned off.

write_nmlchar-
ac-
ter(len=32)

String which controls where to write the namelist values that are being used for this execution. Valid
values are: ‘none’, ‘file’, ‘terminal’, ‘both’. ‘none’ turns off this write. ‘file’ writes a copy only to
the nmlfilename. Writes are always in append mode, so the most recent information will be at
the end of an existing file. ‘terminal’ will write to the job’s standard output. ‘both’ will write both to
the nml file and the standard output unit.

752 Chapter 6. References

DART, Release 9.10.3

6.192.3 Other modules used

types_mod
netCDF

6.192. MODULE utilities_mod 753

DART, Release 9.10.3

754 Chapter 6. References

DART, Release 9.10.3

6.192.4 Public interfaces

use utilities, only : file_exist
get_unit

open_file

close_file

timestamp

register_module

error_handler

to_upper

nc_check

logfileunit

nmlfileunit

initialize_utilities

finalize_utilities

dump_unit_attributes

find_namelist_in_file

check_namelist_read

find_textfile_dims

file_to_text

is_longitude_between

get_next_filename

set_filename_list

set_tasknum

set_output

do_output

E_DBG, DEBUG

E_MSG, MESSAGE

E_WARN, WARNING

E_ERR, FATAL
6.192. MODULE utilities_mod 755

DART, Release 9.10.3

A note about documentation style. Optional arguments are enclosed in brackets [like this].

var = file_exist(file_name)

logical :: file_exist
character(len=*), intent(in) :: file_name

Returns true if file_name exists in the working directory, else false.

var True if file_name exists in working directory.
file_name Name of file to look for.

var = get_unit()

integer :: get_unit

Returns an unused unit number for IO.

var An unused unit number.

var = open_file(fname [, form, action])

integer :: open_file
character(len=*), intent(in) :: fname
character(len=*), optional, intent(in) :: form
character(len=*), optional, intent(in) :: action

Returns a unit number that is opened to the file fname. If form is not present or if form is “formatted” or “FORMAT-
TED”, file is opened for formatted IO. Otherwise, it is unformatted. The action string is the standard action string for
Fortran IO (see F90 language description).

var Unit number opened to file fname.
fname Name of file to be opened.
form Format: ‘formatted’ or ‘FORMATTED’ give formatted, anything else is unformatted. Default is format-

ted.
action Standard fortran string description of requested file open action.

756 Chapter 6. References

DART, Release 9.10.3

call timestamp([string1, string2, string3,] pos)

character(len=*), optional, intent(in) :: string1
character(len=*), optional, intent(in) :: string2
character(len=*), optional, intent(in) :: string3
character(len=*), intent(in) :: pos

Prints the message ‘Time is YYYY MM DD HH MM SS’ to the logfile along with three optional message strings.
If the pos argument is ‘end’, the message printed is ‘Finished. . . at YYYY MM DD HH MM SS’ and the logfile is
closed.

string1 An optional message to be printed.
string2 An optional message to be printed.
string3 An optional message to be printed.
pos If ‘end’ terminates log_file output.

call close_file(iunit)

integer, intent(in) :: iunit

Closes the given unit number. If the unit is not open, nothing happens.

iunit File unit to be closed.

call register_module(src, rev, rdate)

character(len=*), intent(in) :: src
character(len=*), optional, intent(in) :: rev
character(len=*), optional, intent(in) :: rdate

Writes the source name to both the logfileunit and to standard out. The rev and revdate are deprecated as they are
unsupported by git.

src source file name.
rev ignored
rdate ignored

call error_handler(level, routine, text, src, rev, rdate [, aut, text2, text3])

6.192. MODULE utilities_mod 757

DART, Release 9.10.3

integer, intent(in) :: level
character(len=*), intent(in) :: routine
character(len=*), intent(in) :: text
character(len=*), intent(in) :: src
character(len=*), intent(in) :: rev
character(len=*), intent(in) :: rdate
character(len=*), optional, intent(in) :: aut
character(len=*), optional, intent(in) :: text2
character(len=*), optional, intent(in) :: text3

Prints an error message to standard out and to the logfileunit. The message contains the routine name, an error message,
the source file, revision and revision date, and optionally the author. The level of severity is message, debug, warning,
or error. If the level is greater than or equal to the TERMLEVEL (set in the namelist), execution is terminated. The
default TERMLEVEL only stops for ERRORS.

level Error severity (message, debug, warning, error). See below for specific ations.
routine Name of routine generating error.
text Error message.
src Source file containing routine generating message.
rev Revision number of source file.
rdate Revision date of source file.
aut Author of routine.
text2 If specified, the second line of text for the error message.
text3 If specified, the third line of text for the error message.

call find_namelist_in_file(namelist_file_name, nml_name, iunit, [,write_to_logfile_in])

character(len=*), intent(in) :: namelist_file_name
character(len=*), intent(in) :: nml_name
integer, intent(out) :: iunit
logical, optional, intent(in) :: write_to_logfile_in

Opens the file namelist_file_name if it exists on unit iunit. A fatal error occurs if the file does not exist (DART requires
an input.nml to be available, even if it contains no values). Searches through the file for a line containing ONLY the
string &nml_name (for instance &filter_nml if nml_name is “filter_nml”). If this line is found, the file is rewound and
the routine returns. Otherwise, a fatal error message is issued.

namelistName of file assumed to hold the namelist.
nml_nameName of the namelist to be searched for in the file, for instance, filter_nml.
iunit Channel number on which file is opened.
write_to_logfile_inWhen the namelist for the utilities module is read, the logfile has not yet been open because its name is

in the namelist. If errors are found, have to write to standard out. So, when utilities module calls this
internally, this optional argument is set to false. For all other applications, it is normally not used (default
is false).

758 Chapter 6. References

DART, Release 9.10.3

call check_namelist_read(iunit, iostat_in, nml_name, [, write_to_logfile_in])

integer, intent(in) :: iunit
integer, intent(in) :: iostat_in
character(len=*), intent(in) :: nml_name
logical, optional, intent(in) :: write_to_logfile_in

Once a namelist has been read from an opened namelist file, this routine checks for possible errors in the read. If the
namelist read was successful, the file opened on iunit is closed and the routine returns. If iostat is not zero, an attempt
is made to rewind the file on iunit and read the last line that was successfully read. If this can be done, this last line
is printed with the preamble “INVALID NAMELIST ENTRY”. If the attempt to read the line after rewinding fails,
it is assumed that the original read (before the call to this subroutine) failed by reaching the end of the file. An error
message stating that the namelist started but was never terminated is issued.

iunit Channel number on which file is opened.
iostat_inError status return from an attempted read of a namelist from this file.
nml_nameThe name of the namelist that is being read (for instance filter_nml).
write_to_logfile_inWhen the namelist for the utilities module is read, the logfile has not yet been open because its name is

in the namelist. If errors are found, have to write to standard out. So, when utilities module calls this
internally, this optional argument is set to false. For all other applications, it is normally not used (default
is false).

call find_textfile_dims (fname, nlines, linelen)

character(len=*), intent (IN) :: fname
integer, intent (OUT) :: nlines
integer, intent (OUT) :: linelen

Determines the number of lines and maximum line length of an ASCII text file.

fname input, character string file name
nlines output, number of lines in the file
linelen output, length of longest line in the file

call file_to_text (fname, textblock)

character(len=*), intent (IN) :: fname
character(len=*), dimension(:), intent (OUT) :: textblock

Opens the given filename and reads ASCII text lines into a character array.

fname input, character string file name
textblock output, character array of text in the file

6.192. MODULE utilities_mod 759

DART, Release 9.10.3

var = is_longitude_between(lon, minlon, maxlon [, doradians])

real(r8), intent(in) :: lon
real(r8), intent(in) :: minlon
real(r8), intent(in) :: maxlon
logical, intent(in), optional :: doradians
logical :: is_longitude_between

Uniform way to test longitude ranges, in degrees, on a globe. Returns true if lon is between min and max, starting at
min and going EAST until reaching max. Wraps across 0 longitude. If min equals max, all points are inside. Includes
endpoints. If optional arg doradians is true, do computation in radians between 0 and 2*PI instead of default 360.
There is no rejection of input values based on range; they are all converted to a known range by calling modulo() first.

var True if lon is between min and max.
lon Location to test.
minlonMinimum longitude. Region will start here and go east.
maxlonMaximum longitude. Region will end here.
do-
radi-
ans

Optional argument. Default computations are in degrees. If this argument is specified and is .true., do the
computation in radians, and wrap across the globe at 2 * PI. All inputs must then be specified in radians.

var = get_next_filename(listname, lineindex)

character(len=*), intent(in) :: listname
integer, intent(in) :: lineindex
character(len=128) :: get_next_filename

Returns the specified line of a text file, given a filename and a line number. It returns an empty string when the line
number is larger than the number of lines in a file.

Intended as an easy way to process a list of files. Use a command like ‘ls > out’ to create a file containing the list, in
order, of files to be processed. Then call this function with an increasing index number until the return value is empty.

var An ascii string, up to 128 characters long, containing the contents of line lineindex of the input
file.

listname The filename to open and read lines from.
lineindex Integer line number, starting at 1. If larger than the number of lines in the file, the empty string ‘’

will be returned.

var = set_filename_list(name_array, listname, caller_name)

character(len=*), intent(inout) :: name_array
character(len=*), intent(in) :: listname
character(len=*), intent(in) :: caller_name
integer :: var

760 Chapter 6. References

DART, Release 9.10.3

Returns the count of filenames specified. Verifies that one of either the name_array or the listname was specified but
not both. If the input was a listname copy the names into the name_array so when this routine returns all the filenames
are in name_array(). Verifies that no more than the allowed number of names was specified if the input was a listname
file.

var The count of input files specified.
name_array Array of input filename strings. Either this item or the listname must be specified, but not both.
listname The filename to open and read filenames from, one per line. Either this item or the name_array

must be specified but not both.
caller_nameCalling subroutine name, used for error messages.

call to_upper(string)

character(len=*), intent (INOUT) :: string

Converts the character string to UPPERCASE - in place. The input string is modified.

string any character string

call nc_check(istatus, subr_name [, context])

integer, intent(in) :: istatus
character(len=*), intent(in) :: subr_name
character(len=*), optional, intent(in) :: context

Check the return code from a netcdf call. If no error, return without taking any action. If an error is indicated (in the
istatus argument) then call the error handler with the subroutine name and any additional context information (e.g.
which file or which variable was being processed at the time of the error). All errors are currently hardcoded to be
FATAL and this routine will not return.

This routine calls a netCDF library routine to construct the text error message corresponding to the error code in the
first argument. An example use of this routine is:

call nc_check(nf90_create(path = trim(ncFileID%fname), cmode = nf90_share, ncid =
→˓ncFileID%ncid), &

'init_diag_output', 'create '//trim(ncFileID%fname))

istatus The return value from any netCDF call.
subr_name String name of the current subroutine, used in case of error.
context Additional text to be used in the error message, for example to indicate which file or which variable

is being processed.

6.192. MODULE utilities_mod 761

DART, Release 9.10.3

call set_tasknum(tasknum)

integer, intent(in) :: tasknum

Intended to be used in the MPI multi-task case. Sets the local task number, which is then prepended to subsequent
messages.

tasknum Task number returned from MPI_Comm_Rank(). MPI task numbers are 0 based, so for a 4-task job
these numbers are 0-3.

call set_output(doflag)

logical, intent(in) :: doflag

Set the status of output. Can be set on a per-task basis if you are running with multiple tasks. If set to false only
warnings and fatal errors will write to the log. The default in the multi-task case is controlled by the MPI module
initialization code, which sets task 0 to .TRUE. and all other tasks to .FALSE.

doflag Sets, on a per-task basis, whether messages are to be written to the logfile or standard output. Warnings
and errors are always output.

var = do_output()

logical :: do_output

Returns true if this task should write to the log, false otherwise. Set by the set_output() routine. Defaults to true
for the single task case. Can be used in code like so:

if (do_output()) then
write(*,*) 'At this point in the code'

endif

var True if this task should write output.

call initialize_utilities([progname] [, alternatename])

character(len=*), intent(in), optional :: progname
character(len=*), intent(in), optional :: alternatename

Reads the namelist and opens the logfile. Records the values of the namelist and registers this module.

762 Chapter 6. References

DART, Release 9.10.3

prog-
name

If given, use in the timestamp message in the log file to say which program is being started.

alter-
nate-
name

If given, log filename to use instead of the value in the namelist. This permits, for example, different
programs sharing the same input.nml file to have different logs. If not given here and no value is specified
in the namelist, this defaults to dart_log.out

call finalize_utilities()

Closes the logfile; using utilities after this call is a bad idea.

call dump_unit_attributes(iunit)

integer, intent(in) :: iunit

Writes all information about the status of the IO unit to the error handler with error level message.

iunit Unit about which information is requested.

integer :: E_DBG, DEBUG
integer :: E_MSG, MESSAGE
integer :: E_WARN, WARNING
integer :: E_ERR, FATAL

Severity levels to be passed to error handler. Levels are debug, message, warning and fatal. The namelist param-
eter TERMLEVEL can be used to control at which level program termination should occur.

integer :: logfileunit

logfileunit Unit opened to file for diagnostic output.

6.192. MODULE utilities_mod 763

DART, Release 9.10.3

integer :: nmlfileunit

nmlfileunitUnit opened to file for diagnostic output of namelist files. Defaults to same as logfileunit. Provides
the flexibility to log namelists to a separate file, reducing the clutter in the log files and perhaps increasing
readability.

6.192.5 Files

• assim_model_mod.nml in input.nml

• logfile, name specified in namelist

6.192.6 References

• none

6.192.7 Error codes and conditions

Rou-
tine

Message Comment

get_unit No available
units

Unable to open enough IO channels

check_nml_errorwhile read-
ing namelist

Fatal error reading namelist. This could be caused by having an entry in the namelist
input file that is not in the namelist, by having illegal values for namelist variables, or
by a variety of other compiler dependent problems.

find_namelist_in_fileNamelist en-
try &____
must exist in
namelist_nml.

There must be an entry for the required namelist, for instance &filter_nml, in the in-
put.nml namelist file. Even if no values are to be changed from the default, an entry like
&filter_nml followed by a line containing only / is required.

find_namelist_in_fileNamelist input
file: input.nml
must exist

The namelist input file (usually input.nml) must exist.

check_namelist_readINVALID
NAMELIST
ENTRY: ___
in namelist

While reading the namelist, either a bad entry was found or an end of file was encoun-
tered. The most confusing case is when a namelist is being read successfully but is not
appropriately terminated with a /. The line printed out by the error message will be the
start of the next namelist in the input.nml file in this case.

764 Chapter 6. References

DART, Release 9.10.3

6.192.8 Private components

N/A

6.193 MODULE types_mod

6.193.1 Overview

Provides some commonly used mathematical constants, and a set of Fortran integer and real kinds, to be used to select
the right variable size (e.g. 4 bytes, 8 bytes) to match the rest of the DART interfaces. (DART does not depend on
compiler flags to set precision, but explicitly specifies a kind for each variable in the public interfaces.)

6.193.2 Other modules used

none

6.193.3 Public interfaces

This routine provides the following constants, but no routines of any kind.
The constants defined here may or may not be declared the same as constants used in non-DART pieces of code. It
would seem like a good idea to match the DART definition of ‘gas_constant’ to the WRF equivalent if you are going
to be running WRF/DART experiments (for example).

6.193. MODULE types_mod 765

DART, Release 9.10.3

use types_mod, only : i4
i8

r4

r8

c4

c8

digits12

PI

DEG2RAD

RAD2DEG

SECPERDAY

MISSING_R4

MISSING_R8

MISSING_I

MISSING_DATA

metadatalength

obstypelength

t_kelvin

es_alpha

es_beta

es_gamma

gas_constant_v

gas_constant

L_over_Rv

ps0

earth_radius

gravity

766 Chapter 6. References

DART, Release 9.10.3

integer, parameter :: i4
integer, parameter :: i8
integer, parameter :: r4
integer, parameter :: r8
integer, parameter :: c4
integer, parameter :: c8
integer, parameter :: digits12

These kinds are used when declaring variables, like:

real(r8) :: myvariable
integer(i4) :: shortint

All DART public interfaces use types on the real values to ensure they are consistent across various compilers and
compile-time options. The digits12 is generally only used for reals which require extra precision.
Some models are able to run with single precision real values, which saves both memory when executing and file
space when writing and reading restart files. To accomplish this, the users edit this file, redefine r8 to equal r4, and
then rebuild all of DART.

real(KIND=R8), parameter :: PI
real(KIND=R8), parameter :: DEG2RAD
real(KIND=R8), parameter :: RAD2DEG
real(KIND=R8), parameter :: SECPERDAY

Some commonly used math constants, defined here for convenience.

real(KIND=R4), parameter :: MISSING_R4
real(KIND=R8), parameter :: MISSING_R8
integer, parameter :: MISSING_I
integer, parameter :: MISSING_DATA

Numeric constants used in the DART code when a numeric value is required, but the data is invalid or missing. These
are typically defined as negative and a series of 8’s, so they are distinctive when scanning a list of values.

integer, parameter :: metadatalength
integer, parameter :: obstypelength

6.193. MODULE types_mod 767

DART, Release 9.10.3

Some common string limits used system-wide by DART code. The obstypelength is limited by the Fortran-imposed
maximum number of characters in a parameter; the metadatalength was selected to be long enough to allow descriptive
names but short enough to keep printing to less than a single line.

real(KIND=R8), parameter :: t_kevin
real(KIND=R8), parameter :: es_alpha
real(KIND=R8), parameter :: es_beta
real(KIND=R8), parameter :: es_gamma
real(KIND=R8), parameter :: gas_constant_v
real(KIND=R8), parameter :: gas_constant
real(KIND=R8), parameter :: L_over_Rv
real(KIND=R8), parameter :: ps0
real(KIND=R8), parameter :: earth_radius
real(KIND=R8), parameter :: gravity

A set of geophysical constants, which could be argued do not belong in a DART-supplied file since they are quite
probably specific to a model or a particular forward operator.
Best case would be if we could engineer the code so these constants were provided by the model and then used when
compiling the forward operator files. But given that Fortran use statements cannot be circular, this poses a problem.
Perhaps we could work out how the obs_def code could define these constants and then they could be used by the
model code. For now, they are defined here but it is up to the model and obs_def code writers whether to use these or
not.

6.193.4 Namelist

There is no namelist for this module.

6.193.5 Files

None.

6.193.6 References

1. none

768 Chapter 6. References

DART, Release 9.10.3

6.193.7 Private components

N/A

6.194 MODULE schedule_mod

6.194.1 Overview

Provides a set of routines to generate a regular pattern of time windows. This module is only used for converting
observation sequences files to netCDF format. If it stands the test of time, it will likely be used to create an assimilation
schedule independent of the observation sequence file.

6.194.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&schedule_nml
first_bin_start = 1601, 1, 1, 0, 0, 0
first_bin_end = 2999, 1, 1, 0, 0, 0
last_bin_end = 2999, 1, 1, 0, 0, 0
bin_interval_days = 1000000
bin_interval_seconds = 0
max_num_bins = 1000
calendar = 'Gregorian'
print_table = .true.
/

The default values will cause (pretty much) all possible observations to be put into one output file.

Item Type Description
first_bin_start integer, dimen-

sion(6)
Date/time specification for starting time of first bin.

first_bin_end integer, dimen-
sion(6)

Date/time specification for ending time of first bin. Sets the bin width.

last_bin_end integer, dimen-
sion(6)

Date/time specification for ending time of last bin. Sets the length of the
overall time of the schedule.

bin_interval_days integer Sets the time between bins. Must be larger or equal to the bin width.
bin_interval_secondsinteger Sets the time between bins. Must be larger or equal to the bin width.
max_num_bins integer Upper limit on the number of bins.
calendar charac-

ter(len=32)
String calendar type. Valid types are listed in the time_manager_mod file.

print_table logical If .TRUE., print out information about the schedule each time
set_regular_schedule() is called.

6.194. MODULE schedule_mod 769

time_manager_mod.html#cal_type

DART, Release 9.10.3

6.194.3 Other modules used

types_mod
utilities_mod
time_manager_mod

6.194.4 Public interfaces

use schedule_mod, only : schedule_type
set_regular_schedule

get_time_from_schedule

get_schedule_length

Namelist &schedule_mod_nml may be read from file input.nml.

call set_regular_schedule(schedule)

type(schedule_type), intent(out) :: schedule

Uses the namelist information to compute and fill a schedule_type variable.

schedule Fills this derived type with the information needed to generate a series of regularly spaced time
windows.

call get_time_from_schedule(mytime, schedule, iepoch [, edge])

type(time_type), intent(out) :: mytime
or

real(digits12), intent(out) :: mytime
type(schedule_type), intent(in) :: schedule
integer, intent(in) :: iepoch
integer, optional, intent(in) :: edge

Returns either the leading or trailing time for the specified bin/epoch number for the given schedule. The time can be
returned in one of two formats, depending on the variable type specified for the first argument: either a DART derived
time_type, or a real of kind digits12 (defined in the types_mod).

770 Chapter 6. References

DART, Release 9.10.3

mytimeReturn value with the leading or trailing edge time for the requested bin. There are two supported return
formats, either as a standard DART time_type, or as a real value which will contain the number of days
plus any fraction.

scheduleSchedule type to extract information from.
iepochThe bin number, or epoch number, to return a time for. Unless edge is specified and requests the ending

time, the time returned is the starting time for this bin.
edge If specified, and if edge is larger than 1, the trailing edge time of the bin is returned. Any other value, or if

this argument is not specified, returns the leading edge time of the bin.

var = get_schedule_length()

integer :: get_schedule_length
type(schedule_type), intent(in) :: schedule

Return the total number of intervals/bins/epochs defined by this schedule.

schedule Return number of time intervals in this schedule.

type schedule_type
private
integer :: num_bins
integer :: current_bin
logical :: last_bin
integer :: calendar
character(len=32) :: calendarstring
type(time_type) :: binwidth
type(time_type) :: bininterval
type(time_type), pointer :: binstart(:) => NULL()
type(time_type), pointer :: binend(:) => NULL()
real(digits12), pointer :: epoch_start(:) => NULL()
real(digits12), pointer :: epoch_end(:) => NULL()

end type schedule_type

This type is used to define a schedule.

6.194. MODULE schedule_mod 771

DART, Release 9.10.3

6.194.5 Files

filename purpose
input.nml to read the schedule_mod namelist

6.194.6 References

• none

6.194.7 Private components

N/A

6.195 MODULE obs_kind_mod

6.195.1 Overview

Introduction

This module provides definitions of specific observation types and generic variable quantities, routines for mapping
between integer identifiers and string names, routines for reading and writing this information, and routines for deter-
mining whether and how to process observations from an observation sequence file.

The distinction between quantities and types is this: Quantities apply both to observations and to state vector
variables. Knowing the type of an observation must be sufficient to compute the correct forward operator. The quan-
tity associated with an observation must be sufficient to identify which variable in the state vector should be used
to compute the expected value. Types only apply to observations, and are usually observation-platform dependent.
Making distinctions between different observation sources by using different types allows users to selectively assimi-
late, evaluate, or ignore them.

Examples and use

Generic quantities are associated with an observation type or with a model state variable. An example
quantity is QTY_U_WIND_COMPONENT. Multiple different specific observation types can be associated with
this generic quantity, for instance RADIOSONDE_U_WIND_COMPONENT, ACARS_U_WIND_COMPONENT, and
SAT_U_WIND_COMPONENT. Generic quantities are defined via an integer parameter statement at the start of this
module. As new generic quantities are needed they are added to this list. Generic quantity integer parameters are
required to start with QTY_ and observation types are NOT allowed to start with QTY_.

Typically quantities are used by model-interface files models/xx/model_mod.f90, observation forward operator
files observations/forward_operators/obs_def_xx_mod.f90, and observation converter programs
observations/obs_converters/xx/xx.f90.

The obs_kind module being described here is created by the program preprocess from two categories of input files.
First, a DEFAULT obs_kind module (normally called DEFAULT_obs_kind_mod.F90 and documented in this
directory) is used as a template into which the preprocessor incorporates information from zero or more special obs_def
modules (such as obs_def_1d_state_mod.f90 or obs_def_reanalysis_bufr_mod.f90) which are
documented in the obs_def directory. If no special obs_def files are included in the preprocessor namelist, a minimal
obs_kind_mod.f90 is created which can only support identity forward observation operators.

772 Chapter 6. References

DART, Release 9.10.3

All of the build scripts in DART remove the existing obs_kind_mod.f90 file and regenerate it using the
preprocess program. Do not add new quantities to obs_kind_mod.f90, because these changes will not be
kept when you run quickbuild.csh.

Adding additional quantities

New quantities should be added to a quantity file, for example a new ocean quantity should be
added to ocean_quantities_mod.f90. The quantity files are in assimilation_code/modules/
observations/.

Every line in a quantity file between the start and end markers must be a comment or a quantity definition
(QTY_string). Multiple name-value pairs can be specified for a quantity but are not required. For example, tem-
perature may be defined: ! QTY_TEMPERATURE units="K" minval=0.0. Comments are allowed between
quantity definitions or on the same line as the definition. The code snippet below shows acceptable formats for quantity
definitions

! BEGIN DART PREPROCESS QUANTITY DEFINITIONS
!
! Formats accepted:
!
! QTY_string
! QTY_string name=value
! QTY_string name=value name2=value2
!
! QTY_string ! comments
!
!
! comment
!
! END DART PREPROCESS QUANTITY DEFINITIONS

Implementation details

The obs_kind module contains an automatically-generated list of integer parameters, derived from the obs_def files,
an integer parameter max_defined_types_of_obs, and an automatically-generated list of initializers for the
obs_type_type derived type that defines the details of each observation type that has been created by the pre-
process program. Each entry contains the integer index of the observation type, the string name of the observation
type (which is identical to the F90 identifier), the integer index of the associated generic quantities, and three logicals
indicating whether this observation type is to be assimilated, evaluated only (forward operator is computed but not
assimilated), assimilated but has externally computed forward operator values in the input observation sequence file,
or ignored entirely. The logicals initially default to .false. and are set to .true. via the &obs_kind_nml namelist. A
second derived type obs_qty_type maps the integer parameter for a quantity to the quantity name (a string), and
stores any additional pair-value metadata for that quantity.

6.195. MODULE obs_kind_mod 773

DART, Release 9.10.3

6.195.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_kind_nml
assimilate_these_obs_types = 'null',
evaluate_these_obs_types = 'null'
use_precomputed_FOs_these_obs_types = 'null'

/

Controls what observation types are to be assimilated, evaluated, or ignored. For each entry, a list of observation type
names can be specified. Any name in the obs_type_type table is eligible. Specifying a name that is not in the table
results in an error. Specifying the same name for both namelist entries also results in an error. Observation types
specified in the list for assimilate_these_obs_types are assimilated. Those in the evaluate_these_obs_types list have
their forward operators computed and included in diagnostic files but are not assimilated. An observation type that is
specified in neither list is ignored. Identity observations, however, are always assimilated if present in the obs_seq.out
file.

Item Type Description
assimi-
late_these_obs_types

charac-
ter(len=31),
dimen-
sion(:)

Names of observation types to be assimilated.

evalu-
ate_these_obs_types

charac-
ter(len=31),
dimen-
sion(:)

Names of observation types to be evaluated only.

use_precomputed_FOs_these_obs_typescharac-
ter(len=31),
dimen-
sion(:)

If the forward operator values have been precomputed outside of filter, for example for
radiances or other compute intensive computations, the ensemble of forward operator val-
ues can be stored in the observation sequence file. For any type listed here, the forward
operator interpolation code will not be called and the values in the file will be used instead.

For example:

&obs_kind_nml
assimilate_these_obs_types = 'RADIOSONDE_TEMPERATURE',

'RADIOSONDE_U_WIND_COMPONENT',
'RADIOSONDE_V_WIND_COMPONENT',

evaluate_these_obs_types = 'RADIOSONDE_SURFACE_PRESSURE',
use_precomputed_FOs_these_obs_types = 'RADIANCE'

/

would assimilate temperature and wind observations, but only compute the forward operators for surface pressure
obs. Radiance observations have precomputed values for each ensemble member in the input observation sequence
file which would be used instead of calling the forward operator code.

774 Chapter 6. References

DART, Release 9.10.3

6.195.3 Modules used

utilities_mod

6.195.4 Public interfaces

use obs_def_mod, only : max_defined_types_of_obs
get_num_types_of_obs

get_num_quantities

get_name_for_type_of_obs

get_name_for_quantity

get_index_for_type_of_obs

get_index_for_quantity

assimilate_this_type_of_obs

evaluate_this_type_of_obs

get_quantity_for_type_of_obs

write_type_of_obs_table

read_type_of_obs_table

get_type_of_obs_from_menu

map_type_of_obs_table

GENERIC_QTY_DEFINITIONS

OBSERVATION_TYPES

A note about documentation style. Optional arguments are enclosed in brackets [like this].

integer, parameter :: max_defined_types_of_obs

The total number of available observation types in the obs_type_type table. This value is added by the preprocess
program and depends on which obs_def_xxx_mod.f90 files are listed in the &preprocess_nml namelist.

6.195. MODULE obs_kind_mod 775

../../programs/preprocess/preprocess.html#Namelist

DART, Release 9.10.3

There is also a function interface which is an alternate method to get this value. In some cases the code requires a
parameter value known at compile time (for declaring a fixed length array, for example). For an array allocated at run
time the size can be returned by the function interface.

var = get_num_types_of_obs()

integer :: get_num_types_of_obs

Returns the number of different specific observation types (e.g. RADIOSONDE_TEMPERATURE, AIR-
CRAFT_SPECIFIC_HUMIDITY) defined in the obs_kind_mod.f90 file. This file is generated by the preprocess
program. This is the same value as the public ‘max_defined_types_of_obs’ above.

var Integer count of the total number of specific types defined in the obs_kind_mod.f90 file.

var = get_num_quantities()

integer :: get_num_quantities

Returns the number of different generic quantities (e.g. QTY_TEMPERATURE, QTY_SPECIFIC_HUMIDITY) de-
fined in the obs_kind_mod.f90 file. This file is generated by the preprocess program.

var Integer count of the total number of generic quantities defined in the obs_kind_mod.f90 file.

var = get_name_for_type_of_obs(obs_type_ind)

character(len=32) :: get_name_for_type_of_obs
integer, intent(in) :: obs_type_ind

Given an integer index return the string name of the corresponding specific observation type (e.g. “RA-
DIOSONDE_TEMPERATURE”, “AIRCRAFT_SPECIFIC_HUMIDITY”). This string is the same as the F90 identi-
fier associated with the integer index.

var Name string associated with this entry in the obs_type_type table.
obs_type_ind An integer index into the obs_type_type table.

var = get_name_for_quantity(obs_qty_ind)

776 Chapter 6. References

DART, Release 9.10.3

character(len=32) :: get_name_for_quantity
integer, intent(in) :: obs_qty_ind

Given an integer index return the string name of the corresponding generic quantity (e.g. “QTY_TEMPERATURE”,
“QTY_SPECIFIC_HUMIDITY”). This string is the same as the F90 identifier associated with the integer index.

var Name string associated with this entry in the obs_qty_type table.
obs_qty_ind An integer index into the obs_qty_type table.

var = get_index_for_type_of_obs(obs_type_name)

integer :: get_index_for_type_of_obs
character(len=*), intent(in) :: obs_type_name

Given the name of a specific observation type (e.g. “RADIOSONDE_TEMPERATURE”, “AIR-
CRAFT_SPECIFIC_HUMIDITY”), returns the index of the entry in the obs_type_type table with this name.
If the name is not found in the table, a -1 is returned. The integer returned for a successful search is the value of the
integer parameter with the same identifier as the name string.

get_index_for_type_of_obsInteger index into the obs_type_type table entry with name string corresponding
to obs_type_name.

obs_type_name Name of specific observation type found in obs_type_type table.

var = get_index_for_quantity(obs_qty_name)

integer :: get_index_for_quantity
character(len=32), intent(in) :: obs_qty_name

Given the name of a generic quantity (e.g. “QTY_TEMPERATURE”, “QTY_SPECIFIC_HUMIDITY”), returns the
index of the entry in the obs_qty_type table with this name. If the name is not found in the table, a -1 is returned.
The integer returned for a successful search is the value of the integer parameter with the same identifier as the name
string.

get_index_for_quantityInteger index into the obs_qty_type table entry with name string corresponding to
obs_qty_name.

obs_qty_name Name of generic kind found in obs_qty_type table.

var = assimilate_this_type_of_obs(obs_type_ind)

logical :: assimilate_this_type_of_obs
integer, intent(in) :: obs_type_ind

6.195. MODULE obs_kind_mod 777

DART, Release 9.10.3

Given the integer index associated with a specific observation type (e.g. RADIOSONDE_TEMPERATURE, AIR-
CRAFT_SPECIFIC_HUMIDITY), return true if this observation type is to be assimilated, otherwise false. The pa-
rameter defined by this name is used as an integer index into the obs_type_type table to return the status of this type.

var Returns true if this entry in the obs_type_type table is to be assimilated.
obs_type_ind An integer index into the obs_type_type table.

var = evaluate_this_type_of_obs(obs_type_ind)

logical :: evaluate_this_type_of_obs
integer, intent(in) :: obs_type_ind

Given the integer index associated with a specific observation type (e.g. RADIOSONDE_TEMPERATURE, AIR-
CRAFT_SPECIFIC_HUMIDITY), return true if this observation type is to be evaluated only, otherwise false. The
parameter defined by this name is used as an integer index into the obs_type_type table to return the status of this type.

var Returns true if this entry in the obs_type_type table is to be evaluated.
obs_type_ind An integer index into the obs_type_type table.

var = get_quantity_for_type_of_obs(obs_type_ind)

integer :: get_quantity_for_type_of_obs
integer, intent(in) :: obs_type_ind

Given the integer index associated with a specific observation type (e.g. RADIOSONDE_TEMPERATURE, AIR-
CRAFT_SPECIFIC_HUMIDITY), return the generic quantity associated with this type (e.g. QTY_TEMPERATURE,
QTY_SPECIFIC_HUMIDITY). The parameter defined by this name is used as an integer index into the obs_type_type
table to return the generic quantity associated with this type.

var Returns the integer GENERIC quantity index associated with this obs type.
obs_type_ind An integer index into the obs_type_type table.

call write_type_of_obs_table(ifile [, fform, use_list])

integer, intent(in) :: ifile
character(len=*), optional, intent(in) :: fform
integer, optional, intent(in) :: use_list(:)

Writes out information about all defined observation types from the obs_type_type table. For each entry in the table,
the integer index of the observation type and the associated string are written. These appear in the header of an
obs_sequence file. If given, the use_list(:) must be the same length as the max_obs_specific count. If greater than 0,

778 Chapter 6. References

DART, Release 9.10.3

the corresponding index will be written out; if 0 this entry is skipped. This allows a table of contents to be written
which only includes those types actually being used.

ifileUnit number of output observation sequence file being written.
fform Optional format for file. Default is FORMATTED.
use_list(:)Optional integer array the same length as the number of specific types (from get_num_types_of_obs() or

the public max_defined_types_of_obs). If value is larger than 0, the corresponding type information will be
written out. If 0, it will be skipped. If this argument is not specified, all values will be written.

call read_type_of_obs_table(ifile, pre_I_format [, fform])

integer, intent(in) :: ifile
logical, intent(in) :: pre_I_format !(deprecated)
character(len=*), optional, intent(in) :: fform

Reads the mapping between integer indices and observation type names from the header of an observation sequence
file and prepares mapping to convert these to values defined in the obs_type_type table. If pre_I_format is true, there
is no header in the observation sequence file and it is assumed that the integer indices for observation types in the file
correspond to the storage order of the obs_type_type table (integer index 1 in the file corresponds to the first table
entry, etc.) Support for pre_I_format is deprecated and may be dropped in future releases of DART.

ifile Unit number of output observation sequence file being written.
pre_I_format True if the file being read has no obs type definition header (deprecated).
fform Optional format for file. Default is FORMATTED.

var = get_type_of_obs_from_menu()

integer :: get_type_of_obs_from_menu

Interactive input of observation type. Prompts user with list of available types and validates entry before returning.

var Integer index of observation type.

var = map_type_of_obs_table(obs_def_index)

integer :: map_type_of_obs_table
integer, intent(in) :: obs_def_index

Maps from the integer observation type index in the header block of an input observation sequence file into the
corresponding entry in the obs_type_type table. This allows observation sequences that were created with different
obs_kind_mod.f90 versions to be used with the current obs_kind_mod.

6.195. MODULE obs_kind_mod 779

DART, Release 9.10.3

var Index of this observation type in obs_type_type table.
obs_def_index Index of observation type from input observation sequence file.

integer, parameter :: QTY_.....

All generic quantities available are public parameters that begin with QTY_.

integer, parameter :: SAMPLE_OBS_TYPE

A list of all observation types that are available is provided as a set of integer parameter statements. The F90 identifiers
are the same as the string names that are associated with this identifier in the obs_type_type table.

6.195.5 Files

• &obs_kind_nml in input.nml

• Files containing input or output observation sequences.

6.195.6 References

• none

6.196 MODULE DEFAULT_obs_kind_mod

6.196.1 Overview

DART provides capabilities to assimilate a multitude of different observation types. Since most DA applications
only need to assimilate a subset of the observation types that DART is capable of assimilating, the observation types
supported by the programs in your application are defined when you compile them. You only need to include the
observation types you are interested in.

DEFAULT_obs_kind_mod.F90 is the input template file which is read by the PROGRAM prepro-
cess to create MODULE obs_kind_mod. Information from zero or more special obs_def modules (such

780 Chapter 6. References

DART, Release 9.10.3

as MODULE obs_def_1d_state_mod) and obs_quantities modules (such as DART/assimilation_code/
modules/observations/oned_quantities_mod.f90) are incorporated into the template provided by DE-
FAULT_obs_def_kind.

If you don’t include any specific obs_def files in the preprocessor namelist, preprocess will create a minimal
obs_kind_mod.f90 file which can only support identity forward observation operators.

To add a new specific observation type, see the MODULE obs_def_mod documentation.

To add a new specific observation quantity, see the MODULE obs_kind_mod documentation.

6.197 MODULE obs_sequence_mod

6.197.1 Overview

Provides interfaces to the observation type and observation sequence type. An observation contains everything there is
to know about an observation including all metadata contained in the observation definition and any number of copies
of data associated with the observation (for instance an actual observation, an ensemble of first guess values, etc). An
observation sequence is a time-ordered set of observations that is defined by a linked list so that observations can be
easily added or deleted. A number of commands to extract observations depending on the times at which they were
taken are provided. For now, the observations are only ordered by time, but the ability to add extra sort keys could be
added.

These routines are commonly used in conversion programs which read observation data from various formats and
create a DART observation sequence in memory, and then write it out to a file. See the observations directory for
examples of programs which create and manipulate observations using this routines.

6.197.2 Other modules used

types_mod
location_mod (depends on model_choice)
obs_def_mod
time_manager_mod
utilities_mod
obs_kind_mod

6.197.3 Public interfaces

use obs_sequence_mod, only : obs_sequence_type
init_obs_sequence
interactive_obs_sequence
get_num_copies
get_num_qc
get_num_obs
get_max_num_obs
get_copy_meta_data
get_qc_meta_data

continues on next page

6.197. MODULE obs_sequence_mod 781

../../../observations/obs_converters/README.md

DART, Release 9.10.3

Table 8 – continued from previous page
get_next_obs
get_prev_obs
get_next_obs_from_key
get_prev_obs_from_key
insert_obs_in_seq
delete_obs_from_seq
set_copy_meta_data
set_qc_meta_data
get_first_obs
get_last_obs
add_copies
add_qc
write_obs_seq
read_obs_seq
append_obs_to_seq
get_obs_from_key
get_obs_time_range
set_obs
get_time_range_keys
get_num_times
static_init_obs_sequence
destroy_obs_sequence
read_obs_seq_header
get_expected_obs
delete_seq_head
delete_seq_tail

LINKS BELOW FOR OBS_TYPE INTERFACES

obs_type
init_obs
destroy_obs
get_obs_def
set_obs_def
get_obs_values
set_obs_values
replace_obs_values
get_qc
set_qc
replace_qc
write_obs
read_obs
interactive_obs
copy_obs
assignment(=)

782 Chapter 6. References

DART, Release 9.10.3

type obs_sequence_type
private
integer :: num_copies
integer :: num_qc
integer :: num_obs
integer :: max_num_obs
character(len=64), pointer :: copy_meta_data(:)
character(len=64), pointer :: qc_meta_data(:)
integer :: first_time
integer :: last_time
type(obs_type), pointer :: obs(:)

end type obs_sequence_type

The obs_sequence type represents a series of observations including multiple copies of data and quality control fields
and complete metadata about the observations. The sequence is organized as an integer pointer linked list using a fixed
array of storage for obs (type obs_type). Each observation points to the previous and next observation in time order
(additional sort keys could be added if needed) and has a unique integer key (see obs_type below). The maximum
number of observations in the sequence is represented in the type as max_num_obs, the current number of observations
is in num_obs. The number of quality control (qc) fields per observation is num_qc and the number of data values
associated with each observation is num_copies. Metadata for each copy of the data is in copy_meta_data and metadata
for the qc fields is in qc_meta_data. The first and last pointers into the time linked list are in first_time and last_time. A
capability to write and read an obs_sequence structure to disk is available. At present, the entire observation sequence
is read in to core memory. An on-disk implementation may be necessary for very large observational datasets.

Component Description
num_copies Number of data values associated with each observation.
num_qc Number of qc fields associated with each observation.
num_obs Number of observations currently in sequence.
max_num_obs Upper bounds on number of observations in sequence.
copy_meta_data Text describing each copy of data associated with observations.
qc_meta_data Text describing each quality control field.
first_time Location of first observation in sequence.
last_time Location of last observation in sequence.
obs Storage for all of the observations in the sequence.

type obs_type
private
integer :: key
type(obs_def_type) :: def
real(r8), pointer :: values(:)
real(r8), pointer :: qc(:)
integer :: prev_time
integer :: next_time
integer :: cov_group

end type obs_type

Structure to represent everything known about a given observation and to help with storing the observation in the
observation sequence structure (see above). The prev_time and next_time are integer pointers that allow a linked list
sorted on time to be constructed. If needed, other sort keys could be introduced (for instance by time available?). Each
observation in a sequence has a unique key and each observation has an obs_def_type that contains all the definition

6.197. MODULE obs_sequence_mod 783

DART, Release 9.10.3

and metadata for the observation. A set of values is associated with the observation along with a set of qc fields. The
cov_group is not yet implemented but will allow non-diagonal observation error covariances in a future release.

Component Description
key Unique integer key when in an obs_sequence.
def The definition of the observation (see obs_def_mod).
values Values associated with the observation.
qc Quality control fields associated with the observation.
prev_time When in an obs_sequence, points to previous time sorted observation.
next_time When in an obs_sequence, points to next time sorted observation.
cov_group Not currently implemented.

call init_obs_sequence(seq, num_copies, num_qc, expected_max_num_obs)

type(obs_sequence_type), intent(out) :: seq
integer, intent(in) :: num_copies
integer, intent(in) :: num_qc
integer, intent(in) :: expected_max_num_obs

Constructor to create a variable of obs_sequence_type. This routine must be called before using an obs_sequence_type.
The number of copies of the data to be associated with each observation (for instance the observation from an instru-
ment, an ensemble of prior guesses, etc.) and the number of quality control fields associated with each observation
must be specified. Also, an estimated upper bound on the number of observations to be stored in the sequence is
helpful in making creation of the sequence efficient.

seq The observation sequence being constructed
num_copies Number of copies of data to be associated with each observation
num_qc Number of quality control fields associated with each observation
expected_max_num_obs An estimate of the largest number of observations the sequence might contain

var = interactive_obs_sequence()

type(obs_sequence_type) :: interactive_obs_sequence

Uses input from standard in to create an observation sequence. Initialization of the sequence is handled by the function.

var An observation sequence created from standard input

var = get_num_copies(seq)

784 Chapter 6. References

DART, Release 9.10.3

integer :: get_num_copies
type(obs_sequence_type), intent(in) :: seq

Returns number of copies of data associated with each observation in an observation sequence.

var Returns number of copies of data associated with each observation in sequence
seq An observation sequence

var = get_num_qc(seq)

integer :: get_num_qc
type(obs_sequence_type), intent(in) :: seq

Returns number of quality control fields associated with each observation in an observation sequence.

var Returns number of quality control fields associated with each observation in sequence
seq An observation sequence

var = get_num_obs(seq)

integer :: get_num_obs
type(obs_sequence_type), intent(in) :: seq

Returns number of observations currently in an observation sequence.

var Returns number of observations currently in an observation sequence
seq An observation sequence

var = get_max_num_obs(seq)

integer :: get_max_num_obs
type(obs_sequence_type), intent(in) :: seq

Returns maximum number of observations an observation sequence can hold.

var Returns maximum number of observations an observation sequence can hold
seq An observation sequence

6.197. MODULE obs_sequence_mod 785

DART, Release 9.10.3

var = get_copy_meta_data(seq, copy_num)

character(len=64) :: get_copy_meta_data
type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: copy_num

Returns metadata associated with a given copy of data in an observation sequence.

var Returns metadata associated with a copy of data in observation sequence
seq An observation sequence
copy_num Return metadata for this copy

var = get_qc_meta_data(seq,qc_num)

character(len=64) :: get_qc_meta_data
type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: qc_num

Returns metadata associated with a given copy of quality control fields associated with observations in an observation
sequence.

var Returns metadata associated with a given qc copy
seq An observation sequence
qc_num Return metadata for this copy

call get_next_obs(seq, obs, next_obs, is_this_last)

type(obs_sequence_type), intent(in) :: seq
type(obs_type), intent(in) :: obs
type(obs_type), intent(out) :: next_obs
logical, intent(out) :: is_this_last

Given an observation in a sequence, returns the next observation in the sequence. If there is no next observation,
is_this_last is set to true.

seq An observation sequence
obs Find the next observation after this one
next_obs Return the next observation here
is_this_last True if obs is the last obs in sequence

call get_prev_obs(seq, obs, prev_obs, is_this_first)

786 Chapter 6. References

DART, Release 9.10.3

type(obs_sequence_type), intent(in) :: seq
type(obs_type), intent(in) :: obs
type(obs_type), intent(out) :: prev_obs
logical, intent(out) :: is_this_first

Given an observation in a sequence, returns the previous observation in the sequence. If there is no previous observa-
tion, is_this_first is set to true.

seq An observation sequence
obs Find the previous observation before this one
prev_obs Return the previous observation here
is_this_first True if obs is the first obs in sequence

call get_next_obs_from_key(seq, last_key_used, next_obs, is_this_last)

type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: last_key_used
type(obs_type), intent(out) :: next_obs
logical, intent(out) :: is_this_last

Given the last key used in a sequence, returns the next observation in the sequence. If there is no next observation,
is_this_last is set to true.

seq An observation sequence
last_key_used Find the next observation after this key
next_obs Return the next observation here
is_this_last True if obs is the last obs in sequence

call get_prev_obs_from_key(seq, last_key_used, prev_obs, is_this_first)

type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: last_key_used
type(obs_type), intent(out) :: prev_obs
logical, intent(out) :: is_this_first

Given the last key used in a sequence, returns the previous observation in the sequence. If there is no previous
observation, is_this_first is set to true.

seq An observation sequence
last_key_used Find the previous observation before this key
prev_obs Return the previous observation here
is_this_first True if obs is the first obs in sequence

6.197. MODULE obs_sequence_mod 787

DART, Release 9.10.3

call get_obs_from_key(seq, key, obs)

type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: key
type(obs_type), intent(out) :: obs

Each entry in an observation sequence has a unique integer key. This subroutine returns the observation given an
integer key.

seq An observation sequence
key Return the observation with this key
obs The returned observation

call insert_obs_in_seq(seq, obs [, prev_obs])

type(obs_sequence_type), intent(inout) :: seq
type(obs_type), intent(inout) :: obs
type(obs_type), optional, intent(in) :: prev_obs

Inserts an observation in a sequence in appropriate time order. If the optional argument prev_obs is present, the new
observation is inserted directly after the prev_obs. If an incorrect prev_obs is provided so that the sequence is no
longer time ordered, bad things will happen.

seq An observation sequence
obs An observation to be inserted in the sequence
prev_obs If present, says the new observation belongs immediately after this one

call delete_obs_from_seq(seq, obs)

type(obs_sequence_type), intent(inout) :: seq
type(obs_type), intent(inout) :: obs

Given an observation and a sequence, removes the observation with the same key from the observation sequence.

seq An observation sequence
obs The observation to be deleted from the sequence

call set_copy_meta_data(seq, copy_num, meta_data)

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: copy_num
character(len=64), intent(in) :: meta_data

788 Chapter 6. References

DART, Release 9.10.3

Sets the copy metadata for this copy of the observations in an observation sequence.

seq An observation sequence
copy_num Set metadata for this copy of data
meta_data The metadata

call set_qc_meta_data(seq, qc_num, meta_data)

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: qc_num
character(len=64), intent(in) :: meta_data

Sets the quality control metadata for this copy of the qc in an observation sequence.

seq An observation sequence
qc_num Set metadata for this quality control field
meta_data The metadata

var = get_first_obs(seq, obs)

logical :: get_first_obs
type(obs_sequence_type), intent(in) :: seq
type(obs_type), intent(out) :: obs

Returns the first observation in a sequence. If there are no observations in the sequence, the function returns false, else
true.

var Returns false if there are no obs in sequence
seq An observation sequence
obs The first observation in the sequence

var = get_last_obs(seq, obs)

logical :: get_last_obs
type(obs_sequence_type), intent(in) :: seq
type(obs_type), intent(out) :: obs

Returns the last observation in a sequence. If there are no observations in the sequence, the function returns false, else
true.

6.197. MODULE obs_sequence_mod 789

DART, Release 9.10.3

var Returns false if there are no obs in sequence
seq An observation sequence
obs The last observation in the sequence

call add_copies(seq, num_to_add)

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: num_to_add

Increases the number of copies of data associated with each observation by num_to_add. The current implementation
re-creates the entire observation sequence by deallocating and reallocating each entry with a larger size.

seq An observation sequence
num_to_add Number of copies of data to add

call add_qc(seq, num_to_add)

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: num_to_add

Increases the number of quality control fields associated with each observation by num_to_add. The current imple-
mentation re-creates the entire observation sequence by deallocating and reallocating each entry with a larger size.

seq An observation sequence
num_to_add Number of quality control fields to add

call read_obs_seq(file_name, add_copies, add_qc, add_obs, seq)

character(len=*), intent(in) :: file_name
integer, intent(in) :: add_copies
integer, intent(in) :: add_qc
integer, intent(in) :: add_obs
type(obs_sequence_type), intent(out) :: seq

Read an observation sequence from file_name. The sequence will have enough space for the number of observa-
tions in the file plus any additional space requested by the “add_xx” args. It is more efficient to allocate the additional
space at create time rather than try to add it in later. The arguments can specify that the caller wants to add additional
data copies associated with each observation, or to add additional quality control fields, or to add space for additional
observations. The format of the file (formatted vs. unformatted) has been automatically detected since the I
release. The obs_sequence file format with I and later releases has a header that associates observation type strings
with an integer which was not present in previous versions. I format files are no longer supported.

790 Chapter 6. References

DART, Release 9.10.3

file_name Read from this file
add_copies Add this number of copies of data to the obs_sequence on file
add_qc Add this number of qc fields to the obs_sequence on file
add_obs Add space for this number of additional observations to the obs_sequence on file
seq The observation sequence read in with any additional space

call write_obs_seq(seq, file_name)

type(obs_sequence_type), intent(in) :: seq
character(len=*), intent(in) :: file_name

Write the observation sequence to file file_name. The format is controlled by the namelist parameter
write_binary_obs_sequence.

seq An observation sequence
file_name Write the sequence to this file

call set_obs(seq,obs [, key_in])

type(obs_sequence_type), intent(inout) :: seq
type(obs_type), intent(in) :: obs
integer, optional, intent(in) :: key_in

Given an observation, copies this observation into the observation sequence using the key specified in the observation.
If the optional key_in argument is present, the observation is instead copied into this element of the observation
sequence (and the key is changed to be key_in).

seq An observation sequence
obs Observation to be put in sequence
key_in If present, the obs is copied into this key of the sequence

call append_obs_to_seq(seq, obs)

type(obs_sequence_type), intent(inout) :: seq
type(obs_type), intent(inout) :: obs

Append an observation to an observation sequence. An error results if the time of the observation is not equal to or
later than the time of the last observation currently in the sequence.

seq An observation sequence
obs Append this observation to the sequence

6.197. MODULE obs_sequence_mod 791

DART, Release 9.10.3

call get_obs_time_range(seq, time1, time2, key_bounds, num_keys, out_of_range [, obs])

type(obs_sequence_type), intent(in) :: seq
type(time_type), intent(in) :: time1
type(time_type), intent(in) :: time2
integer, dimension(2), intent(out) :: key_bounds
integer, intent(out) :: num_keys
logical, intent(out) :: out_of_range
type(obs_type), optional, intent(in) :: obs

Given a time range specified by a beginning and ending time, find the keys that bound all observations in this time
range and the number of observations in the time range. The routine get_time_range_keys can then be used to get a
list of all the keys in the range if desired. The logical out_of_range is returned as true if the beginning time of the time
range is after the time of the latest observation in the sequence. The optional argument obs can increase the efficiency
of the search through the sequence by indicating that all observations before obs are definitely at times before the start
of the time range.

seq An observation sequence
time1 Lower time bound
time2 Upper time bound
key_bounds Lower and upper bounds on keys that are in the time range
num_keys Number of keys in the time range
out_of_range Returns true if the time range is entirely past the time of the last obs in sequence
obs If present, can start search for time range from this observation

call get_time_range_keys(seq, key_bounds, num_keys, keys)

type(obs_sequence_type), intent(in) :: seq
integer, dimension(2), intent(in) :: key_bounds
integer, intent(in) :: num_keys
integer, dimension(num_keys), intent(out) :: keys

Given the keys of the observations at the start and end of a time range and the number of observations in the time range
(these are returned by get_obs_time_range()), return a list of the keys of all observations in the time range.
Combining the two routines allows one to get a list of all observations in any time range by key. The keys array must
be at least num_keys long to hold the return values.

seq An observation sequence
key_bounds Keys of first and last observation in a time range
num_keys Number of obs in the time range
keys Output list of keys of all obs in the time range

var = get_num_times(seq)

792 Chapter 6. References

DART, Release 9.10.3

integer :: get_num_times
type(obs_sequence_type), intent(in) :: seq

Returns the number of unique times associated with observations in an observation sequence.

var Number of unique times for observations in a sequence
seq An observation sequence

var = get_num_key_range(seq, key1, key2)

integer :: get_num_key_range
type(obs_sequence_type), intent(in) :: seq
integer, optional, intent(in) :: key1, key2

Returns the number of observations between the two given keys. The default key numbers are the first and last in the
sequence file. This routine can be used to count the actual number of observations in a sequence and will be accurate
even if the sequence has been trimmed with delete_seq_head() or delete_seq_tail().

var Number of unique times for observations in a sequence
seq An observation sequence
key1 The starting key number. Defaults to the first observation in the sequence.
key2 The ending key number. Defaults to the last observation in the sequence.

call static_init_obs_sequence()

Initializes the obs_sequence module and reads namelists. This MUST BE CALLED BEFORE USING ANY OTHER
INTERFACES.

call destroy_obs_sequence(seq)

type(obs_sequence_type), intent(inout) :: seq

Releases all allocated storage associated with an observation sequence.

seq An observation sequence

6.197. MODULE obs_sequence_mod 793

DART, Release 9.10.3

call read_obs_seq_header(file_name, num_copies, num_qc, num_obs, max_num_obs, file_id, read_format,
pre_I_format [, close_the_file])

character(len=*), intent(in) :: file_name
integer, intent(out) :: num_copies
integer, intent(out) :: num_qc
integer, intent(out) :: num_obs
integer, intent(out) :: max_num_obs
integer, intent(out) :: file_id
character(len=*), intent(out) :: read_format
logical, intent(out) :: pre_I_format
logical, optional, intent(in) :: close_the_file

Allows one to see the global metadata associated with an observation sequence that has been written to a file without
reading the whole file.

file_name File contatining an obs_sequence
num_copiesNumber of copies of data associated with each observation
num_qc Number of quality control fields associated with each observation
num_obs Number of observations in sequence
max_num_obsMaximum number of observations sequence could hold
file_id File channel/descriptor returned from opening the file
read_formatEither the string 'unformatted' or 'formatted'
pre_I_formatReturns .true. if the file was written before the observation type string/index number table was added

to the standard header starting with the I release.
close_the_file If specified and .TRUE. close the file after the header has been read. The default is to leave the file

open.

call init_obs(obs, num_copies, num_qc)

type(obs_type), intent(out) :: obs
integer, intent(in) :: num_copies
integer, intent(in) :: num_qc

Initializes an obs_type variable. This allocates storage for the observation type and creates the appropriate
obs_def_type and related structures. IT IS ESSENTIAL THAT OBS_TYPE VARIABLES BE INITIALIZED BE-
FORE USE.

obs An obs_type data structure to be initialized
num_copies Number of copies of data associated with observation
num_qc Number of qc fields associated with observation

call destroy_obs(obs)

type(obs_type), intent(inout) :: obs

794 Chapter 6. References

DART, Release 9.10.3

Destroys an observation variable by releasing all associated storage.

obs An observation variable to be destroyed

call get_obs_def(obs, obs_def)

type(obs_type), intent(in) :: obs
type(obs_def_type), intent(out) :: obs_def

Extracts the definition portion of an observation.

obs An observation
obs_def The definition portion of the observation

call set_obs_def(obs, obs_def)

type(obs_type), intent(out) :: obs
type(obs_def_type), intent(in) :: obs_def

Given an observation and an observation definition, insert the definition in the observation structure.

obs An observation whose definition portion will be updated
obs_def The observation definition that will be inserted in obs

call get_obs_values(obs, values [, copy_indx])

type(obs_type), intent(in) :: obs
real(r8), dimension(:), intent(out) :: values
integer, optional, intent(in) :: copy_indx

Extract copies of the data from an observation. If copy_indx is present extract a single value indexed by copy_indx
into values(1). copy_indx must be between 1 and num_copies, inclusive. If copy_indx is not present extract all
copies of data into the values array which must be num_copies long (See get_num_copies.)

obs Observation from which to extract values
values The values extracted
copy_indx If present extract only this copy, otherwise extract all copies

6.197. MODULE obs_sequence_mod 795

DART, Release 9.10.3

call get_qc(obs, qc [, qc_indx])

type(obs_type), intent(in) :: obs
real(r8), dimension(:), intent(out) :: qc
integer, optional, intent(in) :: qc_indx

Extract quality control fields from an observation. If qc_indx is present extract a single field indexed by qc_indx into
qc(1). qc_indx must be between 1 and num_qc, inclusive. If qc_indx is not present extract all quality control fields
into the qc array which must be num_qc long (See get_num_qc.)

obs Observation from which to extract qc field(s)
qc Extracted qc fields
qc_indx If present extract only this field, otherwise extract all qc fields

call set_obs_values(obs, values [, copy_indx])

type(obs_type), intent(out) :: obs
real(r8), dimension(:), intent(in) :: values
integer, optional, intent(in) :: copy_indx

Set value(s) of data in this observation. If copy_indx is present set the single value indexed by copy_indx to
values(1). copy_indx must be between 1 and num_copies, inclusive. If copy_indx is not present set all copies
of data from the values array which must be num_copies long (See get_num_copies.)

obs Observation whose values are being set
values Array of value(s) to be set
copy_indx If present set only this copy of data, otherwise set all copies

call replace_obs_values(seq, key, values [, copy_indx])

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: key
real(r8), dimension(:), intent(in) :: values
integer, optional, intent(in) :: copy_indx

Set value(s) of data in the observation from a sequence with the given key. If copy_indx is present set the sin-
gle value indexed by copy_indx to values(1). copy_indx must be between 1 and num_copies, inclusive. If
copy_indx is not present set all copies of data from the values array which must be num_copies long (See
get_num_copies.)

seq Sequence which contains observation to update
key Key to select which observation
values Array of value(s) to be set
copy_indx If present set only this copy of data, otherwise set all copies

796 Chapter 6. References

DART, Release 9.10.3

call set_qc(obs, qc [, qc_indx])

type(obs_type), intent(out) :: obs
real(r8), dimension(:), intent(in) :: qc
integer, optional, intent(in) :: qc_indx

Sets the quality control fields in an observation. If qc_indx is present set a single field indexed by qc_indx to qc(1).
qc_indx must be between 1 and num_qc, inclusive. If qc_indx is not present set all quality control fields from the qc
array which must be num_qc long (See get_num_qc.)

obs Observation having its qc fields set
qc Input values of qc fields
qc_indx If present update only this field, otherwise update all qc fields

call replace_qc(seq, key, qc [, qc_indx])

type(obs_sequence_type), intent(inout) :: seq
integer, intent(in) :: key
real(r8), dimension(:), intent(in) :: qc
integer, optional, intent(in) :: qc_indx

Set value(s) of the quality control fields in the observation from a sequence with the given key. If qc_indx is present
set the single value indexed by qc_indx to qc(1). qc_indx must be between 1 and num_qc, inclusive. If qc_indx is
not present set all quality control fields from the qc array which must be num_qc long (See get_num_qc.)

seq Observation sequence containing observation to update
key Key to select which observation
qc Input values of qc fields
qc_indx If present, only update single qc field, else update all qc fields

call write_obs(obs, file_id, num_copies, num_qc)

type(obs_type), intent(in) :: obs
integer, intent(in) :: file_id
integer, intent(in) :: num_copies
integer, intent(in) :: num_qc

Writes an observation and all its associated metadata to a disk file that has been opened with a format consistent with
the namelist parameter write_binary_obs_sequence.

6.197. MODULE obs_sequence_mod 797

DART, Release 9.10.3

obs Observation to be written to file
file_id Channel open to file for writing
num_copies The number of copies of data associated with the observation to be output
num_qc The number of qc fields associated with the observation to be output

call read_obs(file_id, num_copies, add_copies, num_qc, add_qc, key, obs, read_format [, max_obs])

integer, intent(in) :: file_id
integer, intent(in) :: num_copies
integer, intent(in) :: add_copies
integer, intent(in) :: num_qc
integer, intent(in) :: add_qc
integer, intent(in) :: key
type(obs_type), intent(inout) :: obs
character(len=*), intent(in) :: read_format
integer, optional, intent(in) :: max_obs

Reads an observation from an obs_sequence file. The number of copies of data and the number of qc values associated
with each observation must be provided. If additional copies of data or additional qc fields are needed, arguments
allow them to be added. WARNING: The key argument is no longer used and should be removed.

file_id Channel open to file from which to read
num_copiesNumber of copies of data associated with observation in file
add_copiesNumber of additional copies of observation to be added
num_qc Number of qc fields associated with observation in file
add_qc Number of additional qc fields to be added
key No longer used, should be deleted
obs The observation being read in
read_formatEither the string 'formatted' or 'unformatted'
max_obs If present, specifies the largest observation key number in the sequence. This is used only for addi-

tional error checks on the next and previous obs linked list values.

call interactive_obs(num_copies, num_qc, obs, key)

integer, intent(in) :: num_copies
integer, intent(in) :: num_qc
type(obs_type), intent(inout) :: obs
integer, intent(in) :: key

Use standard input to create an observation. The number of values, number of qc fields, and an observation type-
specific key associated with the observation are input. (Note that the key here is not the same as the key in an
observation sequence.)

798 Chapter 6. References

DART, Release 9.10.3

num_copies Number of copies of data to be associated with observation
num_qc Number of qc fields to be associated with observation
obs Observation created via standard input
key An observation type-specific key can be associated with each observation for use by the obs_def

code.

call copy_obs(obs1, obs2)

type(obs_type), intent(out) :: obs1
type(obs_type), intent(in) :: obs2

Copies the observation type obs2 to obs1. If the sizes of obs fields are not compatible, the space in obs1 is deallocated
and reallocated with the appropriate size. This is overloaded to assignment(=).

obs1 Copy obs2 to here (destination)
obs2 Copy into obs1 (source)

call get_expected_obs_from_def_distrib_state(state_handle, ens_size, copy_indices, key, & obs_def, obs_kind_ind,
state_time, isprior, assimilate_this_ob, evaluate_this_ob, expected_obs, & istatus)

type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: ens_size
integer, intent(in) :: copy_indices(ens_size)
integer, intent(in) :: key
type(obs_def_type), intent(in) :: obs_def
integer, intent(in) :: obs_kind_ind
type(time_type), intent(in) :: state_time
logical, intent(in) :: isprior
integer, intent(out) :: istatus(ens_size)
logical, intent(out) :: assimilate_this_ob, evaluate_this_ob
real(r8), intent(out) :: expected_obs(ens_size)

Used to compute the expected value of a set of observations in an observation sequence given a model state vector.
Also returns a status variable that reports on problems taking forward operators. This version returns forward operator
values for the entire ensemble in a single call.

state_handle An observation sequence
keys List of integer keys that specify observations in seq
ens_index The ensemble number for this state vector
state Model state vector
state_time The time of the state data
obs_vals Returned expected values of the observations
istatus Integer error code for use in quality control (0 means no error)
assimilate_this_ob Returns true if this observation type is being assimilated
evaluate_this_ob Returns true if this observation type is being evaluated but not assimilated

6.197. MODULE obs_sequence_mod 799

DART, Release 9.10.3

call delete_seq_head(first_time, seq, all_gone)

type(time_type), intent(in) :: first_time
type(obs_sequence_type), intent(inout) :: seq
logical, intent(out) :: all_gone

Deletes all observations in the sequence with times before first_time. If no observations remain, return all_gone as
.true. If no observations fall into the time window (e.g. all before first_time or empty sequence to begin with), no
deletions are done and all_gone is simply returned as .true.

first_time Delete all observations with times before this
seq An observation sequence
all_gone Returns true if there are no valid observations remaining in the sequence after first_time

call delete_seq_tail(last_time, seq, all_gone)

type(time_type), intent(in) :: last_time
type(obs_sequence_type), intent(inout) :: seq
logical, intent(out) :: all_gone

Deletes all observations in the sequence with times after last_time. If no observations remain, return all_gone as .true.
If no observations fall into the time window (e.g. all after last_time or empty sequence to begin with), no deletions are
done and all_gone is simply returned as .true.

last_time Delete all observations with times after this
seq An observation sequence
all_gone Returns true if there are no valid observations remaining in the sequence before last_time

6.197.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_sequence_nml
write_binary_obs_sequence = .false.
read_binary_file_format = 'native'
/

800 Chapter 6. References

DART, Release 9.10.3

Item Type Description
write_binary_obs_sequencelogical If true, write binary obs_sequence files. If false, write ascii obs_sequence files.
read_binary_file_formatcharac-

ter(len=32)
The ‘endian’ness of binary obs_sequence files. May be ‘native’ (endianness matches
hardware default), ‘big-endian’, ‘little-endian’, and possibly ‘cray’. Ignored if observa-
tion sequence files are ASCII.

6.197.5 Files

• obs_sequence_mod.nml in input.nml

• Files for reading and writing obs_sequences and obs specified in filter_nml.

6.197.6 References

• none

6.197.7 Private components

N/A

6.198 MODULE smoother_mod

Attention: The DART smoother works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using smoother_mod with more recent versions of DART, contact DAReS staff to assess
the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

6.198.1 Overview

Implements a fixed lag ensemble smoother as part of the filter. For now, this is done inefficiently with a separate call
to assim_tools_mod:filter_assim() for each lag.
To enable the smoother, set the number of lags (num_lags) to something larger than 0 in the smoother_nml
section of your input.nml file and run filter as before.

&smoother_nml
num_lags = 10,
start_from_restart = .false.,
output_restart = .true.,
restart_in_file_name = "ics",
restart_out_file_name = "restart" /

In the low order models, 10 is a plausible number.

6.198. MODULE smoother_mod 801

DART, Release 9.10.3

In addition to generating preassim.nc and analysis.nc files, files of the form Lag_NNNNN_Diag.nc will
be generated. Each of these has N fewer timesteps than the lag=0 run, starting at the same time but ending N
timesteps sooner. The obs_seq.final file and the preassim.nc and analysis.nc files will be the same as
the non-lagged version; the new output will be in each of the Lag_NNNNN_Diag.nc files.

6.198.2 Example

If you have a true_state.nc file and want to use the plot_total_err matlab function to plot the error, you
must do the following steps to generate analogs of lagged true_state.nc files to use as a comparison. (The logic
is not currently implemented in the matlab scripts to be able to compare netCDF files with unequal time coordinates.)
Make N separate versions of the true_state.nc with the last N timesteps removed. Using the netCDF NCO operator
program ‘ncks’ is one way. If the true_state.nc file has 1000 time steps, then this command removes the last one:

ncks -d time,0,998 true_state.nc True_Lag01.nc

Note that the first time is at index 0, so the last timestep is index 999 in the full file, and 998 in the truncated file.
Repeat this step for all N lags. Here are NCO commands to generate 10 truth files for num_lags = 10, 1000 time steps
in true_state.nc:

ncks -d time,0,998 true_state.nc True_Lag01.nc ncks -d time,0,997 true_state.nc True_Lag02.nc ncks -d time,0,996
true_state.nc True_Lag03.nc ncks -d time,0,995 true_state.nc True_Lag04.nc ncks -d time,0,994 true_state.nc
True_Lag05.nc ncks -d time,0,993 true_state.nc True_Lag06.nc ncks -d time,0,992 true_state.nc True_Lag07.nc
ncks -d time,0,991 true_state.nc True_Lag08.nc ncks -d time,0,990 true_state.nc True_Lag09.nc ncks -d time,0,989
true_state.nc True_Lag10.nc

Here is an example matlab session which plots the lag=0 results and then odd numbered lags from 1 to 9. It uses the
plot_total_err function from the $DART/matlab directory:

datadir = '.';
truth_file = fullfile(datadir,'true_state.nc');
diagn_file = fullfile(datadir,'preassim.nc');
plot_total_err
reply = input('original data. hit enter to continue ');

truth_file = fullfile(datadir,'True_Lag01.nc');
diagn_file = fullfile(datadir,'Lag_00001_Diag.nc');
plot_total_err
reply = input('Lag 01. hit enter to continue ');

truth_file = fullfile(datadir,'True_Lag03.nc');
diagn_file = fullfile(datadir,'Lag_00003_Diag.nc');
plot_total_err
reply = input('Lag 03. hit enter to continue ');

truth_file = fullfile(datadir,'True_Lag05.nc');
diagn_file = fullfile(datadir,'Lag_00005_Diag.nc');
plot_total_err
reply = input('Lag 05. hit enter to continue ');

truth_file = fullfile(datadir,'True_Lag07.nc');
diagn_file = fullfile(datadir,'Lag_00007_Diag.nc');
plot_total_err
reply = input('Lag 07. hit enter to continue ');

truth_file = fullfile(datadir,'True_Lag09.nc');
(continues on next page)

802 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

diagn_file = fullfile(datadir,'Lag_00009_Diag.nc');
plot_total_err
reply = input('Lag 09. hit enter to continue ');

6.198.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&smoother_nml
num_lags = 0,
start_from_restart = .false.,
output_restart = .false.,
restart_in_file_name = 'ics',
restart_out_file_name = 'restart'

/

Item Type Description
num_lagsin-

te-
ger

Number of smoother lags; < 1 means no smoother.

start_from_restartlog-
ical

True if smoother states are to come from restart file(s). False if they are to be spun up from scratch.

out-
put_restart

log-
ical

True if restart file(s) are to be written, else false.

restart_in_file_namechar-
ac-
ter(len=129)

String used to construct the file name from which to read restart data. Lag_NNNNN_ will be
prepended to the specified value to create the actual filename. If each ensemble is to be read from a
separate file, the .NNNN ensemble number will also be appended. e.g. specifying ‘ics’ here results
in ‘Lag_00001_ics’ if all ensemble members are read from a single file, ‘Lag_00001_ics.0001’,
‘Lag_00001_ics.0002’, etc for multiples.

restart_out_file_namechar-
ac-
ter(len=129)

String used to construct the file name to which to write restart data. Lag_NNNNN_ will be
prepended to the specified value to create the actual filename. If each ensemble is to be writ-
ten to a separate file, the .NNNN ensemble number will also be appended. e.g. specifying
‘restart’ here results in ‘Lag_00001_restart’ if all ensemble members are written to a single file,
‘Lag_00001_restart.0001’, ‘Lag_00001_restart.0002’, etc for multiples.

6.198. MODULE smoother_mod 803

DART, Release 9.10.3

6.198.4 Other modules used

types_mod
mpi_utilities_mod
utilities_mod
ensemble_manager_mod
time_manager_mod
assim_model_mod
assim_tools_mod
obs_sequence_mod
adaptive_inflate_mod

6.198.5 Public interfaces

use smoother_mod, only : smoother_read_restart
advance_smoother

smoother_gen_copy_meta_data

smoother_write_restart

init_smoother

do_smoothing

smoother_mean_spread

smoother_assim

filter_state_space_diagnostics

smoother_ss_diagnostics

smoother_end

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call smoother_read_restart(ens_handle, ens_size, model_size, time1, init_time_days)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: ens_size
integer, intent(in) :: model_size
type(time_type), intent(inout) :: time1
integer, intent(in) :: init_time_days

Reads in ensemble of states for all lag estimates from a restart file.

804 Chapter 6. References

DART, Release 9.10.3

ens_handle Handle of ensemble manager structure of single state; copied into all lags for startup.
ens_size Size of the ensemble.
model_size Size of the model state vector.
time1 Overwrite the time in the restart file with this value if init_time_days is non-negative.
init_time_days If non-negative, use time1 instead of time in restart file.

call advance_smoother(ens_handle)

type(ensemble_type), intent(in) :: ens_handle

Advances smoother state estimates at all lags forward in time. This entails copying the most recent smoother state,
contained in ens_handle, into the lag 1 smoother state and pushing back all other lags by 1 (i.e. lag 1 becomes lag 2,
etc.).

ens_handle Ensemble handle with most recent filtered state.

call smoother_gen_copy_meta_data(num_output_state_members, output_inflation)

integer, intent(in) :: num_output_state_members
logical, intent(in) :: output_inflation

Initializes the metadata required for the smoother state space diagnostic files.

num_output_state_membersNumber of copies of smoother state vector that should be in state space diag-
nostic output.

output_inflation True if smoother state space output should include inflation values.

call smoother_write_restart(start_copy, end_copy)

integer, intent(in) :: start_copy
integer, intent(in) :: end_copy

Outputs restart files for all lags of smoother state. Integer arguments specify the start and end global indices of a
continguous set of copies that contain the ensemble members.

start_copy Global index of ensemble copy that starts the actual ensemble members for smoother.
end_copy Global index of ensemble copy that ends the actual ensemble members for smoother.

6.198. MODULE smoother_mod 805

DART, Release 9.10.3

call init_smoother(ens_handle, POST_INF_COPY, POST_INF_SD_COPY)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: POST_INF_COPY
integer, intent(in) :: POST_INF_SD_COPY

Initializes the storage needed for a smoother. Also initializes an adaptive inflation type that does NO inflation (not
currently supported for smoothers).

ens_handle An ensemble handle for the filter that contains information about ensemble and model
size.

POST_INF_COPY Global index of ensemble copy that holds posterior state space inflation values.
POST_INF_SD_COPY Global index of ensemble copy that holds posterior inflation standard deviation values.

var = do_smoothing()

logical, intent(out) :: do_smoothing

Returns true if smoothing is to be done, else false.

do_smoothing Returns true if smoothing is to be done.

call smoother_mean_spread(ens_size,ENS_MEAN_COPY,ENS_SD_COPY, output_state_ens_mean,output_state_ens_spread)

integer, intent(in) :: ens_size
integer, intent(in) :: ENS_MEAN_COPY
integer, intent(in) :: ENS_SD_COPY
logical, intent(in) :: output_state_ens_mean
logical, intent(in) :: output_state_ens_spread

Computes the ensemble mean (and spread if required) of all state variables for all lagged ensembles. Spread is only
computed if it is required for output.

ens_size Size of ensemble.
ENS_MEAN_COPY Global index of copy that stores ensemble mean.
ENS_SD_COPY Global index of copy that stores ensemble spread.
output_state_ens_mean True if the ensemble mean is to be output to state diagnostic file.
output_state_ens_spread True if ensemble spread is to be output to state diagnostic file.

call smoother_assim(obs_ens_handle, seq, keys, ens_size, num_groups, obs_val_index, ENS_MEAN_COPY,
ENS_SD_COPY, PRIOR_INF_COPY, PRIOR_INF_SD_COPY, OBS_KEY_COPY, OBS_GLOBAL_QC_COPY,
OBS_PRIOR_MEAN_START, OBS_PRIOR_MEAN_END, OBS_PRIOR_VAR_START, OBS_PRIOR_VAR_END)

806 Chapter 6. References

DART, Release 9.10.3

type(ensemble_type), intent(inout) :: obs_ens_handle
type(obs_sequence_type), intent(in) :: seq
integer, dimension(:), intent(in) :: keys
integer, intent(in) :: ens_size
integer, intent(in) :: num_groups
integer, intent(in) :: obs_val_index
integer, intent(in) :: ENS_MEAN_COPY
integer, intent(in) :: ENS_SD_COPY
integer, intent(in) :: PRIOR_INF_COPY
integer, intent(in) :: PRIOR_INF_SD_COPY
integer, intent(in) :: OBS_KEY_COPY
integer, intent(in) :: OBS_GLOBAL_QC_COPY
integer, intent(in) :: OBS_PRIOR_MEAN_START
integer, intent(in) :: OBS_PRIOR_MEAN_END
integer, intent(in) :: OBS_PRIOR_VAR_START
integer, intent(in) :: OBS_PRIOR_VAR_END

Does assimilation of a set of observations for each smoother lag.

obs_ens_handle Handle for ensemble manager holding prior estimates of observations.
seq Observation sequence being assimilated.
keys A one dimensional array containing indices in seq of observations to as similate at

current time.
ens_size Ensemble size.
num_groups Number of groups in filter.
obs_val_index Integer index of copy of data in seq that contains the observed value from instruments.
ENS_MEAN_COPY Global index in smoother’s state ensemble that holds ensemble mean.
ENS_SD_COPY Global index in smoother’s state ensemble that holds ensemble standard deviation.
PRIOR_INF_COPY Global index in obs_ens_handle that holds inflation values (not used for smoother).
PRIOR_INF_SD_COPY Global index in obs_ens_handle that holds inflation sd values (not used for smoother).
OBS_KEY_COPY Global index in obs_ens_handle that holds the key for the observation.
OBS_GLOBAL_QC_COPY Global index in obs_ens_handle that holds the quality control value.
OBS_PRIOR_MEAN_STARTGlobal index in obs_ens_handle that holds the first group’s prior mean.
OBS_PRIOR_MEAN_END Global index in obs_ens_handle that holds the last group’s prior mean.
OBS_PRIOR_VAR_START Global index in obs_ens_handle that holds the first group’s prior variance.
OBS_PRIOR_VAR_END Global index in obs_ens_handle that holds the last group’s prior variance.

call filter_state_space_diagnostics(out_unit, ens_handle, model_size, num_output_state_members, out-
put_state_mean_index, output_state_spread_index, output_inflation, temp_ens, ENS_MEAN_COPY, ENS_SD_COPY,
inflate, INF_COPY, INF_SD_COPY)

type(netcdf_file_type), intent(inout) :: out_unit
type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: model_size
integer, intent(in) :: num_output_state_members
integer, intent(in) :: output_state_mean_index
integer, intent(in) :: output_state_spread_index
logical, intent(in) :: output_inflation
real(r8), intent(out) :: temp_ens(model_size)
integer, intent(in) :: ENS_MEAN_COPY

(continues on next page)

6.198. MODULE smoother_mod 807

DART, Release 9.10.3

(continued from previous page)

integer, intent(in) :: ENS_SD_COPY
type(adaptive_inflate_type), intent(in) :: inflate
integer, intent(in) :: INF_COPY
integer, intent(in) :: INF_SD_COPY

Writes state space diagnostic values including ensemble members, mean and spread, and inflation mean and spread to
a netcdf file.

out_unit Descriptor for the netcdf file being written.
ens_handle Ensemble handle whose state space values are to be written.
model_size Size of the model state vector.
num_output_state_members Number of individual state members to be output.
output_state_mean_index Index in netcdf file for ensemble mean.
output_state_spread_index Index in netcdf file for ensemble spread.
output_inflation True if the inflation values are to be output. Default is .TRUE.
temp_ens Storage passed in to avoid having to allocate extra space.
ENS_MEAN_COPY Global index in ens_handle for ensemble mean.
ENS_SD_COPY Global index in ens_handle for ensemble spread.
inflate Contains description and values of state space inflation.
INF_COPY Global index in ens_handle of inflation values.
INF_SD_COPY Global index in ens_handle of inflation standard deviation values.

call smoother_ss_diagnostics(model_size, num_output_state_members, output_inflation, temp_ens,
ENS_MEAN_COPY, ENS_SD_COPY, POST_INF_COPY, POST_INF_SD_COPY)

integer, intent(in) :: model_size
integer, intent(in) :: num_output_state_members
logical, intent(in) :: output_inflation
real(r8), intent(out) :: temp_ens(model_size)
integer, intent(in) :: ENS_MEAN_COPY
integer, intent(in) :: ENS_SD_COPY
integer, intent(in) :: POST_INF_COPY
integer, intent(in) :: POST_INF_SD_COPY

Outputs state space diagnostics files for all smoother lags.

model_size Size of the model state vector.
num_output_state_membersNumber of state copies to be output in the state space diagnostics file.
output_inflation True if the inflation values are to be output. Default is .TRUE.
temp_ens Storage passed in to avoid having to allocate extra space.
ENS_MEAN_COPY Global index of the ensemble mean in the lag smoother ensemble handles.
ENS_SD_COPY Global index of the ensemble spread in the lag smoother ensemble handles.
POST_INF_COPY Global index of the inflation value in the lag smoother ensemble handles (not

currently used).
POST_INF_SD_COPY Global index of the inflation spread in the lag smoother ensemble handles (not

currently used).

808 Chapter 6. References

DART, Release 9.10.3

call smoother_end()

Releases storage allocated for smoother.

call smoother_inc_lags()

Increments the number of lags that are in use for smoother. Used when a smoother is being started up and there have
not been enough times to propagate the state to all requested lags.

6.198.6 Files

• input.nml

• smoother initial condition files

• smoother restart files

6.198.7 References

1. none

6.198.8 Private components

N/A

6.199 MODULE assim_model_mod

6.199.1 Overview

This module acts as an intermediary between DART compliant models and the filter. At one time the as-
sim_model_type, which combines a state vector and a time_type, was envisioned as being fundamental to how DART
views model states. This paradigm is gradually being abandoned so that model state vectors and times are handled as
separate data types. It is important to call static_init_assim_model before using routines in assim_model_mod. Inter-
faces to work with model time stepping, restart files, and computations about the locations of model state variables
and the distance between observations and state variables. Many of the interfaces are passed through nearly directly
to the model_mod.

6.199. MODULE assim_model_mod 809

DART, Release 9.10.3

Notes

A note about documentation style. Optional arguments are enclosed in brackets [like this].

6.199.2 Namelist

This module does not have a namelist.

6.199.3 Other modules used

types_mod
location_mod (model dependent choice)
time_manager_mod
utilities_mod
model_mod
netcdf
typeSizes (part of netcdf)

6.199.4 Public interfaces

use assim_model_mod, only :
adv_1step
aoutput_diagnostics
aread_state_restart
assim_model_type
awrite_state_restart
close_restart
copy_assim_model
end_assim_model
ens_mean_for_model
finalize_diag_output
get_close_maxdist_init
get_close_obs
get_close_obs_init
get_closest_state_time_to
get_diag_input_copy_meta_data
get_initial_condition
get_model_size
get_model_state_vector
get_model_time
get_model_time_step
get_state_meta_data
init_assim_model
init_diag_input
init_diag_output
input_diagnostics
interpolate
nc_append_time

continues on next page

810 Chapter 6. References

DART, Release 9.10.3

Table 9 – continued from previous page
nc_get_tindex
nc_write_calendar_atts
netcdf_file_type
open_restart_read
open_restart_write
output_diagnostics
pert_model_state
read_state_restart
set_model_state_vector
set_model_time
static_init_assim_model
write_state_restart

type assim_model_type
private
real(r8), pointer :: state_vector(:)
type(time_type) :: time
integer :: model_size
integer :: copyID

end type assim_model_type

This type is used to represent both the state and time of a state from a model.

Component Description
state_vector A one dimensional representation of the model state vector.
time The time of the model state.
model_s Size of the model state vector.
copyID Not used in present implementation.

type netcdf_file_type
integer :: ncid
integer :: Ntimes
integer :: NtimesMAX
real(r8), pointer :: rtimes(:)
type(time_type), pointer :: times(:)
character(len = 80) :: fname

end type netcdf_file_type

Basically, we want to keep a local mirror of the unlimited dimension coordinate variable (i.e. time) because dynami-
cally querying it causes unacceptable performance degradation over “long” integrations.

6.199. MODULE assim_model_mod 811

DART, Release 9.10.3

Component Description
ncid The netcdf file unit id.
Ntimes The current working length.
NtimesMAX Allocated length.
rtimes Times as real (r8).
times Times as time_types.
fname Netcdf file name.

call static_init_assim_model()

Initializes the assim_model class. Must be called before any other assim_model_mod interfaces are used. Also calls
the static initialization for the underlying model. There are no arguments.

ncFileID = init_diag_output(FileName, global_meta_data, copies_of_field_per_time, meta_data_per_copy [, lagID])

type(netcdf_file_type) :: init_diag_output
character (len = *), intent(in) :: FileName
character (len = *), intent(in) :: global_meta_data
integer, intent(in) :: copies_of_field_per_time
character (len = *), intent(in) :: meta_data_per_copy(copies_of_field_per_time)
integer, optional, intent(in) :: lagID

Initializes a netCDF file for output of state space diagnostics. A handle to the channel on which the file is opened is
returned.

ncFileID Identifier for the netcdf file is returned. This is not an integer unit number, but a derived type
containing additional information about the opened file.

FileName Name of file to open.
global_meta_dataGlobal metadata that describes the contents of this file.
copies_of_field_per_timeNumber of copies of data to be written at each time. For instance, these could be the prior

ensemble members, prior ensemble mean, prior ensemble spread, posterior ensemble members,
posterior spread and mean, etc..

meta_data_per_copyMetadata describing each of the copies.
lagID If using the smoother, which lag number this output is for.

var = get_model_size()

integer :: get_model_size

Returns the size of the model state vector. This is a direct pass through to the model_mod.

812 Chapter 6. References

DART, Release 9.10.3

var = get_closest_state_time_to(model_time, time)

type(time_type) :: get_closest_state_time_to
type(time_type), intent(in) :: model_time
type(time_type), intent(in) :: time

Returns the closest time that a model is capable of advancing a given state to a specified time. For instance, what is
the closest time to 12GMT 01 January, 2004 that a model state at 00GMT 01 January, 2004 can be advanced? If the
model time is past the time, the model time is returned (new feature in releases after Hawaii).

var The closest time to which the model can be advanced is returned.
model_time The time of a model state vector.
time A time that one would like to get close to with the model.

call get_state_meta_data()

Pass through to model_mod. See model_mod documentation for arguments and description.

var = get_model_time(assim_model)

type(time_type) :: get_model_time
type(assim_model_type), intent(in) :: assim_model

Returns time from an assim_model type.

var Returned time from assim_model
assim_model Assim_model type from which to extract time

var = get_model_state_vector(assim_model)

real(r8) :: get_model_state_vector(model_size)
type(assim_model_type), intent(in) :: assim_model

Returns the state vector component from an assim_model_type.

var Returned state vector
assim_model Input assim_model_type

6.199. MODULE assim_model_mod 813

DART, Release 9.10.3

call copy_assim_model(model_out, model_in)

type(assim_model_type), intent(out) :: model_out
type(assim_model_type), intent(in) :: model_in

Copies one assim_model_type to another.

model_out Copy.
model_in Data to be copied.

call interpolate(x, location, loctype, obs_vals, istatus)

real(r8), intent(in) :: x(:)
type(location_type), intent(in) :: location
integer, intent(in) :: loctype
real(r8), intent(out) :: obs_vals
integer, intent(out) :: istatus

Interpolates a given model state variable type to a location given the model state vector. Nearly direct call to
model_interpolate in model_mod. See model_mod for the error return values in istatus.

x Model state vector.
location Location to which to interpolate.
loctype Type of variable to interpolate.
obs_vals Returned interpolated value.
istatus Returned as 0 if all is well, else various errors.

call set_model_time(assim_model, time)

type(assim_model_type), intent(inout) :: assim_model
type(time_type), intent(in) :: time

Sets the time in an assim_model_type.

assim_model Set the time in this assim_model_type.
time Set to this time

call set_model_state_vector(assim_model, state)

814 Chapter 6. References

DART, Release 9.10.3

type(assim_model_type), intent(inout) :: assim_model
real(r8), intent(in) :: state(:)

Set the state in an assim_model_type.

assim_model Set the state vector in this assim_model_type.
state The state vector to be inserted.

call write_state_restart(assim_model, funit [, target_time])

type(assim_model_type), intent(in) :: assim_model
integer, intent(in) :: funit
type(time_type), optional, intent(in) :: target_time

Writes a restart from an assim_model_type with an optional target_time.

assim_model Write a restart from this assim_model_type.
funit Integer file unit id open for output of restart files.
target_time If present, put this target time at the front of the restart file.

call read_state_restart(assim_model, funit [, target_time])

type(assim_model_type), intent(out) :: assim_model
integer, intent(in) :: funit
type(time_type), optional, intent(out) :: target_time

Read a state restart file into assim_model_type. Optionally read a prepended target time.

assim_model Read the time and state vector from restart into this.
funit File id that has been opened for reading restart files.
target_time If present, read a target time from the front of the file into this.

call output_diagnostics(ndFileID, state [, copy_index])

type(netcdf_file_type), intent(inout) :: ndFileID
type(assim_model_type), intent(in) :: state
integer, optional, intent(in) :: copy_index

Writes one copy of the state time and vector to a netCDF file.

6.199. MODULE assim_model_mod 815

DART, Release 9.10.3

ndFileID An identifier for a netCDF file
state State vector and time
copy_index Which copy of state is to be output

call end_assim_model()

Called to clean-up at end of assim_model use. For now just passes through to model_mod.

call input_diagnostics(file_id, state, copy_index)

integer, intent(in) :: file_id
type(assim_model_type), intent(inout) :: state
integer, intent(out) :: copy_index

Used to read in a particular copy of the state vector from an open state diagnostics file.

file_id Integer descriptor (channel number) for a diagnostics file being read.
state Assim_model_type to read in data.
copy_index Which copy of state to be read.

var = init_diag_input(file_name, global_meta_data, model_size, copies_of_field_per_time)

integer :: init_diag_input
character(len=*), intent(in) :: file_name
character(len=*), intent(out) :: global_meta_data
integer, intent(out) :: model_size
integer, intent(out) :: copies_of_field_per_time

Opens a state diagnostic file and reads the global meta data, model size, and number of data copies.

var Returns the unit number on which the file is open.
file_name File name of state diagnostic file.
global_meta_data Global metadata string from file.
model_size Size of model.
copies_of_field_per_time Number of copies of the state vector at each time.

call init_assim_model(state)

816 Chapter 6. References

DART, Release 9.10.3

type(assim_model_type), intent(inout) :: state

Creates storage for an assim_model_type.

state An assim_model_type that needs storage created.

call get_diag_input_copy_meta_data(file_id, model_size_out, num_copies, location, meta_data_per_copy)

integer, intent(in) :: file_id
integer, intent(in) :: model_size_out
integer, intent(in) :: num_copies
type(location_type), intent(out) :: location(model_size_out)
character(len = *) :: meta_data_per_copy(num_copies)

Reads meta-data describing state vectors in a state diagnostics file. Given the file, the model_size, and the number of
copies, returns the locations of each state variable and the text description of each copy.

file_id Integer channel open to state diagostic file being read
Model_size_out model size
num_copies Number of copies of state in file
location Returned locations for state vector
meta_data_per_copy Meta data describing what is in each copy of state vector

var = finalize_diag_output(ncFileID)

integer :: finalize_diag_output
type(netcdf_file_type), intent(inout) :: ncFileID

Used to complete writing on and open netcdf file. An error return is provided for passing to the netcdf error handling
routines.

var Returns an error value.
ncFileID Netcdf file id of an open file.

call aread_state_restart(model_time, model_state, funit [, target_time])

type(time_type), intent(out) :: model_time
real(r8), intent(out) :: model_state(:)
integer, intent(in) :: funit
type(time_type), optional, intent(out) :: target_time

6.199. MODULE assim_model_mod 817

DART, Release 9.10.3

Reads a model time and state, and optionally a prepended target time, from a state restart file.

model_time Returned time of model state
model_state Returned model state.
funit Channel open for reading a state restart file.
target_time If present, this time is read from the front of the restart file.

call aoutput_diagnostics(ncFileID, model_time, model_state [, copy_index])

type(netcdf_file_type), intent(inout) :: ncFileID
type(time_type), intent(in) :: model_time
real(r8), intent(in) :: model_state(:)
integer, optional, intent(in) :: copy_index

Write a state vector to a state diagnostics netcdf file.

ncFileID Unit for a state vector netcdf file open for output.
model_time The time of the state to be output
model_state A model state vector to be output.
copy_index Which copy of state vector is to be written, default is copy 1

call awrite_state_restart(model_time, model_state, funit [, target_time])

type(time_type), intent(in) :: model_time
real(r8), intent(in) :: model_state(:)
integer, intent(in) :: funit
type(time_type), optional, intent(in) :: target_time

Writes a model time and state vector to a restart file and optionally prepends a target time.

model_time Time of model state.
model_state Model state vector.
funit Channel of file open for restart output.
target_time If present, time to be prepended to state time / vector.

call pert_model_state()

Passes through to pert_model_state in model_mod. See model_mod documentation for arguments and details.

818 Chapter 6. References

DART, Release 9.10.3

var = nc_append_time(ncFileID, time)

integer :: nc_append_time
type(netcdf_file_type), intent(inout) :: ncFileID
type(time_type), intent(in) :: time

Appends the time to the time coordinate variable of the netcdf file. The new length of the time variable is returned.
Requires that time is a coordinate variable AND it is the unlimited dimension.

var Returns new length of time variable.
ncFileID Points to open netcdf file.
time The next time to be added to the file.

var = nc_write_calendar_atts(ncFileID, TimeVarID)

integer :: nc_write_calendar_atts
type(netcdf_file_type), intent(in) :: ncFileID
integer, intent(in) :: TimeVarID

Sets up the metadata for the appropriate calendar being used in the time manager an writes it to a netcdf file.

var Returns a netcdf error code.
ncFileID Netcdf file id pointing to a file open for writing.
TimeVarID The index of the time variable in the netcdf file.

var = nc_get_tindex(ncFileID, statetime)

integer :: nc_get_tindex
type(netcdf_file_type), intent(inout) :: ncFileID
type(time_type), intent(in) :: statetime

Returns the index of a time from the time variable in a netcdf file. This function has been replaced with more efficient
approaches and may be deleted from future releases.

var The index of the time in the netcdf file.
ncFileID File id for an open netcdf file.
statetime The time to be found in the netcdf file.

var = get_model_time_step()

type(time_type) :: get_model_time_step

6.199. MODULE assim_model_mod 819

DART, Release 9.10.3

This passes through to model_mod. See model_mod documentation for arguments and details.

var Returns time step of model.

var = open_restart_read(file_name)

integer :: open_restart_read
character(len=*), intent(in) :: file_name

Opens a restart file for readig.

var Returns a file descriptor (channel number).
file_name Name of restart file to be open for reading.

var = open_restart_write(file_name)

integer :: open_restart_write
character(len=*), intent(in) :: file_name

Open a restart file for writing.

var Returns a file descriptor (channel) for a restart file.
file_name File name of restart file to be opened.

call close_restart(file_unit)

integer, intent(in) :: file_unit

Closes a restart file.

file_unit File descriptor (channel number) of open restart file.

call adv_1step()

Advances a model by one step. Pass through to model_mod. See model_mod documentation for arguments and
details.

820 Chapter 6. References

DART, Release 9.10.3

call get_initial_condition(time, x)

type(time_type), intent(out) :: time
real(r8), intent(out) :: x

Obtains an initial condition from models that support this option.

time the valid time of the model state
x the initial model state

call ens_mean_for_model(ens_mean)

type(r8), intent(in) :: ens_mean(:)

An array of length model_size containing the ensemble means. This is a direct pass through to the model_mod.

ens_mean Array of length model_size containing the mean for each entry in the state vector.

call get_close_maxdist_init(gc, maxdist)

type(get_close_type), intent(inout) :: gc
type(r8), intent(in) :: maxdist

Sets the threshold distance. Anything closer than this is deemed to be close. This is a direct pass through to the
model_mod, which in turn can pass through to the location_mod.

gc Data for efficiently finding close locations.
maxdist Anything closer than this distance is a close location.

call get_close_obs(gc, base_obs_loc, base_obs_kind, obs, obs_kind, num_close, close_ind [, dist])

type(get_close_type), intent(in) :: gc
type(location_type), intent(in) :: base_obs_loc
integer, intent(in) :: base_obs_kind
type(location_type), intent(in) :: obs(:)
integer, intent(in) :: obs_kind(:)
integer, intent(out) :: num_close
integer, intent(out) :: close_ind(:)
real(r8), optional, intent(out) :: dist(:)

6.199. MODULE assim_model_mod 821

DART, Release 9.10.3

Given a single location and a list of other locations, returns the indices of all the locations close to the single one along
with the number of these and the distances for the close ones. The observation kinds are passed in to allow more
sophisticated distance computations to be done if needed. This is a direct pass through to the model_mod, which in
turn can pass through to the location_mod.

gc Data for efficiently finding close locations.
base_obs_loc Single given location.
base_obs_kind Kind of the single location.
obs List of observations from which close ones are to be found.
obs_kind Kind associated with observations in obs list.
num_close Number of observations close to the given location.
close_ind Indices of those locations that are close.
dist Distance between given location and the close ones identified in close_ind.

call get_close_obs_init(gc, num, obs)

type(get_close_type), intent(inout) :: gc
integer, intent(in) :: num
type(location_type), intent(in) :: obs(:)

Initialize storage for efficient identification of locations close to a given location. Allocates storage for keeping track
of which ‘box’ each observation in the list is in. This is a direct pass through to the model_mod, which in turn can
pass through to the location_mod.

gc Data for efficiently finding close locations.
num The number of locations in the list.
obs The location of each element in the list, not used in 1D implementation.

822 Chapter 6. References

DART, Release 9.10.3

6.199.5 Files

filename purpose/comment
filter_restart specified in &filter_nml:restart_in_filename
filter_restart specified in &filter_nml:restart_out_filename
input.nml to read namelists

6.199.6 References

• none

6.199.7 Private components

N/A

6.200 MODULE assim_tools_mod

6.200.1 Overview

This module provides subroutines that implement the parallel versions of the sequential scalar filter algorithms. These
include the standard sequential filter as described in Anderson 2001, 2003 along with systematic correction algorithms
for both mean and spread. In addition, algorithms to do a variety of flavors of filters including the EAKF, ENKF,
particle filter, and kernel filters are included. The parallel implementation that allows each observation to update all
state variables that are close to it at the same time is described in Anderson and Collins, 2007.

6.200.2 Filter types

Available observation space filter types include:

• 1 = EAKF (Ensemble Adjustment Kalman Filter, see Anderson 2001)

• 2 = ENKF (Ensemble Kalman Filter)

• 3 = Kernel filter

• 4 = Observation Space Particle filter

• 5 = Random draw from posterior (contact dart@ucar.edu before using)

• 6 = Deterministic draw from posterior with fixed kurtosis (ditto)

• 7 = Boxcar kernel filter

• 8 = Rank Histogram filter (see Anderson 2010)

• 9 = Particle filter (see Poterjoy 2016)

We recommend using type=1, the EAKF. Note that although the algorithm is expressed in a slightly different form, the
EAKF is identical to the EnSRF (Ensemble Square Root Filter) described by Whitaker and Hamill in 2002. Highly
non-gaussian distributions may get better results from type=8, Rank Histogram filter.

6.200. MODULE assim_tools_mod 823

mailto:dart@ucar.edu

DART, Release 9.10.3

6.200.3 Localization

Localization controls how far the impact of an observation extends. The namelist items related to localization are
spread over several different individual namelists, so we have made a single collected description of them here along
with some guidance on setting the values.

This discussion centers on the mechanics of how you control localization in DART with the namelist items, and a
little bit about pragmatic approaches to picking the values. There is no discussion about the theory behind localization
- contact Jeff Anderson for more details. Additionally, the discussion here applies specifically to models using the
3d-sphere location module. The same process takes place in 1d models but the details of the location module namelist
is different.

The following namelist items related to 3d-sphere localization are all found in the input.nml file:

&assim_tools_nml :: cutoff valid values: 0.0 to infinity

This is the value, in radians, of the half-width of the localization radius (this follows the terminology of an early
paper on localization). For each observation, a state vector item increment is computed based on the covariance
values. Then a multiplier, based on the ‘select_localization’ setting (see below) decreases the increment as the
distance between the obs and the state vector item increases. In all cases if the distance exceeds 2*cutoff, the
increment is 0.

&cov_cutoff_nml :: select_localization valid values: 1=Gaspari-Cohn; 2=Boxcar; 3=Ramped
Boxcar

Controls the shape of the multiplier function applied to the computed increment as the distance increases be-
tween the obs and the state vector item. Most users use type 1 localization.

• Type 1 (Gaspari-Cohn) has a value of 1 at 0 distance, 0 at 2*cutoff, and decreases in an approximation of
a gaussian in between.

• Type 2 (Boxcar) is 1 from 0 to 2*cutoff, and then 0 beyond.

• Type 3 (Ramped Boxcar) is 1 to cutoff and then ramps linearly down to 0 at 2*cutoff.

824 Chapter 6. References

DART, Release 9.10.3

&location_nml :: horiz_dist_only valid values: .true., .false.

If set to .true., then the vertical location of all items, observations and state vector both, are ignored when
computing distances between pairs of locations. This has the effect that all items within a vertical-cylindrical
area are considered the same distance away.

If set to .false., then the full 3d separation is computed. Since the localization is computed in radians, the 2d
distance is easy to compute but a scaling factor must be given for the vertical since vertical coordinates can be
in meters, pressure, or model levels. See below for the ‘vert_normalization_xxx’ namelist items.

&location_nml :: vert_normalization_{pressure,height,level,scale_height} valid
values: real numbers, in pascals, meters, index, and value respectively

If ‘horiz_dist_only’ is set to .true., these are ignored. If set to .false., these are required. They are the amount of
that quantity that is equivalent to 1 radian in the horizontal. If the model is an earth-based one, then one radian is
roughly 6366 kilometers, so if vert_normalization_height is set to 6366000 meters, then the localization cutoff
will be a perfect sphere. If you want to localize over a larger distance in the vertical than horizontal, use a larger
value. If you want to localize more sharply in the vertical, use a smaller number. The type of localization used
is set by which type of vertical coordinate the observations and state vector items have.

If you have observations with different vertical coordinates (e.g. pressure and height), or if your observations
have a different vertical coordinate than your state vector items, or if you want to localize in a different type of
unit than your normal vertical coordinate (e.g. your model uses pressure in the vertical but you wish to localize
in meters), then you will need to modify or add a get_close() routine in your model_mod.f90 file.
See the discussion in the MODULE location_mod (threed_sphere) documentation for how to transform vertical
coordinates before localization.

6.200. MODULE assim_tools_mod 825

DART, Release 9.10.3

&assim_tools_nml ::adaptive_localization_threshold valid values: integer counts, or -1 to dis-
able

Used to dynamically shrink the localization cutoff in areas of dense observations. If set to something larger than
0, first the number of other observations within 2*cutoff is computed. If it is larger than this given threshold,
the cutoff is decreased proportionally so if the observations were evenly distributed in space, the number of
observations within 2*revised_cutoff would now be the threshold value. The cutoff value is computed for each
observation as it is assimilated, so can be different for each one.

&assim_tools_nml :: adaptive_cutoff_floor valid values: 0.0 to infinity, or -1 to disable

If using adaptive localization (adaptive_localization_threshold set to a value greater than 0), then this value can
be used to set a minimum cutoff distance below which the adaptive code will not shrink. Set to -1 to disable.
Ignored if not using adaptive localization.

&assim_tools_nml :: output_localization_diagnostics valid values: .true., .false.

If .true. and if adaptive localization is on, a single text line is printed to a file giving the original cutoff and
number of observations, and the revised cutoff and new number of counts within this smaller cutoff for any
observation which has nearby observations which exceed the adaptive threshold count.

&assim_tools_nml :: localization_diagnostics_file valid values: text string

Name of the file where the adaptive localization diagnostic information is written.

&assim_tools_nml :: special_localization_obs_types valid values: list of 1 or more text
strings

The cutoff localization setting is less critical in DART than it might be in other situations since during the
assimilation DART computes the covariances between observations and nearby state vector locations and that
is the major factor in controlling the impact an observation has. For conventional observations fine-tuning the
cutoff based on observation type is not recommended (it is possible to do more harm than good with it). But in
certain special cases there may be valid reasons to want to change the localization cutoff distances drastically
for certain kinds of observations. This and the following namelist items allow this.

Optional list of observation types (e.g. “RADAR_REFLECTIVITY”, “AIRS_TEMPERATURE”) which will
use a different cutoff distance. Any observation types not listed here will use the standard cutoff distance (set
by the ‘cutoff’ namelist value). This is only implemented for the threed_sphere location module (the one used
by most geophysical models.)

&assim_tools_nml :: special_localization_cutoffs valid values: list of 1 or more real values,
0.0 to infinity

A list of real values, the same length as the list of observation types, to be used as the cutoff value for each of
the given observation types. This is only implemented for the threed_sphere location module (the one used by
most geophysical models.)

Guidance regarding localization

There are a large set of options for localization. Individual cases may differ but in general the following guidelines
might help. Most users use the Gaspari-Cohn covariance cutoff type. The value of the cutoff itself is the item most
often changed in a sensitivity run to pick a good general value, and then left as-is for subsequent runs. Most localize
in the vertical, but tend to use large values so as to not disturb vertical structures. Users do not generally use adaptive
localization, unless their observations are very dense in some areas and sparse in others.

The advice for setting good values for the cutoff value is to err on the larger side - to estimate for all types of obser-
vations under all conditions what the farthest feasible impact or correlated structure size would be. The downsides of
guessing too large are 1) run time is slower, and 2) there can be spurious correlations between state vector items and
observations which aren’t physically related and noise can creep into the assimilation results this way. The downside

826 Chapter 6. References

DART, Release 9.10.3

of guessing too small is that state vector items that should get an impact from an observation won’t. This might disrupt
organized features in a field and the model may take more time to recover/reconstruct the feature.

6.200.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&assim_tools_nml
filter_kind = 1
cutoff = 0.2
distribute_mean = .false.
sort_obs_inc = .false.
spread_restoration = .false.
sampling_error_correction = .false.
adaptive_localization_threshold = -1
adaptive_cutoff_floor = 0.0
output_localization_diagnostics = .false.
localization_diagnostics_file = "localization_diagnostics"
print_every_nth_obs = 0
rectangular_quadrature = .true.
gaussian_likelihood_tails = .false.
close_obs_caching = .true.
adjust_obs_impact = .false.
obs_impact_filename = ""
allow_any_impact_values = .false.
convert_all_obs_verticals_first = .true.
convert_all_state_verticals_first = .false.
special_localization_obs_types = 'null'
special_localization_cutoffs = -888888.0
/

Description of each namelist entry

filter_kind type: integer

Selects the variant of filter to be used.

• 1 = EAKF (Ensemble Adjustment Kalman Filter, see Anderson 2001)

• 2 = ENKF (Ensemble Kalman Filter)

• 3 = Kernel filter

• 4 = Observation Space Particle filter

• 5 = Random draw from posterior (contact dart@ucar.edu before using)

• 6 = Deterministic draw from posterior with fixed kurtosis (ditto)

• 7 = Boxcar kernel filter

• 8 = Rank Histogram filter (see Anderson 2010)

• 9 = Particle filter (see Poterjoy 2016)

The EAKF is the most commonly used filter. Note that although the algorithm is expressed in a slightly different
form, the EAKF is identical to the EnSRF (Ensemble Square Root Filter) described by Whitaker and Hamill in
2002.

6.200. MODULE assim_tools_mod 827

mailto:dart@ucar.edu

DART, Release 9.10.3

The Rank Histgram filter can be more successful for highly nongaussian distributions.

Jon Poterjoy’s Particle filter is included with this code release. To use, it, overwrite assim_tools_mod.f90
with assim_tools_mod.pf.f90 and rebuild filter.

$ mv assimilation_code/modules/assimilation/assim_tools_mod.pf.f90 assimilation_
→˓code/modules/assimilation/assim_tools_mod.f90

There are additional namelist items in this version specific to the particle filter. Read the code for more details.

cutoff type: real(r8)

Cutoff controls a distance dependent weight that modulates the impact of an observation on a state variable. The
units depend both on the location module being used and on the covariance cutoff module options selected. As
defined in the original paper, this is the half-width; the localization goes to 0 at 2 times this value.

distribute_mean type: logical

If your model uses coordinates that have no options for different vertical coordinates then this setting has no
effect on speed and should be .true. to use less memory. If your model has code to convert between different
coordinate systems, for example Pressure, Height, Model Levels, etc, then setting this .false. will generally run
much faster at assimilation time but will require more memory per MPI task. If you run out of memory, setting
this to .true. may allow you to run but take longer.

sort_obs_inc type: logical

If true, the final increments from obs_increment are sorted so that the mean increment value is as small as
possible. This minimizes regression errors when non-deterministic filters or error correction algorithms are
applied. HOWEVER, when using deterministic filters (filter_kind == 1 or 8) with no inflation or a combination
of a determinstic filter and deterministic inflation (filter_nml:inf_deterministic = .TRUE.) sorting the increments
is both unnecessary and expensive. A warning is printed to stdout and the log and the sorting is skipped.

spread_restoration type: logical

True turns on algorithm to restore amount of spread that would be expected to be lost if underlying obs/state
variable correlation were really 0.

sampling_error_correction type: logical

If true, apply sampling error corrections to the correlation values based on the ensemble size. See Ander-
son 2012. This option uses special input files generated by the gen_sampling_err_table tool in the assimila-
tion_code/programs directory. The values are generated for a specific ensemble size and most common ensem-
ble sizes have precomputed entries in the table. There is no dependence on which model is being used, only
on the number of ensemble members. The input file must exist in the directory where the filter program is
executing.

adaptive_localization_threshold type: integer

Used to reduce the impact of observations in densely observed regions. If the number of observations close
to a given observation is greater than the threshold number, the cutoff radius for localization is adjusted to try
to make the number of observations close to the given observation be the threshold number. This should be
dependent on the location module and is tuned for a three_dimensional spherical implementation for numerical
weather prediction models at present.

adaptive_cutoff_floor type: real

If adaptive localization is enabled and if this value is greater than 0, then the adaptive cutoff distance will be set
to a value no smaller than the distance specified here. This guarentees a minimum cutoff value even in regions
of very dense observations.

output_localization_diagnostics type: logical

828 Chapter 6. References

DART, Release 9.10.3

Setting this to .true.will output an additional text file that contains the obs key, the obs time, the obs location,
the cutoff distance and the number of other obs which are within that radius. If adaptive localization is enabled,
the output also contains the updated cutoff distance and the number of other obs within that new radius. Without
adaptive localization there will be a text line for each observation, so this file could get very large. With adaptive
localization enabled, there will only be one line per observation where the radius is changed, so the size of the
file will depend on the number of changed cutoffs.

localization_diagnostics_file type: character(len=129)

Filename for the localization diagnostics information. This file will be opened in append mode, so new infor-
mation will be written at the end of any existing data.

print_every_nth_obs type: integer

If set to a value N greater than 0, the observation assimilation loop prints out a progress message every Nth
observations. This can be useful to estimate the expected run time for a large observation file, or to verify
progress is being made in cases with suspected problems.

rectangular_quadrature type: logical

Only relevant for filter type 8 and recommended to leave .true..

gaussian_likelihood_tails type: logical

Only relevant for filter type 8 and recommended to leave .false..

close_obs_caching type: logical

Should remain .TRUE. unless you are using specialized_localization_cutoffs. In that case to get accurate results,
set it to .FALSE.. This also needs to be .FALSE. if you have a get_close_obs() routine in your model_mod file
that uses the types/kinds of the obs to adjust the distances.

adjust_obs_impact type: logical

If true, reads a table of observation quantities and types which should be artifically adjusted regardless of the ac-
tual correlation computed during assimilation. Setting the impact value to 0 prevents items from being adjusted
by that class of observations. The input file can be constructed by the ‘obs_impact_tool’ program, included in
this release. See the documentation for more details.

obs_impact_filename type: character(len=256)

If adjust_obs_impact is true, the name of the file with the observation types and quantities and state quantities
that should have have an additional factor applied to the correlations during assimilation.

allow_any_impact_values type: logical

If .false., then the impact values can only be zero or one (0.0 or 1.0) - any other value will throw an error. .false.
is the recommended setting.

convert_all_obs_verticals_first type: logical

Should generally always be left .True.. For models without vertical conversion choices the setting of this item
has no impact.

convert_all_state_verticals_first type: logical

If the model has multiple choices for the vertical coordinate system during localization (e.g. pressure, height,
etc) then this should be .true. if previous versions of get_state_meta_data() did a vertical conversion or if most
of the state is going to be impacted by at least one observation. If only part of the state is going to be updated or
if get_state_meta_data() never used to do vertical conversions, leave it .false.. The results should be the same but
the run time may be impacted by doing unneeded conversions up front. For models without vertical conversion
choices the setting of this item has no impact.

6.200. MODULE assim_tools_mod 829

DART, Release 9.10.3

special_localization_obs_types type: character(len=32), dimension(:)

Optional list of observation types (e.g. “RADAR_REFLECTIVITY”, “RADIOSONDE_TEMPERATURE”)
which will use a different cutoff value other than the default specified by the ‘cutoff’ namelist. This is only
implemented for the ‘threed_sphere’ locations module.

special_localization_cutoffs type: real(r8), dimension(:)

Optional list of real values which must be the same length and in the same order as the observation types
list given for the ‘special_localization_obs_types’ item. These values will set a different cutoff distance for
localization based on the type of the observation currently being assimilated. Any observation type not in the
list will use the default cutoff value. This is only implemented for the ‘threed_sphere’ locations module.

6.200.5 Other modules used

types_mod
utilities_mod
sort_mod
random_seq_mod
obs_sequence_mod
obs_def_mod
cov_cutoff_mod
reg_factor_mod
location_mod (model dependent choice)
ensemble_manager_mod
mpi_utilities_mod
adaptive_inflate_mod
time_manager_mod
assim_model_mod

6.200.6 Public interfaces

use assim_tools_mod, only : filter_assim

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call filter_assim(ens_handle, obs_ens_handle, obs_seq, keys, ens_size, num_groups, obs_val_index, in-
flate, ens_mean_copy, ens_sd_copy, ens_inf_copy, ens_inf_sd_copy, obs_key_copy, obs_global_qc_copy,
obs_prior_mean_start, obs_prior_mean_end, obs_prior_var_start, obs_prior_var_end, inflate_only)

type(ensemble_type), intent(inout) :: ens_handle
type(ensemble_type), intent(inout) :: obs_ens_handle
type(obs_sequence_type), intent(in) :: obs_seq
integer, intent(in) :: keys(:)
integer, intent(in) :: ens_size
integer, intent(in) :: num_groups
integer, intent(in) :: obs_val_index
type(adaptive_inflate_type), intent(inout) :: inflate
integer, intent(in) :: ens_mean_copy

(continues on next page)

830 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

integer, intent(in) :: ens_sd_copy
integer, intent(in) :: ens_inf_copy
integer, intent(in) :: ens_inf_sd_copy
integer, intent(in) :: obs_key_copy
integer, intent(in) :: obs_global_qc_copy
integer, intent(in) :: obs_prior_mean_start
integer, intent(in) :: obs_prior_mean_end
integer, intent(in) :: obs_prior_var_start
integer, intent(in) :: obs_prior_var_end
logical, intent(in) :: inflate_only

Does assimilation and inflation for a set of observations that is identified by having integer indices listed in keys. Only
the inflation is updated if inflation_only is true, otherwise the state is also updated.

ens_handle Contains state variable ensemble data and description.
obs_ens_handle Contains observation prior variable ensemble and description.
obs_seq Contains the observation sequence including observed values and error variances.
keys A list of integer indices of observations in obs_seq that are to be used at this time.
ens_size Number of ensemble members in state and observation prior ensembles.
num_groups Number of groups being used in assimilation.
obs_val_index Integer index of copy in obs_seq that contains the observed value from instrument.
inflate Contains inflation values and all information about inflation to be used.
ens_mean_copy Index of copy containing ensemble mean in ens_handle.
ens_sd_copy Index of copy containing ensemble standard deviation in ens_handle.
ens_inf_copy Index of copy containing state space inflation in ens_handle.
ens_inf_sd_copy Index of copy containing state space inflation standard deviation in ens_handle.
obs_key_copy Index of copy containing unique key for observation in obs_ens_handle.
obs_global_qc_copy Index of copy containing global quality control value in obs_ens_handle.
obs_prior_mean_start Index of copy containing first group’s prior mean in obs_ens_handle.
obs_prior_mean_end Index of copy containing last group’s prior mean in obs_ens_handle.
obs_prior_var_start Index of copy containing first group’s ensemble variance in obs_ens_handle.
obs_prior_var_end Index of copy containing last group’s ensemble variance in obs_ens_handle.
inflate_only True if only inflation is to be updated, and not state.

6.200.7 Files

filename purpose
input.nml to read assim_tools_nml

6.200. MODULE assim_tools_mod 831

DART, Release 9.10.3

6.200.8 References

• Anderson, J. L., 2001: An Ensemble Adjustment Kalman Filter for Data Assimilation. Mon. Wea. Rev., 129,
2884-2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2

• Anderson, J. L., 2003: A Local Least Squares Framework for Ensemble Filtering. Mon. Wea. Rev., 131,
634-642. doi: 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2

• Anderson, J., Collins, N., 2007: Scalable Implementations of Ensemble Filter Algorithms for Data Assimilation.
Journal of Atmospheric and Oceanic Technology, 24, 1452-1463. doi: 10.1175/JTECH2049.1

• Anderson, J. L., 2010: A Non-Gaussian Ensemble Filter Update for Data Assimilation. Mon. Wea. Rev., 139,
4186-4198. doi: 10.1175/2010MWR3253.1

• Anderson, J. L., 2012:, Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimila-
tion. Mon. Wea. Rev., 140, 2359-2371. doi: 10.1175/MWR-D-11-00013.1

• Poterjoy, J., 2016:, A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev. 144
59-76. doi:10.1175/MWR-D-15-0163.1

6.200.9 Private components

N/A

6.201 MODULE cov_cutoff_mod

6.201.1 Overview

Computes the weight with which an observation should impact a state variable that is separated by a given distance.
The distance is in units determined by the location module being used.

6.201.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&cov_cutoff_nml
select_localization = 1

/

832 Chapter 6. References

http://dx.doi.org/10.1175/1520-0493%282001%29129%3C2884%3AAEAKFF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/1520-0493%282003%29131%3C0634%3AALLSFF%3E2.0.CO%3B2
http://dx.doi.org/10.1175/JTECH2049.1
http://dx.doi.org/10.1175/2010MWR3253.1
http://dx.doi.org/10.1175/MWR-D-11-00013.1
http://dx.doi.org/10.1175/MWR-D-15-0163.1

DART, Release 9.10.3

Item Type Description
select_localization integer Selects the localization function.

• 1 = Gaspari-Cohn 5th order
polynomial with halfwidth c.

• 2 = Boxcar with halfwidth c
(goes to 0 for z_in < 2c).

• 3 = Ramped Boxcar. Has
value 1 for z_in < c and then
reduces linearly to 0 at z_in =
2c.

6.201.3 Other modules used

types_mod
utilities_mod
location_mod

6.201.4 Public interfaces

use cov_factor_mod, only : comp_cov_factor

A note about documentation style. Optional arguments are enclosed in brackets [like this].

var = comp_cov_factor(z_in, c [, obs_loc] [, obs_type] [, target_loc] [, target_kind] [, localization_override])

real(r8) :: comp_cov_factor
real(r8), intent(in) :: z_in
real(r8), intent(in) :: c
type(location_type), optional, intent(in) :: obs_loc
integer, optional, intent(in) :: obs_type
type(location_type), optional, intent(in) :: target_loc
integer, optional, intent(in) :: target_kind
integer, optional, intent(in) :: localization_override

Returns a weighting factor for observation and a target variable (state or observation) separated by distance z_in
and with a half-width distance, c. Three options are provided and controlled by a namelist parameter. The optional
argument localization_override controls the type of localization function if present. The optional arguments obs_loc,
obs_type and target_loc, target_kind are not used in the default code. They are made available for users who may want
to design more sophisticated localization functions.

6.201. MODULE cov_cutoff_mod 833

DART, Release 9.10.3

var Weighting factor.
z_in The distance between observation and target.
c Factor that describes localization function. Describes half-width of functions used here.
obs_loc Location of the observation.
obs_type Observation specific type.
target_loc Location of target.
target_kind Generic kind of target.
localization_override Controls localization type if present. Same values as for namelist control.

6.201.5 Files

filename purpose
input.nml to read cov_cutoff_nml

6.201.6 References

1. Gaspari and Cohn, 1999, QJRMS, 125, 723-757. (eqn. 4.10)

6.201.7 Error codes and conditions

Routine Message Comment
comp_cov_factorIllegal value of “select_localization” in

cov_cutoff_mod namelist
Only values 1 through 3 select a localiza-
tion function.

6.201.8 Private components

N/A

6.202 MODULE obs_model_mod

6.202.1 Overview

The code in this module computes the assimilation windows, and decides if the model needs to run in order for the
data to be at the appropriate time to assimilate the next available observations. It also has the code to write out the
current states, advance the model (in a variety of ways) and then read back in the updated states.

834 Chapter 6. References

DART, Release 9.10.3

6.202.2 Other modules used

types_mod
utilities_mod
assim_model_mod
obs_sequence_mod
obs_def_mod
time_manager_mod
ensemble_manager_mod
mpi_utilities_mod

6.202.3 Public interfaces

use obs_model_mod, only : advance_state
move_ahead

call move_ahead(ens_handle, ens_size, seq, last_key_used, window_time, key_bounds, num_obs_in_set,
curr_ens_time, next_ens_time, trace_messages)

type(ensemble_type), intent(in) :: ens_handle
integer, intent(in) :: ens_size
type(obs_sequence_type), intent(in) :: seq
integer, intent(in) :: last_key_used
type(time_type), intent(in) :: window_time
integer, dimension(2), intent(out) :: key_bounds
integer, intent(out) :: num_obs_in_set
type(time_type), intent(out) :: curr_ens_time
type(time_type), intent(out) :: next_ens_time
logical, optional, intent(in) :: trace_messages

Given an observation sequence and an ensemble, determines how to advance the model so that the next set of
observations can be assimilated. Also returns the first and last keys and the number of observations to be assimilated
at this time. The algorithm implemented here (one might want to have other variants) first finds the time of the next
observation that has not been assimilated at a previous time. It also determines the time of the ensemble state vectors.
It then uses information about the model’s time stepping capabilities to determine the time to which the model can be
advanced that is CLOSEST to the time of the next observation. For now, this algorithm assumes that the model’s
timestep is a constant. A window of width equal to the model timestep is centered around the closest model time to
the next observation and all observations in this window are added to the set to be assimilated.
Previous versions of this routine also made the call which actually advanced the model before returning. This is no
longer true. The routine only determines the time stepping and number of observations. The calling code must then
call advance_state() if indeed the next observation to be assimilated is not within the current window. This is
determined by comparing the current ensemble time with the next ensemble time. If equal no advance is needed.
Otherwise, next ensemble time is the target time for advance_state().

6.202. MODULE obs_model_mod 835

DART, Release 9.10.3

ens_handleIdentifies the model state ensemble
ens_sizeNumber of ensemble members
seq An observation sequence
last_key_usedIdentifies the last observation from the sequence that has been used
window_timeReserved for future use.
key_boundsReturned lower and upper bound on observations to be used at this time
num_obs_in_setNumber of observations to be used at this time
curr_ens_timeThe time of the ensemble data passed into this routine.
next_ens_timeThe time the ensemble data should be advanced to. If equal to curr_ens_time, the model does not need

to advance to assimilate the next observation.
trace_messagesOptional argument. By default, detailed time trace messages are disabled but can be turned on by

passing this in as .True. . The messages will print the current window times, data time, next observation
time, next window time, next data time, etc.

call advance_state(ens_handle, ens_size, target_time, async, adv_ens_command, tasks_per_model_advance)

type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: ens_size
type(time_type), intent(in) :: target_time
integer, intent(in) :: async
character(len=*), intent(in) :: adv_ens_command
integer, intent(in) :: tasks_per_model_advance

Advances all ensemble size copies of an ensemble stored in ens_handle to the target_time. If async=0 this is done by re-
peated calls to the adv_1step() subroutine. If async=2, a call to the shell with the command adv_ens_command
is used. If async=4, the filter program synchronizes with the MPI job shell script using the block_task() and
restart_task() routines to suspend execution until all model advances have completed. The script can start the
model advances using MPI and have it execute in parallel in this mode.

ens_handle Structure for holding ensemble information and data
ens_size Ensemble size.
target_time Time to which model is to be advanced.
async How to advance model:

0 = subroutine adv_1step
2 = shell executes adv_ens_command
4 = MPI job script advances models and syncs with
filter task

adv_ens_command Command to be issued to shell to advance model if
async=2.

tasks_per_model_advance Reserved for future use.

836 Chapter 6. References

DART, Release 9.10.3

6.202.4 Namelist

This module does not have a namelist.

6.202.5 Files

filename purpose
as-
sim_model_state_ic####

a binary representation of the state vector prepended by a small header consisting of the ‘advance-to’
time and the ‘valid-time’ of the state vector. The #### represents the ensemble member number if
&ensemble_manager_nml: single_restart_file_out = .true..

as-
sim_model_state_ud####

a binary representation of the state vector prepended by a small header consisting of the ‘valid-time’
of the state vector. This is the ‘updated’ model state (after the model has advanced the state to the
desired ‘advance-to’ time).

fil-
ter_control####

a text file containing information needed to advance the ensemble members; i.e., the ensemble member
number, the input state vector file, the output state vector file - that sort of thing.

6.202.6 References

• none

6.202.7 Private components

N/A

6.203 MODULE reg_factor

6.203.1 Overview

Computes a weighting factor to reduce the impact of observations on state variables using information from groups
of ensembles. Can be run using groups or using archived summary information available from previous group filter
experiments.

6.203.2 Other modules used

types_mod
utilities_mod
time_manager_mod

6.203. MODULE reg_factor 837

DART, Release 9.10.3

6.203.3 Public interfaces

use reg_factor_mod, only : comp_reg_factor

A note about documentation style. Optional arguments are enclosed in brackets [like this].

var = comp_reg_factor(num_groups, regress, obs_index, state_index [, obs_state_ind] [, obs_state_max])

real(r8) :: comp_reg_factor
integer, intent(in) :: num_groups
real(r8), dimension(num_groups), intent(in) :: regress
integer, intent(in) :: obs_index
integer, intent(in) :: state_index
integer, optional, intent(in) :: obs_state_ind
integer, optional, intent(in) :: obs_state_max

Returns a weighting factor given regression factors from each group of a group filter or retrieves a factor generated by
previous group filter runs from a file.

num_groupsNumber of groups. Set to 1 when using information from previously run group filter from file.
regress Regression factor from each group for a given state variable and observation variable pair.
obs_indexInteger index of the observation being processed. Not used in current implementation .
state_indexInteger index of state variable being processed. Not used in current implementation.
obs_state_indIndex into file generated for Bgrid model which could be duplicated in other large models.
obs_state_maxMaximum number of observation state variable pairs with non-zero impacts for a given model and

observation sequence. Used for generating Bgrid statistic files.

6.203.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

®_factor_nml
select_regression = 1,
input_reg_file = "time_mean_reg",
save_reg_diagnostics = .false.,
reg_diagnostics_file = "reg_diagnostics"

/

838 Chapter 6. References

DART, Release 9.10.3

Item Type Description
select_regression integer Selects the method for computing

regression factor.
• 1 = compute using sampling

theory for any ensemble size.

• 2 = low order model format.
Works from archived time
mean or time median regres-
sion files generated by low-
order models like Lorenz-96.

• 3 = selects bgrid archived
file. This is not currently sup-
ported in released versions.

input_reg_file character(len=129) File name from which statistics are
to be read for select_regression = 3.

save_reg_diagnostics logical True if regression diagnostics
should be computed.

reg_diagnostics_file character(len=129) File name to which to write diagnos-
tics.

6.203.5 Files

• (optional) input regression file from namelist variable input_reg_file.

• reg_factor_mod.nml in input.nml

filename purpose
from input.nml®_factor_mod:input_reg_file file of regression coefficients

6.203.6 References

• none

6.203.7 Private components

N/A

6.203. MODULE reg_factor 839

DART, Release 9.10.3

6.204 MODULE adaptive_inflate_mod

6.204.1 Overview

This module implements a variety of hierarchical Bayesian adaptive inflation algorithms for use with ensemble fil-
ters. It can provide constant valued inflation in state or observation space, consistent with previous DART releases.
It can provide spatially-constant, time-varying adaptive inflation. It can provide spatially-varying, time-varying adap-
tive inflation and it can provide temporally-varying observation space inflation. And finally, it can provide adaptive
damped inflation, which decreases inflation through time when observation density varies. Diagnostic output and
restart files are available. Several papers on the NCAR DART website document the algorithms in detail. The DART/
tutorial/section12 chapter has more information.

Details on controlling the inflation options are contained in the documentation for the filter. The filter_nml controls
what inflation options are used.

Inflation flavor 3 (spatially-constant state space) reads and writes a restart file that is the full size of the state vector,
however it takes the first value in the array and replicates that throughout the array. This allows one to switch between
flavors 2 and 3. Going from inflation flavor 3 to 2 the initial value for all items in the state vector will be a constant
value and will then start to adapt. Going from inflation flavor 2 to 3 whatever value is in the array at index 1 will be
replicated and used for the entire rest of the state vector items.

6.204.2 Other modules used

types_mod
utilities_mod
random_seq_mod
time_manager_mod
ensemble_manager_mod

840 Chapter 6. References

https://dart.ucar.edu/publications/

DART, Release 9.10.3

6.204.3 Public interfaces

use adaptive_inflate_mod, only : update_inflation
adaptive_inflate_end

inflate_ens

output_inflate_diagnostics

do_obs_inflate

do_single_ss_inflate

do_varying_ss_inflate

adaptive_inflate_init

adaptive_inflate_type

get_inflate

set_inflate

set_sd

set_sd

deterministic_inflate

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call update_inflation(inflate_handle, inflate, inflate_sd, prior_mean, prior_var, obs, obs_var, gamma)

type(adaptive_inflate_type), intent(in) :: inflate_handle
real(r8), intent(inout) :: inflate
real(r8), intent(inout) :: inflate_sd
real(r8), intent(in) :: prior_mean
real(r8), intent(in) :: prior_var
real(r8), intent(in) :: obs
real(r8), intent(in) :: obs_var
real(r8), intent(in) :: gamma

Updates the mean and standard deviation of an inflation distribution given the prior values, the prior observation
ensemble mean and variance, and the observation and its error variance. The factor gamma is the expected impact
(0 to 1) of the state variable corresponding to the inflation on the observation and is the product of the ensemble
correlation plus an additional localization factor or group regression factors.

6.204. MODULE adaptive_inflate_mod 841

DART, Release 9.10.3

inflate_handle Handle to object that describes the inflation type and values.
inflate Prior mean value of the inflation distribution.
inflate_sd Prior standard deviation of the inflation distribution.
prior_mean Mean of the prior observation ensemble.
prior_var Variance of the prior observation ensemble.
obs The observed value.
obs_var Observational error variance.
gamma Expected impact factor, product of correlation, localization, regression factor.

call adaptive_inflate_end(inflate_handle, ens_handle, ss_inflate_index, ss_inflate_sd_index)

type(adaptive_inflate_type), intent(in) :: inflate_handle
type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: ss_inflate_index
integer, intent(in) :: ss_inflate_sd_index

Outputs the values of inflation to restart files using the ensemble_manager for state space inflation and file output for
observation space inflation. Releases allocated storage in inflate_handle.

inflate_handle Handle for the details of the inflation being performed.
ens_handle Handle for ensemble storage that holds values of state space inflation.
ss_inflate_index Index in ensemble storage copies for state space inflation.
ss_inflate_sd_index Index in ensemble storage copies for state space inflation standard deviation.

call inflate_ens(inflate_handle, ens,mean, inflate [,var_in])

type(adaptive_inflate_type), intent(in) :: inflate_handle
real(r8), dimension(:), intent(out) :: ens
real(r8), intent(in) :: mean
real(r8), intent(in) :: inflate
real(r8), optional, intent(in) :: var_in

Given an ensemble, its mean and the covarance inflation factor, inflates the ensemble.

inflate_handle Handle for the details of the inflation being performed.
ens Values for the ensemble to be inflated
mean The mean of the ensemble.
inflate The covariance inflation factor.
var_in The variance of the ensemble.

call output_inflate_diagnostics(inflate_handle, time)

842 Chapter 6. References

DART, Release 9.10.3

type(adaptive_inflate_type), intent(in) :: inflate_handle
type(time_type), intent(in) :: time

Outputs diagnostic record of inflation for the observation space of spatially constant state space inflation. Spatially
varying state space diagnostics are in the Posterior and Prior Diagnostic netcdf files and are written with calls from
filter.f90.

inflate_handle Handle for the details of the inflation being performed.
time Time of this diagnostic info.

var = do_obs_inflate(inflate_handle)

logical, intent(out) :: do_obs_inflate
adaptive_inflate_type, intent(in) :: inflate_handle

Returns true if observation space inflation is being done by this handle.

do_obs_inflate True if obs space inflation is being done by this handle.
inflate_handle Handle to inflation details.

var = do_varying_ss_inflate(inflate_handle)

logical, intent(out) :: do_varying_ss_inflate
adaptive_inflate_type, intent(in) :: inflate_handle

Returns true if spatially varying state space inflation is being done by this handle.

do_varying_ss_inflate True if spatially varying state space inflation is being done by this handle.
inflate_handle Handle to inflation details.

var = do_single_ss_inflate(inflate_handle)

logical, intent(out) :: do_single_ss_inflate
adaptive_inflate_type, intent(in) :: inflate_handle

Returns true if spatially fixed state space inflation is being done by this handle.

do_single_ss_inflate True if spatially fixed state space inflation is being done by this handle.
inflate_handle Handle to inflation details.

6.204. MODULE adaptive_inflate_mod 843

DART, Release 9.10.3

call adaptive_inflate_init(inflate_handle, inf_flavor, mean_from_restart, sd_from_restart, output_restart, deter-
ministic, in_file_name, out_file_name, diag_file_name, inf_initial, sd_initial, inf_lower_bound, inf_upper_bound,
sd_lower_bound, ens_handle, ss_inflate_index, ss_inflate_sd_index, label)

type(adaptive_inflate_type), intent(inout) :: inflate_handle
integer, intent(in) :: inf_flavor
logical, intent(in) :: mean_from_restart
logical, intent(in) :: sd_from_restart
logical, intent(in) :: output_restart
logical, intent(in) :: deterministic
character(len=*), intent(in) :: in_file_name
character(len=*), intent(in) :: out_file_name
character(len=*), intent(in) :: diag_file_name
real(r8), intent(in) :: inf_initial
real(r8), intent(in) :: sd_initial
real(r8), intent(in) :: inf_lower_bound
real(r8), intent(in) :: inf_upper_bound
real(r8), intent(in) :: sd_lower_bound
type(ensemble_type), intent(inout) :: ens_handle
integer, intent(in) :: ss_inflate_index
integer, intent(in) :: ss_inflate_sd_index
character(len=*), intent(in) :: label

Initializes a descriptor of an inflation object.

inflate_handle Handle for the inflation descriptor being initialized.
inf_flavor Type of inflation, 1=obs_inflate, 2=varying_ss_inflate, 3=single_ss_inflate.
mean_from_restart True if inflation mean values to be read from restart file.
sd_from_restart True if inflation standard deviation values to be read from restart file.
output_restart True if an inflation restart file is to be output.
deterministic True if deterministic inflation is to be done.
in_file_name File name from which to read restart.
out_file_name File name to which to write restart.
diag_file_name File name to which to write diagnostic output; obs space inflation only .
inf_initial Initial value of inflation for start_from_restart=.false.
sd_initial Initial value of inflation standard deviation for start_from_restart=.false.
inf_lower_bound Lower bound on inflation value.
inf_upper_bound Upper bound on inflation value.
sd_lower_bound Lower bound on inflation standard deviation.
ens_handle Ensemble handle with storage for state space inflation.
ss_inflate_index Index op copy in ensemble storage for inflation value.
ss_inflate_sd_index Index of copy in ensemble storage for inflation standard deviation.
label Character label to be used in diagnostic output (e.g. ‘Prior’, ‘Posterior’).

var = get_sd(inflate_handle)

844 Chapter 6. References

DART, Release 9.10.3

real(r8), intent(out) :: get_sd
type(adaptive_inflate_type), intent(in) :: inflate_handle

Returns value of observation space inflation standard deviation.

get_sd Returns the value of observation space inflation.
inflate_handle Handle for inflation descriptor.

var = get_inflate(inflate_handle)

real(r8), intent(out) :: get_inflate
type(adaptive_inflate_type), intent(in) :: inflate_handle

Returns value of observation space inflation.

get_inflate Returns the value of observation space inflation.
inflate_handle Handle for inflation descriptor.

call set_inflate(inflate_handle, inflate)

type(adaptive_inflate_type), intent(inout) :: inflate_handle
real(r8), intent(in) :: inflate

Set the value of observation space inflation.

inflate_handle Handle for inflation descriptor.
inflate Set observation space inflation to this value.

call set_sd(inflate_handle, sd)

type(adaptive_inflate_type), intent(inout) :: inflate_handle
real(r8), intent(in) :: sd

Set the value of observation space inflation standard deviation.

inflate_handle Handle for inflation descriptor.
sd Set observation space inflation standard deviation to this value.

6.204. MODULE adaptive_inflate_mod 845

DART, Release 9.10.3

var = deterministic_inflate(inflate_handle)

logical, intent(out) :: deterministic_inflate
type(adaptive_inflate_type), intent(in) :: inflate_handle

Returns true if deterministic inflation is being done.

deterministic_inflate Returns true if deterministic inflation is being done.
inflate_handle Handle for inflation descriptor.

type adaptive_inflate_type
private
integer :: inflation_flavor
integer :: obs_diag_unit
logical :: start_from_restart
logical :: output_restart
logical :: deterministic
character(len = 129) :: in_file_name
character(len = 129) :: out_file_name
character(len = 129) :: diag_file_name
real(r8) :: inflate
real(r8) :: sd
real(r8) :: sd_lower_bound
real(r8) :: inf_lower_bound
real(r8) :: inf_upper_bound
type(random_seq_type) :: ran_seq

end type adaptive_inflate_type

Provides a handle for a descriptor of inflation. Includes type of inflation, values controlling it, input and output
file names, an output file descriptor for observation space inflation diagnotics, and a random sequence for doing
reproducible non-determinstic inflation. There are 2 instances of this type, one for Prior and one for Posterior inflation.

Component Description
inflation_flavor Type of inflation; 0=none, 1=obs. space, 2=spatially varying, 3=spatially-fixed.
obs_diag_unit Unit descriptor for output diagnostic file.
start_from_restart True if initial inflation to be read from file.
output_restart True if final inflation values to be written to file.
deterministic True if inflation is to be done be deterministic algorithm.
in_file_name File name containing restart.
out_file_name File to contain output restart.
diag_file_name File to hold observation space diagnostics.
inflate Initial value of inflation for all types; current value for obs. space.
sd Initial value of sd for all types; current value for obs. space.
sd_lower_bound Don’t allow standard deviation to get smaller than this.
inf_lower_bound Don’t let inflation get smaller than this.
inf_upper_bound Don’t let inflation get larger than this.
ran_seq Handle to random number sequence to allow reproducing non-deterministic inflate.

846 Chapter 6. References

DART, Release 9.10.3

6.204.4 Namelist

The adaptive_inflate module no longer has a namelist. Control has been moved to &filter_nml in filter.

6.204.5 Files

Three files are opened from this module, but all names are passed in from the filter_nml now, and there are 2 values
for each name: one for the prior and one for the posterior inflation.

• inf_in_file_name Mean and standard deviation values read in restart file format.

• inf_out_file_name Mean and standard deviation values written in restart file format.

• inf_diag_file_name Contains diagnostic history of inflation values for obs space and spatially-fixed state space
inflation. Diagnostics for spatially-varying state space inflation are extra fields on the Posterior and Prior diag-
nostic netcdf files created in filter.f90.

6.204.6 References

• Anderson, J. L., 2007: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus
A, 59, 210-224. doi: 10.1111/j.1600-0870.2006.00216.x

• Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus
A, 61, 72-83. doi: 10.1111/j.1600-0870.2008.00361.x

6.204.7 Private components

no discussion

6.205 MODULE quality_control_mod

6.205.1 Overview

Routines in this module deal with two different types of quality control (QC) related functions. The first is to support
interpretation of the incoming data quality, to reject observations at assimilation time which are marked as poor quality.
The second is to document how DART disposed of each observation; whether it was successfully assimilated or
rejected, and if rejected, for which reason.

6.205.2 Usage

Incoming data quality control

DART currently supports a single incoming quality control scheme compatible with NCEP usage. Lower values are
considered better and higher values are considered poorer. A single namelist item, input_qc_threshold sets
the boundary between accepted and rejected observations. Values larger than this value are rejected; values equal
to or lower are accepted. Note that observations could be subsequently rejected for other reasons, including failing
the outlier threshold test or all observations of this type being excluded by namelist control. See the obs_kind_mod
namelist documentation for more details on how to enable or disable assimilation by observation type at runtime.

6.205. MODULE quality_control_mod 847

filter_mod.html#Namelist
http://dx.doi.org/10.1111/j.1600-0870.2006.00216.x
http://dx.doi.org/10.1111/j.1600-0870.2008.00361.x
../observations/obs_kind_mod.html#Namelist

DART, Release 9.10.3

The incoming quality control value is set when an observation sequence file is created. If the data provider user a
different scheme the values must be translated into NCEP-consistent values. Generally we use the value 3 for most
runs.

Observations can also be rejected by the assimilation if the observation value is too far from the mean of the ensemble
of expected values (the forward operator results). This is controlled by the outlier_threshold namelist item.

Specifically, the outlier test computes the difference between the observation value and the prior ensemble mean. It
then computes a standard deviation by taking the square root of the sum of the observation error variance and the prior
ensemble variance for the observation. If the difference between the ensemble mean and the observation value is more
than the specified number of standard deviations then the observation is not used. This can be an effective way to
discard clearly erroneous observation values. A commonly used value is 3. To assimilate all possible observations, a
value of -1 can be used, but may result in ‘chasing bad observations’ and _prevents_ the calculation of the number of
observations that are grossly inconsistent with the ensemble; a useful indicator of filter divergence.

There is an option to add code to this module to specialize the outlier threshold routine. For example, it
is possible to allow all observations of one type to be assimilated regardless of the outlier value, and en-
force the outlier threshold only on other types of observations. To enable this capability requires two actions:
setting the enable_special_outlier_code namelist to .TRUE., and adding your custom code to the
failed_outlier() subroutine in this module.

DART outgoing quality control

As DART assimilates each observation it adds a DART Quality Control value to the output observation sequence
(frequently written to a file named obs_seq.final). This flag indicates how the observation was used during the
assimilation. The flag is a numeric value with the following meanings:

0: Observation was assimilated successfully
1: Observation was evaluated only so not used in the assimilation
2: The observation was used but one or more of the posterior forward observation operators failed
3: The observation was evaluated only so not used AND one or more of the posterior forward observation oper-

ators failed
4: One or more prior forward observation operators failed so the observation was not used
5: The observation was not used because it was not selected in the namelist to be assimilated or evaluated
6: The incoming quality control value was larger than the threshold so the observation was not used
7: Outlier threshold test failed (as described above)
8: The location conversion to the vertical localization unit failed so the observation was not used

6.205.3 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&quality_control_nml
input_qc_threshold = 3
outlier_threshold = -1
enable_special_outlier_code = .false.
/

848 Chapter 6. References

DART, Release 9.10.3

Items in this namelist control whether an observation is assimilated or not.

Item Type Description
in-
put_qc_threshold

real(r8)Numeric value indicating whether this observation is considered “good quality” and should be
assimilated, or whether it is suspect because of previous quality control processes. This value
would have been set when the observation was created and added to the observation sequence
file. Observations with an incoming QC value larger than this threshold are rejected and not
assimilated.

outlier
thresh-
old

real(r8)This numeric value defines the maximum number of standard deviations an observation value can
be away from the ensemble forward operator mean and still be assimilated. Setting it to the value
-1 disables this check.

en-
able_special_outlier_code

log-
ical

Setting this value to .TRUE. will call a subroutine failed_outlier() instead of using the
default code. The user can then customize the tests in this subroutine, for example to accept all
observations of a particular type, or use different numerical thresholds for different observation
types or locations.

6.205.4 Discussion

Small ensemble spread

If an ensemble is spun up from a single state the ensemble spread may be very small to begin and many observations
may be rejected by the outlier_threshold. But as the ensemble spread increases the assimilation should be able
to assimilate more and more observations as the model trajectory becomes consistent with those observations.

6.205.5 Other modules used

types_mod
utilities_mod
random_seq_mod

6.205. MODULE quality_control_mod 849

DART, Release 9.10.3

6.205.6 Public interfaces

use quality_control_mod, only : initialize_qc
input_qc_ok

get_dart_qc

check_outlier_threshold

good_dart_qc

set_input_qc

dart_flags

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call check_outlier_threshold(obs_prior_mean, obs_prior_var, obs_val, obs_err_var, & obs_seq, this_obs_key,
dart_qc)

real(r8), intent(in) :: obs_prior_mean !> prior observation mean
real(r8), intent(in) :: obs_prior_var !> prior observation
→˓variance
real(r8), intent(in) :: obs_val !> observation value
real(r8), intent(in) :: obs_err_var !> observation error
→˓variance
type(obs_sequence_type), intent(in) :: obs_seq !> observation sequence
integer, intent(in) :: this_obs_key !> index for this
→˓observation
integer, intent(inout) :: dart_qc !> possibly modified DART QC

Computes whether this observation failed the outlier threshold test and if so, updates the DART QC.

var = input_qc_ok(input_qc, qc_to_use)

real(r8), intent(in) :: input_qc !> incoming QC data value
integer, intent(out) :: qc_to_use !> resulting DART QC
logical :: input_qc_ok !> true if input_qc is good

Returns true if the input qc indicates this observation is good to use.

850 Chapter 6. References

DART, Release 9.10.3

! Dart quality control variables
integer, parameter :: DARTQC_ASSIM_GOOD_FOP = 0
integer, parameter :: DARTQC_EVAL_GOOD_FOP = 1
integer, parameter :: DARTQC_ASSIM_FAILED_POST_FOP = 2
integer, parameter :: DARTQC_EVAL_FAILED_POST_FOP = 3
integer, parameter :: DARTQC_FAILED_FOP = 4
integer, parameter :: DARTQC_NOT_IN_NAMELIST = 5
integer, parameter :: DARTQC_BAD_INCOMING_QC = 6
integer, parameter :: DARTQC_FAILED_OUTLIER_TEST = 7
integer, parameter :: DARTQC_FAILED_VERT_CONVERT = 8
!!integer, parameter :: DARTQC_OUTSIDE_DOMAIN = 9 ! we have no way (yet) for
→˓the model_mod to signal this

These are public constants for use in other parts of the DART code.

6.205.7 Files

filename purpose
input.nml to read the quality_control_mod namelist

6.205.8 References

1. none

6.205.9 Error codes and conditions

Routine Message Comment
routine name output string description or comment

6.205.10 Future plans

Should support different incoming data QC schemes.

It would be nice to have a different DART QC flag for observations which fail the forward operator because they
are simply outside the model domain. The diagnosic routines may indicate a large number of failed forward operators
which make it confusing to identify observations where the forward operator should have been computed and can skew
the statistics. Unfortunately, this requires adding an additional requirement on the model-dependent model_mod.f90
code in the model_interpolate() routine. The current interface defines a return status code of 0 as success, any
positive value as failure, and negative numbers are reserved for other uses. To identify obs outside the domain would
require reserving another value that the interpolate routine could return.

At this time the best suggestion is to cull out-of-domain obs from the input observation sequence file by a preprocessing
program before assimilation.

6.205. MODULE quality_control_mod 851

DART, Release 9.10.3

6.205.11 Private components

N/A

6.206 MODULE filter_mod

6.206.1 Overview

Main module for driving ensemble filter assimilations. Used by filter.f90, perfect_model_obs.f90,
model_mod_check.f90, and a variety of test programs. See the PROGRAM filter for a general description of filter
capabilities and controls.

filter_mod is a Fortran 90 module, and provides a large number of options for controlling execution behavior and
parameter configuration that are driven from its namelist. See the namelist section below for more details. The number
of assimilation steps to be done is controlled by the input observation sequence and by the time-stepping capabilities
of the model being used in the assimilation.

See Welcome to the Data Assimilation Research Testbed for more documentation, including a discussion of the capa-
bilities of the assimilation system, a diagram of the entire execution cycle, the options and features.

6.206.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&filter_nml
single_file_in = .false.,
input_state_files = '',
input_state_file_list = '',
init_time_days = 0,
init_time_seconds = 0,
perturb_from_single_instance = .false.,
perturbation_amplitude = 0.2,

stages_to_write = 'output'

single_file_out = .false.,
output_state_files = '',
output_state_file_list = '',
output_interval = 1,
output_members = .true.,
num_output_state_members = 0,
output_mean = .true.,
output_sd = .true.,
write_all_stages_at_end = .false.,
compute_posterior = .true.

ens_size = 20,
num_groups = 1,
distributed_state = .true.,

async = 0,
adv_ens_command = "./advance_model.csh",

(continues on next page)

852 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

tasks_per_model_advance = 1,

obs_sequence_in_name = "obs_seq.out",
obs_sequence_out_name = "obs_seq.final",
num_output_obs_members = 0,
first_obs_days = -1,
first_obs_seconds = -1,
last_obs_days = -1,
last_obs_seconds = -1,
obs_window_days = -1,
obs_window_seconds = -1,

inf_flavor = 0, 0,
inf_initial_from_restart = .false., .false.,
inf_sd_initial_from_restart = .false., .false.,
inf_deterministic = .true., .true.,
inf_initial = 1.0, 1.0,
inf_lower_bound = 1.0, 1.0,
inf_upper_bound = 1000000.0, 1000000.0,
inf_damping = 1.0, 1.0,
inf_sd_initial = 0.0, 0.0,
inf_sd_lower_bound = 0.0, 0.0,
inf_sd_max_change = 1.05, 1.05,

trace_execution = .false.,
output_timestamps = .false.,
output_forward_op_errors = .false.,
write_obs_every_cycle = .false.,
allow_missing_clm = .false.,
silence = .false.,

/

Particular options to be aware of are: ens_size, cutoff (localization radius), inflation flavor, outlier_threshold, input
and output state filenames, obs_sequence_in_name, horiz_dist_only, and the binary or ascii controls for observation
sequence file formats. Some of these important items are located in other namelists, but all are in the same input.nml
file.

The inflation control variables are all dimensioned 2, the first value controls the prior inflation and the second controls
the posterior inflation.

Item Type Description
single_file_in logical .true. means all ensemble mem-

bers are read from a single netCDF
file (which can only be used with
subroutine-callable models). .
false. means each member is in
a separate file.

continues on next page

6.206. MODULE filter_mod 853

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
input_state_files character(len=256), dimen-

sion(MAXFILES)
A list of the NetCDF files to open to
read the state vectors. Models using
multiple domains must put the do-
main and ensemble numbers in the
file names. The order and format
of those is to be determined. NOT
SUPPORTED as of March, 2017.

input_state_file_list character(len=256), dimen-
sion(MAXFILES)

A list of files, one per domain. Each
file must be a text file containing the
names of the NetCDF files to open,
one per ensemble member, one per
line.

init_time_days integer If negative, use the initial days read
from the state data restart file. If
positive, override the initial days
read from state data restart files.
Days since 1 Jan 1601.

init_time_seconds integer If negative use the initial seconds
read from the state data restart file.
If positive, override the initial sec-
onds read from state data restart
files. Seconds since midnight.

perturb_from_single_instance logical .true. means perturb a sin-
gle state vector from one restart
file to create an ensemble. This
may be done by model_mod, if
model_mod provides subroutine
pert_model_copies. .false.
means an an ensemble-sized set of
restart files is provided.

perturbation_amplitude real(r8) Standard deviation for the noise
model used when generating
ensemble members. This value
is available to the model_mod
for use in the required interface
pert_model_copies. For
more, see pert_model_copies
below. Ignored if
perturb_from_single_instance
= .false.

stages_to_write character(len=10), dimension(6) Controls diagnostic and restart out-
put. Valid values are: ‘input’,
‘forecast’, ‘preassim’, ‘postassim’,
‘analysis’, ‘output’, and ‘null’. In-
put is case-insensitive.

single_file_out logical .true. means all ensemble mem-
bers are written to a single netCDF
file. .false. means each member
is output in a separate file. Only
subroutine-callable models may
write a single output file.

continues on next page

854 Chapter 6. References

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
output_state_files character(len=256), dimen-

sion(MAXFILES)
A list of the netCDF files to open for
writing updated state vectors. Not
supported when using multiple do-
mains.

output_state_file_list character(len=256), A list of files, one per domain. Each
file must be a text file containing the
names of the netCDF files to open,
one per ensemble member, one per
line.

output_interval integer Output state and observation di-
agnostics every ‘N’th assimilation
time, N is output_interval.

output_members logical .true. means output the ensem-
ble members in any stage that is en-
abled.

num_output_state_members integer Number of ensemble members to
be included in the state diagnos-
tic output for stages ‘forecast’,
‘preassim’, ‘postassim’ and ‘analy-
sis’. output_members must be
.true.

output_mean logical .true. means output the ensem-
ble mean in any stage that is en-
abled.

output_sd logical .true. means output the ensem-
ble standard deviation (spread) in
any stage that is enabled.

write_all_stages_at_end logical For most cases this should be .
false.; data will be output as it is
generated for the ‘forecast’, ‘preas-
sim’, ‘postassim’, and ‘analysis’ di-
agnostics, and then restart data will
be output at the end. However, if I/O
time dominates the runtime, setting
this to .true. will store the data
and it can all be written in parallel
at the end of the execution. This
will require slightly more memory
at runtime, but can lower the job
cost significantly in some cases.

compute_posterior logical If .false., skip computing pos-
terior forward operators and do
not write posterior values in the
obs_seq.final file. Those are rarely
worth examining. Saves time and
memory. Posterior inflation is not
possible. For backwards compati-
bility the default .true.

ens_size integer Size of ensemble.
continues on next page

6.206. MODULE filter_mod 855

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
num_groups integer Number of groups for hierarchi-

cal filter. It should evenly divide
ens_size.

distributed_state logical .true. means the ensemble data
is distributed across all tasks as
it is read in, so a single task
never has to have enough memory
to store the data for an ensemble
member. Large models should al-
ways set this to .true., while for
small models it may be faster to
set this to .false. This is dif-
ferent from &assim_tools_mod
:: distributed_mean.

async integer Controls method for advancing
model:

• 0 is subroutine call

• 2 is shell command

• 4 is mpi-job script
Ignored if filter is not controlling
the model advance, e.g. in CESM,
WRF, etc

adv_ens_command character(len=256) Command sent to shell if async is 2.
tasks_per_model_advance integer Number of tasks to assign to each

ensemble member advance.
obs_sequence_in_name character(len=256) File name from which to read an ob-

servation sequence.
obs_sequence_out_name character(len=256) File name to which to write output

observation sequence.
num_output_obs_members integer Number of ensemble members to be

included in the output observation
sequence file.

first_obs_days integer If negative, don’t use. If non-
negative, ignore all observations be-
fore this time.

first_obs_seconds integer If negative, don’t use. If non-
negative, ignore all observations be-
fore this time.

last_obs_days integer If negative, don’t use. If non-
negative, ignore all observations af-
ter this time.

last_obs_seconds integer If negative, don’t use. If non-
negative, ignore all observations af-
ter this time.

obs_window_days integer Assimilation window days; defaults
to model timestep size.

obs_window_seconds integer Assimilation window seconds; de-
faults to model timestep size.

continues on next page

856 Chapter 6. References

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
All variables named inf_* are arrays of length 2. The first element controls the prior, the second element controls
the posterior inflation. See PROGRAM filter for a discussion of inflation and effective strategies.
inf_flavor character(len=32), dimension(2) Inflation flavor [prior, posterior] see

Inflation Options below.
inf_initial_from_restart logical, dimension(2) If .true., get initial mean values

for inflation from inflation file. If
.false. , use the corresponding
namelist value inf_initial.

inf_sd_initial_from_restart logical, dimension(2) If .true., get initial standard
deviation values for inflation
from file. If .false. , use
the corresponding namelist value
inf_sd_initial.

inf_deterministic logical, dimension(2) .true. means deterministic infla-
tion, .false. means stochastic.

inf_initial real(r8), dimension(2) Initial value of inflation if not read
from restart file.

inf_lower_bound real(r8), dimension(2) Lower bound for inflation value.
inf_upper_bound real(r8), dimension(2) Upper bound for inflation value.
inf_damping real(r8), dimension(2) Damping factor for inflation mean

values. The difference between the
current inflation value and 1.0 is
multiplied by this factor and added
to 1.0 to provide the next inflation
mean. The value should be between
0.0 and 1.0. Setting a value of 0.0 is
full damping, which in fact turns off
all inflation by fixing the inflation
value at 1.0. A value of 1.0 turns in-
flation damping off leaving the orig-
inal inflation value unchanged.

inf_sd_initial real(r8) dimension(2) Initial value of inflation standard de-
viation if not read from restart file.
If 0, do not update the inflation
values, so they are time-constant.
If positive, the inflation values will
adapt through time.

inf_sd_lower_bound real(r8), dimension(2) Lower bound for inflation standard
deviation. If using a negative value
for inf_sd_initial this should also be
negative to preserve the setting.

continues on next page

6.206. MODULE filter_mod 857

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
inf_sd_max_change real(r8), dimension(2) For inf_flavor 5 (enhanced

inflation), controls the maximum
change of the inflation standard de-
viation when adapting for the next
assimilation cycle. The value should
be between 1.0 and 2.0. 1.0 prevents
any changes, while 2.0 allows 100%
change. For the enhanced inflation
option, if the standard deviation ini-
tial value is equal to the standard
deviation lower bound, the standard
deviation will not adapt in time. See
PROGRAM filter for a discussion of
how the standard deviation adapts
based on different types of inflation.

trace_execution logical .true.means output very detailed
messages about what routines are
being called in the main filter loop.
Useful if a job hangs or otherwise
doesn’t execute as expected.

output_timestamps logical .true. means write timing infor-
mation to the log before and after
the model advance and the observa-
tion assimilation phases.

output_forward_op_errors logical .true. means output errors from
forward observation operators.
This is the ‘istatus’ error return
code from the model_interpolate
routine. An ascii text file
prior_forward_op_errors and/or
post_forward_op_errors will be
created in the current directory.
For each ensemble member which
returns a non-zero return code,
a line will be written to this file.
Each line will have three values
listed: the observation number, the
ensemble member number, and the
istatus return code. Be cautious
when turning this option on. The
number of lines in this file can be up
to the number of observations times
the number of ensemble members
times the number of assimilation
cycles performed. This option is
generally most useful when run
with a small observation sequence
file and a small number of ensemble
members to diagnose forward
operator problems.

continues on next page

858 Chapter 6. References

DART, Release 9.10.3

Table 10 – continued from previous page
Item Type Description
write_obs_every_cycle logical For debug use; this option can

significantly slow the execution of
filter. True means to write the
entire output observation sequence
diagnostic file each time through
the main filter loop even though
only observations with times up to
and including the current model
time will have been assimilated.
Unassimilated observations have the
value -888888.0 (the DART “miss-
ing value”). If filter crashes be-
fore finishing it may help to see the
forward operator values of observa-
tions that have been assimilated so
far.

allow_missing_clm logical Some models are allowed to have
MISSING_R8 values in the DART
state. If .true. extra caution
is taken (at considerable computa-
tional cost) to allow missing values
in the DART state. So far, only
CLM requires this to be .true.

silence logical .true. means output almost no
runtime messages. Not recom-
mended for general use, but can
speed long runs of the lower or-
der models if the execution time be-
comes dominated by the volume of
output.

6.206.3 Inflation Options

The value for the inf_flavor is a character string. For backwards compatiblity (it was an integer code), the
specification of the integer is still supported. Inflation values (for flavors other than 0) will be time-varying only if
inf_sd_initial > 0.

6.206. MODULE filter_mod 859

DART, Release 9.10.3

inflation option description

0
‘0’
‘NO_INFLATION’

no inflation

2
‘2’
‘VARYING_SS_INFLATION’

spatially-varying state-space (gaussian)

3
‘3’
‘SINGLE_SS_INFLATION’

spatially-fixed state-space (gaussian)

4
‘4’
‘RELAXATION_TO_PRIOR_SPREAD’
‘RTPS

Relaxation To Prior Spread (Posterior inflation only)

5
‘5’
‘ENHANCED_SS_INFLATION’

Enhanced spatially-varying state-space (inverse
gamma). Refer to inf_sd_initial for how to set
the time evolution options.

Create an initial ensemble from a single file

If the default pert_model_copies routine is used, random noise values drawn from a gaussian distribution with
the standard deviation specified by perturbation_amplitude will be added to the data in a single initial ensem-
ble member to generate the rest of the members. This option is more frequently used in the low order models and less
frequently used in large models. This is in part due to the different scales of real geophysical variable values, and the
resulting inconsistencies between related field values. A more successful initial condition generation strategy is to gen-
erate climatological distributions from long model runs which have internally consistent structures and values and then
use observations with a ‘spin-up’ period of assimilation to shape the initial states into a set of members with enough
spread and which match the current set of observations. Each model_mod is required to provide a pert_model_copies
routine which can be used to either pass-through to the default routine or can be customized for that specific model.

860 Chapter 6. References

DART, Release 9.10.3

6.206.4 Modules used

types_mod
obs_sequence_mod
obs_def_mod
obs_def_utilities_mod
time_manager_mod
utilities_mod
assim_model_mod
assim_tools_mod
obs_model_mod
ensemble_manager_mod
adaptive_inflate_mod
mpi_utilities_mod
smoother_mod
random_seq_mod
state_vector_io_mod
io_filenames_mod
forward_operator_mod
quality_control_mod

6.206.5 Files

See the filter overview for the list of files.

6.206.6 Error codes and conditions

Routine Message Comment
filter_main ens_size in namelist is ###: Must be > 1 Ensemble size must be at least 2.
filter_main inf_flavor= ### Must be 0, 2, 3. Observation Inflation is no longer supported

(i.e flavor 1).
filter_main Posterior observation space inflation (type

1) not supported.
Posterior observation space inflation doesn’t
work.

filter_main Number of processes > model size. Number of processes can’t exceed model
size for now.

fil-
ter_generate_copy_meta_data

output metadata in filter needs state ensem-
ble size < 10000, not ###.

Only up to 10000 ensemble members with
state output for now.

fil-
ter_generate_copy_meta_data

output metadata in filter needs obs ensemble
size < 10000, not ###.

Only up to 10000 ensemble members with
obs space output for now.

fil-
ter_setup_obs_sequence

input obs_seq file has ### qc fields; must be
< 2.

Only 0 or 1 qc fields in input obs sequence
for now.

get_obs_copy_index Did not find observation copy with metadata
observation.

Only 0 or 1 qc fields in input obs sequence
for now.

6.206. MODULE filter_mod 861

../../programs/filter/filter.html#FilesUsed

DART, Release 9.10.3

6.207 MODULE location_mod

6.207.1 Overview

DART provides a selection of options for the coordinate system in which all observations and all model state vector
locations are described. All executables are built with a single choice from the available location modules. The names
of these modules are all location_mod.

6.207.2 Introduction

The core algorithms of DART work with many different models which have a variety of coordinate systems. This
directory provides code for creating, setting/getting, copying location information (coordinates) independently of the
actual specific coordinate information. It also contains distance routines needed by the DART algorithms.

Each of the different location_mod.f90 files provides the same set of interfaces and defines a ‘module location_mod’,
so by selecting the proper version in your path_names_xxx file you can compile your model code with the main DART
routines.

• MODULE location_mod (threed_sphere): The most frequently used version for real-world 3d models. It uses
latitude and longitude for horizontal coordinates, plus a vertical coordinate which can be meters, pressure, model
level, surface, or no specific vertical location.

• MODULE (1D) location_mod: The most frequently used for small models (e.g. the Lorenz family). It has a
cyclic domain from 0 to 1.

• MODULE location_mod (threed_cartesian): A full 3D X,Y,Z coordinate system.

• MODULE location_mod (channel): a 3d domain periodic in x, limited in y, and unlimited z.

• column: no x,y but 1d height, pressure, or model level for vertical.

• annulus: a hollow 3d cylinder with azimuth, radius, and depth.

• twod: a periodic 2d domain with x,y coordinates between 0 and 1.

• twod_sphere: a 2d shell with latitude, longitude pairs.

• threed: a periodic 3d domain with x,y,z coordinates between 0 and 1.

Other schemes can be added, as needed by the models. Possible ideas are a non-periodic version of the 1d, 2d cartesian
versions. Email dart at ucar.edu if you have a different coordinate scheme which we might want to support.

6.207.3 Namelist

Each location module option has a different namelist. See the specific documentation for the location option of choice.

6.207.4 Files

• none

862 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

6.207.5 References

• none

6.207.6 Private components

N/A

6.208 forward operator test README

6.208.1 Contents

1. Overview

2. rttov_test.f90

3. rttov_unit_tests.f90

4. make_COS_input

5. make_assim_list

6. Terms of Use

6.208.2 Overview

The developer_tests/forward_operators directory contains the testing framework for three kinds of tests:

• rttov_test.f90 which tests basic functionality of the RTTOV radiance forward operators for AMSUA and AIRS
observations (MW and IR, respectively)

– create a dummy rttov_sensor_db_file to read

– check the IR instrument ID

– check the MW instrument ID

– exercise the IR (direct) forward operator

– exercise the MW (scatt) forward operator

• rttov_unit_tests.f90 performs a host of unit tests.

– If run with a TERMLEVEL of 3, all tests will be completed even if previous tests are not successful.

• make_COS_input and make_assim_list creates input for create_obs_sequence (COS) and the appropriate
namelist settings to test the forward operator code.

Different sets of observations are grouped into separate files based on certain criteria - are they atmospheric observa-
tions, oceanic . . . do they require special metadata, etc. The following files are intended to be supplied as input to
make_COS_input and will result in a text file that will generate an observation sequence file when used as input to
create_obs_sequence.

• all_atm_obs_types

• all_commoncode_atm_obs_types

• all_f90s

• all_fwdop_atm_obs_types

6.208. forward operator test README 863

DART, Release 9.10.3

• all_obs_types

• forward_op_code

• no_special_forward_op_code

See the make_COS_input section for more detail.

6.208.3 rttov_test.f90

This test requires several coefficient files that are not part of the default set provided by the RTTOV 12.3 distribution.
Specifically:

• rtcoef_eos_2_amsua.dat

• rtcoef_eos_2_airs.H5

• mietable_eos_amsua.dat (same file as mietable_noaa_amsua.dat)

These coefficient files may be downloaded by using the rtcoef_rttov12/rttov_coef_download.sh script provided in the
RTTOV distribution.

6.208.4 rttov_unit_tests.f90

These unit tests are best run with a TERMLEVEL of 3, which allows DART to continue past errors that would
otherwise be fatal. If any of the unit tests are unable to start, the error code from rttov_unit_tests is 102. This is to give
an error for test_dart.csh to detect.

Test Pass Fail
metadata growth metadata arrays grow correctly as observations are added incorrect metadata length
metadata content metadata arrays contain correct data incorrect data

6.208.5 make_COS_input

make_COS_input takes one filename as an argument and creates a text file that can be used as input for cre-
ate_obs_sequence. The output text file has a name based on the input filename. For example:

<prompt> ./make_COS_input forward_op_code
ready to run create_obs_sequence < forward_op_code_COS.in

create_obs_sequence must be created with the preprocess_nml settings to support the observation definitions required
by the input file.

6.208.6 make_assim_list

make_assim_list is a follow-on step to make_COS_input and simply creates the text for the in-
put.nml:filter_nml:assimilate_these_obs variable.

<prompt> forward_operators > ./make_assim_list forward_op_code
created forward_op_code_obskind.nml
add this section to your &obs_kind_nml in input.nml
<prompt> head -n 10 forward_op_code_obskind.nml
assimilate_these_obs_types =
'ACARS_DEWPOINT,',

(continues on next page)

864 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

'ACARS_RELATIVE_HUMIDITY,',
'AIRCRAFT_DEWPOINT,',
'AIRCRAFT_RELATIVE_HUMIDITY,',
'AIREP_DEWPOINT,',
'AIRS_DEWPOINT,',
'AIRS_RELATIVE_HUMIDITY,',
'AMDAR_DEWPOINT,',
'AMSR_TOTAL_PRECIPITABLE_WATER,',

6.208.7 Terms of Use

© University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0. Unless required by applicable law or agreed to in writing, software
distributed under this license is distributed on an “as is” basis, without warranties or conditions of any kind, either
express or implied.

6.209 PROGRAM PrecisionCheck

6.209.1 Overview

This is a self-contained program to explore the interaction between the compiler options to ‘autopromote’ variables
from one precision to another and the intrinsic F90 mechanism for getting consistent behavior without relying on
autopromotion - namely, the SELECT_INT_KIND() and SELECT_REAL_KIND() functions. The most portable
code explicity types the variables to avoid relying on compiler flags. The core DART code abides by these rules;
some pieces that are derived from dynamical models may have original code fragments.
All that is required is to compile the single file and run the resulting executable. There are no required libraries - any
F90 compiler should have no trouble with this program. There is no input of any kind.
You are encouraged to view the source code. It’s pretty obvious what is being tested.

6.209.2 Examples

The following examples have differences from the default configuration highlighted in boldface. You are strongly
encouraged to test your compiler and its autopromotion options. The Absoft compiler actually does what I consider
to be reasonable and logical (as long as you know that “-dp” means demote precision). Many other compilers are
surprising.

PowerPC chipset : Absoft Pro Fortran 9.0

[~/DART/utilities] % f90 PrecisionCheck.f90
[~/DART/utilities] % ./a.out

This explores the use of the intrinsic SELECTED_[REAL,INT]_KIND() functions
and the interplay with the compiler options. You are encouraged to use the
"autopromotion" flags on your compiler and compare the results.

--
"integer"

(continues on next page)

6.209. PROGRAM PrecisionCheck 865

http://www.apache.org/licenses/LICENSE-2.0

DART, Release 9.10.3

(continued from previous page)

DIGITS = 31
HUGE = 2147483647
KIND = 4

--
"integer(i4)" i4 = SELECTED_INT_KIND(8)
DIGITS = 31
HUGE = 2147483647
KIND = 4

--
"integer(i8)" i8 = SELECTED_INT_KIND(13)
DIGITS = 63
HUGE = 9223372036854775807
KIND = 8

--
"real"
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

--
"real(r4)" r4 = SELECTED_REAL_KIND(6,30)
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

--
"real(r8)" r8 = SELECTED_REAL_KIND(13)
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

--
"double precision"
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

PowerPC chipset : Absoft Pro Fortran 9.0 : “-dp”

[~/DART/utilities] % f90 -dp PrecisionCheck.f90
[~/DART/utilities] % ./a.out

This explores the use of the intrinsic SELECTED_[REAL,INT]_KIND() functions
and the interplay with the compiler options. You are encouraged to use the
"autopromotion" flags on your compiler and compare the results.

--
"integer"
DIGITS = 31
HUGE = 2147483647

(continues on next page)

866 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

KIND = 4
--
"integer(i4)" i4 = SELECTED_INT_KIND(8)
DIGITS = 31
HUGE = 2147483647
KIND = 4

--
"integer(i8)" i8 = SELECTED_INT_KIND(13)
DIGITS = 63
HUGE = 9223372036854775807
KIND = 8

--
"real"
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

--
"real(r4)" r4 = SELECTED_REAL_KIND(6,30)
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

--
"real(r8)" r8 = SELECTED_REAL_KIND(13)
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

--
"double precision"
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

PowerPC chipset : Absoft Pro Fortran 9.0 : “-n113”

[~/DART/utilities] % f90 -N113 PrecisionCheck.f90
[~/DART/utilities] % ./a.out

This explores the use of the intrinsic SELECTED_[REAL,INT]_KIND() functions
and the interplay with the compiler options. You are encouraged to use the
"autopromotion" flags on your compiler and compare the results.

--
"integer"
DIGITS = 31
HUGE = 2147483647
KIND = 4

--
(continues on next page)

6.209. PROGRAM PrecisionCheck 867

DART, Release 9.10.3

(continued from previous page)

"integer(i4)" i4 = SELECTED_INT_KIND(8)
DIGITS = 31
HUGE = 2147483647
KIND = 4

--
"integer(i8)" i8 = SELECTED_INT_KIND(13)
DIGITS = 63
HUGE = 9223372036854775807
KIND = 8

--
"real"
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

--
"real(r4)" r4 = SELECTED_REAL_KIND(6,30)
DIGITS = 24
EPSILON = 1.192093E-07
HUGE = 3.402823E+38
KIND = 4
PRECISION = 6

--
"real(r8)" r8 = SELECTED_REAL_KIND(13)
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

--
"double precision"
DIGITS = 53
EPSILON = 2.220446049250313E-016
HUGE = 1.797693134862315E+308
KIND = 8
PRECISION = 15

6.210 MODULE obs_def_gps_mod

6.210.1 Overview

DART GPS Radio Occultation observation module, including the observation operators for both local and non-local
refractivity computations.

Author information:

• Dr. Hui Liu

868 Chapter 6. References

DART, Release 9.10.3

6.210.2 Namelist

This namelist is now enabled by default. The maximum number of GPS observations is settable at runtime by changing
the value in the namelist. If you get an error about a missing namelist add &obs_def_gps_nml using the example
below to your input.nml namelist file and rerun. No recompiling is needed.

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_def_gps_nml
max_gpsro_obs = 100000,

/

Item Type Description
max_gpsro_obsin-

te-
ger

The maximum number of GPS refractivity observations supported for a single execution. Gener-
ally the default will be sufficient for a single run of filter, but not enough for a long diagnostics
run to produce a time series.

6.210.3 Other modules used

types_mod
utilities_mod
location_mod (threed_sphere)
assim_model_mod
obs_kind_mod

6.210.4 Public interfaces

use obs_def_gps_mod, only : read_gpsro_ref
write_gpsro_ref

get_expected_gpsro_ref

interactive_gpsro_ref

set_gpsro_ref

get_gpsro_ref

A note about documentation style. Optional arguments are enclosed in brackets [like this].

6.210. MODULE obs_def_gps_mod 869

DART, Release 9.10.3

call read_gpsro_ref(gpskey, ifile, [, fform])

integer, intent(out) :: gpskey
integer, intent(in) :: ifile
character(len=*), intent(in), optional :: fform

Refractivity observations have several items of auxiliary data to read or write. This routine reads in the data for the
next observation and returns the private GPS key index number that identifies the auxiliary data for this observation.

gpskey GPS key number returned to the caller.
ifile Open file unit number to read from.
fform If specified, indicate whether the file was opened formatted or unformatted. Default is ‘formatted’.

call write_gpsro_ref(gpskey, ifile, [, fform])

integer, intent(in) :: gpskey
integer, intent(in) :: ifile
character(len=*), intent(in), optional :: fform

Refractivity observations have several items of auxiliary data to read or write. This routine writes out the auxiliary
data for the specified observation to the file unit given.

gpskey GPS key number identifying which observation to write aux data for.
ifile Open file unit number to write to.
fform If specified, indicate whether the file was opened formatted or unformatted. Default is ‘formatted’.

call get_expected_gpsro_ref(state_vector, location, gpskey, ro_ref, istatus)

real(r8), intent(in) :: state_vector(:)
type(location_type), intent(in) :: location
integer, intent(in) :: gpskey
real(r8), intent(out) :: ro_ref
integer, intent(out) :: istatus

Given a location and the state vector from one of the ensemble members, compute the model-predicted GPS
refractivity that would be observed at that location. There are two types of operators: modeled local refractivity
(N-1)*1.0e6 or non_local refractivity (excess phase, m) The type is indicated in the auxiliary information for each
observation.

870 Chapter 6. References

DART, Release 9.10.3

state_vectorA one dimensional representation of the model state vector
location Location of this observation
gpskey Integer key identifying which GPS observation this is, so the correct corresponding auxiliary informa-

tion can be accessed.
ro_ref The returned GPS refractivity value
istatus Returned integer status code describing problems with applying forward operator. 0 is a good value;

any positive value indicates an error; negative values are reserved for internal DART use only.

call interactive_gpsro_ref(gpskey)

integer, intent(out) :: gpskey

Prompts the user for the auxiliary information needed for a GPS refractivity observation, and returns the new key
associated with this data.

gpskeyUnique identifier associated with this GPS refractivity observation. In this code it is an integer index into
module local arrays which hold the additional data. This routine returns the incremented value associated
with this data.

call set_gpsro_ref(gpskey, nx, ny, nz, rfict0, ds, htop, subset0)

integer, intent(out) :: gpskey
real(r8), intent(in) :: nx
real(r8), intent(in) :: ny
real(r8), intent(in) :: nz
real(r8), intent(in) :: rfict0
real(r8), intent(in) :: ds
real(r8), intent(in) :: htop
character(len=6), intent(in) :: subset0

Sets the auxiliary information associated with a GPS refractivity observation. This routine increments and returns the
new key associated with these values.

gpskeyUnique identifier associated with this GPS refractivity observation. In this code it is an integer index into
module local arrays which hold the additional data. This routine returns the incremented value associated
with this data.

nx X component of direction of ray between the LEO (detector) satellite and the GPS transmitter satellite at
the tangent point.

ny Y component of tangent ray.
nz Z component of tangent ray.
rfict0Local curvature radius (meters).
ds Delta S, increment to move along the ray in each direction when integrating the non-local operator (meters).
htop Elevation (in meters) where integration stops along the ray.
subset0The string ‘GPSREF’ for the local operator (refractivity computed only at the tangent point), or ‘GPSEXC’

for the non-local operator which computes excess phase along the ray.

6.210. MODULE obs_def_gps_mod 871

DART, Release 9.10.3

call get_gpsro_ref(gpskey, nx, ny, nz, rfict0, ds, htop, subset0)

integer, intent(in) :: gpskey
real(r8), intent(out) :: nx
real(r8), intent(out) :: ny
real(r8), intent(out) :: nz
real(r8), intent(out) :: rfict0
real(r8), intent(out) :: ds
real(r8), intent(out) :: htop
character(len=6), intent(out) :: subset0

Gets the auxiliary information associated with a GPS refractivity observation, based on the GPS key number specified.

gpskeyUnique identifier associated with this GPS refractivity observation. In this code it is an integer index into
module local arrays which hold the additional data. The value specified selects which observation to return
data for.

nx X component of direction of ray between the LEO (detector) satellite and the GPS transmitter satellite at
the tangent point.

ny Y component of tangent ray.
nz Z component of tangent ray.
rfict0Local curvature radius (meters).
ds Delta S, increment to move along the ray in each direction when integrating the non-local operator (meters).
htop Elevation (in meters) where integration stops along the ray.
subset0The string ‘GPSREF’ for the local operator (refractivity computed only at the tangent point), or ‘GPSEXC’

for the non-local operator which computes excess phase along the ray.

6.210.5 Files

• A DART observation sequence file containing GPS obs.

6.210.6 References

• Assimilation of GPS Radio Occultation Data for Numerical Weather Prediction, Kuo,Y.H., Sokolovskiy,S.V.,
Anthes,R.A., Vendenberghe,F., Terrestrial Atm and Ocn Sciences, Vol 11, pp157-186, 2000.

872 Chapter 6. References

DART, Release 9.10.3

6.210.7 Error codes and conditions

Routine Message Comment
initial-
ize_module

initial allocation failed for gps
observation data, itemcount =
(max_gpsro_obs)

Need to increase max_gpsro_obs count in namelist

gpskey_out_of_rangegpskey (key#) exceeds
max_radial_gps_obs (maxval)

The number of GPS observations exceeds the array size allo-
cated in the module. Need to increase max_gpsro_obs count
in namelist.

read_gpsro_refExpected header ‘gpsroref’ in input
file

The format of the input obs_seq file is not consistent.

get_expected_gpsro_refvertical location must be height; gps
obs key #

GPS observations must have vertical coordinates of height

6.210.8 Future Plans

• The current code first bins the very densely-sampled vertical profile into 200 bins, and then interpolates the
requested vertical location from that. The original profiles have been plotted and are smooth; there appears to
be no need to pre-bin the ata.

• The local operator needs no additional auxiliary data. The observation files would be much smaller if the local
operator observation was a separate type without aux data, and only the non-local operator observation types
would need the ray direction, the curvature, etc.

6.211 MODULE obs_def_dew_point_mod

6.211.1 Overview

Provides a subroutine to calculate the dew point temperature from model temperature, specific humidity, and pressure.

Revision 2801 (April 2007) implements a more robust method (based on Bolton’s Approximation) for calculating dew
point. This has been further revised to avoid a numerical instability that could lead to failed forward operators for
dewpoints almost exactly 0 C.

6.211.2 Other modules used

types_mod
utilities_mod
location_mod (most likely threed_sphere)
assim_model_mod
obs_kind_mod

6.211. MODULE obs_def_dew_point_mod 873

DART, Release 9.10.3

6.211.3 Public interfaces

use obs_def_dew_point_mod, only : get_expected_dew_point

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call get_expected_dew_point(state_vector, location, key, td, istatus)

real(r8), intent(in) :: state_vector
type(location_type), intent(in) :: location
integer, intent(in) :: key
real(r8), intent(out) :: td
integer, intent(out) :: istatus

Calculates the dew point temperature (Kelvin).

state_vector A one dimensional representation of the model state vector
location Location for this obs
key Controls whether upper levels (key = 1) or 2-meter (key = 2) is required.
td The returned dew point temperature value
istatus Returned integer describing problems with applying forward operator

6.211.4 Files

• NONE

6.211.5 References

1. Bolton, David, 1980: The Computation of Equivalent Potential Temperature. Monthly Weather Review, 108,
1046-1053.

6.211.6 Error codes and conditions

Routine Message Comment
get_expected_dew_point ‘key has to be 1 (upper levels) or 2 (2-meter), got

‘,key
The input value of key is not al-
lowed.

874 Chapter 6. References

DART, Release 9.10.3

6.212 MODULE obs_def_ocean_mod

6.212.1 Overview

DART includes a flexible, powerful, and slightly complicated mechanism for incorporating new types of
observations. The obs_def_ocean_mod module being described here is used by the program preprocess to
insert appropriate definitions of ocean observations into the DEFAULT_obs_def_mod.f90 template and generate
the source files obs_def_mod.f90 and obs_kind_mod.f90 that are used by filter and other DART
programs.

Only HFRADAR_RADIAL_VELOCITY observations require a forward operator, as evidenced by the fact there is no
COMMON_CODE in the third column of the type definitions table. All other observations types map to quantities that
must be available in the model state; the observations types flagged with COMMON_CODE will use the
model_interpolate() routine as the forward operator.

The mandatory header line is followed by lines that have the observation type name (an all caps Fortran 90 identifier)
and their associated generic quantity identifier from the obs_kind module. If there is no special processing needed for
an observation type, and no additional data needed beyond the standard contents of an observation, then a third word
on the line, the COMMON_CODE will instruct the preprocess program to automatically generate all stubs and code
needed for this type. For observation types needing any special code or additional data, this word should not be
specified and the user must supply the code manually. One of the future extensions of this module will be to support
acoustic tomographic observations, which will necessitate specific support routines.

Ocean variable types and their corresponding quantities

! BEGIN DART PREPROCESS TYPE DEFINITIONS
! SALINITY, QTY_SALINITY, COMMON_CODE
! TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! SEA_SURFACE_HEIGHT, QTY_SEA_SURFACE_HEIGHT, COMMON_CODE
! SEA_SURFACE_PRESSURE, QTY_SEA_SURFACE_PRESSURE, COMMON_CODE
! ARGO_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! ARGO_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! ARGO_SALINITY, QTY_SALINITY, COMMON_CODE
! ARGO_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! ADCP_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! ADCP_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! ADCP_SALINITY, QTY_SALINITY, COMMON_CODE
! ADCP_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! FLOAT_SALINITY, QTY_SALINITY, COMMON_CODE
! FLOAT_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! DRIFTER_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! DRIFTER_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! DRIFTER_SALINITY, QTY_SALINITY, COMMON_CODE
! DRIFTER_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! GLIDER_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! GLIDER_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! GLIDER_SALINITY, QTY_SALINITY, COMMON_CODE
! GLIDER_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! MOORING_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE

(continues on next page)

6.212. MODULE obs_def_ocean_mod 875

DART, Release 9.10.3

(continued from previous page)

! MOORING_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! MOORING_SALINITY, QTY_SALINITY, COMMON_CODE
! MOORING_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! MOORING_PRESSURE, QTY_PRESSURE, COMMON_CODE
! BOTTLE_SALINITY, QTY_SALINITY, COMMON_CODE
! BOTTLE_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! CTD_SALINITY, QTY_SALINITY, COMMON_CODE
! CTD_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! TCTD_SALINITY, QTY_SALINITY, COMMON_CODE
! TCTD_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! STD_SALINITY, QTY_SALINITY, COMMON_CODE
! STD_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! XCTD_SALINITY, QTY_SALINITY, COMMON_CODE
! XCTD_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! MBT_SALINITY, QTY_SALINITY, COMMON_CODE
! MBT_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! XBT_SALINITY, QTY_SALINITY, COMMON_CODE
! XBT_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! DBT_SALINITY, QTY_SALINITY, COMMON_CODE
! DBT_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! APB_SALINITY, QTY_SALINITY, COMMON_CODE
! APB_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! DOPPLER_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! DOPPLER_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! DOPPLER_W_CURRENT_COMPONENT, QTY_W_CURRENT_COMPONENT, COMMON_CODE
! SATELLITE_MICROWAVE_SST, QTY_TEMPERATURE, COMMON_CODE
! SATELLITE_INFRARED_SST, QTY_TEMPERATURE, COMMON_CODE
! SATELLITE_BLENDED_SST, QTY_TEMPERATURE, COMMON_CODE
! SATELLITE_SSH, QTY_SEA_SURFACE_HEIGHT, COMMON_CODE
! SATELLITE_SSS, QTY_SALINITY, COMMON_CODE
! J1_SEA_SURFACE_ANOMALY, QTY_SEA_SURFACE_ANOMALY, COMMON_CODE
! EN_SEA_SURFACE_ANOMALY, QTY_SEA_SURFACE_ANOMALY, COMMON_CODE
! GFO_SEA_SURFACE_ANOMALY, QTY_SEA_SURFACE_ANOMALY, COMMON_CODE
! DRY_LAND, QTY_DRY_LAND, COMMON_CODE
! OI_SEA_SURFACE_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! HFRADAR_U_CURRENT_COMPONENT, QTY_U_CURRENT_COMPONENT, COMMON_CODE
! HFRADAR_V_CURRENT_COMPONENT, QTY_V_CURRENT_COMPONENT, COMMON_CODE
! HFRADAR_RADIAL_VELOCITY, QTY_VELOCITY
! FERRYBOX_SALINITY, QTY_SALINITY, COMMON_CODE
! FERRYBOX_TEMPERATURE, QTY_TEMPERATURE, COMMON_CODE
! END DART PREPROCESS TYPE DEFINITIONS

New observation types may be added to this list with no loss of generality. Supporting the observations and ac-
tually assimilating them are somewhat different and is controlled by the input.nml&obs_kind_nml assimi-
late_these_obs_types variable. This provides the flexibility to have an observation sequence file containing many
different observation types and being able to selectively choose what types will be assimilated.

876 Chapter 6. References

../../assimilation_code/modules/observations/obs_kind_mod.html#Namelist
../../assimilation_code/modules/observations/obs_kind_mod.html#Namelist

DART, Release 9.10.3

6.212.2 Other modules used

types_mod
utilities_mod
location_mod (threed_sphere)
assim_model_mod
obs_kind_mod
ensemble_manager_mod
obs_def_utilities_mod

6.212.3 Public interfaces

use obs_def_ocean_mod, only : read_hf_radial_vel
write_hf_radial_vel

interactive_hf_radial_vel

get_expected_hf_radial_vel

get_obs_def_hf_radial_vel

set_hf_radial_vel

6.212.4 Namelist

Namelist interface obs_def_ocean_nml is read from file input.nml. Namelists start with an ampersand ‘&’
and terminate with a slash ‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from
prematurely terminating the namelist.

&obs_def_ocean_nml
max_radial_vel_obs = 1000000
debug = .false.
/

Item Type Description
max_radial_vel_obsin-

te-
ger

The maximum number of radial velocity observations to be read at one time. An error is
thrown if more observations are encountered. Increase value and rerun.

debug log-
ical

Switch to control how much run-time output is created. .false. indicates less output,
.true. indicates more output.

6.212. MODULE obs_def_ocean_mod 877

DART, Release 9.10.3

6.212.5 Public components

none

6.212.6 Files

none

6.212.7 References

none

6.212.8 Private components

N/A

6.213 MODULE obs_def_1d_state_mod

6.213.1 Overview

The list of observation types to be supported by the DART executables is defined at compile time. The observations
DART supports can be changed at any time by adding or removing items from the preprocess namelist and rerunning
quickbuild.csh.

Preprocess takes observation specific code sections from special obs_def files to generate obs_def_mod.f90
and obs_kind_mod.f90 which are then compiled into filter and other DART programs. One of the
motivations behind creating obs_def_1d_state_mod.f90 was to provide a prototype for people developing
more complicated specialized observation definition modules.
Obs_def_1d_state_mod.f90 is an extended format Fortran 90 module that provides the definition for
observation types designed for use with idealized low-order models that use the 1D location module and can be
thought of as having a state vector that is equally spaced on a 1D cyclic domain. Observation types include:

• RAW_STATE_VARIABLE - A straight linear interpolation to a point on a [0,1] domain.

• RAW_STATE_VAR_POWER - The interpolated RAW_STATE_VARIABLE raised to a real-valued power.

• RAW_STATE_1D_INTEGRAL - An area-weighted ‘integral’ of the state variable over some part of the cyclic
1D domain.

RAW_STATE_VAR_POWER is convenient for studying non-gaussian, non-linear assimilation problems.
RAW_STATE_VAR_POWER can be used to do idealized studies related to remote sensing observations that are best
thought of as weighted integrals of some quantity over a finite volume.

878 Chapter 6. References

DART, Release 9.10.3

The RAW_STATE_1D_INTEGRAL has an associated half_width and localization type (see the MODULE
cov_cutoff_mod documentation) and a number of points at which to compute the associated integral by quadrature.
The location of the observation defines the center of mass of the integral. The integral is centered around the location
and extends outward on each side to 2*half_width. The weight associated with the integral is defined by the weight of
the localization function (for instance Gaspari Cohn) using the same localization options as defined by the cov_cutoff
module. The number of points are used to equally divide the range for computing the integral by quadrature.
Special observation modules like obs_def_1d_state_mod.f90 contain Fortran 90 code and additional
specially formatted commented code that is used to guide the preprocess program in constructing obs_def_mod.f90
and obs_kind_mod.f90. The specially formatted comments are most conveniently placed at the beginning of the
module and comprise seven sections, each beginning and ending with a special F90 comment line that must be
included verbatim.
The seven sections and their specific instances for the 1d_raw_state_mod are:

1. A list of all observation types defined by this module and their associated generic quantities (see PROGRAM
preprocess for details on quantity files). The header line is followed by lines that have the observation type name
(an all caps Fortran 90 identifier) and their associated generic quantity identifier. If there is no special processing
needed for an observation type, and no additional data needed beyond the standard contents of an observation
then a third word on the line, COMMON_CODE, will instruct the preprocess program to automatically generate
all stubs and code needed for this type. For observation types needing special code or additional data, this word
should not be specified and the user must supply the code manually.

! BEGIN DART PREPROCESS KIND LIST
! RAW_STATE_VARIABLE, QTY_STATE_VARIABLE, COMMON_CODE
! RAW_STATE_1D_INTEGRAL, QTY_1D_INTEGRAL
! END DART PREPROCESS KIND LIST

2. A list of all the use statements that the completed obs_def_mod.f90 must have in order to use the public interfaces
provided by this special obs_def module. This section is optional if there are no external interfaces.

! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
! interactive_1d_integral, get_expected_1d_
→˓integral, &
! set_1d_integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE

3. Case statement entries for each observation type defined by this special obs_def module stating how to compute
the forward observation operator. There must be a case statement entry for each type of observation, except for
observation types defined with COMMON_CODE.

! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call get_expected_1d_integral(state, location, obs_def%key, obs_val,
→˓istatus)
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF

6.213. MODULE obs_def_1d_state_mod 879

DART, Release 9.10.3

4. Case statement entries for each observation type defined by this special obs_def module stating how to read any
extra required information from an obs sequence file. There must be a case statement entry for each type of
observation, except for observation types defined with COMMON_CODE. If no special action is required put a
continue statement as the body of the case instead of a subroutine call.

! BEGIN DART PREPROCESS READ_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call read_1d_integral(obs_def%key, ifile, fform)
! END DART PREPROCESS READ_OBS_DEF

5. Case statement entries for each observation type defined by this special obs_def module stating how to write
any extra required information to an obs sequence file. There must be a case statement entry for each type of
observation, except for observation types defined with COMMON_CODE. If no special action is required put a
continue statement as the body of the case instead of a subroutine call.

! BEGIN DART PREPROCESS WRITE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call write_1d_integral(obs_def%key, ifile, fform)
! END DART PREPROCESS WRITE_OBS_DEF

6. Case statement entries for each observation type defined by this special obs_def module stating how to interac-
tively create any extra required information. There must be a case statement entry for each type of observation,
except for observation types defined with COMMON_CODE. If no special action is required put a continue
statement as the body of the case instead of a subroutine call.

! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call interactive_1d_integral(obs_def%key)
! END DART PREPROCESS INTERACTIVE_OBS_DEF

7. Any executable F90 module code must be tagged with the following comments. All lines between these markers
will be copied, verbatim, to obs_def_mod.f90. This section is not required if there are no observation-specific
subroutines.

! BEGIN DART PREPROCESS MODULE CODE
module obs_def_1d_state_mod

... (module executable code)

(continues on next page)

880 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

end module obs_def_1d_state_mod
! END DART PREPROCESS MODULE CODE

6.213.2 Other modules used

types_mod
utilities_mod
location_mod (1d_location_mod_only)
time_manager_mod
assim_model_mod
cov_cutoff_mod

6.213.3 Public interfaces

use obs_def_mod, only : write_1d_integral
read_1d_integral

interactive_1d_integral

get_expected_1d_integral

set_1d_integral

write_power

read_power

interactive_power

get_expected_power

set_power

call write_1d_integral(igrkey, ifile, fform)

integer, intent(in) :: igrkey
integer, intent(in) :: ifile
character(len=*), intent(in) :: fform

6.213. MODULE obs_def_1d_state_mod 881

DART, Release 9.10.3

Writes out the extra information for observation with unique identifier key for a 1d_integral observation type. This
includes the half-width, localization type and number of quadrature points for this observation.

igrkeyUnique integer key associated with the 1d integral observation being processed. This is not the same as the
key that all types of observations have and uniquely distinguishes all observations from each other; this is a
key that is only set and retrieved by this code for 1d integral observations. It is stored in the obs_def derived
type, not in the main obs_type definition.

ifileUnit number on which observation sequence file is open
fformString noting whether file is opened for ‘formatted’ or ‘unformatted’ IO.

call read_1d_integral(igrkey, ifile, fform)

integer, intent(out) :: igrkey
integer, intent(in) :: ifile
character(len=*), intent(in) :: fform

Reads the extra information for observation with unique identifier key for a 1d_integral observation type. This infor-
mation includes the half-width, localization type and number of quadrature points for this observation. The key that
is returned is uniquely associated with the definition that has been created and is used by this module to keep track of
the associated parameters for this observation.

igrkey Unique integer key associated with the observation being processed.
ifile Unit number on which observation sequence file is open
fform String noting whether file is opened for ‘formatted’ or ‘unformatted’ IO.

call interactive_1d_integral(igrkey)

integer, intent(out) :: igrkey

Uses input from standard in to define the characteristics of a 1D integral observation. The key that is returned is
uniquely associated with the definition that has been created and can be used by this module to keep track of the
associated parameters (half_width, localization option, number of quadrature points) for this key.

igrkey Unique identifier associated with the created observation definition in the obs sequence.

call get_expected_1d_integral(state, location, igrkey, val, istatus)

real(r8), intent(in) :: state
type(location_type), intent(in) :: location
integer, intent(in) :: igrkey

(continues on next page)

882 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

real(r8), intent(out) :: val
integer, intent(out) :: istatus

Computes the forward observation operator for a 1d integral observation. Calls the interpolate() routine multiple
times to invoke the forward operator code in whatever model this has been compiled with.

state Model state vector (or extended state vector).
locationLocation of this observation.
igrkey Unique integer key associated with this observation.
val Returned value of forward observation operator.
istatus Returns 0 if forward operator was successfully computed, else returns a positive value. (Negative

values are reserved for system use.)

call set_1d_integral(integral_half_width, num_eval_pts, localize_type, igrkey, istatus)

real(r8), intent(in) :: integral_half_width
integer, intent(in) :: num_eval_pts
integer, intent(in) :: localize_type
integer, intent(out) :: igrkey
integer, intent(out) :: istatus

Available for use by programs that create observations to set the additional metadata for these observation types. This
information includes the integral half-width, localization type and number of quadrature points for this observation.
The key that is returned is uniquely associated with the definition that has been created and should be set in the
obs_def structure by calling set_obs_def_key(). This key is different from the main observation key which
all observation types have. This key is unique to this observation type and is used when reading in the observation
sequence to match the corresponding metadata with each observation of this type.

integral_half_width Real value setting the half-width of the integral.
num_eval_pts Integer, number of evaluation points. 5-20 recommended.
localize_type Integer localization type: 1=Gaspari-Cohn; 2=Boxcar; 3=Ramped Boxcar
igrkey Unique integer key associated with the observation being processed.
istatus Return code. 0 means success, any other value is an error

call write_power(powkey, ifile, fform)

integer, intent(in) :: powkey
integer, intent(in) :: ifile
character(len=*), intent(in) :: fform

Writes out the extra information, the power, for observation with unique identifier key for a power observation type.

6.213. MODULE obs_def_1d_state_mod 883

DART, Release 9.10.3

powkeyUnique integer key associated with the power observation being processed. This is not the same as the key
that all types of observations have and uniquely distinguishes all observations from each other; this is a key
that is only set and retrieved by this code for power observations. It is stored in the obs_def derived type,
not in the main obs_type definition.

ifileUnit number on which observation sequence file is open
fformString noting whether file is opened for ‘formatted’ or ‘unformatted’ IO.

call read_power(powkey, ifile, fform)

integer, intent(out) :: powkey
integer, intent(in) :: ifile
character(len=*), intent(in) :: fform

Reads the extra information, the power, for observation with unique identifier key for a power observation type. The
key that is returned is uniquely associated with the definition that has been created and is used by this module to keep
track of the associated parameters for this observation.

powkey Unique integer key associated with the observation being processed.
ifile Unit number on which observation sequence file is open
fform String noting whether file is opened for ‘formatted’ or ‘unformatted’ IO.

call interactive_power(powkey)

integer, intent(out) :: powkey

Uses input from standard in to define the characteristics of a power observation. The key that is returned is uniquely
associated with the definition that has been created and can be used by this module to keep track of the associated
parameter, the power, for this key.

powkey Unique identifier associated with the created observation definition in the obs sequence.

call get_expected_power(state, location, powkey, val, istatus)

real(r8), intent(in) :: state
type(location_type), intent(in) :: location
integer, intent(in) :: powkey
real(r8), intent(out) :: val
integer, intent(out) :: istatus

884 Chapter 6. References

DART, Release 9.10.3

Computes the forward observation operator for a power observation. Calls the interpolate() routine to invoke
the forward operator code in whatever model this has been compiled with, then raises the result to the specified power
associated with this powkey.

state Model state vector (or extended state vector).
locationLocation of this observation.
powkey Unique integer key associated with this observation.
val Returned value of forward observation operator.
istatus Returns 0 if forward operator was successfully computed, else returns a positive value. (Negative

values are reserved for system use.)

call set_power(power_in, powkey, istatus)

real(r8), intent(in) :: power_in
integer, intent(out) :: powkey
integer, intent(out) :: istatus

Available for use by programs that create observations to set the additional metadata for these observation types. This
information includes the power to which to raise the state variable. The key that is returned is uniquely associated with
the definition that has been created and should be set in the obs_def structure by calling set_obs_def_key(). This
key is different from the main observation key which all observation types have. This key is unique to this observation
type and is used when reading in the observation sequence to match the corresponding metadata with each observation
of this type.

power_in Real value setting the power.
powkey Unique integer key associated with the observation being processed.
istatus Return code. 0 means success, any other value is an error

6.213.4 Namelist

This module has no namelist.

6.213.5 Files

• NONE

6.213. MODULE obs_def_1d_state_mod 885

DART, Release 9.10.3

6.213.6 References

1. none

6.213.7 Error codes and conditions

Routine Message Comment
interac-
tive_1d_integral

Out of space,
max_1d_integral_obs
limit NNNN (currently
1000).

There is only room for a fixed number of 1d integral observations. The
max number is defined by max_1d_integral_obs. Set this to a larger
value if more are needed.

6.214 MODULE obs_def_radar_mod

6.214.1 Overview

DART radar observation module, including the observation operators for the two primary radar-observation types –
Doppler velocity and reflectivity – plus other utility subroutines and functions. A number of simplifications are
employed for the observation operators. Most notably, the model state is mapped to a “point” observation, whereas a
real radar observation is a volumetric sample. The implications of this approximation have not been investigated
fully, so in the future it might be worth developing and testing more sophisticated observation operators that produce
volumetric power- weighted samples.
This module is able to compute reflectivity and precipitation fall speed (needed for computing Doppler radial
velocity) from the prognostic model fields only for simple single-moment microphysics schemes such as the Kessler
and Lin schemes. If a more complicated microphysics scheme is used, then reflectivity and fall speed must be
accessible instead as diagnostic fields in the model state.
Author and Contact information:

• Radar Science: David Dowell, david.dowell at noaa.gov, Glen Romine, romine at ucar.edu

• DART Code: Nancy Collins, nancy at ucar.edu

• Original DART/Radar work: Alain Caya

Backward compatibility note

For users of previous versions of the radar obs_def code, here are a list of changes beginning with subversion revision
3616 which are not backward compatible:

• The namelist has changed quite a bit; some items were removed, some added, and some renamed. See the
namelist documention in this file for the current item names and default values.

• Some constants which depend on the microphysics scheme have been added to the namelist to make it easier to
change the values for different schemes, but the defaults have also changed. Verify they are appropriate for the
scheme being used.

• The interactive create routine prompts for the beam direction differently now. It takes azimuth and elevation,
and then does the trigonometry to compute the three internal values which are stored in the file. The previous
version prompted for the internal values directly.

886 Chapter 6. References

DART, Release 9.10.3

• The get_expected routines try to call the model interpolate routine for
QTY_POWER_WEIGHTED_FALL_SPEED and QTY_RADAR_REFLECTIVITY values. If they are not
available then the code calls the model interpolate routines for several other quantities and computes these
quantities. However, this requires that the model_mod interpolate code returns gracefully if the quantity is
unknown or unsupported. The previous version of the WRF model_mod code used to print an error message
and stop if the quantity was unknown. The updated version in the repository which went in with this radar code
has been changed to return an error status code but continue if the quantity is unknown.

• The value for gravity is currently hardcoded in this module. Previous versions of this code used the gravity
constant in the DART types_mod.f90 code, but in reality the code should be using whatever value of gravity is
being used in the model code. For now, the value is at least separated so users can change the value in this code
if necessary.

6.214.2 Other modules used

types_mod
utilities_mod
location_mod (threed_sphere)
assim_model_mod
obs_kind_mod

6.214.3 Public interfaces

use obs_def_radar_mod, only : read_radar_ref
get_expected_radar_ref

read_radial_vel

write_radial_vel

interactive_radial_vel

get_expected_radial_vel

get_obs_def_radial_vel

set_radial_vel

Namelist interface &obs_def_radar_mod_nml is read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call read_radar_ref(obsvalue, refkey)

real(r8), intent(inout) :: obsvalue
integer, intent(out) :: refkey

6.214. MODULE obs_def_radar_mod 887

DART, Release 9.10.3

Reflectivity observations have no auxiliary data to read or write, but there are namelist options that can alter the
observation value at runtime. This routine tests the observation value and alters it if required.

obsvalue Observation value.
refkey Set to 0 to avoid uninitialized values, but otherwise unused.

call get_expected_radar_ref(state_vector, location, ref, istatus)

real(r8), intent(in) :: state_vector(:)
type(location_type), intent(in) :: location
real(r8), intent(out) :: ref
integer, intent(out) :: istatus

Given a location and the state vector from one of the ensemble members, compute the model-predicted radar
reflectivity that would be observed at that location. The returned value is in dBZ.
If apply_ref_limit_to_fwd_op is .TRUE. in the namelist, reflectivity values less than
reflectivity_limit_fwd_op will be set to lowest_reflectivity_fwd_op.

state_vectorA one dimensional representation of the model state vector
location Location of this observation
ref The returned radar reflectivity value
istatus Returned integer status code describing problems with applying forward operator. 0 is a good value;

any positive value indicates an error; negative values are reserved for internal DART use only.

call read_radial_vel(velkey, ifile [, fform])

integer, intent(out) :: velkey
integer, intent(in) :: ifile
character(len=*), optional, intent(in) :: fform

Reads the additional auxiliary information associated with a radial velocity observation. This includes the location of
the radar source, the beam direction, and the nyquist velocity.

velkeyUnique identifier associated with this radial velocity observation. In this code it is an integer index into
module local arrays which hold the additional data. This routine increments it and returns the new value.

ifileFile unit descriptor for input file
fform File format specifier: FORMATTED or UNFORMATTED; default FORMATTED

888 Chapter 6. References

DART, Release 9.10.3

call write_radial_vel(velkey, ifile [, fform])

integer, intent(in) :: velkey
integer, intent(in) :: ifile
character(len=*), optional, intent(in) :: fform

Writes the additional auxiliary information associated with a radial velocity observation. This includes the location of
the radar source, the beam direction, and the nyquist velocity.

velkeyUnique identifier associated with this radial velocity observation. In this code it is an integer index into
module local arrays which hold the additional data. This routine uses the value to select the appropriate data
to write for this observation.

ifileFile unit descriptor for output file
fform File format specifier: FORMATTED or UNFORMATTED; default FORMATTED

call get_obs_def_radial_vel(velkey, radar_location, beam_direction, nyquist_velocity)

integer, intent(in) :: velkey
type(location_type), intent(out) :: radar_location
real(r8), intent(out) :: beam_direction(3)
real(r8), intent(out) :: nyquist_velocity

Returns the auxiliary information associated with a given radial velocity observation.

velkey Unique identifier associated with this radial velocity observation. In this code it is an integer index
into module local arrays which hold the additional data. This routine uses the value to select the
appropriate data to return.

radar_locationLocation of the radar.
beam_orientationOrientation of the radar beam at the observation location. The three values are:

sin(azimuth)*cos(elevation), cos(azimuth)*cos(elevation), and sin(elevation).
nyquist_velocityNyquist velocity at the observation point in meters/second.

call set_radial_vel(velkey, radar_location, beam_direction, nyquist_velocity)

integer, intent(out) :: velkey
type(location_type), intent(in) :: radar_location
real(r8), intent(in) :: beam_direction(3)
real(r8), intent(in) :: nyquist_velocity

Sets the auxiliary information associated with a radial velocity observation. This routine increments and returns the
new key associated with these values.

6.214. MODULE obs_def_radar_mod 889

DART, Release 9.10.3

velkey Unique identifier associated with this radial velocity observation. In this code it is an integer index
into module local arrays which hold the additional data. This routine returns the incremented value
associated with this data.

radar_locationLocation of the radar.
beam_orientationOrientation of the radar beam at the observation location. The three values are:

sin(azimuth)*cos(elevation), cos(azimuth)*cos(elevation), and sin(elevation).
nyquist_velocityNyquist velocity at the observation point in meters/second.

call interactive_radial_vel(velkey)

integer, intent(out) :: velkey

Prompts the user for the auxiliary information needed for a radial velocity observation, and returns the new key
associated with this data.

velkeyUnique identifier associated with this radial velocity observation. In this code it is an integer index into
module local arrays which hold the additional data. This routine returns the incremented value associated
with this data.

call get_expected_radial_vel(state_vector, location, velkey, radial_vel, istatus)

real(r8), intent(in) :: state_vector(:)
type(location_type), intent(in) :: location
integer, intent(in) :: velkey
real(r8), intent(out) :: radial_vel
integer, intent(out) :: istatus

Given a location and the state vector from one of the ensemble members, compute the model-predicted radial velocity
in meters/second that would be observed at that location. velkey is the unique index for this particular radial
velocity observation. The value is returned in radial_vel, istatus is the return code.
The along-beam component of the 3-d air velocity is computed from the u, v, and w fields plus the beam_direction.
The along-beam component of power-weighted precipitation fall velocity is added to the result.

state_vectorA one dimensional representation of the model state vector
location Location of this observation
velkey Unique identifier associated with this radial velocity observation
radial_velThe returned radial velocity value in meters/second
istatus Returned integer status code describing problems with applying forward operator. 0 is a good value;

any positive value indicates an error; negative values are reserved for internal DART use only.

890 Chapter 6. References

DART, Release 9.10.3

6.214.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_def_radar_mod_nml
apply_ref_limit_to_obs = .false.,
reflectivity_limit_obs = -10.0,
lowest_reflectivity_obs = -10.0,
apply_ref_limit_to_fwd_op = .false.,
reflectivity_limit_fwd_op = -10.0,
lowest_reflectivity_fwd_op = -10.0,
max_radial_vel_obs = 1000000,
allow_wet_graupel = .false.,
microphysics_type = 2 ,
allow_dbztowt_conv = .false.,
dielectric_factor = 0.224,
n0_rain = 8.0e6,
n0_graupel = 4.0e6,
n0_snow = 3.0e6,
rho_rain = 1000.0,
rho_graupel = 400.0,
rho_snow = 100.0
/

6.214. MODULE obs_def_radar_mod 891

DART, Release 9.10.3

Item Type Description
apply_ref_limit_to_obs logical If .TRUE. replace all reflec-

tivity values less than “reflec-
tivity_limit_obs” with “low-
est_reflectivity_obs” value. If
.FALSE. leave all values as-is.

reflectivity_limit_obs real(r8) The threshold value. Observed
reflectivity values less than this
threshold will be set to the “low-
est_reflectivity_obs” value. Units
are dBZ.

lowest_reflectivity_obs real(r8) The ‘set-to’ value. Observed reflec-
tivity values less than the threshold
will be set to this value. Units are
dBZ.

apply_ref_limit_to_fwd_op logical Same as “apply_ref_limit_to_obs”,
but for the forward operator.

reflectivity_limit_fwd_op real(r8) Same as “reflectivity_limit_obs”,
but for the forward operator values.

lowest_reflectivity_fwd_op real(r8) Same as “lowest_reflectivity_obs”,
but for the forward operator values.

max_radial_vel_obs integer Maximum number of observations
of this type to support at run time.
This is combined total of all obs_seq
files, for example the observation di-
agnostic program potentially opens
multiple obs_seq.final files, or the
obs merge program can also open
multiple obs files.

allow_wet_graupel logical It is difficult to predict/diagnose
whether graupel/hail has a wet or
dry surface. Even when the tem-
perature is above freezing, evap-
oration and/or absorption can still
result in a dry surface. This is-
sue is important because the re-
flectivity from graupel with a wet
surface is significantly greater than
that from graupel with a dry sur-
face. Currently, the user has two
options for how to compute graupel
reflectivity. If allow_wet_graupel
is .false. (the default), then grau-
pel is always assumed to be dry.
If allow_wet_graupel is .true., then
graupel is assumed to be wet (dry)
when the temperature is above (be-
low) freezing. A consequence is that
a sharp gradient in reflectivity will
be produced at the freezing level. In
the future, it might be better to pro-
vide the option of having a transition
layer.

microphysics_type integer If the state vector contains the re-
flectivity or the power weighted
fall speed, interpolate directly from
those regardless of the setting of this
item. If the state vector does not
contain the fields, this value should
be set to be compatible with what-
ever microphysical scheme is being
used by the model. If the model
is using a different microphysical
scheme but has compatible fields to
the ones listed below, setting this
value will select the scheme to use.

• 1 = Kessler scheme.

• 2 = Lin et al. microphysics

• 3 = User selected scheme
where 10 cm reflectivity and
power weighted fall velocity
are expected in the state vec-
tor (failure if not found)

• 4 = User selected scheme
where only power weighted
fall velocity is expected (fail-
ure if not found)

• 5 = User selected scheme
where only reflectivity is ex-
pected (failure if not found)

• -1 = ASSUME FALL VE-
LOCITY IS ZERO, allows
over-riding the failure modes
above if reflectivity and/or
fall velocity are not available
but a result is desired for test-
ing purposes only.

allow_dbztowt_conv logical Flag to enable use of the dbztowt
routine where reflectivity is avail-
able, but not the power-weighted
fall velocity. This scheme uses em-
perical relations between reflectiv-
ity and fall velocity, with poor accu-
racy for highly reflective, low den-
sity particles (such as water coated
snow aggregates). Expect question-
able accuracy in radial velocity from
the forward operator with high ele-
vation angles where ice is present in
the model state.

dielectric_factor real(r8) According to Smith (1984), there
are two choices for the dielectric
factor depending on how the snow
particle sizes are specified. If
melted raindrop diameters are used,
then the factor is 0.224. If equiva-
lent ice sphere diameters are used,
then the factor is 0.189. The default
is set to use the common convention
of melted raindrop diameters.

n0_rain real(r8) Intercept parameters (m^-4) for size
distributions of each hydrometeor.
The default of 8.0e6 is for the Lin
et al. microphysics scheme with
the Hobbs settings for graupel/hail.
(The Hobbs graupel settings are also
the default for the Lin scheme in
WRF 2.2 and 3.0.)

n0_graupel real(r8) Intercept parameters (m^-4) for size
distributions of each hydrometeor.
The default of 4.0e6 is for the Lin
et al. microphysics scheme with
the Hobbs settings for graupel/hail.
(The Hobbs graupel settings are also
the default for the Lin scheme in
WRF 2.2 and 3.0.)

n0_snow real(r8) Intercept parameters (m^-4) for size
distributions of each hydrometeor.
The default of 3.0e6 is for the Lin
et al. microphysics scheme with
the Hobbs settings for graupel/hail.
(The Hobbs graupel settings are also
the default for the Lin scheme in
WRF 2.2 and 3.0.)

rho_rain real(r8) Density (kg m^-3) of each hydrom-
eteor type. The default of 1000.0
is for the Lin et al. microphysics
scheme with the Hobbs setting for
graupel/hail.

rho_graupel real(r8) Density (kg m^-3) of each hydrom-
eteor type. The default of 400.0
is for the Lin et al. microphysics
scheme with the Hobbs setting for
graupel/hail.

rho_snow real(r8) Density (kg m^-3) of each hydrom-
eteor type. The default of 100.0
is for the Lin et al. microphysics
scheme with the Hobbs setting for
graupel/hail.

892 Chapter 6. References

DART, Release 9.10.3

6.214.5 Files

• A DART observation sequence file containing Radar obs.

6.214.6 References

• Battan, L. J., 1973: Radar Observation of the Atmosphere. Univ. of Chicago Press, 324 pp.

• Caya, A. Radar Observations in Dart. DART Subversion repository.

• Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. Academic Press, 562 pp.

• Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos.
Sci., 51, 249-280.

• Lin, Y.-L., Farley R. D., and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J.
Climate Appl. Meteor., 22, 1065-1092.

• Smith, P. L. Jr., 1984: Equivalent radar reflectivity factors for snow and ice particles. J. Climate Appl. Meteor.,
23, 1258-1260.

• Smith, P. L. Jr., Myers C. G., and H. D. Orville, 1975: Radar reflectivity factor calculations in numerical cloud
models using bulk parameterization of precipitation. J. Appl. Meteor., 14, 1156-1165.

6.214.7 Error codes and conditions

Routine Message Comment
initial-
ize_module

initial allocation failed for ra-
dial vel obs data, itemcount =
(max_radial_vel_obs)

Need to increase max_radial_vel_obs count in namelist

read_radial_velExpected location header “plat-
form” in input file

The format of the input file is not consistent.

velkey_out_of_rangevelkey (val) exceeds
max_radial_vel_obs (maxval)

The number of radial velocity observations exceeds the
array size allocated in the module. Need to increase
max_radial_vel_obs count in namelist.

read_nyquist_velocitybad value for nyquist velocity The format of the input obs_seq file is not consistent.
read_beam_directionbeam_direction value must be be-

tween -1 and 1, got ()
The format of the input obs_seq file is not consistent.

read_beam_directionExpected orientation header
“dir3d” in input file

The format of the input obs_seq file is not consistent.

6.214. MODULE obs_def_radar_mod 893

DART, Release 9.10.3

6.214.8 Private components

use obs_def_radar_mod, only : initialize_module
read_beam_direction

read_nyquist_velocity

write_beam_direction

write_nyquist_velocity

interactive_beam_direction

interactive_nyquist_velocity

get_reflectivity

get_precip_fall_speed

initialize_constants

print_constants

pr_con

velkey_out_of_range

check_namelist_limits

ascii_file_format

call initialize_module()

Reads the namelist, allocates space for the auxiliary data associated wtih radial velocity observations, initializes the
constants used in subsequent computations (possibly altered by values in the namelist), and prints out the list of
constants and the values in use. These may need to change depending on which microphysics scheme is being used.

beam_direction = read_beam_direction(ifile, is_asciiformat)

real(r8), dimension(3) :: read_beam_direction
integer, intent(in) :: ifile
logical, intent(in) :: is_asciiformat

Reads the beam direction at the observation location. Auxiliary data for doppler radial velocity observations.

894 Chapter 6. References

DART, Release 9.10.3

read_beam_directionReturns three real values for the radar beam orientation
ifile File unit descriptor for input file
is_asciiformat File format specifier: .TRUE. if file is formatted/ascii, or .FALSE. if unformatted/binary.

Default .TRUE.

nyquist_velocity = read_nyquist_velocity(ifile, is_asciiformat)

real(r8), :: read_nyquist_velocity
integer, intent(in) :: ifile
logical, intent(in) :: is_asciiformat

Reads nyquist velocity for a doppler radial velocity observation.

read_nyquist_velocityReturns a real value for the nyquist velocity value
ifile File unit descriptor for input file
is_asciiformat File format specifier: .TRUE. if file is formatted/ascii, or .FALSE. if unformat-

ted/binary. Default .TRUE.

call write_beam_direction(ifile, beam_direction, is_asciiformat)

integer, intent(in) :: ifile
real(r8), dimension(3), intent(in) :: beam_direction
logical, intent(in) :: is_asciiformat

Writes the beam direction at the observation location. Auxiliary data for doppler radial velocity observations.

ifile File unit descriptor for output file
beam_direction Three components of the radar beam orientation
is_asciiformat File format specifier: .TRUE. if file is formatted/ascii, or .FALSE. if unformatted/binary.

Default .TRUE.

call write_nyquist_velocity(ifile, nyquist_velocity, is_asciiformat)

integer, intent(in) :: ifile
real(r8), intent(in) :: nyquist_velocity
logical, intent(in) :: is_asciiformat

Writes nyquist velocity for a doppler radial velocity observation.

6.214. MODULE obs_def_radar_mod 895

DART, Release 9.10.3

ifile File unit descriptor for output file
nyquist_velocityThe nyquist velocity value for this observation
is_asciiformat File format specifier: .TRUE. if file is formatted/ascii, or .FALSE. if unformatted/binary.

Default .TRUE.

call interactive_beam_direction(beam_direction)

real(r8), dimension(3), intent(out) :: beam_direction

Prompts the user for input for the azimuth and elevation of the radar beam at the observation location. Will be converted
to the three values actually stored in the observation sequence file.

beam_direction Three components of the radar beam orientation

call interactive_nyquist_velocity(nyquist_velocity)

real(r8), intent(out) :: nyquist_velocity

Prompts the user for input for the nyquist velocity value associated with a doppler radial velocity observation.

nyquist_velocity Nyquist velocity value for the observation.

call get_reflectivity(qr, qg, qs, rho, temp, ref)

real(r8), intent(in) :: qr
real(r8), intent(in) :: qg
real(r8), intent(in) :: qs
real(r8), intent(in) :: rho
real(r8), intent(in) :: temp
real(r8), intent(out) :: ref

Computes the equivalent radar reflectivity factor in mm6 m-3 for simple single-moment microphysics schemes such as
Kessler and Lin, et al. See the references for more details.

qr Rain water content (kg kg-1)
qg Graupel/hail content (kg kg-1)
qs Snow content (kg kg-1)
rho Air density (kg m-3)
temp Air temperature (K)
ref The returned radar reflectivity value

896 Chapter 6. References

DART, Release 9.10.3

call get_precip_fall_speed(qr, qg, qs, rho, temp, precip_fall_speed)

real(r8), intent(in) :: qr
real(r8), intent(in) :: qg
real(r8), intent(in) :: qs
real(r8), intent(in) :: rho
real(r8), intent(in) :: temp
real(r8), intent(out) :: precip_fall_speed

Computes power-weighted precipitation fall speed in m s-1 for simple single-moment microphysics schemes such as
Kessler and Lin, et al. See the references for more details.

qr Rain water content (kg kg-1)
qg Graupel/hail content (kg kg-1)
qs Snow content (kg kg-1)
rho Air density (kg m-3)
temp Air temperature (K)
precip_fall_speed The returned precipitation vall speed

call initialize_constants()

Set values for a collection of constants used throughout the module during the various calculations. These are set once
in this routine and are unchanged throughout the rest of the execution. They cannot be true Fortran parameters
because some of the values can be overwritten by namelist entries, but once they are set they are treated as read-only
parameters.

call print_constants()

Print out the names and values of all constant parameters used by this module. The error handler message facility is
used to print the message, which by default goes to both the DART log file and to the standard output of the program.

call pr_con(c_val, c_str)

real(r8), intent(in) :: c_val
character(len=*), intent(in) :: c_str

Calls the DART error handler routine to print out a string label and a real value to both the log file and to the standard
output.

6.214. MODULE obs_def_radar_mod 897

DART, Release 9.10.3

Value of constant A real value.
Name of constant A character string.

call velkey_out_of_range(velkey)

integer, intent(in) :: velkey

Range check key and trigger a fatal error if larger than the allocated array for observation auxiliary data.

velkey Integer key into a local array of auxiliary observation data.

call check_namelist_limits(apply_ref_limit_to_obs, reflectivity_limit_obs, lowest_reflectivity_obs, ap-
ply_ref_limit_to_fwd_op, reflectivity_limit_fwd_op, lowest_reflectivity_fwd_op)

logical, intent(in) :: apply_ref_limit_to_obs
real(r8), intent(in) :: reflectivity_limit_obs
real(r8), intent(in) :: lowest_reflectivity_obs
logical, intent(in) :: apply_ref_limit_to_fwd_op
real(r8), intent(in) :: reflectivity_limit_fwd_op
real(r8), intent(in) :: lowest_reflectivity_fwd_op

Check the values set in the namelist for consistency. Print out a message if the limits and set-to values are different;
this may be intentional but is not generally expected to be the case. In all cases below, see the namelist documentation
for a fuller explanation of each value.

apply_ref_limit_to_obs Logical. See namelist.
reflectivity_limit_obs Real value. See namelist.
lowest_reflectivity_obs Real value. See namelist.
apply_ref_limit_to_fwd_op Logical. See namelist.
reflectivity_limit_fwd_op Real value. See namelist.
lowest_reflectivity_fwd_op Real value. See namelist.

is_asciifile = ascii_file_format(fform)

logical :: ascii_file_format
character(len=*), intent(in), optional :: fform

Should be moved to DART utility module at some point. Returns .TRUE. if the optional argument is missing or if it is
not one of the following values: "unformatted", "UNFORMATTED", "unf", "UNF".

898 Chapter 6. References

DART, Release 9.10.3

ascii_file_format Return value. Logical. Default is .TRUE.
fform Character string file format.

6.215 MODULE DEFAULT_obs_def_mod

6.215.1 Overview

DEFAULT_obs_def.F90 is a template used by the program preprocess to create obs_def_mod.f90.
To read more detailed instructions on how to add new observation types, see the documentation for MODULE
obs_def_mod. obs_def_*_mod.f90 files are specified as input to the preprocess program by namelist, and a
new obs_def_mod.f90 file is generated which contains all the selected observation types.
Information from zero or more special obs_def modules, such as obs_def_1d_state_mod.f90 or
obs_def_reanalyis_bufr_mod.f90, (also documented in this directory) are incorporated into the
DEFAULT_obs_def_mod.F90 template by preprocess. If no special obs_def files are included in the preprocess
namelist, a minimal obs_def_mod.f90 is created which can only support identity forward observation operators.
Any identity observations on the obs_seq.out file will be assimilated, regardless of the obs types specified in
assimilate_these_obs_types.
The documentation below describes the special formatting that is included in the DEFAULT_obs_def_mod.F90
in order to guide the preprocess program.

Up to seven sections of code are inserted into DEFAULT_obs_def_mod.F90 from each of the special
obs_def_*_mod.f90 files. The insertion point for each section is denoted by a special comment line that must be
included verbatim in DEFAULT_obs_def_mod.F90. These special comment lines and their significance are:

1. ! DART PREPROCESS MODULE CODE INSERTED HERE

Some special observation definition modules (see for instance obs_def_1d_state_mod.f90) con-
tain code for evaluating forward observation operators, reading or writing special information about an
observation definition to an obs sequence file, or for interactive definition of an observation. The entire
module code section is inserted here, so the resulting output file will be completely self-contained. For-
tran 90 allows multiple modules to be defined in a single source file, and subsequent module code can use
previously defined modules, so this statement must preceed the rest of the other comment lines.

1. ! DART PREPROCESS USE FOR OBS_QTY_MOD INSERTED HERE

The quantities available to DART are defined by passing quantity files from DART/assimilation_code/
modules/observations to preprocess. Unique integer values for each quantity are assigned by
preprocess and the use statements for these entries are inserted here.

2. ! DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE INSERTED HERE

Some special observation definition modules (see for instance obs_def_1d_state_mod.f90) contain code
for evaluating forward observation operators, reading or writing special information about an observation defini-
tion to an obs sequence file, or for interactive definition of an observation. The use statements for these routines
from the special observation definition modules are inserted here.

3. ! DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF INSERTED HERE

Special observation definition modules must contain case statement code saying what to do to evaluate a forward
observation operator for each observation type that they define. This code is inserted here.

6.215. MODULE DEFAULT_obs_def_mod 899

DART, Release 9.10.3

4. ! DART PREPROCESS READ_OBS_DEF INSERTED HERE

Special observation definition modules must contain case statement code saying what to do to read any additional
information required for each observation type that they define from an observation sequence file. This code is
inserted here.

5. ! DART PREPROCESS WRITE_OBS_DEF INSERTED HERE

Special observation definition modules must contain case statement code saying what to do to write any addi-
tional information required for each observation type that they define to an observation sequence file. This code
is inserted here.

6. ! DART PREPROCESS INTERACTIVE_OBS_DEF INSERTED HERE

Special observation definition modules must contain case statement code saying what to do to interactively
create any additional information required for each observation type that they define. This code is inserted here.

6.216 MODULE obs_def_mod

6.216.1 Overview

The DART Fortran90 derived type obs_def provide an abstraction of the definition of an observation. An observation
sequence obs_seq at a higher level is composed of observation definitions associated with observed values. For now,
the basic operations required to implement an observation definition are an ability to compute a forward operator given
the model state vector, the ability to read/write the observation definition from/to a file, and a capability to do a standard
input driven interactive definition of the observation definition.

DART makes a distinction between specific observation types and generic observation quantities.
The role of the various obs_def input files is to define the mapping between the types and quantities, and optionally to
provide type-specific processing routines.

A single obs_def output module is created by the program preprocess from two kinds of input files. First, a
DEFAULT obs_def module (normally called DEFAULT_obs_def_mod.F90 and documented in this directory) is
used as a template into which the preprocessor incorporates information from zero or more special obs_def modules
(such as obs_def_1d_state_mod.f90 or obs_def_reanalysis_bufr_mod.f90, also documented in
this directory). If no special obs_def files are included in the preprocessor namelist, a minimal obs_def_mod.f90
is created which can only support identity forward observation operators.

New Observation Types

To add a new observation type which does not fit into any of the already-defined obs_def files, a new file should
be created in the obs_def directory. These files are usually named according the the pattern obs_def_X_mod.
f90, where the X is either an instrument name, a data source, or a class of observations. See the existing filenames
in that directory for ideas. Then this new filename must be listed in the input.nml namelist for the model, in
the &preprocess_nml section, in the obs_type_files variable. This variable is a string list type which can
contain multiple filenames. Running the preprocess program will then use the contents of the new file to generate
the needed output files for use in linking to the rest of the DART system.

900 Chapter 6. References

DART, Release 9.10.3

Simple observations

If the new observation type can be directly interpolated by a model_mod interpolation routine, and has no additional
observation-specific code for reading, writing, or initializing the observation, then the entire contents of the new file
is:

! BEGIN DART PREPROCESS TYPE DEFINITIONS
! type, quantity, COMMON_CODE
! (repeat lines for each type)
! END DART PREPROCESS TYPE DEFINITIONS

DART will automatically generate all interface code needed for these new observation types. For example, here is a
real list:

! BEGIN DART PREPROCESS TYPE DEFINITIONS
!VELOCITY, QTY_VELOCITY, COMMON_CODE
!TRACER_CONCENTRATION, QTY_TRACER_CONCENTRATION, COMMON_CODE
!TRACER_SOURCE, QTY_TRACER_SOURCE, COMMON_CODE
!MEAN_SOURCE, QTY_MEAN_SOURCE, COMMON_CODE
!SOURCE_PHASE, QTY_SOURCE_PHASE, COMMON_CODE
! END DART PREPROCESS TYPE DEFINITIONS

The first column is the specific observation type and should be unique. The second column is the generic observation
quantity. The quantities available to DART are defined at compile time by preprocess via the option ‘quantity_files’
in the preprocess_nml namelist. The third column must be the keyword COMMON_CODEwhich tells the preprocess
program to automatically generate all necessary interface code for this type.

Observations needing special handling

For observation types which have observation-specific routines, must interpolate using a combination of other generic
quantities, or require additional observation-specific data to be stored, the following format is used:

! BEGIN DART PREPROCESS TYPE DEFINITIONS
! type, quantity
! (repeat lines for each type/quantity pair)
! END DART PREPROCESS TYPE DEFINITIONS

DART will need user-supplied interface code for each of the listed types. For example, here is a real list:

! BEGIN DART PREPROCESS TYPE DEFINITIONS
! DOPPLER_RADIAL_VELOCITY, QTY_VELOCITY
! RADAR_REFLECTIVITY, QTY_RADAR_REFLECTIVITY
! END DART PREPROCESS TYPE DEFINITIONS

In this case, DART needs additional information for how to process these types. They include code sections delimited
by precisely formatted comments, and possibly module code sections:

1. ! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE

Any fortran use statements for public subroutines or variables from other modules should be placed between
these lines, with comment characters in the first column.
For example, if the forward operator code includes a module with public routines then a “use” statement like:

6.216. MODULE obs_def_mod 901

DART, Release 9.10.3

use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
interactive_1d_integral, get_expected_1d_integral

needs to be added to the obs_def_mod so the listed subroutines are available to be called. This would look like:

! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
! interactive_1d_integral, get_expected_1d_
→˓integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE

2. ! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF

These comments must enclose a case statement for each defined type that returns the expected observation
value based on the current values of the state vector. The code must be in comments, with the comment
character in the first column.
The variables available to be passed to subroutines or used in this section of code are:

state the entire model state vector
state_time the time of the state data
ens_index the ensemble member number
location the observation location
obs_kind_ind the index of the specific observation type
obs_time the time of the observation
error_val the observation error variance

The routine must fill in the values of these variables:

obs_val the computed forward operator value
istatus return code: 0=ok, >0 is error, <0 reserved for system use

To call a model_mod interpolate routine directly, the argument list must match exactly:

interpolate(state, location, QTY_xxx, obs_val, istatus)

This can be useful if the forward operator needs to retrieve values for fields which are typically found in a model
and then compute a derived value from them.

3. ! BEGIN DART PREPROCESS READ_OBS_DEF
! END DART PREPROCESS READ_OBS_DEF

902 Chapter 6. References

DART, Release 9.10.3

These comments must enclose a case statement for each defined type that reads any additional data associated
with a single observation. If there is no information beyond that for the basic obs_def type, the case statement
must still be provided, but the code can simply be continue. The code must be in comments, with the
comment character in the first column.
The variables available to be passed to subroutines or used in this section of code are:

ifile the open unit number positioned ready to read, read-only
obs_def the rest of the obs_def derived type for this obs, read-write
key the index observation number in this sequence, read-only
obs_val the observation value, if needed. in general should not be changed
is_ascii logical to indicate how the file was opened, formatted or unformatted

The usual use of this routine is to read in additional metadata per observation and to set the private key in the
obs_def to indicate which index to use for this observation to look up the corresponding metadata in arrays
or derived types. Do not confuse the key in the obs_def with the key argument to this routine; the latter is the
global observation sequence number for this observation.

4. ! BEGIN DART PREPROCESS WRITE_OBS_DEF
! END DART PREPROCESS WRITE_OBS_DEF

These comments must enclose a case statement for each defined type that writes any additional data associated
with a single observation. If there is no information beyond that for the basic obs_def type, the case statement
must still be provided, but the code can simply be continue. The code must be in comments, with the
comment character in the first column.
The variables available to be passed to subroutines or used in this section of code are:

ifile the open unit number positioned ready to write, read-only
obs_def the rest of the obs_def derived type for this obs, read-only
key the index observation number in this sequence, read-only
is_ascii logical to indicate how the file was opened, formatted or unformatted

The usual use of this routine is to write the additional metadata for this observation based on the private key in
the obs_def. Do not confuse this with the key in the subroutine call which is the observation number relative
to the entire observation sequence file.

5. ! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
! END DART PREPROCESS INTERACTIVE_OBS_DEF

These comments must enclose a case statement for each defined type that prompts the user for any additional
data associated with a single observation. If there is no information beyond that for the basic obs_def type, the

6.216. MODULE obs_def_mod 903

DART, Release 9.10.3

case statement must still be provided, but the code can simply be continue. The code must be in comments,
with the comment character in the first column.
The variables available to be passed to subroutines or used in this section of code are:

obs_def the rest of the obs_def derived type for this obs, read-write
key the index observation number in this sequence, read-only

The DART code will prompt for the rest of the obs_def values (location, type, value, error) but any additional
metadata needed by this observation type should be prompted to, and read from, the console (e.g.
write(*,*), and read(*, *)). The code will generally set the obs_def%key value as part of setting
the metadata.

6. ! BEGIN DART PREPROCESS MODULE CODE
! END DART PREPROCESS MODULE CODE

If the code to process this observation requires module data and/or subroutines, then these comments must
surround the module definitions. Unlike all the other sections, this comment pair is optional, and if used, the
code must not be in comments; it will be copied verbatim over to the output file.
Generally the code for a forward operator should be defined inside a module, to keep module variables and
other private subroutines from colliding with unrelated routines and variables in other forward operator files.

It is possible to mix automatic code types and user-supplied code types in the same list. Simply add the COM-
MON_CODE keyword on the lines which need no special data or interfaces. For example, here is an extract from
the 1d state obs_def module, where the raw state variable needs only autogenerated code, but the 1d integral has
user-supplied processing code:

! BEGIN DART PREPROCESS TYPE LIST
! RAW_STATE_VARIABLE, QTY_STATE_VARIABLE, COMMON_CODE
! RAW_STATE_1D_INTEGRAL, QTY_1D_INTEGRAL
! END DART PREPROCESS TYPE LIST

! BEGIN DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE
! use obs_def_1d_state_mod, only : write_1d_integral, read_1d_integral, &
! interactive_1d_integral, get_expected_1d_integral
! END DART PREPROCESS USE OF SPECIAL OBS_DEF MODULE

! BEGIN DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call get_expected_1d_integral(state, location, obs_def%key, obs_val,
→˓istatus)
! END DART PREPROCESS GET_EXPECTED_OBS_FROM_DEF

! BEGIN DART PREPROCESS READ_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call read_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS READ_OBS_DEF

(continues on next page)

904 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

! BEGIN DART PREPROCESS WRITE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call write_1d_integral(obs_def%key, ifile, fileformat)
! END DART PREPROCESS WRITE_OBS_DEF

! BEGIN DART PREPROCESS INTERACTIVE_OBS_DEF
! case(RAW_STATE_1D_INTEGRAL)
! call interactive_1d_integral(obs_def%key)
! END DART PREPROCESS INTERACTIVE_OBS_DEF

! BEGIN DART PREPROCESS MODULE CODE
module obs_def_1d_state_mod

use types_mod, only : r8
use utilities_mod, only : register_module, error_handler, E_ERR, E_MSG
use location_mod, only : location_type, set_location, get_location
use assim_model_mod, only : interpolate
use cov_cutoff_mod, only : comp_cov_factor

implicit none

public :: write_1d_integral, read_1d_integral, interactive_1d_integral, &
get_expected_1d_integral

... (module code here)

end module obs_def_1d_state_mod
! END DART PREPROCESS MODULE CODE

See the MODULE obs_def_1d_state_mod documentation for more details and examples of each section. Also see
obs_def_wind_speed_mod.f90 for an example of a 3D geophysical forward operator.
In addition to collecting and managing any additional observation type-specific code, this module provides the
definition of the obs_def_type derived type, and a collection of subroutines for creating, accessing, and updating this
type. The remainder of this document describes the subroutines provided by this module.

6.216.2 Other modules used

types_mod
utilities_mod
location_mod (depends on model choice)
time_manager_mod
assim_model_mod
obs_kind_mod
Other special obs_def_kind modules as required

6.216. MODULE obs_def_mod 905

DART, Release 9.10.3

6.216.3 Public interfaces

use obs_def_mod, only : obs_def_type
init_obs_def

get_obs_def_location

get_obs_def_type_of_obs

get_obs_def_time

get_obs_def_error_variance

get_obs_def_key

set_obs_def_location

set_obs_def_type_of_obs

set_obs_def_time

set_obs_def_error_variance

set_obs_def_key

interactive_obs_def

write_obs_def

read_obs_def

get_expected_obs_from_def

destroy_obs_def

copy_obs_def

assignment(=)

get_name_for_type_of_obs

A note about documentation style. Optional arguments are enclosed in brackets [like this].

type obs_def_type
private
type(location_type) :: location

(continues on next page)

906 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

integer :: kind
type(time_type) :: time
real(r8) :: error_variance
integer :: key

end type obs_def_type

Models all that is known about an observation except for actual values. Includes a location, type, time and error
variance.

Component Description
location Location of the observation.
kind Despite the name, the specific type of the observation.
time Time of the observation.
error_variance Error variance of the observation.
key Unique identifier for observations of a particular type.

call init_obs_def(obs_def, location, kind, time, error_variance)

type(obs_def_type), intent(out) :: obs_def
type(location_type), intent(in) :: location
integer, intent(in) :: kind
type(time_type), intent(in) :: time
real(r8), intent(in) :: error_variance

Creates an obs_def type with location, type, time and error_variance specified.

obs_def The obs_def that is created
location Location for this obs_def
kind Observation type for obs_def
time Time for obs_def
error_variance Error variance of this observation

call copy_obs_def(obs_def1, obs_def2)

type(obs_def_type), intent(out) :: obs_def1
type(obs_def_type), intent(in) :: obs_def2

Copies obs_def2 to obs_def1, overloaded as assignment (=).

obs_def1 obs_def to be copied into
obs_def2 obs_def to be copied from

6.216. MODULE obs_def_mod 907

DART, Release 9.10.3

var = get_obs_def_key(obs_def)

integer :: get_obs_def_key
type(obs_def_type), intent(in) :: obs_def

Returns key from an observation definition.

var Returns key from an obs_def
obs_def An obs_def

var = get_obs_def_error_variance(obs_def)

real(r8) :: get_obs_def_error_variance
type(obs_def_type), intent(in) :: obs_def

Returns error variance from an observation definition.

var Error variance from an obs_def
obs_def An obs_def

var = get_obs_def_location(obs_def)

type(location_type) :: get_obs_def_location
type(obs_def_type), intent(in) :: obs_def

Returns the location from an observation definition.

var Returns location from an obs_def
obs_def An obs_def

var = get_obs_def_type_of_obs(obs_def)

integer :: get_obs_def_type_of_obs
type(obs_def_type), intent(in) :: obs_def

Returns an observation type from an observation definition.

var Returns the observation type from an obs_def
obs_def An obs_def

908 Chapter 6. References

DART, Release 9.10.3

var = get_obs_def_time(obs_def)

type(time_type) :: get_obs_def_time
type(obs_def_type), intent(in) :: obs_def

Returns time from an observation definition.

var Returns time from an obs_def
obs_def An obs_def

obs_name = get_name_for_type_of_obs(obs_kind_ind)

character(len = 32) :: get_name_for_type_of_obs
integer, intent(in) :: obs_kind_ind

Returns an observation name from an observation type.

var Returns name from an observation type
obs_kind_ind An observation type

call set_obs_def_location(obs_def, location)

type(obs_def_type), intent(inout) :: obs_def
type(location_type), intent(in) :: location

Set the location in an observation definition.

obs_def An obs_def
location A location

call set_obs_def_error_variance(obs_def, error_variance)

type(obs_def_type), intent(inout) :: obs_def
real(r8), intent(in) :: error_variance

Set error variance for an observation definition.

obs_def An obs_def
error_variance Error variance

6.216. MODULE obs_def_mod 909

DART, Release 9.10.3

call set_obs_def_key(obs_def, key)

type(obs_def_type), intent(inout) :: obs_def
integer, intent(in) :: key

Set the key for an observation definition.

obs_def An obs_def
key Unique identifier for this observation

call set_obs_def_type_of_obs(obs_def, kind)

type(obs_def_type), intent(inout) :: obs_def
integer, intent(in) :: kind

Set the type of observation in an observation definition.

obs_def An obs_def
kind An integer observation type

call set_obs_def_time(obs_def, time)

type(obs_def_type), intent(inout) :: obs_def
type(time_type), intent(in) :: time

Sets time for an observation definition.

obs_def An obs_def
time Time to set

call get_expected_obs_from_def(key, obs_def, obs_kind_ind, ens_index, state, state_time, obs_val, istatus, assimi-
late_this_ob, evaluate_this_ob)

integer, intent(in) :: key
type(obs_def_type), intent(in) :: obs_def
integer, intent(in) :: obs_kind_ind
integer, intent(in) :: ens_index
real(r8), intent(in) :: state(:)

(continues on next page)

910 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

type(time_type), intent(in) :: state_time
real(r8), intent(out) :: obs_val
integer, intent(out) :: istatus
logical, intent(out) :: assimilate_this_ob
logical, intent(out) :: evaluate_this_ob

Compute the observation (forward) operator for a particular obs definition.

key descriptor for observation type
obs_def The input obs_def
obs_kind_ind The obs type
ens_index The ensemble member number of this state vector
state Model state vector
state_time Time of the data in the model state vector
istatus Returned integer describing problems with applying forward operator (0 == OK, >0 ==

error, <0 reserved for sys use).
assimilate_this_obIndicates whether to assimilate this obs or not
evaluate_this_obIndicates whether to evaluate this obs or not

call read_obs_def(ifile, obs_def, key, obs_val [,fform])

integer, intent(in) :: ifile
type(obs_def_type), intent(inout) :: obs_def
integer, intent(in) :: key
real(r8), intent(inout) :: obs_val
character(len=*), optional, intent(in) :: fform

Reads an obs_def from file open on channel ifile. Uses format specified in fform or FORMATTED if fform is not
present.

ifile File unit open to output file
obs_defObservation definition to be read
key Present if unique identifier key is needed by some obs type. Unused by default code.
obs_valPresent if needed to perform operations based on value. Unused by default code.
fform File format specifier: FORMATTED or UNFORMATTED; default FORMATTED (FORMATTED in this

case is the human readable/text option as opposed to UNFORMATTED which is binary.)

call interactive_obs_def(obs_def, key)

type(obs_def_type), intent(inout) :: obs_def
integer, intent(in) :: key

Creates an obs_def via input from standard in.

6.216. MODULE obs_def_mod 911

DART, Release 9.10.3

obs_def An obs_def to be created
key Present if unique identifier key is needed by some obs type. Unused by default code.

call write_obs_def(ifile, obs_def, key [,fform])

integer, intent(in) :: ifile
type(obs_def_type), intent(in) :: obs_def
integer, intent(in) :: key
character(len=*), optional, intent(in) :: fform

Writes an obs_def to file open on channel ifile. Uses format specified in fform or FORMATTED if fform is not present.

ifile File unit open to output file
obs_def Observation definition to be written
key Present if unique identifier key is needed by some obs type. Unused by default code.
fform File format specifier: FORMATTED or UNFORMATTED; default FORMATTED

call destroy_obs_def(obs_def)

type(obs_def_type), intent(inout) :: obs_def

Releases all storage associated with an obs_def and its subcomponents.

obs_def An obs_def to be released.

6.216.4 Files

• The read_obs_def() and write_obs_def() routines are passed an already-opened file channel/descriptor and read
to or write from it.

912 Chapter 6. References

DART, Release 9.10.3

6.216.5 References

• none

6.216.6 Error codes and conditions

Routine Message Comment
get_expected_obs_from_defAttempt to evaluate undefined ob-

servation type
An observation type for which no forward operator has
been defined is an error.

read_obs_def Expected header “obdef” in input
file

The format of the input file is not consistent.

read_obs_def Expected kind header “kind ” in in-
put file

The format of the input file is not consistent.

read_obs_def Attempt to read for undefined
obs_kind index

Reading for an observation type for which no forward
operator has been defined is an error.

write_obs_def Attempt to write for undefined
obs_kind index

Writing for an observation type for which no forward
operator has been defined is an error.

interac-
tive_obs_def

Attempt to interactively create un-
defined obs_kind index

Creating an observation type for which no forward op-
erator has been defined is an error.

6.216.7 Private components

N/A

6.217 MODULE obs_def_rttov_mod

6.217.1 Overview

DART RTTOV observation module, including the observation operators for the two primary RTTOV-observation types
– visible/infrared radiances and microwave radiances/brightness temperatures.

This module acts as a pass-through for RTTOV version 12.3. For more information, see the RTTOV site.

DART supports both RTTOV-direct for visible/infrared/microwave as well as RTTOV-scatt for microwave compu-
tations. The code, in principle, supports all features of version 12.3 as a pass-through from the model to RTTOV,
includes aerosols, trace gases, clouds, and atmospheric variables. The code also includes directly specifying scattering
properties.

However, a model may not have all of the variables necessary for these functions depending on your model’s setup. For
example, DART can use any of the RTTOV clw or ice schemes, but the WRF model is not directly compatible with the
IR default cloud classification of marine/continental stratus/cumulus clean/dirty. We also offer a simple classification
based on maximum vertical velocity in the column and land type, but due to lack of aerosol information, WRF/DART
cannot differentiate between clean and dirty cumulus. This may have some impact on the forward calculations - but in
experience the difference in cloud phase (ice versus water) makes a much larger difference. Trace gases and aerosols
may be important for actual observation system experiments using visible/infrared; this may depend on the precise
frequencies you wish to use.

Although a model may not have the necessary inputs by itself, the defaults in RTTOV based on climatology can be
used. The impact on the quality of the results should be investigated.

Known issues:

6.217. MODULE obs_def_rttov_mod 913

https://www.nwpsaf.eu/site/software/rttov/documentation/

DART, Release 9.10.3

• DART does not yet provide any type of bias correction

• Cross-channel error correlations are not yet supported. A principal component approach has been discussed.
For now, the best bet is to use a subset of channels that are nearly independent of one another.

• Vertical localization will need to be tuned. Turning off vertical localization may work well if you have a large
number of ensemble members. Using the maximum peak of the weighting function or the cloud-top may be
appropriate. There are also other potential approaches being investigated.

Author and Contact information:

• DART Code: Jeff Steward

• Original DART/RTTOV work: Nancy Collins, Johnny Hendricks

Backward compatibility note

6.217.2 Other modules used

types_mod
utilities_mod
location_mod (threed_sphere)
assim_model_mod
obs_def_utilitie_mod
ensemble_manager_mod
utilities_mod
parkind1 (from RTTOV)
rttov_types (from RTTOV)
obs_kind_mod

6.217.3 Public interfaces

use obs_def_rttov_mod, only : set_visir_metadata
set_mw_metadata

get_expected_radiance

get_rttov_option_logical

Namelist interface &obs_def_rttov_mod_nml is read from file input.nml.

A note about documentation style. Optional arguments are enclosed in brackets [like this].

call set_visir_metadata(key, sat_az, sat_ze, sun_az, sun_ze, & platform_id, sat_id, sensor_id, channel, specularity)

914 Chapter 6. References

DART, Release 9.10.3

integer, intent(out) :: key
real(r8), intent(in) :: sat_az
real(r8), intent(in) :: sat_ze
real(r8), intent(in) :: sun_az
real(r8), intent(in) :: sun_ze
integer, intent(in) :: platform_id, sat_id, sensor_id, channel
real(r8), intent(in) :: specularity

Visible / infrared observations have several auxillary metadata variables. Other than the key, which is standard DART
fare, the RTTOV satellite azimuth and satellite zenith angle must be specified. See the RTTOV user guide for more
information (in particular, see figure 4). If the addsolar namelist value is set to true, then the solar azimuth and
solar zenith angles must be specified - again see the RTTOV user guide. In addition to the platform/satellite/ sensor ID
numbers, which are the RTTOV unique identifiers, the channel specifies the chanenl number in the RTTOV coefficient
file. Finally, if do_lambertian is true, specularity must be specified here. Again, see the RTTOV user guide for
more information.

key The DART observation key.
sat_az The satellite azimuth angle.
sat_ze The satellite zenith angle.
sun_az The solar azimuth angle. Only relevant if addsolar is true.
sun_ze The solar zenith angle. Only relevant if addsolar is true.
platform_id The RTTOV platform ID.
sat_id The RTTOV satellite ID.
sensor_id The RTTOV sensor ID.
channel The RTTOV channel number.
specularity The surface specularity. Only relevant if do_lambertian is true.

call set_mw_metadata(key, sat_az, sat_ze, platform_id, sat_id, sensor_id, channel, mag_field, cosbk, fastem_p1,
fastem_p2, fastem_p3, fastem_p4, fastem_p5)

integer, intent(out) :: key
real(r8), intent(in) :: sat_az
real(r8), intent(in) :: sat_ze
integer, intent(in) :: platform_id, sat_id, sensor_id, channel
real(r8), intent(in) :: mag_field
real(r8), intent(in) :: cosbk
real(r8), intent(in) :: fastem_p[1-5]

Microwave observations have several auxillary metadata variables. Other than the key, which is standard DART fare,
the RTTOV satellite azimuth and satellite zenith angle must be specified. See the RTTOV user guide for more informa-
tion (in particular, see figure 4). In addition to the platform/satellite/ sensor ID numbers, which are the RTTOV unique
identifiers, the channel specifies the chanenl number in the RTTOV coefficient file. In addition, if use_zeeman is
true, the magnetic field and cosine of the angle between the magnetic field and angle of propagation must be specified.
See the RTTOV user guide for more information. Finally, the fastem parameters for land must be specified here. This
may be difficult for observations to set, so default values (see table 21 in the RTTOV user guide) can be used until a
better solution is devised.

6.217. MODULE obs_def_rttov_mod 915

DART, Release 9.10.3

key The DART observation key.
sat_az The satellite azimuth angle.
sat_ze The satellite zenith angle.
platform_idThe RTTOV platform ID.
sat_id The RTTOV satellite ID.
sensor_id The RTTOV sensor ID.
channel The RTTOV channel number.
mag_field The strength of the magnetic field. Only relevant if add_zeeman is true.
cosbk The cosine of the angle between the magnetic field and direction of EM propagation. Only relevant

if add_zeeman is true.
fastem_p[1-5]The five parameters used for fastem land/sea ice emissivities. For ocean emissivities, an internal

model is used based on the value of fastem_version.

call get_expected_radiance(obs_kind_ind, state_handle, ens_size, location, key, val, istatus)

integer, intent(in) :: obs_kind_ind
type(ensemble_type), intent(in) :: state_handle
integer, intent(in) :: ens_size
type(location_type), intent(in) :: location
integer, intent(in) :: key
real(r8), intent(out) :: val(ens_size)
integer, intent(out) :: istatus(ens_size)

Given a location and the state vector from one of the ensemble members, compute the model-predicted satellite obser-
vation. This can be either in units of radiance (mW/cm-1/sr/sq.m) or a brightness temperature (in K), depending on if
this is a visible/infrared observation or a microwave observation.

obs_kind_indThe index of the observation kind; since many observation kinds are handled by this module, this can
be used to determine precisely which observation kind is being used.

state_handleThe ensemble of model states to be used for the observation operator calculations.
location Location of this observation
key Unique identifier associated with this satellite observation
val The returned observation in units of either radiance or brightness temperature.
istatus Returned integer status code describing problems with applying forward operator. 0 is a good value;

any positive value indicates an error; negative values are reserved for internal DART use only.

p = get_rttov_option_logical(field_name)

character(len=*), intent(in) :: field_name
logical, result :: p

Return the logical value of the RTTOV parameter associated with the field_name.

field_name The name of the RTTOV parameter from the namelist.
p The logical return value associated with the parameter.

916 Chapter 6. References

DART, Release 9.10.3

6.217.4 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&obs_def_rttov_nml
rttov_sensor_db_file = 'rttov_sensor_db.csv'
first_lvl_is_sfc = .true.
mw_clear_sky_only = .false.
interp_mode = 1
do_checkinput = .true.
apply_reg_limits = .true.
verbose = .true.
fix_hgpl = .false.
do_lambertian = .false.
lambertian_fixed_angle = .true.
rad_down_lin_tau = .true.
use_q2m = .true.
use_uv10m = .true.
use_wfetch = .false.
use_water_type = .false.
addrefrac = .false.
plane_parallel = .false.
use_salinity = .false.
apply_band_correction = .true.
cfrac_data = .true.
clw_data = .true.
rain_data = .true.
ciw_data = .true.
snow_data = .true.
graupel_data = .true.
hail_data = .false.
w_data = .true.
clw_scheme = 1
clw_cloud_top = 322.
fastem_version = 6
supply_foam_fraction = .false.
use_totalice = .true.
use_zeeman = .false.
cc_threshold = 0.05
ozone_data = .false.
co2_data = .false.
n2o_data = .false.
co_data = .false.
ch4_data = .false.
so2_data = .false.
addsolar = .false.
rayleigh_single_scatt = .true.
do_nlte_correction = .false.
solar_sea_brdf_model = 2
ir_sea_emis_model = 2
use_sfc_snow_frac = .false.
add_aerosl = .false.

(continues on next page)

6.217. MODULE obs_def_rttov_mod 917

DART, Release 9.10.3

(continued from previous page)

aerosl_type = 1
add_clouds = .true.
ice_scheme = 1
use_icede = .false.
idg_scheme = 2
user_aer_opt_param = .false.
user_cld_opt_param = .false.
grid_box_avg_cloud = .true.
cldstr_threshold = -1.0
cldstr_simple = .false.
cldstr_low_cloud_top = 750.0
ir_scatt_model = 2
vis_scatt_model = 1
dom_nstreams = 8
dom_accuracy = 0.0
dom_opdep_threshold = 0.0
addpc = .false.
npcscores = -1
addradrec = .false.
ipcreg = 1
use_htfrtc = .false.
htfrtc_n_pc = -1
htfrtc_simple_cloud = .false.
htfrtc_overcast = .false.

/

Item Type Description
rttov_sensor_db_file character(len=512) The location of the RTTOV sensor database. The format for the database is a comma-separated file. The columns of the database are the DART observation-kind, the platform/satellite/sensor ID, the observation type, the coefficient file, and a comma-separated list of RTTOV channels to use for this observation type.
first_lvl_is_sfc logical Whether the first level of the model represents the surface (true) or the top of the atmosphere (false).
mw_clear_sky_only logical If microwave calculations should be “clear-sky” only (although cloud-liquid water absorption/emission is considered; see the RTTOV user guide).
interp_mode integer The interpolation mode (see the RTTOV user guide).
do_checkinput logical Whether to check the input for reasonableness (see the RTTOV user guide).
apply_reg_limits logical Whether to clamp the atmospheric values to the RTTOV bounds (see the RTTOV user guide).
verbose logical Whether to output lots of additional output (see the RTTOV user guide).
fix_hgpl logical Whether the surface pressure represents the surface or the 2 meter value (see the RTTOV user guide).
do_lambertian logical Whether to include the effects of surface specularity (see the RTTOV user guide).
lambertian_fixed_angle logical Whether to include a fixed angle for the lambertian effect (see the RTTOV user guide).
rad_down_lin_tau logical Whether to use the linear-in-tau approximation (see the RTTOV user guide).
use_q2m logical Whether to use 2m humidity information (see the RTTOV user guide). If true, the QTY_2M_SPECIFIC_HUMIDITY will be requested from the model.
use_q2m logical Whether to use 2m humidity information (see the RTTOV user guide). If true, the QTY_2M_SPECIFIC_HUMIDITY will be requested from the model.
use_uv10m logical Whether to use 10m wind speed information (see the RTTOV user guide). If true, the QTY_10M_U_WIND_COMPONENT and QTY_10M_V_WIND_COMPONENTS will be requested from the model.
use_wfetch logical Whether to use wind fetch information (see the RTTOV user guide). If true, the QTY_WIND_FETCH will be requested from the model.
use_water_type logical Whether to use water-type information (0 = fresh, 1 = ocean; see the RTTOV user guide). If true, the QTY_WATER_TYPE will be requested from the model.
addrefrac logical Whether to enable atmospheric refraction (see the RTTOV user guide).
plane_parallel logical Whether to treat the atmosphere as plane parallel (see the RTTOV user guide).
use_salinity logical Whether to use salinity (see the RTTOV user guide). If true, the QTY_SALINITY will be requested from the model.
apply_band_correction logical Whether to apply band correction from the coefficient field for microwave data (see the RTTOV user guide).
cfrac_data logical Whether to use the cloud fraction from 0 to 1 (see the RTTOV user guide). If true, the QTY_CLOUD_FRACTION will be requested from the model.

continues on next page

918 Chapter 6. References

DART, Release 9.10.3

Table 11 – continued from previous page
Item Type Description
clw_data logical Whether to use cloud-liquid water data (see the RTTOV user guide). If true, the QTY_CLOUDWATER_MIXING_RATIO will be requested from the model.
rain_data logical Whether to use precipitating water data (see the RTTOV user guide). If true, the QTY_RAINWATER_MIXING_RATIO will be requested from the model.
ciw_data logical Whether to use non-precipiting ice information (see the RTTOV user guide). If true, the QTY_ICE_MIXING_RATIO will be requested from the model.
snow_data logical Whether to use precipitating fluffy ice (see the RTTOV user guide). If true, the QTY_SNOW_MIXING_RATIO will be requested from the model.
graupel_data logical Whether to use precipting small, hard ice (see the RTTOV user guide). If true, the QTY_GRAUPEL_MIXING_RATIO will be requested from the model.
hail_data logical Whether to use precipitating large, hard ice (see the RTTOV user guide). If true, the QTY_HAIL_MIXING_RATIO will be requested from the model.
w_data logical Whether to use vertical velocity information. This will be used to crudely classify if a cloud is cumulus or stratiform for the purpose of visible/infrared calculations. If true, the QTY_VERTICAL_VELOCITY will be requested from the model.
clw_scheme integer The clw_scheme to use (see the RTTOV user guide).
clw_cloud_top real(r8) Lower hPa limit for clw calculations (see the RTTOV user guide).
fastem_version integer Which FASTEM version to use (see the RTTOV user guide).
supply_foam_fraction logical Whether to use sea-surface foam fraction (see the RTTOV user guide). If true, the QTY_FOAM_FRAC will be requested from the model.
use_totalice logical Whether to use totalice instead of precip/non-precip ice for microwave (see the RTTOV user guide).
use_zeeman logical Whether to use the Zeeman effect (see the RTTOV user guide). If true, the magnetic field and cosine of bk will be used from the observation metadata.
cc_threshold real(r8) Cloud-fraction value to treat as clear-sky (see the RTTOV user guide).
ozone_data logical Whether to use ozone (O3) profiles (see the RTTOV user guide). If true, the QTY_O3 will be requested from the model.
co2_data logical Whether to use carbon dioxide (CO2) profiles (see the RTTOV user guide). If true, the QTY_CO2 will be requested from the model.
n2o_data logical Whether to use nitrous oxide (N2O) profiles (see the RTTOV user guide). If true, the QTY_N2O will be requested from the model.
co_data logical Whether to use carbon monoxide (CO) profiles (see the RTTOV user guide). If true, the QTY_CO will be requested from the model.
ch4_data logical Whether to use methane (CH4) profiles (see the RTTOV user guide). If true, the QTY_CH4 will be requested from the model.
so2_data logical Whether to use sulfur dioxide (SO2) (see the RTTOV user guide). If true, the QTY_SO2 will be requested from the model.
addsolar logical Whether to use solar angles (see the RTTOV user guide). If true, the sun_ze and sun_az from the observation metadata will be used for visible/infrared.
rayleigh_single_scatt logical Whether to use only single scattering for Rayleigh scattering for visible calculations (see the RTTOV user guide).
do_nlte_correction logical Whether to include non-LTE bias correction for HI-RES sounder (see the RTTOV user guide).
solar_sea_brdf_model integer The solar sea BRDF model to use (see the RTTOV user guide).
ir_sea_emis_model logical The infrared sea emissivity model to use (see the RTTOV user guide).
use_sfc_snow_frac logical Whether to use the surface snow fraction (see the RTTOV user guide). If true, the QTY_SNOWCOVER_FRAC will be requested from the model.
add_aerosl logical Whether to use aerosols (see the RTTOV user guide).
aerosl_type integer Whether to use OPAC or CAMS aerosols (see the RTTOV user guide).
add_clouds logical Whether to enable cloud scattering for visible/infrared (see the RTTOV user guide).
ice_scheme integer The ice scheme to use (see the RTTOV user guide).
use_icede logical Whether to use the ice effective diameter for visible/infrared (see the RTTOV user guide). If true, the QTY_CLOUD_ICE_DE will be requested from the model.
idg_scheme integer The ice water effective diameter scheme to use (see the RTTOV user guide).
user_aer_opt_param logical Whether to directly specify aerosol scattering properties (see the RTTOV user guide). Not yet supported.
user_cld_opt_param logical Whether to directly specify cloud scattering properties (see the RTTOV user guide). Not yet supported.
grid_box_avg_cloud logical Whether to cloud concentrations are grid box averages (see the RTTOV user guide).
cldstr_threshold real(r8) Threshold for cloud stream weights for scattering (see the RTTOV user guide).
cldstr_simple logical Whether to use one clear and one cloudy column (see the RTTOV user guide).
cldstr_low_cloud_top real(r8) Cloud fraction maximum in layers from the top of the atmosphere down to the specified hPa (see the RTTOV user guide).
ir_scatt_model integer Which infrared scattering method to use (see the RTTOV user guide).
vis_scatt_model integer Which visible scattering method to use (see the RTTOV user guide).
dom_nstreams integer The number of streams to use with DOM (see the RTTOV user guide).
dom_accuracy real(r8) The convergence criteria for DOM (see the RTTOV user guide).
dom_opdep_threshold real(r8) Ignore layers below this optical depth (see the RTTOV user guide).
addpc logical Whether to do principal component calculations (see the RTTOV user guide).
npcscores integer Number of principal components to use for addpc (see the RTTOV user guide).
addradrec logical Reconstruct the radiances using addpc (see the RTTOV user guide).
ipcreg integer Number of predictors to use with addpc (see the RTTOV user guide).
use_htfrtc logical Whether to use HTFRTC (see the RTTOV user guide).
htfrtc_n_pc integer Number of PCs to use with HTFRTC (see the RTTOV user guide).

continues on next page

6.217. MODULE obs_def_rttov_mod 919

DART, Release 9.10.3

Table 11 – continued from previous page
Item Type Description
htfrtc_simple_cloud logical Whether to use simple cloud scattering with htfrtc (see the RTTOV user guide).
htfrtc_overcast logical Whether to calculate overcast radiances with HTFRTC (see the RTTOV user guide).

6.217.5 Files

• A DART observation sequence file containing Radar obs.

6.217.6 References

• RTTOV user guide

6.217.7 Private components

use obs_def_rttov_mod, only : initialize_module
initialize_rttov_sensor_runtime

initialize_rttov_sensor_runtime

call initialize_module()

Reads the namelist, allocates space for the auxiliary data associated wtih satellite observations, initializes the constants
used in subsequent computations (possibly altered by values in the namelist), and prints out the list of constants and
the values in use.

call initialize_rttov_sensor_runtime(sensor,ens_size,nlevels)

type(rttov_sensor_type), pointer :: sensor
integer, intent(in) :: ens_size
integer, intent(in) :: nlevels

Initialize a RTTOV sensor runtime. A rttov_sensor_type instance contains information such as options and coefficients
that are initialized in a “lazy” fashion only when it will be used for the first time.

sensor The sensor type to be initialized
ens_size The size of the ensemble
nlevels The number of vertical levels in the atmosphere

920 Chapter 6. References

https://www.nwpsaf.eu/site/software/rttov/documentation/

DART, Release 9.10.3

6.217.8 Error codes and conditions

Routine Message Comment
initial-
ize_module

initial allocation failed for satellite ob-
servation data

Need to increase MAXrttovkey

initial-
ize_rttov_sensor_runtime

Module or sensor is not initialized Both the module and the sensor must be initialized be-
fore calling this routine.

get_visir_metadataThe key exceeds the size of the meta-
data arrays, or the key is not a VIS/IR
type

The number of satellite observations exceeds the array
size allocated in the module. Check the input and/or
increase MAXrttovkey.

get_mw_metadataThe key exceeds the size of the meta-
data arrays, or the key is not a MW type

The number of satellite observations exceeds the array
size allocated in the module. Check the input and/or
increase MAXrttovkey.

read_rttov_metadatabad value for RTTOV fields The format of the input obs_seq file is not consistent.
get_expected_radianceCould not find the plat-

form/satellite/sensor id combination in
the RTTOV sensor database file.

An unknown RTTOV instrument ID was encountered.
Check the database and/or the observation metadata.

6.218 Manhattan

6.218.1 DART Manhattan release documentation

6.218.2 DART overview

The Data Assimilation Research Testbed (DART) is designed to facilitate the combination of assimilation algorithms,
models, and real (or synthetic) observations to allow increased understanding of all three. The DART programs
are highly portable, having been compiled with many Fortran 90 compilers and run on linux compute-servers, linux
clusters, OSX laptops/desktops, SGI Altix clusters, supercomputers running AIX, and more. Read the Compiling
DART section for help in building on new platforms.

DART employs a modular programming approach to apply an Ensemble Kalman Filter which adjusts model values
toward a state that is more consistent with information from a set of observations. Models may be swapped in and
out, as can different algorithms in the Ensemble Kalman Filter. The method requires running multiple instances of a
model to generate an ensemble of states. A forward operator appropriate for the type of observation being assimilated
is applied to each of the states to generate the model’s estimate of the observation. Comparing these estimates and
their uncertainty to the observation and its uncertainty ultimately results in the adjustments to the model states. See
the DART_LAB Tutorial demos or read more DART Tutorial.

DART diagnostic output can be written that contains the model state before and after the adjustment, along with the
ensemble mean and standard deviation, and prior or posterior inflation values if inflation is enabled. There is also a text
file, obs_seq.final, with the model estimates of the observations. There is a suite of MATLAB® functions that
facilitate exploration of the results, but the netCDF files are inherently portable and contain all the necessary metadata
to interpret the contents with other analysis programs such as NCL, R, etc.

6.218. Manhattan 921

DART, Release 9.10.3

6.218.3 Notes for current users

If you have been updating from the rma_trunk branch of the DART subversion repository you will notice that the code
tree has been simplified to be more intuitive for users. The new top level directory structure looks like :

• README

• COPYRIGHT

• assimilation_code

• build_templates

• diagnostics

• documentation

• models

• observations

if you do try to do an ‘svn update’ on an existing directory, you will encounter many ‘tree conflicts’.

We suggest that current users checkout a fresh version of Manhattan in a new location. To see which files need to be
moved, run ‘svn status’ on your original checked out version. Anything with an M or ? in the first column needs to be
moved to the new location in the new tree. Please contact DART if you have any issues migrating your existing code
to the new tree structure.

There is a list of non-backwards compatible changes (see below), and a list of new options and functions.

The Manhattan release will continue to be updated for the next few months as we continue to add features. Checking
out the Manhattan release branch and running ‘svn update’ from time to time is the recommended way to update your
DART tree.

6.218.4 Non-backwards compatible changes

Unlike previous releases of DART, this version contains more non-backwards compatible changes than usual. Please
examine the following list carefully. We do suggest you check out the Manhattan release into a new location and
migrate any local changes from previous versions as a second step.

Changes in the Manhattan release (15 May 2015) which are not backwards compatible with the Lanai release (13 Dec
2013):

1. We no longer require model data to be converted to DART format restart files. We directly read and write
NetCDF format only. To specify the input and output files for filter, there are new namelist items in the &fil-
ter_nml namelist: 'input_state_file_list' and 'output_state_file_list' .

2. The information formerly in Prior_Diag.nc and Posterior_Diag.nc has been moved. If you are read-
ing and writing ensemble members from different files, the state information, the ensemble mean and standard
deviation, and the inflation mean and standard deviation will all be read and written to separate files:

• [stage]_member_####.nc

• [stage]_mean.nc

• [stage]_sd.nc

• [stage]_priorinf_{mean,sd}.nc (if prior inflation is turned on)

• [stage]_postinf_{mean,sd}.nc (if posterior inflation is turned on)

If you are reading and writing ensemble members from a single file, all this information will now be in a single
NetCDF file but will be stored in different variables inside that file:

922 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

• [var].nc

• [var]_mean.nc

• [var]_sd.nc

• [var]_priorinf_{mean,sd}.nc (if prior inflation is turned on)

• [var]_postinf_{mean,sd}.nc (if posterior inflation is turned on)

We also now have options for writing files at six stages of the assimilation cycle: 'input', 'forecast',
'preassim', 'postassim', 'analysis', 'output'. This is set in the &filter_nml namelist with
stages_to_write.

3. New model_mod.f90 required routines:

• vert_convert()

• query_vert_localization_coord()

• pert_model_copies()

• read_model_time()

• write_model_time()

There are default version of these available to use if you have no special requirements.

4. Several of the model_mod.f90 argument lists have changed

• model_interpolate() now takes in the state_handle as an argument rather than a state vector
array. It also return an array of expected_obs and istatus for each of the ensemble members

• get_state_meta_data() also requires the state_handle as an argument rather than a state
vector array.

• nc_write_model_atts() has an additional argument moel_mod_writes_state_variables.
If true then the model_mod is expected to write out the state variables, if false DART will write out the
state variable (this is the prefered method for adding new models, it requires less code from the model
developer)

5. There are several namelist changes mainly in the &filter_nml and &perfect_model_mod which are outlined in
detail in DART Manhattan Differences from Lanai Release Notes

6. All modules have been moved to DART/assimilation_code/modules/ directory. And similarly all of the programs
have moved to DART/assimilation_code/programs/

7. The location modules which were stored in locations have moved to DART/assimilation_code/location directory

8. The observation converters which were stored in observations have moved to
DART/observations/obs_converters directory

9. The forward operators have moved from obs_def/obs_def_*_mod.f90 to observations/forward_operators

10. The tutorial files have moved to DART/docs/tutorial directory

11. The program fill_inflation_restart can be used to create initial inflation restart files for the first as-
similation step in a multi-step assimilation. This allows the scripting to treat the first step the same as subsequent
steps for inflation file motion and namelist settings.

12. The default flags in the mkmf_template.XXX files have been updated to be more consistent with current com-
piler versions.

13. If you enable the sampling error correction option, the required data is now read from a single netcdf file which
supports multiple ensemble sizes. A program is provided to compute additional ensemble sizes if they are not
in the default file.

6.218. Manhattan 923

DART, Release 9.10.3

14. Our use of TYPES and KINDS has been very confusing in the past. In Manhattan we have tried to make it
clearer which things in DART are generic quantities (QTY) - temperature, pressure, etc - and which things are
specific types of observations - Radiosonde_temperature, Argo_salinity etc.

Below is a mapping between old and new subroutine names here for reference. We have made these changes to
all files distributed with DART. If you have lots of code developed outside of the subversion repository, please
contact DART for a sed script to help automate the changes.

Public subroutines, existing name on left, replacement on right:

assimilate_this_obs_kind() => assimilate_this_type_of_obs(type_index)
evaluate_this_obs_kind() => evaluate_this_type_of_obs(type_index)
use_ext_prior_this_obs_kind() => use_ext_prior_this_type_of_obs(type_index)

get_num_obs_kinds() => get_num_types_of_obs()
get_num_raw_obs_kinds() => get_num_quantities()

get_obs_kind_index() => get_index_for_type_of_obs(type_name)
get_obs_kind_name() => get_name_for_type_of_obs(type_index)

get_raw_obs_kind_index() => get_index_for_quantity(qty_name)
get_raw_obs_kind_name() => get_name_for_quantity(qty_index)

get_obs_kind_var_type() => get_quantity_for_type_of_obs(type_index)

get_obs_kind() => get_obs_def_type_of_obs(obs_def)
set_obs_def_kind() => set_obs_def_type_of_obs(obs_def)

get_kind_from_menu() => get_type_of_obs_from_menu()

read_obs_kind() => read_type_of_obs_table(file_unit, file_format)
write_obs_kind() => write_type_of_obs_table(file_unit, file_format)

maps obs_seq nums to specific type nums, only used in read_obs_seq:
map_def_index() => map_type_of_obs_table()

removed this. apparently unused, and simply calls get_obs_kind_name():
get_obs_name()

apparently unused anywhere, removed:
add_wind_names()
do_obs_form_pair()

Public integer parameter constants and subroutine formal argument names, old on left, new on right:

KIND_ => QTY_
kind => quantity

TYPE_ => TYPE_
type => type_of_obs

integer parameters:
max_obs_generic => max_defined_quantities (not currently public, stays private)
max_obs_kinds => max_defined_types_of_obs

15. For smaller models we support single file input and output. These files contain all of the member information,
mean, standard deviation and inflation values for all of the state variables. This can be run with cycling and all
time steps will be appended to the file.

924 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

For perfect_model_obs we provide a perfect_input.cdl file which contains a single ensemble
member which will be considered the ‘truth’ and observations will be generated based on those values. The
output will contain all of the cycling timesteps all of the state variables.

For filter we provide a filter_input.cdl file which contains all of the state member variables and
potentially inflation mean and standard deviation values. The output will contain all of the cycling timesteps all
of the state variables. Additionally you have the option to write out different stages during the assimilation in
the &filter_nml stages_to_write mentioned above.

To generate a NetCDF file from a .cdl file run:

ncgen -o perfect_input.nc perfect_input.cdl
ncgen -o filter_input.nc filter_input.cdl

6.218.5 New features

• DART now reads and writes NetCDF files for the model state information. If your model uses NetCDF file
format, you no longer need model_to_dart or dart_to_model to translate to a DART format file. If your model
does not use NetCDF, you can adapt your model_to_dart and dart_to_model executables to read and write a
NetCDF file for DART to use. The read/write code is part of the core DART routines so no code is needed in the
model_mod model-specific module. There is a new routine State Stucture that a model_mod::static_init_model()
can user to define which NetCDF variables should be part of the model state, and what DART quantity (formerly
kind) they correspond to.

• DART no longer limits the size of a model state to the size of a single MPI task’s memory. The state is read
in variable by variable and distributed across all MPI tasks, so the memory use is much smaller than previous
versions of DART. One-sided MPI communication is used during the computation of forward operator values to
get required parts of the state from other tasks.

• Many of the DART namelists have been simplified, and some items have moved to a more specific namelist.

• Observation sequence files can include externally computed forward operator values which can be used in the
assimilation instead of calling a forward operator inside DART.

• The DART directory structure has been reorganized to make it easier to identify the various software tools,
modules, documentation and tutorials supplied with the system.

• The MATLAB® diagnostic routines have been updated to not require the MEXNC toolbox. These routines use
the built-in NetCDF support that comes with MATLAB®.

• There is a new Particle Filter type. Please contact us if you are interested in using it.

• DART can now take subsets of observation types and restrict them from impacting certain quantities in the state
during the assimilation. A tool to simplify constructing the table of interactions is provided (obs_impact_tool).

• State Structure

– Contains information about dimensions and size of variables in your state. There is a number of accessor
functions to get variable information such as get_variable_size(). See the State Stucture for more
details.

• The POP model_mod now can interpolate Sea Surface Anomaly observations.

6.218. Manhattan 925

DART, Release 9.10.3

6.218.6 Supported models

Currently we support the models listed below. There are several new models that have been added that are not on the
Lanai Release including CM1, CICE, and ROMS.

• 9var

– DART interface documentation for the 9-variable model.

• bgrid_solo

– DART interface documentation for the bgrid_solo model.

• cam-fv

– DART interface documentation for the Atmospheric Models in CESM global atmospheric model.

– Documentation for the CAM model.

• cice (NEW)

– DART interface documentation for the CICE model.

– Documentation for the CICE model.

• cm1 (NEW)

– DART interface documentation for the CM1.

– Documentation for the CM1 model.

• forced_lorenz_96

– DART interface documentation for the Forced Lorenz 96 model.

• lorenz_63

– DART interface documentation for the Lorenz 63 model.

• lorenz_84

– DART interface documentation for the Lorenz 84 model.

• lorenz_96

– DART interface documentation for the Lorenz 96 model.

• lorenz_04

– DART interface documentation for the Lorenz 05 model.

• mpas_atm (NetCDF overwrite not supported for update_u_from_reconstruct = .true.)

– DART interface documentation for the MPAS_ATM model.

– Documentation for the MPAS model.

• POP

– DART interface documentation for the POP global ocean model.

– Documentation for the POP model.

• ROMS (NEW)

– DART interface documentation for the ROMS regional ocean model.

– Documentation for the ROMS model.

• simple_advection

926 Chapter 6. References

http://www.cesm.ucar.edu/models/atm-cam/
http://www.cesm.ucar.edu/models/ccsm4.0/cice/
http://www2.mmm.ucar.edu/people/bryan/cm1/
https://mpas-dev.github.io/atmosphere/atmosphere.html
http://www.cesm.ucar.edu/models/ccsm2.0/pop/
https://www.myroms.org/

DART, Release 9.10.3

– DART interface documentation for the Simple advection model.

• wrf

– DART interface documentation for the WRF regional forecast model.

– Documentation for the WRF model.

The DART/models/template directory contains sample files for adding a new model.

6.218.7 Changed models

• WRF

– Allow advanced microphysics schemes (needed interpolation for 7 new kinds)

– Interpolation in the vertical is now done in log(p) instead of linear pressure space. log(p) is the default,
but a compile-time variable can restore the linear interpolation.

– Added support in the namelist to avoid writing updated fields back into the wrf netcdf files. The fields are
still updated during the assimilation but the updated data is not written back to the wrfinput file during the
dart_to_wrf step.

– Fixed an obscure bug in the vertical convert routine of the wrf model_mod that would occasionally fail to
convert an obs. This would make tiny differences in the output as the number of mpi tasks change. No
quantitative differences in the results but they were not bitwise compatible before and they are again now.

• CAM

– DART/CAM now runs under the CESM framework, so all options available with the framework can be
used.

– Support for the SE core (HOMME) has been developed but is NOT part of this release. Please contact the
DART Development Group if you have an interest in this configuration of CAM.

• Simple Advection Model

– Fixed a bug where the random number generator was being used before being called with an initial seed.

6.218.8 New observation types/forward operators

• Many new observation types related to land and atmospheric chemistry have been added. See the
obs_kind_mod.f90 for a list of the generic quantities now available.

• New forward operator for Sea Ice (cice) ice thickness observations. See the obs_def_cice_mod.f90 file
for details.

• New forward operator for Carbon Monoxide (CO) Nadir observations. See the obs_def_CO_Nadir_mod.
f90 file for details.

• New forward operator for Total Cloud Water in a column observations. See the obs_def_cwp_mod.f90 file
for details.

6.218. Manhattan 927

http://www.wrf-model.org/index.php
mailto:dart@ucar.edu

DART, Release 9.10.3

6.218.9 New observation types/sources

• AVISO Added an observation converter for Sea Surface Height Anomaly observations. Documentation in
convert_aviso.f90 (source).

• cice Added an obs_sequence converter for Sea Ice observations. Documentation in PROGRAM cice_to_obs.

• GPSPW Added an obs_sequence converter for GPS precipitable water observations. Documentation in
convert_gpspw.f90 (source).

• MODIS Added an obs_sequence converter for MODIS FPAR (Fraction of Photosynthetically Active Radiation)
and LAI (Leaf Area Index) obseverations. Documentation in PROGRAM MOD15A2_to_obs.

• ok_mesonet Added an obs_sequence converter for the Oklahoma Mesonet observations. Documentation in
Oklahoma Mesonet MDF Data.

• ROMS Added an obs_sequence converter for ROMS ocean data. This converter includes externally computed
forward operators output from the ROMS model using FGAT (First Guess At Time) during the model run.
Documentation in convert_roms_obs.f90 (source).

• SSUSI Added an obs_sequence converter for wind profiler observations. Documentation in SSUSI F16 EDR-
DSK format to observation sequence converters.

• tropical_cyclone Added an obs_sequence converter for ASCII format tropical cyclone track observations. Doc-
umentation in PROGRAM tc_to_obs.

6.218.10 New diagnostics and documentation

• The MATLAB® diagnostic routines have been updated to remove the dependency on third-party toolboxes.
These routines use the built-in netCDF support that comes with basic MATLAB® (no other toolboxes needed).

But there’s always more to add. Please let us know where we are lacking.

6.218.11 New utilities

This section describes updates and changes to the tutorial materials, scripting, setup, and build information since the
Lanai release.

• obs_impact_tool please refer to or PROGRAM obs_impact_tool

• gen_sampling_error_table now computes sampling error correction tables for any ensemble size.

• compute_error or PROGRAM compute_error

6.218.12 Known problems

There are many changes in this release and more updates are expected to come soon. We are not aware of any obvious
bugs, but if you encounter any unexpected behavior please contact us. Please watch the dart-users email list for
announcements of updates to the release code, and be prepared to do an ‘svn update’ from time to time to get updated
files.

928 Chapter 6. References

DART, Release 9.10.3

6.219 Multi-Component CESM+DART Setup

6.219.1 CESM+DART setup overview

If you found your way to this file without reading more basic DART help files, please read those first. Getting Started is
a good place to find pointers to those files. Then see CESM for an overview of DART’s interfaces to CESM. Finally, see
the ../../{your_cesm_component(s)}/readme.html documentation about the code-level interfaces and namelist values
for various CESM component models. This document gives specific help in setting up a CESM+DART assimilation
for the first time.

Warning: The scripts for multi-component assimilation were developed in the context of DART’s Lanai release
(or earlier) and CESM1. They won’t work in later versions. The instructions below should be considered a template
for setting up and running a multi-component assimilation, to be modified as needed. Some of them reference code
that may be found in $DART/models/cam or cam-old.

The overall strategy is to set up an environment where;

• CESM is set up as a ‘’B” component set configuration (‘’fully coupled” = active atmosphere, ocean, land,
and possibly others)

• a separate assimilation can be run using each component model interface for which there are observations.

Each CESM hindcast advances all of the active components model states, which are then used by the several filter
programs. So you will need to build separate filters in the models/{your_CESM_component_models}/work directo-
ries. You will also need to assemble an initial ensemble of CESM files, which consists of restart and initial files for all
of the active components. Each filter will read a separate observation sequence file.

6.219.2 Assimilation set-up procedure

Here is a list of steps to set up an assimilation. It assumes you have downloaded DART and learned how to use it with
low order models. Some of the steps can be skipped if you have a suitable replacement, as noted.

1. Decide which component(s) you want to use as the assimilating model(s). (The rest of this list assumes that
you’re building a cam-fv assimilation, as an example. Steps will need to be repeated for your other models.)

2. Look in models/{your_models}/shell_scripts to see which CESM versions are supported.

3. CESM: locate that version on your system, or check it out from http://www.cesm.ucar.edu/models/current.html

4. Choose the options in $dart/mkmf/mkmf.template that are best for your assimilation. These will not affect the
CESM build, only filter.

5. In models/cam-fv/work/input.nml, be sure to include all of your required obs_def_${platform}_mod.f90 file
names in preprocess_nml:input_files. It’s also convenient to modify the rest of input.nml to make it do what you
want for the first assimilation cycle. That may include creating spread in the initial ensemble by perturbing it.
Input.nml will be copied to the $CASEROOT directory and used by assimilate.csh. That copy can be modified
for whichever cycles will be run next.

6. Build the DART executables using quickbuild.csh.

7. Follow the directions in CESM/shell_scripts/*setup* to set up the CESM case and integrate DART into it. The
DART team recommends a tiny ensemble to start with, to more quickly test whether everything is in order.

6.219. Multi-Component CESM+DART Setup 929

http://www.cesm.ucar.edu/models/current.html

DART, Release 9.10.3

8. Choose a start date for your assimilation. Choosing/creating the initial ensemble is a complicated issue.

• It’s simpler for CAM assimilations. If you don’t have an initial state and/or ensemble for this date, build
a single instance of CESM (Fxxxx compset for cam-fv) and run it from the default Jan 1 start date until 2
weeks before your start date. Be sure to set the cam namelist variable inithist = ‘ENDOFRUN’ during the
last stage, so that CAM will write an “initial” file, which DART needs.

• For ocean and land assimilations, which cannot spin up as quickly as the atmosphere, creating usable
initial ensemble is a more complicated process. See those models’ readme files.

9. In the CESM run directory, create a cam-fv ensemble (virtual in the case of a single instance) by link-
ing files with instance numbers in them to the restart file set (which may have no instance number) using
CESM/shell_scripts/link_ens_to_single.csh.

10. Link the other model’s restart file sets into the run directory (also possibly using link_ens_to_single.csh).

11. After convincing yourself that the CESM+DART framework is working with no_assimilate.csh, activate the
assimilation by changing CESM’s env_run.xml:DATA_ASSIMILATION_SCRIPT to use assimilate.csh.

12. After the first hindcast+assimilation cycle finishes correctly, change the input.nml, env_run.xml and
env_batch.xml to do additional cycle(s) without the perturbation of the initial state, and with using the restart
files just created by the first cycle. You may also want to turn on the st_archive program. Instructions are in
setup_hybrid and cam-fv/work/input.nml.

13. Finally, build a new case with the full ensemble, activate the assimilate.csh script and repeat the previous item.

6.219.3 Output directory

CESM’s short term archiver (case.st_archive) is controlled by its env_archive.xml. DART’s setup scripts modify
that file to archive DART output along with CESM’s. (See the ../../../guide/controlling-files-output.html for a de-
scription of DART’s output). DART’s output is archived in $arch_dir/esp/{hist,rest,logs,...}, where
arch_dir is defined in setup_{hybrid,advanced}, hist contains all of the state space and observation space
output, and rest contains the inflation restart files.

The cam-XX assimilate.csh script may make a copy of its obs_seq.final files in a scratch space
($scratch/$case/Obs_seqs) which won’t be removed by assimilate.csh.

6.219.4 Shell_scripts for building and running multi-component assimilations

These scripts are outdated relative to Manhattan (path names, batch submission, long-term archiver, . . .), but can serve
as a template for multi-component assimilations.

CESM1_1_1_setup_pmo

• set up, stage, and build a single-instance, B compset configuration of CESM.

• The initial state can come from any single member of a reference case.

• Synthetic observations are harvested from the CESM model states.

CESM1_1_1_setup_hybrid

• Set up, stage, and build an ensemble assimilation

• using a B compset configuration of CESM.

• The initial states come from a single, multi-instance, reference case

CESM1_1_1_setup_special

• Same as CESM1_1_1_setup_hybrid, but the initial states for the 5 active models

930 Chapter 6. References

../../../guide/controlling-files-output.html

DART, Release 9.10.3

• come from up to 5 sources:

• The ICs source directories need to be updated.

CESM1_1_1_setup_initial

• Same as CESM1_1_1_setup_hybrid, but fewer comments and error checks.

CESM1_2_1_setup_pmo

• Same as CESM1_2_1_setup_hybrid, but for _pmo.

CESM1_2_1_setup_hybrid

• Same as CESM1_1_1_setup_hybrid, but updated to accommodate CESM’s wave and land ice
models.

• (DART has no interfaces for those components). Somewhat different handling of Source-
Mods.

CESM_DART_config

• Integrates DART into a pre-existing CESM case, either single- or multi-instance.

• Typically run by or after one of the _setup_ scripts.

perfect_model.csh

• Run by the CESM $CASE.run batch job, which was created by . . . setup_pmo .

• Can call the [component]_perfect_model.csh script for each component which will be used
for assimilation.

{cam,pop,clm}_perfect_model.csh

• Runs perfect_model_obs_{cam,pop,clm}

assimilate.csh

• Run by the CESM $CASE.run batch job, which was created by
. . . setup_{hybrid,initial,special}.

• Can call the assimilate.csh script for each component which will be used for assimilation.

• See [component]_assimilate.csh below (which were derived from
$DART/models/[component]/shell_scripts/. . . /assimilate.csh

cam_assimilate.csh

• Sets up and runs filter for CAM and related observations.

• Uses cam_to_dart and dart_to_cam, which are not used in the Manhattan release and later.

clm_assimilate.csh

• similar to cam_assimilate.csh

pop_assimilate.csh

• similar to cam_assimilate.csh

no_assimilate.csh

• The script used as a placeholder in the CESM run scripts when a case is set up.

cam_no_assimilate.csh

• The CAM no_assimilate script needs to make an initial file available for the next CAM hind-
cast.

6.219. Multi-Component CESM+DART Setup 931

DART, Release 9.10.3

run_perfect_model_obs.csh

• Batch script to run perfect_model_obs for POP (only!)

CLM_convert_restarts.csh

• Converts ‘old’ CLM restart files to whatever resolution you like.

link_ens_to_single.csh

• Helper script to generate a virtual ensemble from a single instance (member).

st_archive.sh

• A CESM archiving script, modified to handle DART output files.

6.219.5 Helpful hints

You will probably want to use your computer resources efficiently. In addition to the Tips and Warnings in ../readme.
html, The DART team recommends:

• Experiment with a single instance CASE to learn the smallest number of nodes on which it will run reliably.
Strange andor nonreproducible errors often are the result of giving insufficient memory to the job. (node =
several to dozens of central processing units which share memory in ways that allow very fast communication).
Build the multi-instance case using that number of nodes per instance. This has 2 benefits; it minimizes queue
wait times, and it minimizes internode communication, which can increase exponentially with the number of
nodes used.

• Carefully select the output to be saved and the archiving frequency. Output from large ensemble, large model
assimilations can quickly fill the available disk space, resulting in an ugly ending to your job, from which it
is time consuming to recover; discarding the partial files and keeping the output needed for evaluation and
restarting the assimilation.

• Evaluate the output frequently to determine whether it is worthwhile to continue. Looking at the model output
in its gridded form can be useful, but the DART team has learned that you can do a much more thorough and ef-
ficient evaluation in “observation space”, using obs_diag and scripts in “$DART/diagnostics/matlab” described
in the Observation Space

There are, no doubt, things missing from these lists, so don’t struggle too long before contacting dart’at’ucar.edu.

6.220 PROGRAM cam_to_dart

Attention: cam-old works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using cam-old with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.220.1 Overview

cam_to_dart is the program that reads a CAM restart file (usually caminput.nc) and creates a single DART
output/restart file (e.g. perfect_ics, filter_ics, ...). If you have multiple input files, you will need to
rename the output files as you create them.
The list of variables extracted from the CAM netCDF file and conveyed to DART is controlled by the set of
input.nml &model_nml:state_names_* variables. The date and datesec variables in the CAM netcdf
file are used to specify the valid time of the state vector. The time may be changed with the PROGRAM
restart_file_tool if desired.

932 Chapter 6. References

../readme.html
../readme.html
../../../assimilation_code/programs/obs_diag/threed_sphere/obs_diag.html
https://dart-documentation.readthedocs.io/en/latest/guide/matlab-observation-space.html

DART, Release 9.10.3

Some CAM restart files are from climatological runs and have a valid time that predates the use of the Gregorian
calendar. In such instances, the year component of the original date is changed to be a valid Gregorian year (by
adding 1601). A warning is issued to the screen and to the logfile. Please use the PROGRAM restart_file_tool to
change this time.
Conditions required for successful execution of cam_to_dart:

• a valid input.nml namelist file for DART

• a CAM ‘phis’ netCDF file [default: cam_phis.nc]

• a CAM restart file [default: caminput.nc].

Since this program is called repeatedly for every ensemble member, we have found it convenient to link the CAM
restart files to the default input filename (caminput.nc). The default DART output filename is dart_ics - this
may be moved or linked as necessary.

6.220.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&cam_to_dart_nml
cam_to_dart_input_file = 'caminput.nc',
cam_to_dart_output_file = 'dart_ics',
/

Item Type Description
cam_to_dart_input_filecharac-

ter(len=128)
The name of the DART file containing the CAM state.

cam_to_dart_output_filecharac-
ter(len=128)

The name of the DART file containing the model state derived from the
CAM restart file.

6.220.3 Modules used

assim_model_mod.f90
types_mod.f90
threed_sphere/location_mod.f90
model_mod.f90
null_mpi_utilities_mod.f90
obs_kind_mod.f90
random_seq_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.220. PROGRAM cam_to_dart 933

DART, Release 9.10.3

6.220.4 Files read

• DART namelist file; input.nml

• CAM restart file; caminput.nc

• CAM “phis” file specified in &model_nml::cam_phis (normally cam_phis.nc)

6.220.5 Files written

• DART initial conditions/restart file; e.g. dart_ics

6.220.6 References

none

6.221 CAM

Attention: cam-old works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using cam-old with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.221.1 Overview

The DART system supports data assimilation into the Community Atmosphere Model (CAM) which is the atmospheric
component of the Community Earth System Model (CESM). This DART interface is being used by graduate students,
post-graduates, and scientists at universities and research labs to conduct data assimilation reseearch. Others are using
the products of data assimilation (analyses), which were produced here at NCAR using CESM+DART, to conduct
related research. The variety of research can be sampled on the DART Publications page.

“CAM” refers to a family of related atmospheric components, which can be built with two independent main charac-
teristics. CESM labels these as:

resolution

where resolution refers to both the horizontal resolution of the grid (rather than the vertical resolution) and
the dynamical core run on the specified grid. The dynamical core refers to the fluid dynamical equations
run on the specified grid.

compset

where compset refers to the vertical grid and the parameterizations – the formulation of the subgrid-
scale physics. These parameterizations encompass the equations describing physical processes such as
convection, radiation, chemistry.

• The vertical grid is determined by the needs of the chosen parameterizations, thus the vertical
spacing and the top level of the model domain, specified by a variable known as ptop, vary.

• The combinations of parameterizations and vertical grids are named: CAM3.5, CAM5, CAM#, . . .
WACCM, WACCM#, WACCM-X, CAM-Chem.

934 Chapter 6. References

http://www2.cesm.ucar.edu/models
https://dart.ucar.edu/pages/Publications.html

DART, Release 9.10.3

There are minor characteristics choices within each of these, but only chemistry choices in WACCM and CAM-Chem
have an impact on DART. As of April 2015, all of these variants are handled by the same model_mod.f90, namelist,
and build scripts, with differences in the assimilation set up described in Setup Variations.

This DART+CAM interface has the following features.

• Assimilate within the CESM software framework by using the multi-instance capability of CESM1.1.1 (and
later). This enables assimilation of suitable observations into multiple CESM components. The ability to as-
similate in the previous mode, where DART called ‘stand-alone’ CAMs when needed, is not being actively
supported for these CESM versions.

• Use either the eulerian, finite-volume (FV), or spectral-element (SE) dynamical core.

• Use any resolution of CAM, including refined mesh grids in CAM-SE. As of April, 2015 this is limited by the
ability of the memory of a node of your hardware to contain the state vector of a single ensemble member. Work
is under way to relax this restriction.

• Assimilate a variety of observations; to date the observations successfully assimilated include the NCEP re-
analysis BUFR obs (T,U,V,Q), Global Positioning System radio occultation obs, and MOPITT carbon monox-
ide (when a chemistry model is incorporated into CAM-FV). Research has also explored assimilating surface
observations, cloud liquid water, and aerosols. SABER and AURA observations have been assimilated into
WACCM.

• Specify, via namelist entries, the CAM (initial file) variables which will be directly affected by the observations,
that is, the state vector. This allows users to change the model state without recompiling (but other restrictions
remain).

• Generate analyses on the CAM grid which have only CAM model error in them, rather than another model’s.

• Generate such analyses with as few as 20 ensemble members.

In addition to the standard DART package there are ensembles of initial condition files at the large file website http:
//www.image.ucar.edu/pub/DART/CAM/ that are helpful for interfacing CAM with DART. In the current (2015) mode,
CESM+DART can easily be started from a single model state, which is perturbed to create an ensemble of the desired
size. A spin-up period is then required to allow the ensemble members to diverge.

Sample sets of observations, which can be used with CESM+DART assimilations, can be found at http://www.image.
ucar.edu/pub/DART/Obs_sets/ of which the NCEP BUFR observations are the most widely used.

Experience on a variety of machines has shown that it is a very good idea to make sure your run-time environment has
the following:

limit stacksize unlimited
limit datasize unlimited

This page contains the documentation for the DART interface module for the CAM and WACCM models, using the
dynamical cores listed above. This implementation uses the CAM initial files (not restart files) for transferring the
model state to/from the filter. This may change in future versions, but probably only for CAM-SE. The reasons for
this include:

1. The contents of the restart files vary depending on both the model release version and the physics packages
selected.

2. There is no metadata describing the variables in the restart files. Some information can be tracked down in the
atm.log file, but not all of it.

3. The restart files (for non-chemistry model versions) are much larger than the initial files (and we need to deal
with an ensemble of them).

4. The temperature on the restart files is virtual equivalent potential temperature, which requires (at least) surface
pressure, specific humidity, and sensible temperature to calculate.

6.221. CAM 935

http://www.image.ucar.edu/pub/DART/CAM/
http://www.image.ucar.edu/pub/DART/CAM/
http://www.image.ucar.edu/pub/DART/Obs_sets/
http://www.image.ucar.edu/pub/DART/Obs_sets/

DART, Release 9.10.3

5. CAM does not call the initialization routines when restart files are used, so fields which are not modified by
DART may be inconsistent with fields which are.

6. If DART modifies the contents of the .r. restart file, it might also need to modify the contents of the .rs.
restart file, which has similar characteristics (1-3 above) to the .r. file.

The DART interfaces to CAM and many of the other CESM components have been integrated with the CESM set-up
and run scripts.

6.221.2 Setup Scripts

Unlike previous versions of DART-CAM, CESM runs using its normal scripts, then stops and calls a DART script,
which runs a single assimilation step, then returns to the CESM run script to continue the model advances. See
the CESM interface documentation in $DARTROOT/models/CESM for more information on running DART with
CESM. Due to the complexity of the CESM software environment, the versions of CESM which can be used for
assimilation are more restricted than previously. Each supported CESM version has similar, but unique, sets of set-up
scripts and CESM SourceMods. Those generally do not affect the cam-fv/model_mod.f90 interface. Current
(April, 2015) set-up scripts are:

• CESM1_2_1_setup_pmo: sets up a perfect_model_mod experiment, which creates synthetic observations
from a free model run, based on the user’s somewhat restricted choice of model, dates, etc. The restrictions are
made in order to streamline the script, which will shorten the learning curve for new users.

• CESM1_2_1_setup_pmo_advanced: same as CESM1_2_1_setup_pmo, but can handle more advanced
set-ups: recent dates (non-default forcing files), refined-grid CAM-SE, etc.

• CESM1_2_1_setup_hybrid: streamlined script (see CESM1_2_1_setup_pmo) which sets up an ensem-
ble assimilation using CESM’s multi-instance capability.

• CESM1_2_1_setup_advanced: like CESM1_2_1_setup_pmo_advanced, but for setting up an as-
similation.

The DART state vector should include all prognostic variables in the CAM initial files which cannot be calculated
directly from other prognostic variables. In practice the state vector sometimes contains derived quantities to en-
able DART to compute forward operators (expected observation values) efficiently. The derived quantities are often
overwritten when the model runs the next timestep, so the work DART does to update them is wasted work.

Expected observation values on pressure, scale height, height or model levels can be requested from
model_interpolate. Surface observations can not yet be interpolated, due to the difference between the model
surface and the earth’s surface where the observations are made. Model_interpolate can be queried for any (non-
surface) variable in the state vector (which are variables native to CAM) plus pressure on height levels. The default
state vector is PS, T, U, V, Q, CLDLIQ, CLDICE and any tracers or chemicals needed for a given study. Variables
which are not in the initial file can be added (see the ./doc directory but minor modifications to model_mod.f90
and CAM may be necessary.

The 19 public interfaces in model_mod are standardized for all DART compliant models. These interfaces allow
DART to get the model state and metadata describing this state, find state variables that are close to a given location,
and do spatial interpolation for a variety of variables required by observational operators.

936 Chapter 6. References

DART, Release 9.10.3

6.221.3 Namelist

The &model_nml namelist is read from the input.nml file. Namelists start with an ampersand & and terminate
with a slash /. Character strings that contain a / must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

&model_nml
cam_template_filename = 'caminput.nc'
cam_phis_filename = 'cam_phis.nc'
vertical_localization_coord = 'PRESSURE'
use_log_vertical_scale = .false.
no_normalization_of_scale_heights = .true.
no_obs_assim_above_level = -1,
model_damping_ends_at_level = -1,
state_variables = ''
assimilation_period_days = 0
assimilation_period_seconds = 21600
suppress_grid_info_in_output = .false.
custom_routine_to_generate_ensemble = .true.
fields_to_perturb = ''
perturbation_amplitude = 0.0_r8
using_chemistry = .false.
use_variable_mean_mass = .false.
debug_level = 0

/

The names of the fields to put into the state vector must match the CAM initial NetCDF file variable names.

6.221. CAM 937

DART, Release 9.10.3

Item Type Description
cam_template_filechar-

ac-
ter(len=128)

CAM initial file used to provide configuration information, such as the grid resolution, number
of vertical levels, whether fields are staggered or not, etc.

cam_phis char-
ac-
ter(len=128)

CAM topography file. Reads the “PHIS” NetCDF variable from this file. Typically this is a
CAM History file because this field is not normally found in a CAM initial file.

verti-
cal_localization_coord

char-
ac-
ter(len=128)

The vertical coordinate to which all vertical locations are converted in model_mod. Valid
options are “pressure”, “height”, “scaleheight” or “level”.

no_normalization_of_scale_heightslogical If true the scale height is computed as the log of the pressure at the given location. If false
the scale height is computed as a ratio of the log of the surface pressure and the log of the
pressure aloft. In limited areas of high topography the ratio version might be advantageous,
and in previous versions of filter this was the default. For global CAM the recommendation
is to set this to .true. so the scale height is simply the log of the pressure at any location.

no_obs_assim_above_levelinteger Because the top of the model is highly damped it is recommended to NOT assimilate obser-
vations in the top model levels. The units here are CAM model level numbers. Set it to equal
or below the lowest model level (the highest number) where damping is applied in the model.

model_damping_ends_at_levelinteger Set this to the lowest model level (the highest number) where model damping is applied.
Observations below the ‘no_obs_assim_above_level’ cutoff but close enough to the model
top to have an impact during the assimilation will have their impacts decreased smoothly to 0
at this given model level. The assimilation should make no changes to the model state above
the given level.

state_variableschar-
ac-
ter(len=64),
dimen-
sion(100)

Character string table that includes: Names of fields (NetCDF variable names) to be read into
the state vector, the corresponding DART Quantity for that variable, if a bounded quantity the
minimum and maximum valid values, and finally the string ‘UPDATE’ to indicate the updated
values should be written back to the output file. ‘NOUPDATE’ will skip writing this field at
the end of the assimilation.

as-
simila-
tion_period_days

integer Sets the assimilation window width, and should match the model advance time when cycling.
The scripts distributed with DART always set this to 0 days, 21600 seconds (6 hours).

as-
simila-
tion_period_seconds

integer Sets the assimilation window width, and should match the model advance time when cycling.
The scripts distributed with DART always set this to 0 days, 21600 seconds (6 hours).

sup-
press_grid_info_in_output

logical Filter can update fields in existing files or create diagnostic/output files from scratch. By
default files created from scratch include a full set of CAM grid information to make the
file fully self-contained and plottable. However, to save disk space the grid variables can be
suppressed in files created by filter by setting this to true.

cus-
tom_routine_to_generate_ensemble

logical The default perturbation routine in filter adds gaussian noise equally to all fields in the state
vector. It is recommended to set this option to true so code in the model_mod is called instead.
This allows only a limited number of fields to be perturbed. For example, only perturbing the
temperature field T with a small amount of noise and then running the model forward for a
few days is often a recommended way to generate an ensemble from a single state.

fields_to_perturbchar-
ac-
ter(len=32),
dimen-
sion(100)

If perturbing a single state to generate an ensemble, set ‘cus-
tom_routine_to_generate_ensemble = .true.’ and list list the field(s) to be perturbed
here.

per-
turba-
tion_amplitude

real(r8),
dimen-
sion(100)

For each field name in the ‘fields_to_perturb’ list give the standard deviation for the gaussian
noise to add to each field being perturbed.

pert_base_valsreal(r8),
dimen-
sion(100)

If pert_sd is positive, this the list of values to which the field(s) listed in pert_names will be
reset if filter is told to create an ensemble from a single state vector. Otherwise, it’s is the
list of values to use for each ensemble member when perturbing the single field named in
pert_names. Unused unless pert_names is set and pert_base_vals is not the DART missing
value.

us-
ing_chemistry

logical If using CAM-CHEM, set this to .true.

us-
ing_variable_mean_mass

logical If using any variant of WACCM with a very high model top, set this to .true.

de-
bug_level

integer Set this to increasingly larger values to print out more debugging information. Note that this
can be very verbose. Use with care.

938 Chapter 6. References

DART, Release 9.10.3

Item Type Description
cam_template_filechar-

ac-
ter(len=128)

CAM initial file used to provide configuration information, such as the grid resolution, number
of vertical levels, whether fields are staggered or not, etc.

cam_phis char-
ac-
ter(len=128)

CAM topography file. Reads the “PHIS” NetCDF variable from this file. Typically this is a
CAM History file because this field is not normally found in a CAM initial file.

verti-
cal_localization_coord

char-
ac-
ter(len=128)

The vertical coordinate to which all vertical locations are converted in model_mod. Valid
options are “pressure”, “height”, “scaleheight” or “level”.

no_normalization_of_scale_heightslogical If true the scale height is computed as the log of the pressure at the given location. If false
the scale height is computed as a ratio of the log of the surface pressure and the log of the
pressure aloft. In limited areas of high topography the ratio version might be advantageous,
and in previous versions of filter this was the default. For global CAM the recommendation
is to set this to .true. so the scale height is simply the log of the pressure at any location.

no_obs_assim_above_levelinteger Because the top of the model is highly damped it is recommended to NOT assimilate obser-
vations in the top model levels. The units here are CAM model level numbers. Set it to equal
or below the lowest model level (the highest number) where damping is applied in the model.

model_damping_ends_at_levelinteger Set this to the lowest model level (the highest number) where model damping is applied.
Observations below the ‘no_obs_assim_above_level’ cutoff but close enough to the model
top to have an impact during the assimilation will have their impacts decreased smoothly to 0
at this given model level. The assimilation should make no changes to the model state above
the given level.

state_variableschar-
ac-
ter(len=64),
dimen-
sion(100)

Character string table that includes: Names of fields (NetCDF variable names) to be read into
the state vector, the corresponding DART Quantity for that variable, if a bounded quantity the
minimum and maximum valid values, and finally the string ‘UPDATE’ to indicate the updated
values should be written back to the output file. ‘NOUPDATE’ will skip writing this field at
the end of the assimilation.

as-
simila-
tion_period_days

integer Sets the assimilation window width, and should match the model advance time when cycling.
The scripts distributed with DART always set this to 0 days, 21600 seconds (6 hours).

as-
simila-
tion_period_seconds

integer Sets the assimilation window width, and should match the model advance time when cycling.
The scripts distributed with DART always set this to 0 days, 21600 seconds (6 hours).

sup-
press_grid_info_in_output

logical Filter can update fields in existing files or create diagnostic/output files from scratch. By
default files created from scratch include a full set of CAM grid information to make the
file fully self-contained and plottable. However, to save disk space the grid variables can be
suppressed in files created by filter by setting this to true.

cus-
tom_routine_to_generate_ensemble

logical The default perturbation routine in filter adds gaussian noise equally to all fields in the state
vector. It is recommended to set this option to true so code in the model_mod is called instead.
This allows only a limited number of fields to be perturbed. For example, only perturbing the
temperature field T with a small amount of noise and then running the model forward for a
few days is often a recommended way to generate an ensemble from a single state.

fields_to_perturbchar-
ac-
ter(len=32),
dimen-
sion(100)

If perturbing a single state to generate an ensemble, set ‘cus-
tom_routine_to_generate_ensemble = .true.’ and list list the field(s) to be perturbed
here.

per-
turba-
tion_amplitude

real(r8),
dimen-
sion(100)

For each field name in the ‘fields_to_perturb’ list give the standard deviation for the gaussian
noise to add to each field being perturbed.

pert_base_valsreal(r8),
dimen-
sion(100)

If pert_sd is positive, this the list of values to which the field(s) listed in pert_names will be
reset if filter is told to create an ensemble from a single state vector. Otherwise, it’s is the
list of values to use for each ensemble member when perturbing the single field named in
pert_names. Unused unless pert_names is set and pert_base_vals is not the DART missing
value.

us-
ing_chemistry

logical If using CAM-CHEM, set this to .true.

us-
ing_variable_mean_mass

logical If using any variant of WACCM with a very high model top, set this to .true.

de-
bug_level

integer Set this to increasingly larger values to print out more debugging information. Note that this
can be very verbose. Use with care.

6.221. CAM 939

DART, Release 9.10.3

6.221.4 Setup Variations

The variants of CAM require slight changes to the setup scripts (in $DARTROOT/models/cam-fv/
shell_scripts) and in the namelists (in $DARTROOT/models/cam-fv/work/input.nml). From the
DART side, assimilations can be started from a pre-existing ensemble, or an ensemble can be created from a sin-
gle initial file before the first assimilation. In addition, there are setup differences between ‘perfect model’ runs, which
are used to generate synthetic observations, and assimilation runs. Those differences are extensive enough that they’ve
been coded into separate Setup Scripts.

Since the CESM compset and resolution, and the initial ensemble source are essentially independent of each other,
changes for each of those may need to be combined to perform the desired setup.

Perturbed Ensemble

The default values in work/input.nml and shell_scripts/CESM1_2_1_setup_pmo and
shell_scripts/CESM1_2_1_setup_hybrid are set up for a CAM-FV, single assimilation cycle using
the default values as found in model_mod.f90 and starting from a single model state, which must be perturbed into
an ensemble. The following are suggestions for setting it up for other assimilations. Namelist variables listed here
might be in any namelist within input.nml.

CAM-FV

If built with the FV dy-core, the number of model top levels with extra diffusion in CAM is controlled by
div24del2flag. The recommended minium values of highest_state_pressure_Pa come from that vari-
able, and cutoff*vert_normalization_X:

2 ("div2") -> 2 levels -> highest_state_pressure_Pa = 9400. Pa
4,24 ("del2") -> 3 levels -> highest_state_pressure_Pa = 10500. Pa

and:

vert_coord = 'pressure'
state_num_1d = 0,
state_num_2d = 1,
state_num_3d = 6,
state_names_1d = ''
state_names_2d = 'PS'
state_names_3d = 'T', 'US', 'VS', 'Q', 'CLDLIQ', 'CLDICE'
which_vert_1d = 0,
which_vert_2d = -1,
which_vert_3d = 6*1,
highest_state_pressure_Pa = 9400. or 10500.

CAM-SE

There’s an existing ensemble, so see the Continuing after the first cycle section to start from it instead of a single state.
To set up a “1-degree” CAM-SE assimilation CESM1_2_1_setup_hybrid:

setenv resolution ne30_g16
setenv refcase SE30_Og16
setenv refyear 2005
setenv refmon 08
setenv refday 01

940 Chapter 6. References

DART, Release 9.10.3

input.nml:

approximate_distance = .FALSE.
vert_coord = 'pressure'
state_num_1d = 1,
state_num_2d = 6,
state_num_3d = 0,
state_names_1d = 'PS'
state_names_2d = 'T','U','V','Q','CLDLIQ','CLDICE'
state_names_3d = ''
which_vert_1d = -1,
which_vert_2d = 6*1,
which_vert_3d = 0,
highest_obs_pressure_Pa = 1000.,
highest_state_pressure_Pa = 10500.,

Variable resolution CAM-SE

To set up a variable resolution CAM-SE assimilation (as of April 2015) there are many changes to both the CESM
code tree and the DART setup scripts. This is for very advanced users, so please contact dart @ ucar dot edu or raeder
@ ucar dot edu for scripts and guidance.

WACCM

WACCM[#][-X] has a much higher top than the CAM versions, which requires the use of scale height as the vertical
coordinate, instead of pressure, during assimilation. One impact of the high top is that the number of top model levels
with extra diffusion in the FV version is different than in the low-topped CAM-FV, so the div24del2flag options
lead to the following minimum values for highest_state_pressure_Pa:

2 ("div2") -> 3 levels -> highest_state_pressure_Pa = 0.01 Pa
4,24 ("del2") -> 4 levels -> highest_state_pressure_Pa = 0.02 Pa

The best choices of vert_normalization_scale_height, cutoff, and
highest_state_pressure_Pa are still being investigated (April, 2015), and may depend on the obser-
vation distribution being assimilated.

WACCM is also typically run with coarser horizontal resolution. There’s an existing 2-degree ensemble, so see the
Continuing after the first cycle section to start from it, instead of a single state. If you use this, ignore any existing
inflation restart file and tell DART to make its own in the first cycle in input.nml:

inf_initial_from_restart = .false., .false.,
inf_sd_initial_from_restart = .false., .false.,

In any case, make the following changes (or similar) to convert from a CAM setup to a WACCM setup.
CESM1_2_1_setup_hybrid:

setenv compset F_2000_WACCM
setenv resolution f19_f19
setenv refcase FV1.9x2.5_WACCM4
setenv refyear 2008
setenv refmon 12
setenv refday 20

and the settings within input.nml:

6.221. CAM 941

DART, Release 9.10.3

vert_normalization_scale_height = 2.5
vert_coord = 'log_invP'
highest_obs_pressure_Pa = .001,
highest_state_pressure_Pa = .01,

If built with the SE dy-core (warning; experimental), then 4 levels will have extra diffusion, and also see the CAM-SE
section.

If there are problems with instability in the WACCM foreasts, try changing some of the following parameters in either
the user_nl_cam section of the setup script or input.nml.

• The default div24del2flag in WACCM is 4. Change it in the setup script to

echo " div24del2flag = 2 " >> ${fname}

which will use the cd_core.F90 in SourceMods, which has doubled diffusion in the top layers compared to
CAM.

• Use a smaller dtime (1800 s is the default for 2-degree) in the setup script. This can also be changed in the
ensemble of user_nl_cam_#### in the $CASEROOT directory.

echo " dtime = 600 " >> ${fname}

• Increase highest_state_pressure_Pa in input.nml:

div24del2flag = 2 ("div2") -> highest_state_pressure_Pa = 0.1 Pa
div24del2flag = 4,24 ("del2") -> highest_state_pressure_Pa = 0.2 Pa

• Use a larger nsplit and/or nspltvrm in the setup script:

echo " nsplit = 16 " >> ${fname}
echo " nspltvrm = 4 " >> ${fname}

• Reduce inf_damping from the default value of 0.9 in input.nml:

inf_damping = 0.5, 0,

6.221.5 Notes for Continuing an Integration

Continuing after the first cycle

After the first forecast+assimilation cycle, using an ensemble created from a single file, it is necessary to change
to the ‘continuing’ mode, where CAM will not perform all of its startup procedures and DART will use the most
recent ensemble. This example applies to an assimiation using prior inflation (inf_...= .true.). If posterior
inflation were needed, then the 2nd column of infl_... would be set to .true... Here is an example snippet
from input.nml:

start_from_restart = .true.,
restart_in_file_name = "filter_ics",
single_restart_file_in = .false.,

inf_initial_from_restart = .true., .false.,
inf_sd_initial_from_restart = .true., .false.,

942 Chapter 6. References

DART, Release 9.10.3

Combining multiple cycles into one job

CESM1_2_1_setup_hybrid and CESM1_2_1_setup_pmo are set up in the default cycling mode, where each
submitted job performs one model advance and one assimilation, then resubmits the next cycle as a new job. For long
series of cycles, this can result in a lot of time waiting in the queue for short jobs to run. This can be prevented by using
the ‘cycles’ scripts generated by CESM1_2_1_setup_advanced (instead of CESM1_2_1_setup_hybrid).
This mode is described in $DARTROOT/models/cam-fv/doc/README_cam-fv.

6.221.6 Discussion

Many CAM initial file variables are already handled in the model_mod. Here is a list of others, which may be used
in the future. Each would need to have a DART *KIND* associated with it in model_mod.

Atmos
CLOUD: "Cloud fraction" ;
QCWAT: "q associated with cloud water" ;
TCWAT: "T associated with cloud water" ;
CWAT: "Total Grid box averaged Condensate Amount (liquid + ice)" ;
also? LCWAT

pbl
PBLH: "PBL height" ;
QPERT: "Perturbation specific humidity (eddies in PBL)" ;
TPERT: "Perturbation temperature (eddies in PBL)" ;

Surface
LANDFRAC: "Fraction of sfc area covered by land" ;
LANDM: "Land ocean transition mask: ocean (0), continent (1), transition (0-

→˓1)" ;
also LANDM_COSLAT

ICEFRAC: "Fraction of sfc area covered by sea-ice" ;
SGH: "Standard deviation of orography" ;
Z0FAC: "factor relating z0 to sdv of orography" ;
TS: "Surface temperature (radiative)" ;
TSOCN: "Ocean tempertare" ;
TSICE: "Ice temperature" ;
TSICERAD: "Radiatively equivalent ice temperature" ;

Land/under surface
SICTHK: "Sea ice thickness" ;
SNOWHICE: "Water equivalent snow depth" ;
TS1: "subsoil temperature" ;
TS2: "subsoil temperature" ;
TS3: "subsoil temperature" ;
TS4: "subsoil temperature" ;

Other fields are not included because they look more CLM oriented.

Other fields which users may add to the CAM initial files are not listed here.

6.221. CAM 943

DART, Release 9.10.3

6.221.7 Files

• model_nml in input.nml

• cam_phis.nc (CAM surface height file, often CAM’s .h0. file in the CESM run environment)

• caminput.nc (CAM initial file)

• clminput.nc (CLM restart file)

• iceinput.nc (CICE restart file) by model_mod at the start of each assimilation)

• netCDF output state diagnostics files

6.221.8 Nitty gritty: Efficiency possibilities

• index_from_grid (and others?) could be more efficient by calculating and globally storing the beginning index
of each cfld and/or the size of each cfld. Get_state_meta_data too. See clm/model_mod.f90.

• Global storage of height fields? but need them on staggered grids (only sometimes) Probably not; machines
going to smaller memory and more recalculation.

• ! Some compilers can’t handle passing a section of an array to a subroutine/function; I do this in
nc_write_model_vars(?) and/or write_cam_init(?); replace with an exactly sized array?

• Is the testing of resolution in read_cam_coord overkill in the line that checks the size of (resol_n -
resol_1)*resol?

• Replace some do loops with forall (constructs)

• Subroutine write_cam_times(model_time, adv_time) is not needed in CESM+DART framework?
Keep anyway?

• Remove the code that accommodates old CAM coordinate order (lon,lev,lat).

• Cubed sphere: Convert lon,lat refs into dim1,dim2 in more subroutines. get_val_heights is called with
(column_ind,1) by CAM-SE code, and (lon_ind, lat_ind) otherwise).

• cam_to_dart_kinds and dart_to_cam_types are dimensioned 300, regardless of the number of fields
in the state vector and/or KINDs .

• Describe:

– The coordinate orders and translations; CAM initial file, model_mod, and DART_Diag.nc.

– Motivations

* There need to be 2 sets of arrays for dimensions and dimids;

· one describing the caminput file (f_...)

· and one for the state (s_...) (storage in this module).

· Call them f_dim_Nd, f_dimid_Nd

· s_dim_Nd, s_dimid_Nd

• Change (private only) subroutine argument lists; structures first, regardless of in/out then output, and input
variables.

• Change declarations to have dummy argument integers used as dimensions first

• Implement a grid_2d_type? Convert phis to a grid_2d_type? ps, and staggered ps fields could also be
this type.

944 Chapter 6. References

DART, Release 9.10.3

• Deallocate grid_1d_arrays using end_1d_grid_instance in end_model. end_model is called by
subroutines pert_model_state, nc_write_model_vars; any problem?

• ISSUE; In P[oste]rior_Diag.nc ensemble members are written out *between* the field mean/spread pair
and the inflation mean/sd pair. Would it make more sense to put members after both pairs? Easy to do?

• ISSUE?; model_interpolate assumes that obs with a vertical location have 2 horizontal locations too.
The state vector may have fields for which this isn’t true, but no obs we’ve seen so far violate this assumption.
It would have to be a synthetic/perfect_model obs, like some sort of average or parameter value.

• ISSUE; In convert_vert, if a 2D field has dimensions (lev, lat) then how is p_surf defined? Code would be
needed to set the missing dimension to 1, or make different calls to coord_ind, etc.

• ISSUE; The QTY_ list from obs_def_mod must be updated when new fields are added to state vector. This could
be done by the preprocessor when it inserts the code bits corresponding to the lists of observation types, but it
currently (10/06) does not. Document accordingly.

• ISSUE: The CCM code (and Hui’s packaging) for geopotentials and heights use different values of the physical
constants than DART’s. In one case Shea changed g from 9.81 to 9.80616, to get agreement with CCM(?. . .),
so it may be important. Also, matching with Hui’s tests may require using his values; change to DART after
verifying?

• ISSUE: It’s possible to figure out the model_version from the NetCDF file itself, rather than have that be user-
provided (sometimes incorrect and hard to debug) meta-data. model_version is also misnamed; it’s really the
caminput.nc model version. The actual model might be a different version(?). The problem with removing
it from the namelist is that the scripts need it too, so some rewriting there would be needed.

• ISSUE: max_neighbors is set to 6, but could be set to 4 for non-refined grids. Is there a good mechanism
for this? Is it worth the file space savings?

• ISSUE: x_planar and y_planar could be reduced in rank, if no longer needed for testing and debugging.

• “Pobs” marks changes for providing expected obs of P break from past philosophy; P is not a native CAM
variable (but is already calced here)

• NOVERT marks modifications for fields with no vertical location, i.e. GWD parameters.

6.221.9 References and Acknowledgements

• CAM homepage

Ave Arellano did the first work with CAM-Chem, assimilating MOPPITT CO observations into CAM-Chem. Jerome
Barre and Benjamin Gaubert took up the development work from Ave, and prompted several additions to DART, as
well as model_mod.f90.

Nick Pedatella developed the first vert_coord = 'log_invP' capability to enable assimilation using WACCM
and scale height vertical locations.

6.222 PROGRAM dart_to_cam

Attention: cam-old works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using cam-old with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

6.222. PROGRAM dart_to_cam 945

http://www.ccsm.ucar.edu/models/atm-cam/

DART, Release 9.10.3

6.222.1 Overview

dart_to_cam is the program that reads a DART restart or model advance file (e.g. perfect_ics,
filter_ics, assim_model_state_id ...). and overwrites the part of the CAM data in a single CAM
restart file (usually caminput.nc) which is in the DART state vector. If you have multiple input files, you will need
to rename the output files as you create them.

The list of variables extracted from the DART state vector and exported to the CAM netCDF file is controlled by the
set of input.nml &model_nml:state_names_* variables.

If the input is a model advance file, containing 2 timestamps (the current model time and a future time the model
should run until), this program also creates a separate file named times that contains three lines: the advance-to time,
the current model time, and the number of hours to advance. These will need to be extracted and inserted in a CAM
namelist to indicate to CAM how long to run.

This program also updates the date and datesec variables in the CAM netcdf file. Generally these are identical
times since the assimilation doesn’t change the time of the data, but in case the original file had a different time that
was overwritten in the state vector, it will update the time for consistency.

Conditions required for successful execution of dart_to_cam:

• a valid input.nml namelist file for DART

• a CAM ‘phis’ netCDF file [default: cam_phis.nc]

• a DART restart file [default: dart_ics] (read)

• a CAM restart file [default: caminput.nc] (read and written)

Since this program is called repeatedly for every ensemble member, we have found it convenient to link the DART
input and CAM restart files to the default filenames dart_ics and caminput.nc). The output files may be moved
or relinked as necessary.

6.222.2 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&dart_to_cam_nml
dart_to_cam_input_file = 'dart_ics',
dart_to_cam_output_file = 'caminput.nc',
advance_time_present = .true.,
/

Item Type Description
dart_to_cam_input_filecharac-

ter(len=128)
The name of the DART restart file containing the CAM state.

dart_to_cam_output_filecharac-
ter(len=128)

The name of the CAM restart netcdf file.

ad-
vance_time_present

logical Set to .false. for DART initial condition and restart files. Use the .true. setting for
the files written by filter during a model advance.

946 Chapter 6. References

DART, Release 9.10.3

6.222.3 Modules used

assim_model_mod.f90
types_mod.f90
threed_sphere/location_mod.f90
model_mod.f90
null_mpi_utilities_mod.f90
obs_kind_mod.f90
random_seq_mod.f90
time_manager_mod.f90
utilities_mod.f90

6.222.4 Files read

• DART namelist file; input.nml

• DART initial conditions/restart file; e.g. dart_ics (read)

• CAM restart file; caminput.nc (read and written)

• CAM “phis” file specified in &model_nml::cam_phis (normally cam_phis.nc)

6.222.5 Files written

• CAM restart file; caminput.nc (read and written)

6.222.6 References

none

6.223 PROGRAM trans_pv_sv

Attention: MITgcm_ocean works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using MITgcm_ocean with more recent versions of DART, contact DAReS staff to assess
the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

trans_pv_sv is responsible for converting the ocean model ‘snapshot’ files to a DART ‘initial conditions’ file. In
order to do that, the valid time for the snapshot files must be calculated from several pieces of information: the
filename contains a timestep index, the data&PARM03 namelist contains information about the amount of time per
timestep, and the data.cal&CAL_NML namelist contains the start time. Additionally, the grid characteristics must
be read from data&PARM04. Consequently, the files data, and data.cal as well as the general input.nml
are needed in addition to the snapshot files.
This program has a number of options that are driven from namelists and one piece of input read from STDIN: the
integer representing the timestep index of the snapshot file set.

6.223. PROGRAM trans_pv_sv 947

DART, Release 9.10.3

6.223.1 Usage

The output filename is hardwired to that expected by filter. This example creates an output file named
assim_model_state_ud from the following files in the local directory:
S.0000000096.data

T.0000000096.data

U.0000000096.data

V.0000000096.data

Eta.0000000096.data

./trans_pv_sv < 96

6.223.2 Modules used

types_mod
utilities_mod
model_mod
assim_model_mod
time_manager_mod

6.223.3 Namelist

This program has no namelist of its own, but some of the underlying modules require namelists. To avoid duplication
and, possibly, some inconsistency in the documentation, only a list of the required namelists is provided here, with a
hyperlink to the full documentation for each namelist.

Namelist Primary Purpose
utilities_nml set the termination level and file name for the run-time log
assim_model_mod_nml write DART restart files in binary or ASCII
model_nml write netCDF files with prognostic variables
CAL_NML determine start time of the ocean model
PARM03 the amount of time per model timestep for deciphering snapshot filenames
PARM04 ocean model grid parameters

6.223.4 Files

• input namelist files: data, data.cal, input.nml

• input snapshot files: [S,T,U,V,Eta].nnnnnnnnnn.[data[,.meta]]

• output initial conditions file: assim_model_state_ud

948 Chapter 6. References

../../assimilation_code/modules/utilities/utilities_mod.html#Namelist
../../assimilation_code/modules/assimilation/assim_model_mod.html#Namelist
model_mod.html#Namelist
model_mod.html#namelist_cal_nml
model_mod.html#namelist_parm03
model_mod.html#namelist_parm04

DART, Release 9.10.3

6.223.5 References

• none

6.223.6 Private components

N/A

6.224 PROGRAM create_ocean_obs

Attention: MITgcm_ocean works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using MITgcm_ocean with more recent versions of DART, contact DAReS staff to assess
the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

create_ocean_obs is responsible for converting an interim ASCII file of ocean observations into a DART obser-
vation sequence file. The interim ASCII file is a simple ‘whitespace separated’ table where each row is an observation
and each column is specific information about the observation.

col-
umn
num-
ber

quantity description

1 longi-
tude (in
degrees)

longitude of the observation

2 lati-
tude (in
degrees)

latitude of the observation

3 depth (in
meters)

depth of the observation

4 obser-
vation
value

such as it is . . .

5 vertical
coor-
dinate
flag

There is a pathological difference between a surface observation and an observation with a
depth of zero. See location_mod:location_type for a full explanation. The short explanation
is that surface == -1, and depth == 3

6 obser-
vation
variance

good luck here . . .

7 Quality
Control
flag

integer value passed through to DART. There is a namelist parameter for filter to ignore
any observation with a QC value <= input_qc_threshold

8 obs_kind_namea character string that must match a string in MODULE obs_def_ocean_mod
9 start-

Date_1
the year-month-date of the observation (YYYYMMDD format)

10 start-
Date_2

the hour-minute-second of the observation (HHMMSS format)

6.224. PROGRAM create_ocean_obs 949

../../assimilation_code/location/threed_sphere/location_mod.html#location_type
../../assimilation_code/programs/filter/filter.html#Namelist

DART, Release 9.10.3

For example:

273.7500 21.3500 -2.5018 28.0441 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.4500 -2.5018 28.1524 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.5500 -2.5018 28.0808 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.6500 -2.5018 28.0143 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.7500 -2.5018 28.0242 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.8500 -2.5018 28.0160 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 21.9500 -2.5018 28.0077 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 22.0500 -2.5018 28.3399 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 22.1500 -2.5018 27.8852 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
273.7500 22.2500 -2.5018 27.8145 3 0.0400 1 GLIDER_TEMPERATURE 19960101 10000
...

It is always possible to combine observation sequence files with the program program obs_sequence_tool, so it was
simply convenient to generate a separate file for each observation platform and type (‘GLIDER’ and ‘TEMPERA-
TURE’), however it is by no means required.

6.224.1 Modules used

Some of these modules use modules . . . those modules and namelists are not discussed here. probably should be . . .

types_mod
utilities_mod
dart_MITocean_mod
obs_sequence_mod

6.224.2 Namelist

This program has a namelist of its own, and some of the underlying modules require namelists. To avoid duplication
and, possibly, some inconsistency in the documentation; only a list of the required namelists is provided - with a
hyperlink to the full documentation for each namelist.

Namelist Primary Purpose
utilities_nml set the termination level and file name for the run-time log
obs_sequence_nml write binary or ASCII observation sequence files

We adhere to the F90 standard of starting a namelist with an ampersand ‘&’ and terminating with a slash ‘/’. Consider
yourself forewarned that filenames that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely
terminating the namelist.

namelist /create_ocean_obs_nml/ year, month, day, &
tot_days, max_num, fname, output_name, lon1, lon2, lat1, lat2

This namelist is read in a file called input.nml

950 Chapter 6. References

../../assimilation_code/modules/utilities/utilities_mod.html#Namelist
../../assimilation_code/modules/observations/obs_sequence_mod.html#Namelist

DART, Release 9.10.3

Contents Type Description
year integer [default: 1996] The first year of interest.
month integer [default: 1] The first month of interest.
day integer [default: 1] The first day of interest.
tot_days integer [default: 31] Stop processing after this many days.
max_num integer [default: 800000] The maximum number of observations to

read/write.
fname character(len=129) [default:

‘raw_ocean_obs.txt’]
The name of the interim ASCII file of observa-
tions.

out-
put_name

character(len=129) [default:
‘raw_ocean_obs_seq.out’]

The output file name.

lon1 real [default: 0.0] The leftmost longitude of interest.
lon2 real [default: 360.0] The rightmost longitude of interest.
lat1 real [default: -90.0] The most southern latitude of interest.
lat2 real [default: 90.0] The most northern latitude of interest.

6.224.3 Files

• input namelist file: input.nml

• input data file: as listed by input.nml&create_ocean_obs_nml:fname

• output data file: as listed by input.nml&create_ocean_obs_nml:output_name

6.224.4 References

• none

6.225 PROGRAM trans_sv_pv

Attention: MITgcm_ocean works with versions of DART before Manhattan (9.x.x) and has yet to be updated.
If you are interested in using MITgcm_ocean with more recent versions of DART, contact DAReS staff to assess
the feasibility of an update. Until that time, you should consider this documentation as out-of-date.

trans_sv_pv is responsible for converting a DART ‘initial conditions’ file to a set of model ‘snapshot’ files and
appropriate namelist files: data.cal and data. This is easier than the reverse process because the DART initial
conditions file have a header that contains the valid time for the accompanying state. This same header also has the
‘advance-to’ time. trans_sv_pv uses this information to write out appropriate &CAL_NML and &PARM03
namelists in data.cal.DART and data.DART, respectively. The rest of the information in data is preserved, so
it is possible to simply replace data with the new data.DART.
The input filename is hardwired to that expected by filter and the output filenames are able to be renamed into
those defined by the data&PARM05 namelist specifying the filenames to use to cold-start the ocean model. The
output filename is comprised of 4 parts: the variable name, the startDate_1 component (YYYYMMDD), the
startDate_2 component (HHMMSS), and the extension (.data for the data and .meta for the metadata). The

6.225. PROGRAM trans_sv_pv 951

DART, Release 9.10.3

startDate_1 and startDate_2 pieces are identical in format to that used by identically named variables in the
data.cal&CAL_NML namelist.

6.225.1 Usage

There must be several input files in the current working directory; most of these are required by the model_mod
interface. The input filename is hardwired to assim_model_state_ic. Assuming the time tag in the input file is
set to 06Z 23 July 1996, this example creates output files named
S.19960723.060000.[data,meta]

T.19960723.060000.[data,meta]

U.19960723.060000.[data,meta]

V.19960723.060000.[data,meta]

Eta.19960723.060000.[data,meta]

data.cal.DART, and
data.DART

mv some_DART_ics_input_file assim_model_state_ic ./trans_sv_pv cp data.cal.DART data.cal cp data.DART data

6.225.2 Modules used

types_mod
utilities_mod
model_mod
assim_model_mod
time_manager_mod

6.225.3 Namelist

This program has no namelist of its own, but some of the underlying modules require namelists to be read, even if the
values are not used. To avoid duplication and, possibly, some inconsistency in the documentation; only a list of the
required namelists is provided - with a hyperlink to the full documentation for each namelist.

NamelistPrimary Purpose
util-
i-
ties_nml

set the termination level and file name for the run-time log

CAL_NMLmust be read, values are not used. The data.cal.DART file has an updated namelist to be used for the
model advance.

PARM03must be read, values are not used, The data.DART is an ‘identical’ version of data with the exception of
the PARM03 namelist. The parameters endTime, dumpFreq, and taveFreq reflect the amount of time
needed to advance the model. The parameter startTime is set to 0.0, which is required to force the model
to read the startup files specified by PARM05

PARM04ocean model grid parameters, read - never changed.

952 Chapter 6. References

../../assimilation_code/modules/utilities/utilities_mod.html#Namelist
../../assimilation_code/modules/utilities/utilities_mod.html#Namelist
../../assimilation_code/modules/utilities/utilities_mod.html#Namelist
model_mod.html#namelist_cal_nml
model_mod.html#namelist_parm03
model_mod.html#namelist_parm04

DART, Release 9.10.3

6.225.4 Files

• input namelist files: data, data.cal, input.nml

• output namelist files: data.cal.DART, data.DART

• input data file: assim_model_state_ic

• output data files: [S,T,U,V,Eta].YYYYMMDD.HHMMSS.[data,meta]

6.225.5 References

• none

6.226 PROGRAM dart_to_ncommas

Attention: NCOMMAS works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using NCOMMAS with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

dart_to_ncommas is the program that updates a ncommas netCDF-format restart file (usually
ncommas_restart.nc) with the state information contained in a DART output/restart file (e.g. perfect_ics,
filter_ics, ...). Only the CURRENT values in the ncommas restart file will be updated. The DART model
time is compared to the time in the ncommas restart file. If the last time in the restart file does not match the DART
model time, the program issues an error message and aborts.
From the user perspective, most of the time dart_to_ncommas will be used on DART files that have a header
containing one time stamp followed by the model state.
The dart_to_ncommas_nml namelist allows dart_to_ncommas to read the assim_model_state_ic files
that have two timestamps in the header. These files are temporarily generated when DART is used to advance the
model. One timestamp is the ‘advance_to’ time, the other is the ‘valid_time’ of the model state. In this case, a
namelist for ncommas (called ncommas_in.DART) is written that contains the &time_manager_nml settings
appropriate to advance ncommas to the time requested by DART. The repository version of the
advance_model.csh script has a section to ensure the proper DART namelist settings for this case.
Conditions required for successful execution of dart_to_ncommas:

• a valid input.nml namelist file for DART

• a valid ncommas_vars.nml namelist file for ncommas - the same one used to create the DART state vector,
naturally,

• a DART file (typically filter_restart.xxxx or filter_ics.xxxx)

• a ncommas restart file (typically ncommas_restart.nc).

Since this program is called repeatedly for every ensemble member, we have found it convenient to link the DART
input file to the default input filename (dart_restart). The same thing goes true for the ncommas output filename
ncommas_restart.nc.

6.226. PROGRAM dart_to_ncommas 953

DART, Release 9.10.3

6.226.1 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
ncommas_restart_filename = 'ncommas_restart.nc';
assimilation_period_days = 1,
assimilation_period_seconds = 0,
model_perturbation_amplitude = 0.2,
output_state_vector = .true.,
calendar = 'Gregorian',
debug = 0

/

&dart_to_ncommas_nml
dart_to_ncommas_input_file = 'dart_restart',
advance_time_present = .false.

/

dart_to_ncommas_nml and model_nml are always read from a file called input.nml. The full description
of the model_nml namelist is documented in the NCOMMAS model_mod.

Item Type Description
dart_to_ncommas_input_filechar-

ac-
ter(len=128)

The name of the DART file containing the model state to insert into the ncommas restart file.

ad-
vance_time_present

log-
ical

If you are converting a DART initial conditions or restart file this should be .false.; these
files have a single timestamp describing the valid time of the model state. If .true. TWO
timestamps are expected to be the DART file header. In this case, a namelist for ncommas (called
ncommas_in.DART) is created that contains the &time_manager_nml settings appropriate
to advance ncommas to the time requested by DART.

ncommas_vars_nml is always read from a file called ncommas_vars.nml.

Item Type Description
ncom-
mas_state_variables

charac-
ter(len=NF90_MAX_NAME)
:: dimension(160)

The list of variable names in the NCOMMAS restart file to use to
create the DART state vector and their corresponding DART kind.

954 Chapter 6. References

model_mod.html#Namelist

DART, Release 9.10.3

&ncommas_vars_nml
ncommas_state_variables = 'U', 'QTY_U_WIND_COMPONENT',

'V', 'QTY_V_WIND_COMPONENT',
'W', 'QTY_VERTICAL_VELOCITY',
'TH', 'QTY_POTENTIAL_TEMPERATURE',
'DBZ', 'QTY_RADAR_REFLECTIVITY',
'WZ', 'QTY_VERTICAL_VORTICITY',
'PI', 'QTY_EXNER_FUNCTION',
'QV', 'QTY_VAPOR_MIXING_RATIO',
'QC', 'QTY_CLOUDWATER_MIXING_RATIO',
'QR', 'QTY_RAINWATER_MIXING_RATIO',
'QI', 'QTY_ICE_MIXING_RATIO',
'QS', 'QTY_SNOW_MIXING_RATIO',
'QH', 'QTY_GRAUPEL_MIXING_RATIO'

/

6.226.2 Modules used

assim_model_mod
location_mod
model_mod
null_mpi_utilities_mod
obs_kind_mod
random_seq_mod
time_manager_mod
types_mod
utilities_mod

6.226.3 Files read

• DART initial conditions/restart file; e.g. filter_ic

• DART namelist file; input.nml

• ncommas namelist file; ncommas_vars.nml

• ncommas restart file ncommas_restart.nc

6.226. PROGRAM dart_to_ncommas 955

DART, Release 9.10.3

6.226.4 Files written

• ncommas restart file; ncommas_restart.nc

• ncommas namelist file; ncommas_in.DART

6.226.5 References

none

6.227 PROGRAM ncommas_to_dart

Attention: NCOMMAS works with versions of DART before Manhattan (9.x.x) and has yet to be updated. If you
are interested in using NCOMMAS with more recent versions of DART, contact DAReS staff to assess the feasibility
of an update. Until that time, you should consider this documentation as out-of-date.

ncommas_to_dart is the program that reads a ncommas restart file (usually ncommas_restart.nc) and
creates a DART state vector file (e.g. perfect_ics, filter_ics, ...).
The list of variables used to create the DART state vector are specified in the ncommas_vars.nml file.
Conditions required for successful execution of ncommas_to_dart:

• a valid input.nml namelist file for DART

• a valid ncommas_vars.nml namelist file for ncommas

• the ncommas restart file mentioned in the input.nml&model_nml:ncommas_restart_filename
variable.

Since this program is called repeatedly for every ensemble member, we have found it convenient to link the ncommas
restart files to the default input filename (ncommas_restart.nc). The default DART state vector filename is
dart_ics - this may be moved or linked as necessary.

6.227.1 Namelist

This namelist is read from the file input.nml. Namelists start with an ampersand ‘&’ and terminate with a slash
‘/’. Character strings that contain a ‘/’ must be enclosed in quotes to prevent them from prematurely terminating the
namelist.

&model_nml
ncommas_restart_filename = 'ncommas_restart.nc';
assimilation_period_days = 1,
assimilation_period_seconds = 0,
model_perturbation_amplitude = 0.2,
output_state_vector = .true.,
calendar = 'Gregorian',
debug = 0

/

956 Chapter 6. References

DART, Release 9.10.3

&ncommas_to_dart_nml
ncommas_to_dart_output_file = 'dart_ics'

/

ncommas_to_dart_nml and model_nml are always read from a file called input.nml. The full description
of the model_nml namelist is documented in the NCOMMAS model_mod.

Item Type Description
ncom-
mas_to_dart_output_file

charac-
ter(len=128)

The name of the DART file which contains the updated model state info that
should be written into the NCOMMAS file.

ncommas_vars_nml is always read from a file called ncommas_vars.nml.

Item Type Description
ncom-
mas_state_variables

charac-
ter(len=NF90_MAX_NAME)
:: dimension(160)

The list of variable names in the NCOMMAS restart file to use to
create the DART state vector and their corresponding DART kind.

&ncommas_vars_nml
ncommas_state_variables = 'U', 'QTY_U_WIND_COMPONENT',

'V', 'QTY_V_WIND_COMPONENT',
'W', 'QTY_VERTICAL_VELOCITY',
'TH', 'QTY_POTENTIAL_TEMPERATURE',
'DBZ', 'QTY_RADAR_REFLECTIVITY',
'WZ', 'QTY_VERTICAL_VORTICITY',
'PI', 'QTY_EXNER_FUNCTION',
'QV', 'QTY_VAPOR_MIXING_RATIO',
'QC', 'QTY_CLOUDWATER_MIXING_RATIO',
'QR', 'QTY_RAINWATER_MIXING_RATIO',
'QI', 'QTY_ICE_MIXING_RATIO',
'QS', 'QTY_SNOW_MIXING_RATIO',
'QH', 'QTY_GRAUPEL_MIXING_RATIO'

/

6.227. PROGRAM ncommas_to_dart 957

model_mod.html#Namelist

DART, Release 9.10.3

6.227.2 Modules used

assim_model_mod
location_mod
model_mod
null_mpi_utilities_mod
obs_kind_mod
random_seq_mod
time_manager_mod
types_mod
utilities_mod

6.227.3 Files read

• ncommas restart file; ncommas_restart.nc

• DART namelist files; input.nml and ncommas_vars.nml

6.227.4 Files written

• DART state vector file; e.g. dart_ics

6.227.5 References

none

6.228 mkmf

6.228.1 Introduction

mkmf is a tool written in perl version 5 that constructs a makefile from distributed source. mkmf typically produces a
makefile that can compile a single executable program. But it is extensible to create a makefile for any purpose at all.

Features of mkmf

• It understands dependencies in f90 (modules and use), the fortran include statement, and the cpp
#include statement in any type of source.

• There are no restrictions on filenames, module names, etc.

• It supports the concept of overlays (where source is maintained in layers of directories with a defined prece-
dence).

• It can keep track of changes to cpp flags, and knows when to recompile affected source (i.e, files containing
#ifdefs that have been changed since the last invocation).

• It will run on any unix platform that has perl version 5 installed.

• It is free, and released under GPL. GFDL users can copy (or, better still, directly invoke) the file /net/vb/
public/bin/mkmf.

958 Chapter 6. References

DART, Release 9.10.3

It can be downloaded via GitHub. mkmf is pronounced make-make-file or make-m-f or even McMuff (Paul Kushner’s
suggestion).

6.228.2 Syntax

The calling syntax is:

mkmf [-a abspath] [-c cppdefs] [-d] [-f] [-m makefile] [-p program] [-t
template] [-v] [-w] [-x] [args]

1. -a abspath attaches the abspath at the front of all relative paths to sourcefiles.

2. cppdefs is a list of cpp #defines to be passed to the source files: affected object files will be selectively
removed if there has been a change in this state.

3. -d is a debug flag to mkmf (much more verbose than -v, but probably of use only if you are modifying mkmf
itself).

4. -f is a formatting flag to restrict lines in the makefile to 256 characters. This was introduced in response to
a customer who wanted to edit his makefiles using vi). Lines longer than that will use continuation lines as
needed.

5. makefile is the name of the makefile written (default Makefile).

6. template is a file containing a list of make macros or commands written to the beginning of the makefile.

7. program is the name of the final target (default a.out)

8. -v is a verbosity flag to mkmf

9. -w generates compile rules which use the `wrapper’ commands MPIFC and MPILD instead of FC and LD.
These can then be defined as the mpif90 compile scripts to ease changing between an MPI and non-MPI version.

10. -x executes the makefile immediately.

11. args are a list of directories and files to be searched for targets and dependencies.

6.228.3 Makefile structure

A sourcefile is any file with a source file suffix (currently .F, .F90, .c, .f. .f90). An includefile is any file
with an include file suffix (currently .H, .fh, .h, .inc). A valid sourcefile can also be an includefile.

Each sourcefile in the list is presumed to produce an object file with the same basename and a .o extension in the
current working directory. If more than one sourcefile in the list would produce identically-named object files, only
the first is used and the rest are discarded. This permits the use of overlays: if dir3 contained the basic source code,
dir2 contained bugfixes, and dir1 contained mods for a particular run, mkmf dir1 dir2 dir3 would create
a makefile for correct compilation. Please note that precedence descends from left to right. This is the conventional
order used by compilers when searching for libraries, includes, etc: left to right along the command line, with the first
match invalidating all subsequent ones. See the Examples section for a closer look at precedence rules.

The makefile currently runs $(FC) on fortran files and $(CC) on C files (unless the -w flag is specified). Flags to the
compiler can be set in $(FFLAGS) or $(CFLAGS). The final loader step executes $(LD). Flags to the loader can be
set in $(LDFLAGS). Preprocessor flags are used by .F, .F90 and .c files, and can be set in $(CPPFLAGS). These
macros have a default meaning on most systems, and can be modified in the template file. The predefined macros can
be discovered by running make -p.

In addition, the macro $(CPPDEFS) is applied to the preprocessor. This can contain the cpp #defines which may
change from run to run. cpp options that do not change between compilations should be placed in $(CPPFLAGS).

6.228. mkmf 959

https://github.com/NOAA-GFDL/mkmf

DART, Release 9.10.3

If the -w flag is given the commands run are $(MPIFC) on fortran files, $(MPICC) on C files, and $(MPILD) for
the loader step. The flags retain their same values with or without the -w flag. (This is a local addition.)

Includefiles are recursively searched for embedded includes.

For emacs users, the make target TAGS is always provided. This creates a TAGS file in the current working directory
with a cross-reference table linking all the sourcefiles. If you don’t know about emacs tags, please consult the emacs
help files! It is an incredibly useful feature.

The default action for non-existent files is to touch them (i.e create null files of that name) in the current working
directory.

All the object files are linked to a single executable. It is therefore desirable that there be a single main program source
among the arguments to mkmf, otherwise, the loader is likely to complain.

6.228.4 Treatment of [args]

The argument list args is treated sequentially from left to right. Arguments can be of three kinds:

• If an argument is a sourcefile, it is added to the list of sourcefiles.

• If an argument is a directory, all the sourcefiles in that directory are added to the list of sourcefiles.

• If an argument is a regular file, it is presumed to contain a list of sourcefiles. Any line not containing a sourcefile
is discarded. If the line contains more than one word, the last word on the line should be the sourcefile name, and
the rest of the line is a file-specific compilation command. This may be used, for instance, to provide compiler
flags specific to a single file in the sourcefile list.

a.f90
b.f90
f90 -Oaggress c.f90

This will add a.f90, b.f90 and c.f90 to the sourcefile list. The first two files will be compiled using the generic
command $(FC) $(FFLAGS). But when the make requires c.f90 to be compiled, it will be compiled with f90
-Oaggress.

The current working directory is always the first (and top-precedence) argument, even if args is not supplied.

6.228.5 Treatment of [-c cppdefs]

The argument cppdefs is treated as follows. cppdefs should contain a comprehensive list of the cpp #defines
to be preprocessed. This list is compared against the current “state”, maintained in the file .cppdefs in the current
working directory. If there are any changes to this state, mkmf will remove all object files affected by this change,
so that the subsequent make will recompile those files. Previous versions of mkmf attempted to touch the relevant
source, an operation that was only possible with the right permissions. The current version works even with read-only
source.

The file .cppdefs is created if it does not exist. If you wish to edit it by hand (don’t!) it merely contains a list of the
cpp flags separated by blanks, in a single record, with no newline at the end.

cppdefs also sets the make macro CPPDEFS. If this was set in a template file and also in the -c flag to mkmf,
the value in -c takes precedence. Typically, you should set only CPPFLAGS in the template file, and CPPDEFS via
mkmf -c.

960 Chapter 6. References

DART, Release 9.10.3

6.228.6 Treatment of includefiles

Include files are often specified without an explicit path, e.g:

#include "config.h"

mkmf first attempts to locate the includefile in the same directory as the source file. If it is not found there, it looks in
the directories listed as arguments, maintaining the same left-to-right precedence as described above.

This follows the behaviour of most f90 compilers: includefiles inherit the path to the source, or else follow the order of
include directories specified from left to right on the f90 command line, with the -I flags descending in precedence
from left to right.

If you have includefiles in a directory dir other than those listed above, you can specify it yourself by including
-Idir in $(FFLAGS) in your template file. Includepaths in the template file take precedence over those generated
by mkmf. (I suggest using FFLAGS for this rather than CPPFLAGS because fortran includes can occur even in
source requiring no preprocessing).

6.228.7 Examples

The template file for the SGI MIPSpro compiler contains:

FC = f90
LD = f90
CPPFLAGS = -macro_expand
FFLAGS = -d8 -64 -i4 -r8 -mips4 -O3
LDFLAGS = -64 -mips4 $(LIBS)
LIST = -listing

The meaning of the various flags may be divined by reading the manual. A line defining the make macro LIBS, e.g:

LIBS = -lmpi

may be added anywhere in the template to have it added to the link command line.

Sample template files for different OSs and compilers are available in the directory /net/vb/public/bin.

This example illustrates the effective use of mkmf’s precedence rules. Let the current working directory contain a file
named path_names containing the lines:

updates/a.f90
updates/b.f90

The directory /home/src/base contains the files:

a.f90
b.f90
c.f90

Typing mkmf path_names /home/src/base produces the following Makefile:

Makefile created by mkmf

.DEFAULT:
-touch $@

all: a.out
c.o: /home/src/base/c.f90

(continues on next page)

6.228. mkmf 961

DART, Release 9.10.3

(continued from previous page)

$(FC) $(FFLAGS) -c /home/src/base/c.f90
a.o: updates/a.f90

$(FC) $(FFLAGS) -c updates/a.f90
b.o: updates/b.f90

$(FC) $(FFLAGS) -c updates/b.f90
./c.f90: /home/src/base/c.f90

cp /home/src/base/c.f90 .
./a.f90: updates/a.f90

cp updates/a.f90 .
./b.f90: updates/b.f90

cp updates/b.f90 .
SRC = /home/src/base/c.f90 updates/a.f90 updates/b.f90
OBJ = c.o a.o b.o
OFF = /home/src/base/c.f90 updates/a.f90 updates/b.f90
clean: neat

-rm -f .cppdefs $(OBJ) a.out
neat:

-rm -f $(TMPFILES)
localize: $(OFF)

cp $(OFF) .
TAGS: $(SRC)

etags $(SRC)
tags: $(SRC)

ctags $(SRC)
a.out: $(OBJ)

$(LD) $(OBJ) -o a.out $(LDFLAGS)

Note that when files of the same name recur in the target list, the files in the updates directory (specified in
path_names) are used rather than those in the base source repository /home/src/base.

Assume that now you want to test some changes to c.f90. You don’t want to make changes to the base source
repository itself prior to testing; so you make yourself a local copy.

$ make ./c.f90

You didn’t even need to know where c.f90 originally was.

Now you can make changes to your local copy ./c.f90. To compile using your changed copy, type:

$ mkmf path_names /home/src/base
$ make

The new Makefile looks like this:

Makefile created by mkmf

.DEFAULT:
-touch $@

all: a.out
c.o: c.f90

$(FC) $(FFLAGS) -c c.f90
a.o: updates/a.f90

$(FC) $(FFLAGS) -c updates/a.f90
b.o: updates/b.f90

$(FC) $(FFLAGS) -c updates/b.f90
./a.f90: updates/a.f90

cp updates/a.f90 .

(continues on next page)

962 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

./b.f90: updates/b.f90
cp updates/b.f90 .

SRC = c.f90 updates/a.f90 updates/b.f90
OBJ = c.o a.o b.o
OFF = updates/a.f90 updates/b.f90
clean: neat

-rm -f .cppdefs $(OBJ) a.out
neat:

-rm -f $(TMPFILES)
localize: $(OFF)

cp $(OFF) .
TAGS: $(SRC)

etags $(SRC)
tags: $(SRC)

ctags $(SRC)
a.out: $(OBJ)

$(LD) $(OBJ) -o a.out $(LDFLAGS)

Note that you are now using your local copy of c.f90 for the compile, since the files in the current working directory
always take precedence. To revert to using the base copy, just remove the local copy and run mkmf again.

This illustrates the use of mkmf -c:

$ mkmf -c "-Dcppflag -Dcppflag2=2 -Dflag3=string ..."

will set CPPDEFS to this value, and also save this state in the file .cppdefs. If the argument to -c is changed in a
subsequent call:

$ mkmf -c "-Dcppflag -Dcppflag2=3 -Dflag3=string ..."

mkmf will scan the source list for sourcefiles that make references to cppflag2, and the corresponding object files
will be removed.

6.228.8 Caveats

In F90, the module name must occur on the same source line as the module or use keyword. That is to say, if your
code contained:

use &
this_module

it would confuse mkmf. Similarly, a fortran include statement must not be split across lines.

Two use statements on the same line is not currently recognized, that is:

use module1; use module2

is to be avoided.

mkmf provides a default action for files listed as dependencies but not found. In this case, mkmf will touch the file,
creating a null file of that name in the current directory. It is the least annoying way to take care of a situation when
cpp #includes buried within obsolete ifdefs ask for files that don’t exist:

#ifdef obsolete
#include "nonexistent.h"
#endif

6.228. mkmf 963

DART, Release 9.10.3

If the formatting flag -f is used, long lines will be broken up at intervals of 256 characters. This can lead to problems
if individual paths are longer than 256 characters.

6.229 Copyright

Copyright 2021 University Corporation for Atmospheric Research

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

6.230 Changelog

This file documents the most user-visible changes to the DART code. It is not intended to document every change,
but instead is intended to inform people what features are now available or have been removed. Detailed changes are
always available through the version control framework.

DART now uses Git for version control but has preserved the revision history from when subversion (and CVS before
that) was used. The previous revision numbers can be related to git hashes by searching the output of git log

0[1011] machine:DART % git log > full_git_log.txt

A reminder that since many files were moved or renamed, the best way to get the complete log is to use git log
--follow for information on individual files.

The changes are now listed with the most recent at the top.

May 6 2021 :: fix AMSUA converter bug. Tag: v9.10.3

• AIRS/convert_amsu_L1.f90 correctly handles multiple input files

• separated AIRS/README, convert_amsu_L1, and convert_airs_L2 documentation

May 4 2021 :: issue and pull request templates. Tag: v9.10.2

Github changes

• Templates for pull requests, bug reports and feature requests

Documentation updates

• Removed outdated instructions for checking out a tag

April 29 2021 :: change default GitHub branch. Tag: v9.10.1

• Replaced the default branch (“Manhattan”) with “main”. “main” is now the latest and stable version. The HEAD
of “main” will be the source of releases using the vX.Y.Z format.

April 27 2021 :: preprocess, inflation options, external FO output, wrf-hydro, AMSU-A, DART_LAB. Tag:
v9.10.0

New features

• Updated preprocess:

964 Chapter 6. References

http://www.apache.org/licenses/LICENSE-2.0

DART, Release 9.10.3

– Integers for quantities (kinds) are created and managed by preprocess instead of through a list of integers
in DEFAULT_obs_kind_mod.F90.

– Quantities are defined by name in files: xxx_quantities_mod.f90.

– preprocess is backwards compatible with existing (v9.9.0) DEFAULT_obs_kind_mod.F90 files
and corresponding &preprocess_nml options.

• Inflation algorithm options in &filter_nml can be given as strings.

• External forward operators can be selectively written out by observation type in obs_sequence_tool.

• Updated wrf-hydro interface from James McCreight.

• Added AIRS/convert_amsu_L1.f90 and amsua_bt_mod.f90 to support converting AMSUA bright-
ness temperatures to obs_seq.

• AIRS/airs_JPL_mod.f90 strictly supports HDF-EOS2 (not HDF-EOS5) and is only used for Level 2 (i.e.
retrievals of) temperature and humidity observations.

• POP CESM2.1 scripts use the unzipped CAM reanalysis files available on the Research Data Archive (RDA).

• Enhanced adaptive inflation added to DART_LAB.

• Improved support for RTPS: output posterior inflation files now contain posterior inflation values when using
RTPS.

• Improved support for RTTOV in MPAS:

– loc_sea variable used to create sfc, 2m, 10m locations relative to model surface elevation.

– new error code for pressure not monotonically decreasing with level.

– QTY_CLOUD_FRACTION added.

• E_CONTINUE added to allow programs continue after throwing an error. Used in developer tests.

• Support for more Flux Tower observations (obs_def_tower_mod.f90)

• Expanded support for netcdf in netcdf_utilities_mod.

• Documentation converted to reStructuredText and available online. Reorganization of directories to support this:
docs -> guide, docs/tutorial -> theory.

Bug fixes

• Check for monotonically decreasing pressure from TOA down to surface in obs_def_rttov_mod.f90 now
checks for greater than or equal to previous level.

• External forward operators now use the correct ensemble members when distributed_state=false.

• The obs_sequence_tool now writes out external forward operator values. Thanks to Chris Riedel for
reporting this and providing the original bug-fix.

• obs_def_radar_mod.f90 now correctly applies apply_ref_limit_to_fwd_op when
QTY_RADAR_REFLECTIVITY is in the state. Thanks to Craig Schwartz for providing the bug-fix.

• quality_control_mod.f90 now correctly handles enable_special_outlier = .true.
Thanks to Craig Schwartz for providing the bug-fix.

Removed

• Doxygen directory.

• Removed svn logging variables and register_module for cleaner log messages. The svn info has not been
used since DART moved to Git.

Oct 29 2020 :: radiance support, MPAS, obs converters Tag: v9.9.0

6.230. Changelog 965

DART, Release 9.10.3

• Use RTTOV (Radiative Transfer for TOVS) routines to support radiance assimilation.

– Introduction to DART support for RTTOV

– WRF, MPAS, and CAM-FV model interfaces now support radiance assimilation.

– Added GOES 16-19 ABI converter

• NOTE: The build_templates/mkmf.template file has been removed from version control. You must
now explicitly copy the best example mkmf.template into place before compiling. If there is no mkmf.
template when you try to build, an error message is displayed.

• MPAS regional configurations now supported.

• Converted CHANGELOG to a markdown document, put newest content at top.

• Converted many HTML documents to markdown

– renamed observations/obs_converters/observations.html to observations/
obs_converters/README.md for example.

• Updated Publications

• declare hexadecimal constants according to the Fortran standard.

• GSI2DART converter updated - Thanks to Craig Schwartz & Jamie Bresch.

• The WRF-DART tutorial has been rewritten as models/wrf/tutorial/README.md

• Hydro-DART (AKA wrf-hydro/DART) has been updated to be Manhattan-compliant.

– also support masked bucket

– added perturbed forcing capability

• The support for POP and CESM2 has been implemented and documented.

• obs_diag now correctly handles the special case when the observation is properly assimilated or evaluated
but the posterior forward operator fails. The posterior DART QC in the obs_diag_output.nc should be a
‘2’, not a ‘4’. The prior DART QC value in obs_diag_output.nc can still be a 7 if need be.

• obs_def_tower_mod.f90 was refactored into obs_def_tower_mod.f90 and
obs_def_land_mod.f90.

• WRF-Chem/DART documentation and datasets have been updated for Manhattan. Dr. Arthur Mizzi is the father
of the WRF-Chem/DART project. If you’d like to use WRF-Chem/DART, please email Dr. Mizzi.

• Fixed bug in obs_seq_to_netcdf to correctly append to existing netCDF files.

• Support absolute humidity observations - Thanks to Michael Ying.

• DEFAULT_obs_kind_mod.F90 has many added quantities.

• new observation converters including (but not limited to):

– absolute humidity

– streamflow observations from the Mexican water agency

– streamflow observations from the USGS

– total water storage observations from GRACE

– radiance observations from GOES

• the following forward operator modules are either new or modified:

– (M) observations/forward_operators/DEFAULT_obs_def_mod.F90

966 Chapter 6. References

https://dart.ucar.edu/pages/Publications.html
mailto:mizzi@ucar.edu,dart@ucar.edu?subject=WRF-Chem/DART%20inquiry

DART, Release 9.10.3

– (M) observations/forward_operators/obs_def_GRACE_mod.f90

– (A) observations/forward_operators/obs_def_abs_humidity_mod.f90

– (M) observations/forward_operators/obs_def_altimeter_mod.f90

– (A) observations/forward_operators/obs_def_land_mod.f90

– (A) observations/forward_operators/obs_def_mesonet_mod.f90

– (M) observations/forward_operators/obs_def_oxygen_ion_density_mod.f90

– (M) observations/forward_operators/obs_def_reanalysis_bufr_mod.f90

– (M) observations/forward_operators/obs_def_rel_humidity_mod.f90

– (A) observations/forward_operators/obs_def_rttov_mod.f90

– (A) observations/forward_operators/obs_def_streamflow_mod.f90

– (M) observations/forward_operators/obs_def_tower_mod.f90

– (M) observations/forward_operators/obs_def_upper_atm_mod.f90

– (A) observations/forward_operators/rttov_sensor_db.csv

• fill_inflation_restart now correctly creates inflation values for all variables in the DART state, re-
gardless of the setting of the no update metadata.

• GITM is now fully Manhattan compliant.

• fix bug in madis rawin converter

• avoid computing posterior inflation if using the ‘relaxation to prior spread’ inflation option – Thanks to Craig
Schwartz.

• add additional reporting options to the obs_assim_count utility

Nov 20 2019 :: FESOM,NOAH-MP model support, better testing Tag: v9.8.0

• first release entirely from GIT

• fixed bug in fill_inflation_restart tool which used the prior inflation mean and sd for both prior and
posterior inflation files. now correctly uses the posterior mean/sd if requested.

• fixed a typo in the location test script that prevented it from running

• additional functionality in the quad interpolation code, now supports grids which start at 90 (north) and end at
-90 (south).

• if possible, send shorter MPI messages. improves performance on some platforms and MPI implementations.

• add explicit call to initalize_utilities() where it was missing in a couple of the WRF utility routines.

• added an example of how to use a namelist to the text_to_obs.f90 observation converter program.

• Removing the clamping messages in clamp_variable() of clamped values

• changed argument names using reserved keywords.

– state_vector_io_mod:read_state() 'time' to 'model_time'

– random_seq_mod:random_gamma() 'shape' to 'rshape', 'scale' to
'rscale'

– random_seq_mod:random_inverse_gamma() 'shape' to 'rshape', 'scale' to
'rscale'

– obs_def_mod:init_obs_def() 'kind' to 'obkind', 'time' to 'obtime'

6.230. Changelog 967

DART, Release 9.10.3

– obs_utilities_mod: 'start' to 'varstart', 'count' to 'varcount'

• The FESOM model is now Manhattan-ready. Thanks to Ali Aydogdu

• The noah model is now Manhattan-ready and may be used with NOAH-MP.

• bugfixed references to the documentation directory that was renamed docs to comply with GitHub Pages.

• improved test_dart.csh functionality.

Apr 30 2019 :: cam-fv refactor, posteriors optional, QC 8 Revision: 13138

• The CAM Finite Volume (cam-fv) model_mod.f90 has undergone substantial refactoring to improve sim-
plicity and remove code for unsupported CAM variants while also supporting WACCM and WACCM-X.
Namelist changes will be required.

• cam-fv setup and scripting support added for CESM 2.1, including advanced archiving and compression

• fix for WRF’s wind direction vectors when using the Polar Stereographic map projection. Thanks to Kevin
Manning for the fix.

• Add filter namelist option to avoid calling the posterior forward operators and to not create those copies in the
obs_seq.final file.

• Use less memory if writing ensemble member values into the obs_seq.final file.

• added a DART QC of 8 for failed vertical conversions

• updated Matlab scripts support QC=8 and no posterior in obs sequence files.

• sampling error correction table now has all ensemble sizes between 3 and 200

• closest_member_tool can be compiled with other MPI targets

• COSMIC_ELECTRON_DENSITY has been moved from obs_def_gps_mod.f90 to
obs_def_upper_atm_mod.f90, which has new quantities for ION_O_MIXING_RATIO and
ATOMIC_H_MIXING_RATIO

• obs_converters/gps/convert_cosmic_ionosphere.f90 has a test dataset

• support for NAG compiler

• fixed Intel compiler bug in lorenz_96 comparing long integers to integer loop indices

• get_maxdist() now a required routine all location modules

• Default routines now create a time variable as time(time) to allow multiple files to be concatenated along
the unlimited dimension more easily. Also conforms to the netCDF convention for coordinate dimensions.

• obs_impact_tool handles a continuum of values, not just discrete 0 or 1.

• fill_inflation_restart now produces files with names consistent with filter defaults.

• expanded functionality in xyz_location_mod.f90

• Removed ‘slow’ sorting routines from sort_mod.f90

• replacing some repeated native netCDF library calls with routines from the netcdf_utilities_mod.f90

• Updated dewpoint equation to avoid dividing by zero given a very unlikely scenario (r12832)

• More efficient implementation of adaptive inflation

• Yongfei Zhang and Cecilia Bitz added improvements to the CICE model and observation converters and for-
ward operators. These changes also use the locations of the ‘new’ glade filesystem. They used CESM tag:
cesm2_0_alpha06n

968 Chapter 6. References

DART, Release 9.10.3

• Worked with Yongfei Zhang to remove prototype codes and more completely document observation converters
and data sources for cice assimilation.

• removed allow_missing_in_clm flag from the &assim_tools_nml namelist in the CICE work direc-
tory. The flag moved to a different namelist and the CICE model doesn’t care about it.

• increased the maximum number of input files to obs_diag from 100 to 10000.

• Updated the developer_tests to include more cases.

• Updated oned/obs_diag.f90 to support obs_seq.out files.

• Better error and informational messages in various routines.

Aug 03 2018 :: performance fix for distributed mean Revision: 12758

• Important performance fix if model does vertical conversion for localization. Results were not wrong but per-
formance was poor if distribute_mean = .true. was selected in the &assim_tools_nml namelist.

Now distributing the mean runs in close to the non-distributed time and uses much less memory for large models.
This only impacts models which do a vertical conversion of either the observation or state vertical coordinate
for localization AND which set &assim_tools_nml :: distribute_mean = .true. to use less
memory.

When using a distributed mean convert_all_obs_verticals_first = .true. should be set. If
your observations will impact most of the model state, then convert_all_state_verticals_first
= .true. can also be set.

Jun 18 2018 :: CAM/CESM 2.0, DART QC 8, closest_member_tool Revision: 12682

• Support for cam-fv assimilations in the CESM 2.0 release. See documentation in models/cam-fv/doc/
README_cam-fv for details.

• obs_diag and matlab scripts updated to report statistics on DART QC 8, observation failed vertical conversion

• Updates to fix minor problems with the new WRF scripts

• Added the inf_sd_max_change namelist item to all input.nml files for the enhanced inflation option

• Revival of the closest_member_tool, which now runs in parallel on all ensemble members at one time.
This tool can be used as a template for any other tools which need to process something for all ensemble
members in parallel.

• Revival of the fill_inflation_restart tool as a Fortran 90 program. Using ncap2 is still possible, but
if the correct version is not installed or available this tool can be used.

• Added more functions to the netcdf_utilities_mod.f90

May 21 2018 :: enhanced inflation option, scripting Revision: 12591

• Enhanced inflation algorithm added. See the filter_mod.html for new documentation on this option.

• Updated WRF scripts for the Manhattan release.

• obs_diag reports statistics on DART QC 8, observation failed vertical conversion. Matlab scripts also updated
to support QC 8.

• New parallel conversion scripts for GPS Radio Occultation observations and NCEP prepbufr conversions.

• Further updates to documentation files to change KIND to QTY or Quantity.

• Documented required changes when moving from the Lanai/Classic release to Manhattan in
documentation/html/Manhattan_diffs_from_Lanai.html

• Expanded the routines in the netcdf_utilities_mod.f90

• Add an ensemble handle parameter to the 6 ensemble manager routines where it was missing.

6.230. Changelog 969

DART, Release 9.10.3

• The advance_time program can read/generate CESM format time strings (YYYY-MM-DD-SSSSS).

• Fixed a bug in the netcdf read routines that under certain circumstances could report an array was using the
unlimited dimension incorrectly.

• Removed the option to try to bitwise reproduce Lanai results; due to the number of changes this is no longer
possible.

• Minor bug fixes to the (seldom used) perturb routines in the WRF and mpas_atm model_mod.f90 files.
(used to add gaussian noise to a single model state to generate an ensemble; this is never the recommended
method of starting a new experiment but the code remains for testing purposes.)

• Several remaining model-specific model_mod_check programs were removed in favor of a single common
program source file.

• Keep filter_mod.dopplerfold.f90 in sync with filter_mod.f90, and assim_tools_mod.
pf.f90 in sync with assim_tools_mod.f90.

• Removed makefiles for the obsolete trans_time program.

Mar 01 2018 :: ROMS, MMC, PMO, mpas_atm debug, etc Revision: 12419

• Fix a debug message in the mpas_atm model which might have caused a buffer overflow crash when formatting
a message for a larger ensemble size.

• Update the ROMS shell scripts to support PBS, SLURM, as well as LSF. Update the ROMS model_mod html
documentation.

• Update the default cam-fv input.nml to have more realistic values for the highest observation assimilated,
and for where the ramp starts that decreases the increments at the model top. If running with a higher model top
than the default check these items carefully.

• Fixed variable type for time variables we create in diagnostic files

• Miscellaneous minor Bug fixes:

– Print format wider for fractional levels in threed_sphere locations

– Fixed a deallocate call at program shutdown time

– Fixed an indexing problem computing cam-fv U_WIND observations if the observation used HEIGHT
as the vertical coordinate (very unusual).

– Fixed grid creation bug in a test program used with model_mod_check. Now uses correct spacing for
grids in the x,y coordinates.

– Fixed an allocate problem in a test interpolate routine.

• Add surface pressure to the default state list in the wrf work/input.nml

• developer_tests/test_dart.csh can run PMO for more models. required updates to the work/
input.nml in several directories (wrf, cm1, POP, mpas_atm) to match the current namelist.

• several model_mod_check programs were combined into a single version that allows for selection
of individual tests. many of the input.nml models/xxx/work/input.nml files have either had a
&model_mod_check_nml section added or updated to match the updated interface.

• the DART QTYs are now available via the state structure in the wrf and clm model_mods.

• support the NAG compiler better. (contact dart@ucar.edu for more help if you want to use this compiler. some
hand work is still needed.)

• streamlined the debug output from the state_structure_info() call to avoid replicating information
that was the same for all variables.

970 Chapter 6. References

mailto:dart@ucar.edu

DART, Release 9.10.3

• minor formatting change to the dart log file output for the list of observation types being assimilated, evaluated,
and using precomputed forward operators.

• fixed an uninitialized variable in the BGRID model code in a routine that isn’t normally used.

• Updated the threed_sphere location module documentation with some usage notes about issues commonly
encountered.

• Fixed an incorrect test when printing out a log message describing if the inflation would be variance-adaptive or
not.

• Change the location of the POP MDT reference file to be relative to the current run directory and not an absolute
file location on cheyenne.

• Make the ROMS, CM1, and POP model_mod log namelist information to the namelist log file and not the main
DART log file.

• Updated several html documentation files, including the template/model_mod.html which describes the
current model_mod required interfaces.

• Updated the instructions for the GSI to DART obs converter to suggest some needed compiler flags in certain
cases.

• Updated the location module test programs.

Dec 01 2017 :: ROMS scripting, debugging aids Revision: 12166

• Added an option to the ROMS model scripting to advance the model ensemble members in parallel using a job
array.

• Updated the DART_LAB Matlab GUIs to log a history of the settings and results.

• Added a debug option to the filter namelist, write_obs_every_cycle, to output the full
obs_seq.final during each cycle of filter.
(Very slow - use only when debugging a filter crash.)

• Allow the test grid in model_mod_check to cross the prime meridian for testing longitude interpolation in
grids that cross the 360/0 line.

Nov 22 2017 :: minor updates for DA challenge files Revision: 12144

• added obs_seq.in.power to the Lorenz 96 directory

• added new obs types to the workshop version of the input.nml assimilation list

Nov 21 2017 :: 1D obs_diag fix, 1D power forward operator Revision: 12138

• fixed a bad URL reference in tutorial section 18

• fixed a crash with the 1D version of the observation diagnostics program when including identity observations.

• all models with a workshop_setup.csh now build the same set of programs. (some/most did not build
obs_diag - which is used in the tutorial)

• added a 1D obs-to-a-power forward operator.

• updates to the matlab plotting routines for NetCDF observation formats

• World Ocean Database (WOD) converter supports partial year conversions and 2013 file formats.

Oct 17 2017 :: mpas_atm bug fix, various other updates. Revision: 12002

• Fixed a bug in the mpas_atm model_mod that affected surface observations, in particular altimeter obs. also
fixed a bug in the vertical conversion if using ‘scale height’ as the vertical localization type.

6.230. Changelog 971

DART, Release 9.10.3

• Fixed a bug in the cam-fv model_mod which might have excluded observations with a vertical coordinate of
height (meters) which were in fact below the equivalent highest_obs_pressure_Pa namelist setting. also fixed a
possible memory leak.

• Added two new modules: options_mod.f90 and obs_def_utilities_mod.f90 this was required
so we didn’t have circular dependencies in our modules as we reused common code in more places. We have
updated all the path_names* files which are in the repository. if you have your own path_names files you
may need to add these new modules to your path lists.

– assimilation_code/modules/utilities/options_mod.f90

– observations/forward_operators/obs_def_utilities_mod.f90

• Removed QTY_SURFACE_TEMPERATURE from the default obs quantities list and added
QTY_2M_SPECIFIC_HUMIDITY. QTY_2M_TEMPERATURE exists for atmospheric models, and
QTY_SKIN_TEMPERATURE and QTY_SOIL_TEMPERATURE exist for other models. if you were us-
ing QTY_SURFACE_TEMPERATURE please replace it with the corresponding other temperature quantity.

• Updated and improved the observation converter for ionospheric observations from the COSMIC GPS satellite.

• Updated the cam-fv scripts for cesm2_0_beta05.

• Updated the Matlab diagnostics documentation. ‘help DART’ or ‘doc DART’ will give an overview of the
available Matlab diagnostics shipped with the dart distribution.

• Added the observation type COSMIC_ELECTRON_DENSITY to the obs_def_upper_atm_mod

• dart_to_clm and clm_to_dartwere resurrected to correctly handle conversions for the SWE (snow water
equivalent) field.

• Updated the channel and column location modules to be compatible with the current required interfaces.

• Updated the model_mod_check.f90 program (most often used when porting DART to a new model). there
is now more control over exactly which tests are being run. updated the nml and html documentation files to
match the current code and describe the tests in more detail.

• Fixed a misleading status message in the obs_sequence_tool when all obs are excluded by the min/max
lon/lat box namelist items. the incorrect message blamed it on observation height instead of the bounding box.

• Added some additional debugging options to the mpi utilities module. if you have problems that appear to be
MPI related, contact us for more help in enabling them.

• Improved some error messages in location_io_mod and state_structure_mod

Aug 2 2017 :: single filenames, random distributions, bug fixes. Revision: 11864

• added code to support listing input and output filenames directly in the namelist instead of having to go through
an indirect text file. most useful for programs that take a single input and output file, but works for all cases.

• bug fix in location_io_mod.f90 that affected obs_seq_to_netcdf (error in adding vertical location
types to output file).

• fix to convert_gpsro_bufr.f90 converter (GPS obs from BUFR files) that failed if r8 defined to be r4.

• added draws from gamma, inverse gamma, and exponential distributions to the random sequence module.

• various updates to the cam scripts to work more smoothly with the most recent CIME changes and DART
Manhattan updates.

• added QTY_CWP_PATH and QTY_CWP_PATH_ZERO to the default quantities list for the
obs_def_cwp_mod.f90 forward operator.

• improved some error messages in the diagnostic matlab scripts

July 18 2017 :: bug fixes, documentation updates. Revision: 11830

972 Chapter 6. References

DART, Release 9.10.3

• fixed bug in obs_impact_tool when generating the run-time table. specifying a generic quantity resulted
in selecting the wrong specific obs types.

• fixed a bug that would not allow filter to start from a single ensemble member if single_file_in = .
true.

• updates to HTML documentation especially for types/quantities (replacing kinds)

• updates to input.nml namelists, code comments, and shell scripts where names changed from restart to
state for input and output files.

July 7th 2017 :: cam-fv, mpas_atm scripts, single file i/o. Revision: 11807

• mpas_atm: scripts completely revised for the Manhattan release. Many thanks to Soyoung Ha and Ryan Torn
for the contributed code.

• cam-fv: scripts and model_mod.f90 updated for cesm2_0_beta05.

Single File I/O:

• Now we are able to run single_file_in and single_file_out with MPI.

• single_file_io_mod.f90 has been removed and its functionality has been moved to
direct_netcdf_mod.f90.

• single_file_io_mod.f90 has been removed from all of the path_names_* files in the repository.
(Remove it from any private path_names_* files.)

June 27rd 2017 :: CICE 5, model_mod_check, tutorial. Revision: 11770

• Updated support for CICE5.

• Updated support for model_mod_check - now compatible with netCDF input files, input is through [in-
put,output]_state_files namelist variable (variables renamed).

• Ensured consistency between low-order namelists and the updated DART tutorial. Updated documentation of
many namelists. More to come.

• location_mod: namelist variable maintain_original_vert was deprecated, it is now removed. You
must remove it from your existing namelists or DART will error out immediately.

• obs_diag: namelist variables rat_cri and input_qc_threshold have been deprecated for years, they
have been removed. You must remove them from your existing namelists or obs_diag will error out immediately.

Jun 2nd 2017 :: tutorial, DART_LAB, and various updates. Revision: 11696

• bring the DART tutorial pdf slides up to date with the current release.

• include new GUIs with adaptive inflation options in DART_LAB:

– oned_model_inf.m

– run_lorenz_96_inf.m

• added the lorenz_96_2scale model - additional kinds of QTY_SMALL_SCALE_STATE and
QTY_LARGE_SCALE_STATE added as required.

• add useful attributes to the variables in the diagnostic files

• updates and minor bug fixes to the matlab diagnostic scripts

• updates to the default input.nmls for models

• updates to the cam-fv shell scripts to work with the CESM2.0 framework

• updates to the cam-fv model_mod for support of cam-chem variables Added more QUANTITIES/KINDS
for chemistry species. Removed support for ‘stand-alone’ cam and cam-se (cam-se will be a separate ‘model’).

6.230. Changelog 973

DART, Release 9.10.3

• major bug fix in the simple_advection model_mod: Fixed an error with the layout of the state vector.

• obs_def_radar_mod: Fixed a serious bug in the fall velocity forward operator. If the fall speed field is not
in the state the test for a bad istatus from the interpolate() call was looking at the wrong variable and returning
ok even if interpolate() had set bad values.

• bug fix in the wrf model_mod for fields which have a vertical stagger

• fix to the makefiles for the GSI2DART observation converter

• added additional netcdf and location utility routines

• various fixes to documentation and test code

• renamed QTY_RAW_STATE_VARIABLE to QTY_STATE_VARIABLE (RAW is redundant)

• direct_netcdf_mod: Renamed limit_mem to buffer_state_io. buffer_state_io is now a
logical that states if a variable that tells DART it it should read and write variables all at once or variable-by-
variable.

May 5th 2017 :: major changes to model_mod interfaces. Revision: 11615

A long-awaited overhaul of the model_mod interfaces. All models which are in our subversion repository and are
supported in the Manhattan release have been updated to match the new interfaces. If you have model_mods with
extensive changes, our recommendation is to diff your changes with the version you checked out and insert those
changes into the new version. The changes for this update are unfortunately extensive.

The detailed list of changes:

model_mod::get_state_meta_data() is no longer passed an ensemble_handle as the first argu-
ment. it should not do vertical coordinate conversion. that will be done as a separate step by
convert_vertical_state()

model_mod::vert_convert is replaced by convert_vertical_state() and
convert_vertical_obs() Any vertical conversion code that was in get_state_meta_data should
be moved to convert_vertical_state() which has access to the state vector index, so the code should move
easily.

model_mod::query_vert_localization_coord is no longer a required inter-
face model_mod::get_close_maxdist_init is not longer a required interface
model_mod::get_close_obs_init is not longer a required interface

model_mod::get_close_obs has a different calling convention and is split into get_close_obs() and
get_close_state(). the close obs routine is passed both the obs types and quantities, and the close state routine
is passed both the state quantities and the state index, for ease in vertical conversion if needed.

model_mod::nc_write_model_vars() is deprecated for now; it may return in a slightly different form in the
future.

model_mod::nc_write_model_atts() is now a subroutine with different arguments. it should now only
write any global attributes wanted, and possibly some grid information. it should NOT write any of the state variables;
those will be written by DART routines.

model_mod::get_model_size() needs to return an i8 (a long integer) for the size.

A new module default_model_mod supplies default routines for any required interfaces that don’t need to be
specialized for this model.

A new module netcdf_utilities_mod can do some simple netcdf functions for you and we plan to add many
more over the next couple months.

model_mod::get_model_time_step has been replaced by shortest_time_between_assimilations()
since in fact it has always controlled the minimum time filter would request a model advance and never had anything
to do with the internal time step of the dynamics of the model.

974 Chapter 6. References

DART, Release 9.10.3

We have removed output_state_vector from the namelist of all model_mods since we no longer output a single
1d vector. all i/o is now in netcdf format.

Models now have more control over when vertical conversion happens - on demand as needed, or all up front before
assimilation.

Models that were doing vertical conversion in get_state_meta_data should set:

&assim_tools_nml
convert_all_state_verticals_first = .true.
convert_all_obs_verticals_first = .true.

Models which were not should set:
convert_all_state_verticals_first = .false.
convert_all_obs_verticals_first = .true.

The location_mod::vert_is_xxx() routines have become a single is_vertical(loc, "string")
where string is one of: “PRESSURE”, “HEIGHT”, “SURFACE”, “LEVEL”, “UNDEFINED”, “SCALE_HEIGHT”

Models doing vertical localization should add a call to set_vertical_localization_coord() in their
static_init_model() routine to tell dart what vertical coordinate system they are expecting to convert to for
vert localization

Most path_names_xxx files have been updated to add additional modules. compare against what is checked out to
see the differences.

Some of the internal changes include pulling common code from the locations modules into a location_io_mod
which contains common functions for creating and writing ‘location’ variables for any location type.

QTY_RAW_STATE_VARIABLE is redundant and was shortened to QTY_STATE_VARIABLE

Many utility programs use the template/model_mod.f90 because they do not depend on any model-specific
functions. this file was also updated to match the new interfaces.

The obs_impact facility is enabled in the assim_tools namelist. you can use the obs_impact_tool to
construct a table which prevents one class of observations from impacting another class of state.

Sampling Error Correction now reads the values it needs from a single netcdf file found in assimilation_code/
programs/gen_sampling_err_table/work. Copy it to the same directory as where filter is running. All
ensemble sizes which were previously in final_full.XX files are included, and there is a tool to generate and
append to the file any other ensemble size required.

April 27th 2017 :: diagnostic file changes. Revision: 11545

Two additional Diagnostic Files (forecast and analysis) in Filter which can be set with the namelist option
(stages_to_write)

• input writes out mean and sd if requested.

– For low order models, mean and sd are only inserted into restart files with a single time step.

• forecast

– contains the forecast and potentially the mean and sd for the, this is mostly important for lower order
models which cycle

• preassim before assimilation

– No Inflation: same as forecast

– Prior Inf: the inflated ensemble and damped prior inf

– Post Inf: same as forecast

– Prior and Post Inf: the inflated ensemble and damped prior inf

6.230. Changelog 975

DART, Release 9.10.3

• postassim after assimilation (before posterior infation)

– No Inflation: same as analysis

– Prior Inf: same as analysis

– Post Inf: assimilated ensemble and damped posterior inflation

– Prior and Post Inf: assimilated ensemble and damped posterior inflation

• analysis after assimilation and before potentially update posterior inflation ensemble and updated prior inf

– No Inflation: assimilated ensemble

– Prior Inf: assimilated ensemble and updated prior inf

– Post Inf: post inflated ensemble and updated posterior inflation

– Prior and Post Inf: post inflated ensemble and updated prior inf and posterior inflation

• output

– a single time step of the output ensemble and potentially updated prior inf and posterior inflation

Feb 15th 2017 :: filter updates. Revision: 11160

The postassim diagnostics file was being incorrectly written after posterior inflation was applied. It is now written
immediately after the assimilation update, and then posterior inflation, if enabled, is applied.

Sampling Error Correction now reads data from a single netcdf file for any ensemble size. To add other sizes, a program
can generate any ensemble size and append it to this file. The default file is currently in system_simulation:

system_simulation/work/sampling_error_correction_table.nc

Filter and PMO no longer need the “has_cycling” flag.

Changes to the filter_nml are :

• has_cycling REMOVED for low order models

Changes to the perfect_model_obs_nml are :

• has_cycling REMOVED for low order models

Feb 15th 2017 :: rma_single_file merge changes. Revision: 11136

Filter and PMO can now run with multiple cycles for low order models. The output for this is only supported with
single file output (members, inflation, mean, sd are all in the same file).

Added matlab support for diagnostics format in lower order models.

Changes to the filter_nml are :

• output_restart RENAMED to output_members

• restart_in_file_name RENAMED to input_state_file_list

• restart_out_file_name RENAMED to output_state_file_list

• single_restart_file_in RENAMED to single_file_in

• single_restart_file_out RENAMED to single_file_out

• input_state_files ADDED - not currently working

• output_state_files ADDED - not currently working

• has_cycling ADDED for low order models

Changes to the perfect_model_obs_nml are :

976 Chapter 6. References

DART, Release 9.10.3

• start_from_restart RENAMED read_input_state_from_file

• output_restart RENAMED write_output_state_to_file

• restart_in_file_name RENAMED input_state_files

• restart_out_file_name RENAMED output_state_files

• single_file_in ADDED for low order models

• single_file_out ADDED for low order models

• has_cycling ADDED for low order models

Jan 13th 2017 :: rma_fixed_filenames merge changes. Revision: 10902

Specific namelist changes include:

1. Earlier versions of the RMA branch code supported both direct NetCDF reads/writes and the original
binary/ascii DART format restart files.
As of the next update DART format files are no longer supported. All I/O is NetCDF only. If your model does
not use NetCDF you will still need a model_to_dart and dart_to_model converter; otherwise all DART
programs read the model’s NetCDF files directly. The namelist options related to selecting direct netcdf I/O
have been removed.

2. Diagnostic and state space data (such as inflation, mean and sd information) that were previously stored in
{Prior,Posterior}_Diag.nc are now broken up into multiple files and have fixed filenames. This decreases the IO
time for diagnostic output and reduces the number of namelist options.

3. There is no longer support for observation space inflation (i.e. inf_flavor = 1). Contact us at dart@ucar.edu if
you have an interest in using this option.

Changes to the filter_nml are :

• restart_in_file_name has been replaced with input_restart_file_list. The namelist must
contain one or more file names, each of which is a textfile containing a list of N NetCDF restart files, one per
line for each ensemble member. For models with multiple domains (e.g. nested WRF or CLM) you must specify
a listfile for each domain.

• restart_out_file_name has been replaced with output_restart_file_list. Same format as
input_restart_file_list.

• inf_in_file_name REMOVED, now have fixed names of the form in-
put_{prior,posterior}inf_{mean,sd}.nc

• inf_out_file_name REMOVED, now have fixed names of the form out-
put_{prior,posterior}inf_{mean,sd}.nc.

• inf_diag_filename REMOVED

• inf_output_restart REMOVED, inflation restarts will be written out if inflation is turned on

• output_inflation REMOVED, inflation diagnostic files will be written if inflation is turned on

• stages_to_write There is more control over what state data to write. Options are at stages : ‘input’,
‘preassim’, postassim’, ‘output’.
Stages preassim and postassim will output state data originally contained within the copies of
Prior_Diag.nc and Posterior_Diag.nc. See rma_doc/rma.html for details on the filename
conventions. For example, running filter with prior inflation enabled with stage ‘preassim’ enabled will
produce files with names:

– preassim_member_####.nc

– preassim_{mean,sd}.nc

6.230. Changelog 977

mailto:dart@ucar.edu

DART, Release 9.10.3

– preassim_priorinf_{mean,sd}.nc

• write_all_stages_at_end important for large models - all output file I/O is deferred until the end of
filter, but will use more memory to store the data. More detailed info is in rma_doc/rma.html

• output_restart_mean renamed output_mean

• output_restart renamed output_restarts

• direct_netcdf_{read,write} REMOVED, always true

• restart_list_file renamed input_restart_file_list

• single_restart_file_in renamed single_file_in

• single_restart_file_out renamed single_file_out

• add_domain_extension REMOVED

• use_restart_list REMOVED

• overwrite_state_input REMOVED, equivalent functionality can be set with
single_restart_file_in = single_restart_file_out

Changes to the perfect_model_obs_nml are :

• restart_in_filename renamed restart_in_file_names takes a NetCDF file. For multiple do-
mains you can specify a list.

• direct_netcdf_{read,write} REMOVED, always true

Changes to the state_space_diag_nml are :

• single_file REMOVED, diagnostic files are now controlled in filter_nml with stages_to_write

• make_diagnostic_files REMOVED, no longer produce original Prior_Diag.nc and
Posterior_Diag.nc

• netCDF_large_file_support REMOVED, always true

Changes to the state_vector_io_nml are :

• write_binary_restart_files REMOVED

Changes to the ensemble_manager_nml are :

• flag_unneeded_transposes – REMOVED

Changes to the integrate_model_nml are :

• advance_restart_format – REMOVED, only supporting NetCDF format.

Scripting with CESM :

See models/cam-fv/scripts_cesm1_5/assimilate.csh for an example of how to handle the new file-
name conventions.

(To help find things: input_priorinf_mean output_priorinf_mean)
{in,out}put_{prior,post}inf_{mean,sd}.nc ARE in use;

Search for stage_metadata%filenames turned up
interface set_file_metadata

module procedure set_explicit_file_metadata
module procedure set_stage_file_metadata

! stage_name is {input,preassim,postassim,output}
! base_name is {mean,sd,{prior,post}inf_{mean,sd}} from filter/filter_mod.f90.
write(string1,'(A,''.nc'')') trim(stage_name)//'_'//trim(base_name)

(continues on next page)

978 Chapter 6. References

DART, Release 9.10.3

(continued from previous page)

file_info%stage_metadata%filenames(my_copy,1) = trim(string1)

This shows where inflation file names are defined.
> grep -I set_file_metadata */*.f90 | grep inf

filter/filter_mod.f90:
call set_file_metadata(file_info, PRIOR_INF_MEAN, stage, 'priorinf_mean',

→˓'prior inflation mean')
call set_file_metadata(file_info, PRIOR_INF_SD, stage, 'priorinf_sd',

→˓'prior inflation sd')
call set_file_metadata(file_info, POST_INF_MEAN, stage, 'postinf_mean',

→˓'posterior inflation mean')
call set_file_metadata(file_info, POST_INF_SD, stage, 'postinf_sd',

→˓'posterior inflation sd')

subroutine set_member_file_metadata(file_info, ens_size, my_copy_start)
call set_file_metadata(file_info, icopy, stage_name, base_name, desc, offset)

subroutine set_stage_file_metadata(file_info, copy_number, stage, base_name, desc,
→˓ offset)

write(string1,'(A,''.nc'')') trim(stage_name)//'_'//trim(base_name)

subroutine set_explicit_file_metadata(file_info, cnum, fnames, desc)
file_info%stage_metadata%filenames(cnum,idom) = trim(fnames(idom))
file_info%stage_metadata%file_description(cnum,idom) = trim(string1)

function construct_file_names(file_info, ens_size, copy, domain)
write(construct_file_names, '(A, ''_member_'', I4.4, A, ''.nc'')') &

trim(file_info%root_name), copy, trim(dom_str)

Also see
harnesses/filename_harness/files: ENS_MEAN_COPY PriorDiag_mean.nc

ADDITIONAL NOTES :

1. currently the closest_member_tool is broken but plans on being fixed soon.

2. restart_file_tool and most model_to_dart/dart_to_model programs have been deprecated, since DART formatted
restarts are no longer supported.

3. some programs such as model_mod_check have not been fully tested and need to be exercised with the new
naming conventions.

ancient history

To see previous history, it is probably best to use

• git log --follow

• git diff --name-status XXXX YYYY where XXXX and YYYY are commits, branches, . . .

or something along those lines.

6.230. Changelog 979

DART, Release 9.10.3

6.231 404 Error

The requested page could not be found.

980 Chapter 6. References

	Ensemble Data Assimilation
	Organization of the documentation
	Manhattan Release
	Quick-start
	Quick-start for developers

	Citing DART
	References
	System requirements
	Fortran90 compiler
	Locating netCDF library
	Downloading DART
	Compiling DART
	Verifying installation
	Introduction to ensemble data assimilation
	The Lorenz 63 model and its relevance to data assimilation
	Data assimilation in DART using the Lorenz 63 model
	What is DART?
	The benefits of using DART
	A brief history of DART
	High-level data assimilation workflows in DART
	DART’s design philosophy
	Important capabilities of DART
	Working with collaborators on porting new models
	Assimilation in a complex model
	Message Passing Interface
	Filters
	Inflation
	Required model_mod routines
	Suggestions for a “simple” model
	Suggestions for a “complex” model
	How to test your model_mod routines
	Controlling which files are output by filter
	Advice for models with multiple vertical coordinate options
	Data management in DART
	Programs included with DART
	Adding your observations to DART
	How DART supports different types of observations: the preprocess program
	How DART stores observations: observation sequence (obs_seq) files
	Detailed structure of an obs_seq file
	Creating an obs_seq file of synthetic observations
	Creating an obs_seq file from real observations
	Available observation converter programs
	Manipulating obs_seq files with the obs_sequence_tool
	The difference between observation TYPE and QUANTITY
	Adding support for a new observation TYPE
	Introduction to DART’s support for RTTOV
	DART Observations
	Converter programs
	AIRS and AMSU
	Program convert_airs_L2
	Program convert_amsu_L1
	Aviso+/CMEMS Observations
	PROGRAM level4_to_obs
	CHAMP
	PROGRAM cice_to_obs
	CONAGUA
	PROGRAM COSMOS_to_obs
	PROGRAM COSMOS_development
	PROGRAM dwl_to_obs
	GMI Brightness Temperatures
	NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 1b Radiances
	GPSPW
	GSI2DART
	GTSPP Observations
	MADIS Data Ingest System
	PROGRAM MIDAS_to_obs
	DART observations and MODIS products.
	PROGRAM MOD15A2_to_obs
	PROGRAM MOD15A2_to_obs
	MPD
	PROGRAM prepbufr
	PROGRAM create_real_obs
	ROMS observations to DART observation sequences
	SSEC Data Center
	PROGRAM sst_to_obs, oi_sst_to_obs
	SSUSI F16 EDR-DSK format to observation sequence converters
	WOD Observations
	GND GPS VTEC
	GPS Observations
	Oklahoma Mesonet MDF Data
	QuikSCAT SeaWinds Data
	Even Sphere
	Obs Error
	Radar Observations
	PROGRAM snow_to_obs
	PROGRAM text_to_obs
	Total Precipitable Water Observations
	PROGRAM tc_to_obs
	Tropical Cyclone ATCF File to DART Converter
	PROGRAM littler_tf_dart
	PROGRAM rad_3dvar_to_dart
	3DVAR/4DVAR Observation Converters
	Checking your initial assimilation
	Computing filter increments
	Computing filter increments using a complex model
	DART missing data value
	DART quality control field
	Examining the obs_seq.final file
	MATLAB® observation space diagnostics
	DART Tutorial
	Conditional probability and Bayes’ theorem
	DART_LAB Tutorial
	WRF/DART Tutorial Materials for the Manhattan Release.
	Supported Models
	9-variable
	AM2
	bgrid_solo
	Atmospheric Models in CESM
	The CAM-FV DART Interface
	Community Earth System Model
	CICE
	CLM
	CM1
	COAMPS Nest
	COAMPS
	ECHAM
	FESOM
	GITM
	PROGRAM netcdf_to_gitm_blocks
	gitm_blocks_to_netcdf``
	Ikeda
	LMDZ
	Lorenz 05
	Lorenz 63
	Lorenz 84
	Lorenz 96
	Lorenz 96 2-scale
	Forced Lorenz 96
	MITgcm_ocean
	MPAS_ATM
	PROGRAM mpas_dart_obs_preprocess
	MPAS OCN
	PROGRAM model_to_dart for MPAS OCN
	NCOMMAS
	NOAH, NOAH-MP
	null_model
	PBL_1D
	pe2lyr
	POP
	MODULE dart_pop_mod (POP)
	ROMS
	ROSE
	Simple advection
	SQG
	TIEGCM
	WRF-Hydro
	WRF
	PROGRAM replace_wrf_fields
	PROGRAM wrf_dart_obs_preprocess
	MODULE model_mod
	MODULE model_mod
	Contributors’ guide
	Requesting features and reporting bugs
	Mailing list
	DART Manhattan Differences from Lanai Release Notes
	Forward Operator
	Netcdf Inflation Files
	State Stucture
	Filter async modes
	Distributed State
	MODULE location_mod (channel)
	MODULE location_mod
	MODULE (1D) location_mod
	MODULE location_mod (threed_cartesian)
	MODULE location_mod (threed_sphere)
	program obs_seq_verify
	PROGRAM wakeup_filter
	PROGRAM compare_states
	PROGRAM gen_sampling_err_table
	PROGRAM perturb_single_instance
	system simulation programs
	PROGRAM compute_error
	PROGRAM preprocess
	PROGRAM obs_impact_tool
	program create_fixed_network_seq
	program obs_loop
	program perfect_model_obs
	program obs_selection
	program obs_sequence_tool
	PROGRAM integrate_model
	PROGRAM obs_diag (for 1D observations)
	PROGRAM obs_diag (for observations that use the threed_cartesian location module)
	PROGRAM obs_diag (for observations that use the threed_sphere location module)
	PROGRAM fill_inflation_restart
	program obs_seq_coverage
	PROGRAM advance_time
	program model_mod_check
	PROGRAM closest_member_tool
	PROGRAM restart_file_tool
	PROGRAM filter
	program obs_keep_a_few
	program create_obs_sequence
	PROGRAM obs_seq_to_netcdf
	program obs_common_subset
	MODULE ensemble_manager_mod
	MODULE random_seq_mod
	MODULE mpi_utilities_mod
	MODULE time_manager_mod
	MODULE utilities_mod
	MODULE types_mod
	MODULE schedule_mod
	MODULE obs_kind_mod
	MODULE DEFAULT_obs_kind_mod
	MODULE obs_sequence_mod
	MODULE smoother_mod
	MODULE assim_model_mod
	MODULE assim_tools_mod
	MODULE cov_cutoff_mod
	MODULE obs_model_mod
	MODULE reg_factor
	MODULE adaptive_inflate_mod
	MODULE quality_control_mod
	MODULE filter_mod
	MODULE location_mod
	forward operator test README
	PROGRAM PrecisionCheck
	MODULE obs_def_gps_mod
	MODULE obs_def_dew_point_mod
	MODULE obs_def_ocean_mod
	MODULE obs_def_1d_state_mod
	MODULE obs_def_radar_mod
	MODULE DEFAULT_obs_def_mod
	MODULE obs_def_mod
	MODULE obs_def_rttov_mod
	Manhattan
	Multi-Component CESM+DART Setup
	PROGRAM cam_to_dart
	CAM
	PROGRAM dart_to_cam
	PROGRAM trans_pv_sv
	PROGRAM create_ocean_obs
	PROGRAM trans_sv_pv
	PROGRAM dart_to_ncommas
	PROGRAM ncommas_to_dart
	mkmf
	Copyright
	Changelog
	404 Error

